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Geometric optics and the wave equation

on manifolds with corners

András Vasy

1. Introduction

According to geometric optics, light propagates in straight lines (in homoge-
neous media), reflects/refracts from surfaces according to Snell’s law: energy and
tangential momentum are conserved. Thus, when reflecting from a hypersurface
(which has codimension one) one gets the usual law of incident and reflected rays
enclosing an equal angle to the normal to the surface. Indeed, conservation of tan-
gential momentum and kinetic energy implies that of the magnitude of the normal
component. When reflecting from a higher codimension (≥ 2) corner, the law is
unchanged (momentum tangential to the corner and energy are conserved) – but
now this allows each incident ray to generate a whole cone of reflected rays, see
Figures 1-2.

On the other hand, light is a form of electromagnetic radiation, satisfying
Maxwell’s equations – which in turn implies that each component of the electro-
magnetic field (in free space) satisfies the wave equation,

Pu = 0, Pu = D2
t u − ∆gu,

∆g is the Laplacian, so it is c2
∑n

j=1 D2
xj

in R
n, where c is the speed of light (this

corresponds to a Riemannian metric g = c−2
∑

dx2
j ), Dxj

= 1
i ∂xj

, with suitable
boundary conditions.

It is natural to ask how these points of view are related. One way of discussing
the relationship between these is that singularities (lack of smoothness) of solutions
of Pu = 0 follow geometric optics rays. Due to its relevance, this problem has a
long history, and has been studied extensively by Keller in the 1940s and 1950s in
various special settings, see e.g. [1, 11]. The present work (and ongoing projects
continuing it, especially joint work with Melrose and Wunsch [16], see also [2,

17]) can be considered a justification of Keller’s work in the general geometric
setting (curved edges, variable coefficient metrics, etc). In order to describe this
relationship precisely, I discuss an even more general setting.
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Figure 1. Geometric optics rays hitting a surface. The ones hit-
ting a corner generate a whole cone of reflected rays, see also Fig-
ure 2.
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Figure 2. Geometric optics rays hitting a surface at a codimen-
sion 2, dimension 1, corner (which may be called an edge). The
momentum component parallel to the edge is preserved when the
edge is hit, as is the magnitude of the normal component, so a
single incident ray generates a cone with apex at the point where
the edge is hit, axis given by the edge, and angle at the apex given
by the angle between the incident ray and the edge.

I should state here that these notes are meant to be expository. The full details
of the proof of the main theorem, as well as various claims scattered throughout
the notes, are written up in [26]. Moreover, [27] provides an exposition at an
intermediate level: the main technical points are explained there. In the present
notes the goal is to explain at least the statement of the results, and also to explain a
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proof in the simplest boundaryless setting that can be adapted to the more general
situation we face here.

The original version of these notes were based on my transparencies and lecture
note at the UAB conference, and it was put together somewhat hastily as a dead-
line approached. I am thus very grateful to the anonymous referee who had some
excellent suggestions in making these notes more accessible. I also thank the con-
ference organizers for the invitation, and the University of Alabama, Birmingham,
for hosting the meeting so well.

2. PDEs on manifolds without boundary

Let’s start with the boundaryless case. So suppose X is a manifold without
boundary of dimension n. As outlined above, the basic goal is to connect analytic
objects (such as the wave operator) with geometric objects (such as certain curves
related to the light rays). This is accomplished by the so-called microlocal, or phase
space, analysis. The standard setting for microlocal analysis is the cotangent bundle
– T ∗X is the phase space. If zj are local coordinates on X , and we write one-forms
as

∑

ζj dzj, then (zj , ζj), j = 1, . . . , n, are local coordinates on T ∗X . (Actually,
they are global on the fibres of T ∗X → X .)

For our purposes there are two important structures on T ∗X . First, be-
ing a vector bundle, T ∗X is equipped with an R

+-action (dilation in the fibers):
R

+
s × T ∗X 3 (s, z, ζ) 7→ (z, sζ). It is also a symplectic manifold, equipped with a

canonical symplectic form ω, ω =
∑

dζj ∧ dzj in local coordinates.
We can now turn to differential operators. It is useful to recall the multiindex

notation: if α = (α1, . . . , αn) ∈ N
n, |α| = α1 + . . . + αn, then Dα

z = Dα1

z1
. . .Dαn

zn
,

with Dj = Dzj
= 1

i ∂zj
(and N is the set of non-negative integers).

If P is a differential operator on X , say P =
∑

|α|≤m aα(z)Dα
z in some local

coordinates, one can associate a principal symbol p = σm(P ) =
∑

|α|=m aα(z)ζα to

P ; this is homogeneous degree m with respect to the R
+-action (called positively

homogeneous).
In fact, the same works for a more general class of operators, called pseudodif-

ferential operators, or ps.d.o.’s for short. I will give a concrete description of what
these are, but one may learn more by listing their properties first. For P ∈ Ψm

cl (X),
i.e. P is a pseudodifferential operator of order m, then p = σm(P ) is positively
homogeneous degree m on T ∗X \ o, o denoting the zero section.

From an algebraic point of view, some of the most important properties are
that Ψ∞

cl (X) = ∪mΨm
cl (X) is an order-filtered ring, the space Ψm(X) increasing

with m, so

A ∈ Ψm
cl (X), B ∈ Ψm′

cl (X) ⇒ AB ∈ Ψm+m′

cl (X),

that the principal symbol is a ring homomorphism, that Ψ0
cl(X) is bounded on

L2(X), Ψm(X) (m arbitrary) maps C∞(X) (and its dual D′(X)) to itself, and that
there is a short exact sequence

0 → Ψm−1
cl (X) → Ψm

cl (X) → Sm
hom(T ∗X \ o) → 0;

where Sm
hom stands for C∞ homogeneous functions of degree m.

On the other hand, for X = R
n, there are explicit maps, called quantizations,

sending appropriate classes of functions on T ∗X to pseudodifferential operators on
X . The standard class of such functions to consider is that of symbols: a symbol
of order m on T ∗X (X = R

n) is a C∞ function with specified behavior as ξ → ∞
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(and uniform control as x → ∞, although this is much less relevant here): for all
α, β ∈ N

n there is Cα,β > 0 such that for all (x, ξ) ∈ T ∗X ,

(1) |Dα
xDβ

ξ a(x, ξ)| ≤ Cα,β(1 + |ξ|)m−|β|.

