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Abstract. In this paper we analyze the local and global boundary rigidity problem for general Riemannian

manifolds with boundary (M, g) whose boundary is strictly convex. We show that the boundary distance
function, i.e. dg |∂M×∂M , known over suitable open sets of ∂M determines g in suitable corresponding open

subsets of M , up to the natural diffeomorphism invariance of the problem. We also show that if there is a

function on M with suitable convexity properties relative to g then dg |∂M×∂M determines g globally in the
sense that if dg |∂M×∂M = dĝ |∂M×∂M then there is a diffeomorphism ψ fixing ∂M (pointwise) such that

g = ψ∗ĝ. This global assumption is satisfied, for instance, for the distance function from a given point if

the manifold has no focal points (from that point).
We also consider the lens rigidity problem. The lens relation measures the point of exit from M and the

direction of exit of geodesics issued from the boundary and the length of the geodesic. The lens rigidity

problem is whether we can determine the metric up to isometry from the lens relation. We solve the
lens rigidity problem under the same global assumption mentioned above. This shows, for instance, that

manifolds with a strictly convex boundary and non-positive sectional curvature are lens rigid.
The key tool is the analysis of the geodesic X-ray transform on 2-tensors, corresponding to a metric g,

in the normal gauge, such as normal coordinates relative to a hypersurface, where one also needs to allow

microlocal weights. This is handled by refining and extending our earlier results in the solenoidal gauge.

1. Introduction and the main result

Boundary rigidity is the question whether the knowledge of the boundary restriction (to ∂M×∂M) of the
distance function dg of a Riemannian metric g on a manifold with boundary M determines g, i.e. whether the
map g 7→ dg|∂M×∂M is injective. Apart from its intrinsic geometric interest, this question has major real-life
implications, especially if also a stability result and a reconstruction procedure is given. Riemannian metrics
in such practical applications represent anisotropic media, for example a sound speed which, relative to the
background Euclidean metric, depends on the point, and the direction of propagation. Riemannian metrics
in the conformal class of a fixed background metric represent isotropic wave speeds. While many objects
of interest are isotropic to good approximation, this is not always the case: for instance, the inner core of
the Earth exhibits anisotropic behavior, as does muscle tissue. The restriction of the distance function to
the boundary is then the travel time: the time it takes for waves to travel from one of the points on the
boundary to the other. Recall that most of the knowledge of the interior of Earth comes from the study of
seismic waves, and in particular travel times of seismic waves; the precise understanding of the boundary
rigidity problem is thus very interesting from this perspective as well.

There is a natural obstruction to the boundary rigidity problem: if ψ is a diffeomorphism fixing the
boundary, the boundary distance functions of g and ψ∗g are the same. Thus, the precise question is whether
up to this diffeomorphism invariance dg|∂M×∂M determines g, i.e. whether there is an isometry ψ (fixing
∂M) between ĝ and g if the distance functions of ĝ and g have the same boundary restriction.

There are counterexamples to this problem, and thus one needs some geometric restrictions. The most
common restriction is the simplicity of (M, g): this is the requirement that the boundary is strictly convex
and any two points in M can be joined by a unique minimizing geodesic. Michel [17] conjectured that
compact simple manifolds with boundary are boundary rigid. In this paper we prove boundary rigidity in
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dimensions n ≥ 3 under a different assumption, relating to the existence of a function with strictly convex
level sets, which in particular holds for simply connected compact manifolds with strictly convex boundaries
such that the geodesic flow has no focal points (lengths of non-trivial Jacobi fields vanishing at a point do not
have critical points), in particular if the curvature of the manifold is negative (or just non-positive). We also
prove lens rigidity if the sectional curvature is non-negative, see Corollary 1.1. This result extends our earlier
analogous result which was in a fixed conformal class [29]; recall that the fixed conformal class problem has
no diffeomorphism invariance issues to deal with. We prove local (near a boundary point), semiglobal and
global rigidity results. The manifolds we study can have conjugate points. We do not assume the metrics to
be a priori close before we prove that they are isometric. In that sense, our results are global in the metrics.

The conformal case has a long history. In 1905 and 1907, Herglotz [6] and Wiechert and Zoeppritz [37]
showed that one can recover a radial sound speed c(r) (the metric is c−2dx2) in a ball under the condition
(r/c(r))′ > 0 by reducing the problem to solving an Abel type of equation. For simple manifolds, recovery
of the conformal factor was proven in [13] and [14], with a stability estimate. We showed in [29] that one has
local and stable recovery near a convex boundary point and semiglobal and global one under the foliation
condition we use here, as well. We also showed that the condition of Herglotz [6] and Wiechert and Zoeppritz
[37] is equivalent to require that the Euclidean spheres are strictly convex in the metric c−2dx2.