This generalizes polynomials in ξ (recall that symbols of differential operators are
polynomials): the order of a polynomial decreases each time one differentiates it.
Note that a smooth homogeneous function of degree m on T ∗X \ o is in fact a
symbol of order m in |ξ| > 1 over bounded regions in x, i.e. it satisfies the symbol
estimates (1) there – we need to work away from the zero section, ξ = 0, for any
smooth homogeneous function on all of T ∗X is in fact a polynomial. A polyhomo-
geneous symbol a of order m is a symbol of order m for which there exist smooth
homogeneous degree m − j functions aj (j ∈ N) on T ∗X \ o such that, for all k,

a − ∑k−1
j=0 aj is a symbol of order m − k in |ξ| > 1. For quantization, for instance,

one can take the ‘left quantization’

(qL(a)u)(x) = (2π)−n

∫

R2n

ei(x−y)·ξa(x, ξ)u(y) dy dξ,

qL(a) is (by definition) a ps.d.o. of order m is a is a symbol of order m. For general
manifolds one can transfer this definition by localization. These quantizations q
have the property that σm(q(a))−a is a symbol of order m−1 – so to leading order
q(a) is independent of the choice of q, but there are still many choices.

It should be emphasized that, in the present setting, the relevant region for
microlocal analysis is the asymptotic regime as ξ → ∞. Making various objects
homogeneous, or conic, is a way of ‘bringing infinity to a finite region’. Another
way of accomplishing this is to compactifying the fibers of the cotangent bundle –
this is the approach taken by Melrose, e.g. in [13].

The symplectic form ω turns p, or rather its differential dp, into a vector field Hp

(called the Hamilton vector field of p) on T ∗X via demanding that ω(V, Hp) = V p
for all vector fields V . Thus,

Hp =
∑

j

∂p

∂ζj

∂

∂zj
− ∂p

∂zj

∂

∂ζj
.

Note that Hp is homogeneous of degree m − 1.

Definition 1. Suppose that p is homogeneous degree m on T ∗X \ o. The
characteristic set of p is Σ = p−1({0}). Bicharacteristics are integral curves of Hp

inside Σ.

The role that Hp plays in analysis becomes apparent upon noticing that if

P ∈ Ψm
cl (X), Q ∈ Ψm′

cl (X) then [P, Q] = PQ − QP ∈ Ψm+m′−1
cl (X), and

σm+m′−1(i[P, Q]) = Hpq.

To do analysis, we also need a notion of singularity of a function or distribution
u. The roughest notion is that of the wave front set WF(u), which locates at
which points and in which direction a function u is not smooth, here meaning
C∞. Immediately from the definition, given below, this is a closed conic subset of
T ∗X \ o; u is C∞ if and only if WF(u) = ∅. In fact, for any point z0 ∈ X , z0 has a
neighborhood in X on which u is C∞ if and only if WF(u) ∩ (T ∗

z0
X \ o) = ∅.

One way of defining WF(u) for distibutions u is the following:
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Definition 2. Suppose that u ∈ D′(X). We say that q ∈ T ∗X \ o is not in
WF(u) if there exists A ∈ Ψ0(X) such that σ0(A)(q) 6= 0 (i.e. A is elliptic at q) and
Au ∈ C∞(X).

To get a feeling for this, one should think of A as the quantization of a symbol
a which is supported in a cone around q, identically 1 on the R

+-orbit through q
(at least outside some compact subset of T ∗X).

For example, if δ0 is the delta distribution at the origin, then

WF(δ0) = {(0, ζ) : ζ 6= 0} = N∗{0} \ o,

i.e. δ0 is singular only at the origin, and it is singular there in every direction –
which is quite reasonable. Here we recall that if S is a submanifold of X then N∗S
is the conormal bundle of S; at a point p ∈ S, the fiber N∗

p S consists of all covectors
α ∈ T ∗

p S such that α(V ) = 0 for all V ∈ TpS. Another way of looking at N∗S is
that the space of its smooth sections is spanned (over C∞(S)) by da, as a ranges
over all elements of C∞(X) that vanish on S. As an aside, conormal bundles are
Lagrangian submanifolds of T ∗X , i.e. the symplectic form vanishes when restricted
to their tangent space, and are maximal dimensional (i.e. n-dimensional) with this
property. Conic Lagrangian submanifolds of T ∗X \ o play an important role in
many parts od microlocal analysis.

A more interesting example is that of a domain Ω with a C∞ boundary, and
χΩ the characteristic function of Ω. If locally ∂Ω is defined by f , i.e. over some
open set O ⊂ X , ∂Ω ∩ O = {z ∈ O : f(z) = 0} and df never vanishes on ∂Ω ∩ O,
then, over O, the space of sections of N∗∂Ω is spanned by df , so any covector in
N∗∂Ω has the form αdf . In this case,

WF(χΩ) = N∗∂Ω \ o.

That is, χΩ is smooth both in Ω and in the complement of its closure (after all, it
is constant there!), and it is singular at ∂Ω, but it is only singular in the conormal
directions: it is smooth when one moves along ∂Ω. (This can be seen directly from
the definition of WF: consider differentiating χΩ along a vector field tangential to
the boundary, and note that the principal symbol of such a vector field vanishes on
the conormal bundle!)

One can measure singularities with respect to other spaces: e.g. the Sobolev
spaces Hs

loc(X), where we would write WFs(u), or with respect to real analytic
functions, where we would write WFA(u). Indeed, WFs(u) plays a role in the
proofs of various results stated below; one often proves in an inductive manner that
u is microlocally in Hs for every s (hence is C∞ microlocally), rather than proving
directly that u is C∞ microlocally. We can define WFs(u) for u ∈ D′(X) by saying
that q ∈ T ∗X \o is not in WFs(u) if there exists A ∈ Ψ0(X) such that σ0(A)(q) 6= 0
and Au ∈ Hs

loc(X). Equivalently, one can shift the weight to the ps.d.o. from the
function space:

Definition 3. Suppose that u ∈ D′(X). We say that q ∈ T ∗X \ o is not in
WFs(u) if there exists A ∈ Ψs(X) with σ0(A)(q) 6= 0 and Au ∈ L2

loc(X).

The main facts about the analysis of P , which in this generality are due to
Hörmander and Duistermaat-Hörmander [7, 4, 9] are:

(1) Microlocal elliptic regularity. Let Σ(P ) = p−1({0}) be the characteristic
set of P . If u ∈ D′(X) then WF(u) ⊂ WF(Pu) ∪ Σ(P ). In particular, if
Pu ∈ C∞(X) then WF(u) ⊂ Σ(P ).
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(2) Propagation of singularities. Suppose that p is real, Pu ∈ C∞(X). Then
WF(u) is a union of maximally extended bicharacteristics in Σ(P ). That
is, if q ∈ WF(u) (hence in Σ(P )) then so is the whole bicharacteristic
through q.

For analogy with the manifolds with corners setting, we restate part of these
conclusions in a special case:

Theorem 4. (See Hörmander and Duistermaat-Hörmander [7, 4, 9].) Suppose
P ∈ Ψm(X), p = σm(P ) is real, Pu = 0, u ∈ D′(X). Then WF(u) ⊂ Σ = Σ(P ),
and it is a union of maximally extended bicharacteristics of P .

Note that (2) may be vacuous; indeed, if Hp is radial, i.e. tangent to the orbits
of the R

+-action, then it does not give any information on WF(u), as the latter
is already known to be conic. Such points are called radial points, and in recent
work with Hassell and Melrose [6], they have been extensively analyzed under non-
degeneracy assumptions. If P is the wave operator, there are no radial points in
Σ = Σ(P ), but such points are very important in scattering theory (where the
R

+-action, or its remnants, are in the base variables z).
As an example, consider the wave operator P = D2

t − ∆g, X = M × R, M
a manifold without boundary. Then p = σ2(P ) = τ2 − |ξ|2g, where (x, t, ξ, τ) are
coordinates on T ∗X (so ξ is dual to x, and τ is dual to t), and the projection of
bicharacteristics to M are geodesics. If M ⊂ R

n and g is the Euclidean metric, then
Hp = 2τ∂t − 2ξ · ∂x, and bicharacteristics inside p = 0, i.e. |τ | = |ξ|, are straight
lines

s 7→ (x0 − 2sξ0, t0 + 2τ0s, ξ0, τ0),

which explains geometric optics in the absence of boundaries.

3. Propagation of singularities on manifolds with corners: the phase

space

We can now turn to boundaries and corners. So suppose X is a manifold
with corners. Locally this means that X is diffeomorphic to an open subset U of
[0,∞)k × R

n−k; we denote the corresponding coordinates by (x, y).
Roughly, the results have the same form as in the boundaryless case, but the

definitions of wave front set and the bicharacteristics change significantly. In par-
ticular, the relevant wave front set is WFb(u), introduced by Melrose (see [18],
[8, Section 18.2] for the setting of smooth boundaries, [19] for manifolds with cor-
ners). Both WFb(u) and the image of the (generalized broken) bicharacteristics are
subsets of a new phase space, the b-cotangent bundle bT ∗X .

The reason for this is that one cannot microlocalize in T ∗X : naively defined
ps.d.o’s do not act on functions on X in general, and even when they do, they do
not preserve boundary conditions. This causes technical complications, for we are
interested in the wave operator, P = D2

t − ∆, whose principal symbol is a C∞

function on T ∗X , not on bT ∗X where we microlocalize. In fact, from a PDE point
of view, this discrepancy is what causes the diffractive phenomena.

Rather than defining bT ∗X directly, I describe its main properties: these can
be easily made into a definition as we shortly see. Being a vector bundle, locally
in X it is trivial, and in the local coordinate product decomposition above, it will
take the form Ux,y ×R

k
σ ×R

n−k
ζ , with U ⊂ [0,∞)k

x ×R
n−k
y , where σ is the ‘b-dual’

variable of x and ζ is the b-dual variable of y.
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There is a natural map π : T ∗X → bT ∗X , which in these local coordinates
takes the form

π(x, y, ξ, ζ) = (x, y, xξ, ζ),

with xξ = (x1ξ1, . . . , xkξk).
(2)

(That is, σj = xjξj .) Thus, π is a C∞ map, but at ∂X , it is not a diffeomorphism.
Over the interior X◦ of X , bT ∗X and T ∗X are naturally identified via π, and

WFb(u) ∩ bT ∗
X◦X = π(WF(u) ∩ T ∗

X◦X).

Note that if q is a linear function on each fiber of bT ∗X , then it has the form

q =
∑

aj(x, y)σj +
∑

bj(x, y)ζj ,

so

π∗q =
∑

aj(x, y)xjξj +
∑

bj(x, y)ζj ,

which is the principal symbol of

Q =
∑

aj(x, y)xjDxj
+

∑

bj(x, y)Dyj
.

Vector fields of this form are exactly the vector fields tangent to all boundary faces
of X ; we denote their space by Vb(X).

In fact, this indicates how bTX can be defined intrinsically: the set of all
smooth vector fields tangent to all boundary faces is the set of all smooth sections
of a vector bundle; indeed, x, y, aj, bj above give local coordinates (which were
denoted by x, y, σj , ζj beforehand) on bTX . Then bT ∗X can be defined as the dual
vector bundle. However, as long as all considerations are local, and they are mostly
such here, it is safe to consider bT ∗X a space arising from a singular change of
variables on T ∗X (given by (2)) – it is for this reason that it is sometimes called
the compressed cotangent bundle.

There is a pseudodifferential algebra microlocalizing Vb(X) and the correspond-
ing algebra of differential operators Diffb(X), denoted by Ψb(X). There is also a
principal symbol for A ∈ Ψm

b (X); this is now a homogeneous degree m function
on bT ∗X \ o. Ψb(X) has the algebraic properties analogous to Ψ(X) on manifolds
without boundary. It can be described quite explicitly; this was done for instance
in [26] in the corners setting, and in [8, Section 18.3] for smooth boundaries.

Now WFb(u) can be defined analogously to WF(u). For simplicity we state
this here for u ∈ L2

g(X); this is how the main theorem is stated below. The space
of ‘very nice’ functions corresponding to Vb(X) and Diffb(X), replacing C∞(X), is
the space of L2 conormal functions to the boundary, i.e. functions v ∈ L2

g(X) such

that Qv ∈ L2
g(X) for every Q ∈ Diffb(X) (of any order). Then q ∈ bT ∗X \o is not in

WFb(u) if there is an A ∈ Ψ0(X) such that σb,0(A)(q) 6= 0 and Au is L2-conormal
to the boundary. Spelling out the latter explicitly:

Definition 5. Then q ∈ bT ∗X \ o is not in WFb(u) if there is an A ∈ Ψ0(X)
such that σb,0(A)(q) 6= 0 and QAu ∈ L2(X) for all Q ∈ Diffb(X).

Note that the definition of WF could be stated in a completely parallel manner:
we would require (for X without boundary) QAu ∈ L2(X) for all Q ∈ Diff(X) –
this is equivalent to Au ∈ C∞(X) by the Sobolev embedding theorem.
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4. Propagation of singularities on manifolds with corners: the

bicharacteristic geometry

After the general preliminaries, we turn to bicharacteristics. If P ∈ Diffm(X),

the characteristic set Σ(P ) = p−1({0}) is a subset of T ∗X . Let Σ̇ = π(Σ(P )) ⊂
bT ∗X be the compressed characteristic set. Below we will be concerned with the
wave operator P = D2

t − ∆g on X = M × R, but the following definition is
useful in many other cases (which we do not discuss, however). Generalized broken

bicharacteristics are curves inside Σ̇, satisfying a Hamilton vector field condition,
plus an additional requirement where the boundary is smooth. More precisely:

Definition 6. Generalized broken bicharacteristics are continuous maps γ :
I → Σ̇, where I is an interval, satisfying

(1) for all f ∈ C∞(bT ∗X) real valued,

lim inf
s→s0

(f ◦ γ)(s) − (f ◦ γ)(s0)

s − s0

≥ inf{Hp(π
∗f)(q) : q ∈ π−1(γ(s0)) ∩ Σ(P )},

(2) and if q0 = γ(s0) ∈ bT ∗
p0

X , and p0 lies in the interior of a boundary
hypersurface (i.e. a boundary face which has codimension 1, so near p0

∂X is smooth), then in a neighborhood of s0, γ is a generalized broken
bicharacteristic in the sense of Melrose-Sjöstrand [14], see also [8, Defini-
tion 24.3.7].

(1) is a very natural requirement. In the interior of X , we have defined bicharac-
teristics as integral curves of the Hamilton vector field of p in the characteristic set.
Thus, if γ is an bicharacteristic segment over X◦, then for all f ∈ C∞(T ∗X), the

derivative of f along γ at s0, i.e. lims→s0

(f◦γ)(s)−(f◦γ)(s0)
s−s0

, is equal to (Hpf)(γ(s0)).
When we go back to the manifold with corners X , Hp is a vector field on T ∗X ,
while the image of γ lies in bT ∗X . Moreover, π is not one-to-one, even when re-
stricted to Σ(P ). Thus, the preimage of γ(s0) under π often contains many points
(although it is still compact). Hence we cannot expect that f is differentiable along
γ, although we can still expects bounds for the lim inf (and lim sup) of the differ-
ence quotients by taking the worst case scenario as we evaluate Hp(π

∗f)(q) over
q ∈ π−1(γ(s0)) ∩ Σ(P ), which explains the infimum. Thus, it is very natural to
demand the estimate in the definition above – and conversely, this gives a useful
notion of generalized broken bicharacteristics.

We now make some comments about the additional requirement, (2). First,
without (2) the propagation theorem below would still hold, but would be weaker,
so at first the reader should feel free to ignore it. Second, (2) is there to rule out
certain rays tangent to the boundary hypersurface (where the boundary is smooth):
it prevents rays gliding along the boundary to enter the shadow of an obstacle. We
remark that this strengthening is special to C∞ singularities; if we were discussing
the analytic wave front set, we could not do so. Indeed, our definition, without
the strengthening given by (2), is equivalent to Lebeau’s [12], see Lemma 7 below.
Moreover, it is worthwhile pointing out that our definition also works in quantum
N -body scattering even in the presence of bound states in subsystems (which have
no analogues for the wave equation) – indeed, it originated there, see [25].

If X = M × R, M a manifold with corners, g a Riemannian metric on M ,
(x, y) are coordinates on M , with the boundary hypersurfaces locally given by the
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vanishing of the xj , then coordinates on X are given by (x, y, t), with boundary
hypersurfaces still locally given by the vanishing of the xj . In particular, t plays a
completely analogous role to y as far as the basic geometry is concerned – in the
notation of Section 3, t is one of the yj . (This is slightly unfortunate notation, but
it would have been even worse to drag along a variable t in Section 3 that played
an indistinguishable role from the other y variables.)

Now, if P = D2
t − ∆g is the wave operator, then Snell’s law is encoded in the

statement that γ is continuous. Indeed, any (locally defined) smooth functions on
bT ∗X , such as x, y, t, σ, ζ, τ , are continuous along γ, i.e. their composition with γ
is continuous (since γ is a continuous map into bT ∗X). However, ξj = x−1

j σj is not
continuous, so the normal momentum may jump.

In order to better understand the generalized broken bicharacteristics, we divide
Σ̇ into two subsets. We thus define the glancing set G as the set of points in Σ̇ whose
preimage under π̂ = π|Σ consists of a single point, and define the hyperbolic set H
as its complement in Σ̇.

For the wave operator these can be described very explicitly. First, in local
coordinates (x, y) as above on some open set U in M , the metric is of the form

g(x, y, ξ, ζ) =
∑

i,j

Aij(x, y)ξiξj +
∑

i,j

2Cij(x, y)ξiζj +
∑

i,j

Bij(x, y)ζiζj

with A, B, C smooth. Moreover, the coordinates on M can be chosen (i.e. the yj

can be adjusted) so that C(0, y) = 0. Then on bT ∗
U×R

X \ o,

(3) p|x=0 = τ2 − ξ · A(y)ξ − ζ · B(y)ζ,

with A, B positive definite matrices depending smoothly on y. Thus, with U =
{x = 0} ∩ bT ∗

U×R
X \ o, writing local coordinates on bT ∗X as (x, y, t, σ, ζ, τ),

G ∩ U = {(0, y, t, 0, ζ, τ) : τ2 = ζ · B(y)ζ, (ζ, τ) 6= 0},
H ∩ U = {(0, y, t, 0, ζ, τ) : τ2 > ζ · B(y)ζ, (ζ, τ) 6= 0}.

Note that Σ̇ = π(Σ(P )) is disjoint from all points (x, y, t, σ, ζ, τ) with x = 0 at
which either σ 6= 0 (for σj = xjξj = 0 for all j) or τ2 < ζ · B(y)ζ.

We can then desribe broken bicharacteristics more concretely:

Lemma 7. Suppose γ is a generalized broken bicharacteristic. Then

(1) If γ(s0) ∈ G, let q0 be the unique point in the preimage of γ(s0) under
π̂ = π|Σ. Then for all f ∈ C∞(bT ∗X) real valued, f ◦ γ is differentiable
at s0, and

d(f ◦ γ)

ds
|s=s0

= Hpπ
∗f(q0).

(2) If γ(s0) ∈ H, lying over a corner given in local coordinates by x = 0, then
exists ε > 0 such that x(γ(s)) = 0 for s ∈ (s0 − ε, s0 + ε) if and only
if s = s0. That is, γ does not meet the corner {x = 0} in a punctured
neighborhood of s0. (Here, as usual, x is considered as a vector valued
function, x = (x1, . . . , xk).)

Indeed, this is the route that Lebeau takes in his definition [12], and was also
the route taken in [26]. That is, the converse of this lemma also holds in the sense

that any continuous map γ : I → Σ̇ satisfying (1), (2) of this lemma, plus part (2)
of our definition, is in fact a generalized broken bicharacteristic.
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Proof. First consider case (1). Then

lim inf
s→s0

(f ◦ γ)(s) − (f ◦ γ)(s0)

s − s0
≥ Hpπ

∗f(q0)

for f ∈ C∞(bT ∗X) real-valued by our definition of generalized broken bicharacter-
istics. Applying the definition to −f , we also conclude that

lim sup
s→s0

(f ◦ γ)(s) − (f ◦ γ)(s0)

s − s0
≤ Hpπ

∗f(q0).

Combining these two estimates shows that f◦γ is differentiable at s0, with derivative
given by Hpπ

∗f(q0).
Consider (2) now. Taking f =

∑

j σj (in terms of the ‘canonical’ coordinates on
bT ∗X) in the definition of generalized broken bicharacteristics, we see that π∗f =
∑

j xjξj in canonical coordinates on T ∗X . A simple calculation using (3) shows

that Hpπ
∗f is positive (bounded below by a positive constant) at all points in

π̂−1(γ(s0)) if γ(s0) ∈ H. Since f ◦ γ vanishes at s0, this implies that it is non-zero

for s near s0 but s 6= s0. As f = 0 at Σ̇∩{x = 0}, we deduce that, in a neighborhood
of s0, the bicharacteristic is at the corner x = 0 only at s0, proving the lemma. �

Part (2) of this lemma indicates the possibility of an iterative description of the
bicharacteristics: at H, where we do not know in which direction they will travel, we
still know that they will be in a less singular stratum (a lower codimensional corner)
in a punctured neighborhood of s0. Thus, if we already understand bicharacteristics
in less singular strata, we can also understand their behavior at the corner under
consideration.

In fact, we have an even stronger description of generalized broken bicharac-
teristics at H follows, as in Lebeau’s paper.

Lemma 8. (Lebeau, [12, Proposition 1]) If γ is a generalized broken bichar-
acteristic, s0 ∈ I, q0 = γ(s0), then there exist unique q̃+, q̃− ∈ Σ(P ) satisfying
π(q̃±) = q0 and having the property that if f ∈ C∞(bT ∗X) then f ◦ γ is differen-
tiable both from the left and from the right at s0 and

(

d

ds

)

(f ◦ γ)|s0± = Hpπ
∗f(q̃±).

That is, one can associate an incoming and an outgoing point in T ∗X , rather
than merely in bT ∗X , into which the curve γ maps – the point being that even
incoming and outgoing normal momenta are defined, although they can certainly
differ. This indicates that, at least away from rays hitting the boundary tangen-
tially, Figures 1-2 give an accurate indication of the bicharacteristic geometry.

5. Propagation of singularities on manifolds with corners: the main

theorem

We are now ready to state the main theorem. Recall that H1
0 (X) is the com-

pletion of C∞
c (X◦) in the norm

‖u‖2
H1(X) = ‖du‖2

L2(X) + ‖u‖2
L2(X),

and that elements of H1
0 (X) restrict as 0 to ∂X , i.e. u ∈ H1

0,loc(X) means that u
satisfies the Dirichlet boundary conditions.
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Theorem 9. Suppose Pu = 0, u ∈ H1
0,loc(X). Then WFb(u) ⊂ Σ̇, and it is a

union of maximally extended generalized broken bicharacteristics of P .

This theorem can be stated in a completely microlocal manner, and one can
also measure the regularity modulo Sobolev spaces. In addition, it also holds for
Neumann boundary conditions.

It was proved in the real analytic setting by Lebeau [12], and in the C∞

setting with C∞ boundaries (and no corners) by Melrose, Sjöstrand and Taylor
[14, 15, 23]. This result is thus the C∞ version of Lebeau’s theorem: the geometry
is similar in the real analytic vs. C∞ settings, but the analysis is quite different.

The main ideas of the proof of the main theorem are the use positive commu-
tator estimates, b-microlocalization, i.e. using elements A ∈ Ψm

b (X) as the commu-
tants, and using the Dirichlet form. The proof is thus different from the Melrose-
Sjöstrand-Taylor proof even in the C∞ boundary case at hyperbolic points. As
this is too technical, I quickly go through the positive commutator proof in the
boundaryless setting.

6. A simple commutator proof in the boundaryless setting

For this purpose, we also need that operators A ∈ Ψm(X) (recall that X has no
boundary for this exposition!) have an operator wave front set associated to them,

WF′(A) ⊂ T ∗X \ o,

which is again closed and conic. Roughly, if A = a(x, y, Dx, Dy), then a point
q = (x, y, ξ, ζ) is not in WF′(A) if a is a symbol of order −∞, i.e. decays rapidly,
in an open cone around q. Then the action of A is microlocal:

WF(Au) ⊂ WF′(A) ∩ WF(u).

Positive commmutator estimates originated in [9], although they are essentially
microlocal energy estimates, and as such they have a long history. For P ∈ Ψ(X)
(we are suppressing the order of P for now), we thus want to construct A ∈ Ψ(X)
such that i[A∗A, P ] is positive, modulo terms we can control. This is useful since

〈i[A∗A, P ]u, u〉
= 〈iA∗APu, u〉 − 〈iPA∗Au, u〉
= 〈iA∗APu, u〉 + 〈u, iA∗APu〉,

and the PDE gives information about Pu. (This argument needs to be regular-
ized, but this can be done.) Now, if i[A∗A, P ] = B∗B + E + F where F is lower
order, hence negligible, we deduce that ‖Bu‖2 can be controlled provided we have
information about 〈Eu, u〉, i.e. about u microlocally on WF′(E).

The shape this takes in the positive commutator estimates is that we need to
assume that WF(u) is disjoint from WF′(E), and then we propagate the regularity
of u and conclude that WF(u) is disjoint from the elliptic set of B, i.e. where σ(B)
is non-zero. To accomplish this, one needs an iterative argument, showing that
u is in the Sobolev space Hm(X) on the elliptic set of B, provided that it is in
Hm−1/2(X) in a neighborhood, and of course provided that WF(u) is disjoint from
WF′(E) and that the PDE holds (Pu = 0, etc.). For this, we need B ∈ Ψm(X), for
then the L2 norm of Bu is a microlocal Hm norm of u. For that we need in turn
A ∈ Ψm−1/2(X) (for P second order). Factoring out a weight (which for the wave
equation can even just taken to have principal symbol |τ |m−1/2, and in general any
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supp a

Figure 3. suppa in the local coordinates q; suppe is the shaded
box on the left. The bicharacteristics are the straight lines with q′′

constant.

fixed non-degenerate weight will do), which can be dealt with in a straightforward
manner, roughly like the regularization mentioned above, we need to construct the
microlocalizing factors, i.e. we can pretend that A is of order 0.

The equation i[A∗A, P ] = B∗B+E+F as above is a condition on the principal
symbol a = σ(A), namely that

(4) Hpa = −b2 + e,

with b = σ(B) and e = σ(E). Thus, we want a = σ(A) to be decreasing along
bicharacteristics except in a region in which we have a priori information about u.
It also needs to have small support.

In our simple setting, Hp can locally be made into a constant vector field
∂

∂q1

by a change of coordinates on S∗X = (T ∗X \ o)/R
+. Thus, one works with

homogeneous degree zero functions q = (q1, q
′′) on T ∗X \ o which give coordinates

on S∗X . In such coordinates it is straightforward to construct such an a as a C∞

function on S∗X , and then regard it as a homogeneous function on T ∗X \ o: one
can take a to be the product of a (compactly supported) function χ1 of q1, on the
derivative of which we have sign conditions, and an arbitrary (say, non-negative,
also compactly supported) function χ2 of q′′. Here the compact support should
be small enough so that suppa is a subset of the region of validity of the local
coordinates qj .

On Figure 3 we illustrate the bicharacteristics of Hp, which are now straight
lines, and the support of a and e. Here suppe corresponds to the region where χ′

1

is positive, i.e. where Hpa = χ′
1χ2 is positive. The positive commutator estimates

gives us control of a solution of Pu = 0 over the rest of suppa, provided we have
control of u over suppe. Since we can choose χ2 arbitrarily, in particular we may
shrink its support to an arbitrarily small set, it is clear in this picture that the
control of u propagates along the bicharacteristics.
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η = −δ

supp a

ω ∼ 2
√

εδ

Figure 4. suppa in (q1, q
′′) coordinates. suppe is again the shaded

region on the left. The straight lines with q′′ constant need not be
bicharacteristics. In this case, ω = q2

2 + . . . + q2
2n−1, and η = q1.

7. A more flexible proof in the boundaryless setting

In general, at ∂X , the problem is microlocalization: there is no analogue of
the functions of q′′ – we cannot microlocalize by taking a product of two functions.
Instead, one follows a much more robust construction due to Melrose and Sjöstrand
[14] on manifolds with smooth boundary, which they used to prove propagation of
singularities at glancing points (tangential rays). It is somewhat complicated to
explain this even in the presence of smooth boundaries. Instead, we illustrate the
shape this proof would take in the absence of boundaries (where the above argument
is of course simpler). Roughly, the point is that one only has to get the Hamilton
vector field ‘right’ at one point in S∗X , i.e. one can do a construction where the
Hamilton vector field only matters at the point at which we wish to get a microlocal
estimate, rather than having to put it into a model form (like ∂

∂q1

) in a neighborhood

of this point. Having such flexibility is the key in dealing with complicated situations
such as manifolds with boundary, or corners, or N -body scattering.

The main point is that if we cannot put the Hamilton vector field Hp in a model
form, the previous construction will not work. Indeed, unless Hpχ2 = 0, Hp(χ1χ2)
will always yield a term χ1Hpχ2, which cannot be controlled by (Hpχ1)χ2: the
problem being near the boundary of suppχ2. So instead use a different form of
localization. Before getting into details, we illustrate the support of the commutant
a and the error e in this case on Figure 4. This figure is still in local coordinates
q1, . . . , q2n−1, but now the Hamilton vector field need not be ∂

∂q1

in suppa. Note

that suppa is a parabolic region, so if the Hamilton vector field happens to be ∂
∂q1

in suppa, the estimate is not optimal in the sense it was in Figure 3: there are
many bicharacteristics going through suppe (the shaded area) which are used to
control u over the rest of suppa, even though they do not go through the latter.
However, we gain flexibility this way: as long as the bicharacteristics are ‘close’ to
the straight lines, we still obtain a positive commutator estimate. Here, if we want
to understand propagation near a point q̄, ‘close’ means that the bicharacteristic
through q̄ is tangent to the q1 axis at q̄ – for appropriately small values of the
parameters ε and δ arising below, this gives a positive commutator estimate.
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The following more detailed discussion has been adapted from [28], where it
was described in the scattering setting, where the R

+ action is in the base (X)
variables on T ∗X ; see the concluding remarks of these notes. Here we present it
from a somewhat different point of view, and of course we changed the notation
corresponding to the different setting. Since notation seems to be one of the main
obstacles in understanding certain arguments, we hope that this rewriting proves
helpful.

First let η ∈ C∞(S∗X) be a function with

η(q̄) = 0, Hpη(q̄) > 0.

Thus, η measures propagation along bicharacteristics, e.g. η = q1 in the above
example would work, but so would many other choices. We will use a function ω
to localize near putative bicharacteristics. This statement is deliberately vague; at
first we only assume that ω ∈ C∞(S∗X) is the sum of the squares of C∞ functions
σj , j = 1, . . . , l, with non-zero differentials at q̄ such that dη and dσj , j = 1, . . . , l,
span Tq̄S

∗X . Such a function ω is non-negative and it vanishes quadratically at q̄,
i.e. ω(q̄) = 0 and dω(q̄) = 0. An example is ω = q2

2 + . . . + q2
2n−1 with the notation

from before, but again there are many other possible choices. We now consider a
family symbols, parameterized by constants δ ∈ (0, 1), ε ∈ (0, δ], of the form

a = χ0(2 − φ

ε
)χ1(

η + δ

εδ
+ 1),

where

φ = η +
1

ε
ω,

χ0(t) = 0 if t ≤ 0, χ0(t) = e−1/t if t > 0, χ1 ∈ C∞(R), suppχ1 ⊂ [0, +∞), suppχ′
1 ⊂

[0, 1]. Although we do not do it explicitly here, weights such as |τ |m−1/2 can be

accommodated for any m ∈ R, by replacing the factor χ0(2− φ
ε ) by χ0(A

−1
0 (2− φ

ε ))
and taking A0 > 0 large.

We analyze the properties of a step by step. First, note that φ(q̄) = 0, Hpφ(q̄) =

Hpη(q̄) > 0, and χ1(
η+δ
εδ + 1) is identically 1 near q̄, so Hpa(q̄) < 0. Thus, Hpa has

the correct sign, and is in particular non-zero, at q̄.
Next,

q ∈ suppa ⇒ φ(q) ≤ 2ε and η(q) ≥ −δ − εδ.

Since ε < 1, we deduce that in fact η = η(q) ≥ −2δ. But ω ≥ 0, so φ = φ(q) ≤ 2ε
implies that η = φ − ε−1ω ≤ φ ≤ 2ε. Hence, ω = ω(q) = ε(φ − η) ≤ 4εδ. Since ω
vanishes quadratically at q̄, it is useful to rewrite the estimate as ω1/2 ≤ 2(εδ)1/2.
Combining these, we have seen that on suppa,

(5) −δ − εδ ≤ η ≤ 2ε and ω1/2 ≤ 2(εδ)1/2.

Moreover, on suppa ∩ suppχ′
1,

−δ − εδ ≤ η ≤ −δ and ω1/2 ≤ 2(εδ)1/2.

Note that given any neighborhood U of q̄, we can thus make a supported in U by
choosing ε and δ sufficiently small. On Figure 4 we illustrate the parabola shaped
region given by suppa in case η = q1 and ω = q2

2 + . . . + q2
2n−1.

Note that as ε → 0, but δ fixed, the parabola becomes very sharply localized
at ω = 0. In particular, for very small ε > 0 we obtain a picture quite analogous to
letting suppχ2 → {0} in Figure 3.
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So we have shown that a is supported near q̄. We define

e = χ0(2 − φ

ε
)Hpχ1(

η + δ

εδ
+ 1),

so the crucial question in our quest for (4) is whether Hpφ ≥ 0 on suppa. Note that
choosing δ0 ∈ (0, 1) and ε0 ∈ (0, δ0) sufficiently small, one has Hpη ≥ c0 > 0 where

|η| ≤ 2δ0, ω1/2 ≤ 2(ε0δ0)
1/2. So Hpφ ≥ 0 on suppa, provided that |Hpω| ≤ c0

2 ε
there.

But being a sum of squares of functions with non-zero differentials, Hpω van-

ishes at ω = 0 and satisfies |Hpω| ≤ Cω1/2. Due to (5), we deduce that |Hpω| ≤
2C(εδ)1/2. So |Hpω| ≤ c0

2 ε holds if c0

2 ε ≥ 2C(εδ)1/2, i.e. if ε ≥ C′δ for some con-
stant C′ > 0 independent of ε, δ. Note that this constraint on ε, i.e. that it cannot
be too small, gives very rough localization: the width of the parabola at η = −δ
is roughly ω1/2 ∼ δ, i.e. it is very wide, and in particular insufficient to prove the
propagation of singularities along the bicharacteristics. The reason is simple: our
localizing function ω has no relation to Hp, so we cannot expect a more precise es-
timate. Note, however, that the estimate is still non-trivial! Indeed, it shows that
singularities propagate in the sense that q̄ cannot be an isolated point of WF(u).
(We required ε ∈ (0, δ] beforehand, but in fact we could have dealt with ε ≤ µδ,
even if µ > 1, if we localized slightly differently.)

We need to adapt ω to Hp to get a better estimate. If we linearize Hp as above,
and take ω = q2

2 + . . . + q2
2n−1, then Hpω = 0 and any ε > 0 works. Thus, in this

case, we can prove propagation of singularities much like by the previous, simpler,
construction.

However, we do not need such a strong relationship to Hp. Suppose instead
that we merely get ω ‘right’ at q̄, in the sense that ω =

∑

σ2
j and Hpσj(q̄) = 0.

Then |Hpσj | ≤ C0(ω
1/2 + |η|), so |Hpω| ≤ Cω1/2(ω1/2 + |η|). Using (5), we deduce

that |Hpω| ≤ c0

2 ε provided that c0

2 ε ≥ C′′(εδ)1/2δ, i.e. that ε ≥ C′δ3 for some
constant C′ independent of ε, δ. Now the size of the parabola at η = −δ is roughly
ω1/2 ∼ δ2, i.e. we have localized along a single direction, namely the direction of Hp

at q̄. By a relatively simple argument, also due to Melrose and Sjöstrand [14, 15]
in the case of smooth boundaries (which could easily be used here too), one can
piece together such estimates (i.e. where the direction is correct ‘to first order’) and
deduce the propagation of singularities.

We emphasize that the lower bound for ε is natural. Indeed, suppose that
in some local coordinates q̃j on S∗X near q̄, Hp = ∂

∂q̃1

, but we capriciously let

q1 = q̃1, qj = q̃j + q̃2
1 , j ≥ 2. The bicharacteristics are q̃j = constant, j ≥ 2, but

(with ω = q2
2 + . . . + q2

2n−1, η = q1) we are localizing near qj = constant, and

at η = −δ these differ by δ2. So any localization better than ω1/2 ∼ δ2 would
in fact contradict the propagation of singularities! This is illustrated above on
Figure 5. Note that every bicharacteristic through the unshaded part of suppa also
goes through suppe (the shaded part), although the converse is not true, i.e. we
use more bicharacteristics than needed to control u in the unshaded region, but we
gain because our construction becomes more flexible.

8. Comments on the proof in the setting of manifolds with corners

Both degrees of localization described in the previous section, with ω completely
arbitrary, except that it vanishes quadratically at q̄, resp. ω =

∑

σ2
j and Hpσj(q̄) =
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Figure 5. Bicharacteristics and suppa. The labels from Figure 4
have been removed to make the picture less cluttered. The straight
horizontal lines are the lines with q′′ constant, while the nearby
parabolae are the bicharacteristics.

0, are relevant in the setting of manifolds with corners. While we cannot discuss
the details here, the rough picture is that at G, where π̂ = π|Σ is one-to-one,
one can use the more precise localization: indeed, the information we need is the
knowledge of the Hamilton vector field at one point, which is what is provided by
taking the unique point in π̂−1(γ(s0)). On the other hand, at H it suffices to prove
that singularities cannot stay at x = 0; it does not matter in which direction they
leave x = 0. (One can use an inductive argument: if one already understands what
happens in X away from corners of codimension ≥ k, one can analyze what happens
near H at codimension k corners: bicharacteristics leave the corner instanteneously,
and are thus in the previously understood region.) This is accomplished by taking

(6) η = −τ−1
∑

σj = −τ−1(x · ξ);

note that this is homogeneous degree zero on bT ∗X (and of course its pull-back
by π is such on T ∗X), so it indeed gives a function on bS∗X (and S∗X). As
already indicated when discussing (generalized broken) bicharacteristics, this is
strictly increasing along bicharacteristics at points in H, and it vanishes at x = 0
inside Σ̇. Thus, if suppe lies in η < 0 as in the above construction, we obtain
an estimate on u at some point in x = 0 without having a priori knowledge of u
anywhere else at x = 0. In particular, singularities cannot stay at x = 0 inside H.

An interesting technical point is that in the presence of corners the iterative
argument gains b-regularity for u, 1/2 a b-derivative at a time, relative to H1

loc(X).
This corresponds to the quadratic form domain of ∆, as dictated by the use of the
Dirichlet form. Thus, we work with the spaces H1,m

b,loc(X), consisting of functions u

such that Lu ∈ H1
loc(X) for L ∈ Ψm

b (X). We can define a wave front set relative

to H1,m
b,loc(X), just as before. Note that this is not quite the same as the L2-based

b-wave front set mentioned before (as it is H1-based), but for the solutions of the
wave equation the order m+1, L2-based wave front set is the same as the order m,
H1-based wave front set: roughly, Dtu gives control of the other first derivatives
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needed for H1-control of u. We refer to [27] for a more detailed discussion, and for
[26] for complete details.

9. Comparison with N-body scattering

There is a close connection between the wave equation on manifolds with cor-
ners and N -body scattering; this has been discussed in some detail in [28], ap-
proaching the connection from the N -body point of view. (At the time [28] was
written, the propagation theorem for manifolds with corners was only proved, by
Lebeau, in the analytic setting.) Here we emphasize that the proofs in these set-
tings have much in common, especially if one restricts one’s attention to N -body
systems without bound states in any subsystems.

The relevant scaling in scattering theory on R
n is in dilations in x rather than

ξ, where x is the variable on R
n and ξ is its canonical dual variable, so (x, ξ) are

coordinates on T ∗
R

n. Namely, one works with finite energy solutions, which roughly
means that ξ is finite, and one wants to understand the asymptotics of solutions
near spatial infinity. Thus, the roles of x and ξ are interchanged, but apart from
this the two settings are quite analogous. This is analogy can be made explicit
when comparing manifolds without boundary and scattering of a single particle
in an external potential (or reduced two-body scattering): in fact, the Fourier
transform intertwines these two settings (so in fact standard microlocal analysis
is applicable in this scattering setting!). When comparing N -body scattering to
the wave equation on domains with corners, the results and many of the methods
are similar, but one does not have an explicit correspondence, so the results are
certainly not equivalent.

In particular, an analogue of η at H (cf. (6)) plays a major role in N -body
scattering: there one would consider |x|−1(x · ξ) on T ∗

R
n: this is the radial com-

ponent of the momentum (if one introduces polar coordinates). Note that this is
homogeneous of degree zero in x, which is the relevant scaling as discussed above.
In N -body scattering the global commutator estimate (corresponding to |x|−1(x · ξ)
without the weight |x|−1) is called the Mourre estimate, see [20, 21], and it can be
used to show the absence of singular continuous spectrum, etc. – eventually even
asymptotic completeness.

Partially microlocal results, in which one only localizes in the radial momentum
form the backbone of now-classical analysis of N -body scattering, see e.g. [22, 5,

10] and the monograph [3]. The author’s previous works describing propagation
of singularities in the N -body setting [24, 25] are fully microlocal, in the sense
that they are microlocal to the fullest extent compatible with the structure of
N -body Hamiltonians. That is, one can localize in the momentum tangential to
the collision planes but not in the normal momenta. (This means that at any
point x ∈ R

n one needs to consider the collision plane through x of the lowest
dimension, i.e. highest codimension, much like considering the boundary face of
highest codimension in which a point p lies when analyzing the wave equation.) If
there are no bound states in any subsystem, the analogy with the wave equation
is rather complete: kinetic energy is conserved, and we can distinguish glancing
and hyperbolic points depending on whether the kinetic energy corresponding to
the tangential momentum at the point in question is equal to the total kinetic
energy or not, i.e. whether there is normal motion or not. If there are bound
states in subsytems, the situation is more complicated as kinetic energy is not



18 ANDRÁS VASY

conserved: so a point in phase space may be hyperbolic with respect to a channel
in some subsystem and glancing with respect to another. If there are no bound
states in any subsystem, the proofs are also quite analogous at least at the level of
construction of the commutant (the technical details differ – any many ways they
are more cumbersome for the wave equation as one needs to deal with two different
types of operators) – it is instructive to look at [24, Section 10] for comparison. In
particular, at the hyperbolic set one uses the radial momentum as a propagation
variable (i.e. as η in the notation of Section 7) – the main additional ingredient there
is to microlocalize using a construction completely parallel to that of Section 7.
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