Simple surfaces with boundary are boundary rigid [20]. In higher dimensions, simple Riemannian mani-
folds with boundary are boundary rigid under a priori constant curvature assumptions on the manifold or
special symmetries [1], [5]. Several local (in the metric) results near the Euclidean metric are known [27],
[12], [2]. The most general result in this direction (outside a fixed conformal class, the setting of [29]) is the
generic local (with respect to the metric) one proven in [25], i.e. one is asking whether metrics a priori near a
given one can have the same boundary distance function; the authors give an affirmative answer in a generic
case. Surveys of some of the results can be found in [3, 10, 21, 26].

First we analyze the local boundary rigidity problem for general Riemannian manifolds with boundary
(M, g) of dimension n ≥ 3 whose boundary is strictly convex. More precisely, for suitable relatively open
O ⊂M , including appropriate small neighborhoods of any given point on ∂M or all of ∂M if ∂M is compact,
we show that if for two metrics g1, g2 on M , dg1 |U×U = dg2 |U×U for a suitable open set U containing O∩∂M ,
then g1 = ψ∗g2 on O for some diffeomorphism ψ fixing ∂M (pointwise, as we understand throughout this
paper).

Theorem 1.1. Suppose that (M, g) is an n-dimensional Riemannian manifold with boundary, n ≥ 3, and
assume that ∂M is strictly convex (in the second fundamental form sense) with respect to each of the two
metrics g and ĝ at some p ∈ ∂M . If dg|U×U = dĝ|U×U , for some neighborhood U of p in ∂M , then there
is a neighborhood O of p in M and a diffeomorphism ψ : O → ψ(O) fixing ∂M ∩ O pointwise such that
g|O = ψ∗ĝ|O.

Furthermore, if the boundary is compact and everywhere strictly convex with respect to each of the two met-
rics g and ĝ and dg|∂M×∂M = dĝ|∂M×∂M , then there is a neighborhood O of ∂M in M and a diffeomorphism
ψ : O → ψ(O) fixing ∂M ∩O pointwise such that g|O = ψ∗ĝ|O.

This theorem becomes more precise regarding the open sets discussed above if we consider M as a subset
of a manifold without boundary M̃ , extend g to M̃ and if we replace x by the geodesic distance function
x̃ from H = {x = 0}, and, at least in a neighborhood of H we work in geodesic normal ‘coordinates’, so
g = dx̃2 + h(x̃, y, dy), y ‘coordinates’ on H (one actually simply has a projection map to H giving a local
semi-product structure (−ε, ε)x̃ ×Hy); see Figure 1.

Our more precise theorem then, to which the above theorem reduces, is:

Theorem 1.2. Suppose that (M, g) is an n-dimensional Riemannian manifold with boundary, considered as

a domain in (M̃, g), n ≥ 3, H a hypersurface, and x̃ the signed distance function from H, defined near H,
given by the geodesic normal exponential map from (−ε, ε)×H, ε > 0. Suppose that {x̃ ≥ 0}∩M ⊂ ∂M , and
for some δ > 0, M ∩ {x̃ ≥ −δ} is compact, ∂M is strictly convex (in the second fundamental form sense) in
∂M ∩ {x̃ > −δ}, the zero level set of x̃ is strictly concave from the superlevel sets in a neighborhood of M .

Suppose also that ĝ is a Riemannian metric on M with respect to which ∂M is also strictly convex in
∂M ∩ {x̃ > −δ}.
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H = {x̃ = 0}

{x̃ = �c}

Figure 1. The geometry of the local boundary rigidity problem.

Then there exists c0 > 0 such that for any 0 < c < c0, with O = Oc = {x̃ > −c}∩M , if dg|U×U = dĝ|U×U
for some open set U in ∂M containing {x̃ > −c} ∩ ∂M , then there exists a diffeomorphism ψ : M → M
fixing ∂M such that g|O = ψ∗ĝ|O.

Thus, relative to the level sets of x̃, the signed distance function of H, we have a very precise statement
of where dg and dĝ need to agree on ∂M for us to be able to conclude their equality, up to a diffeomorphism,
on O = Oc = {x̃ > −c} ∩M .

We remark that c, thus O, can be chosen uniformly for a class of ĝ with uniformly bounded Ck norm with
some k.

The slight enlargement, U of O ∩ ∂M plays a role because we need to extend ĝ to M̃ in a compatible
manner, for which we need to recall that if U is an open set in ∂M such that dg|U×U = dĝ|U×U then for any

compact subset K of U (such as O ∩ ∂M) there is a diffeomorphism ψ0 on M such that ψ0 is the identity
on a neighborhood of K in ∂M and such that ψ∗0 ĝ and g agree to infinite order on a neighborhood of K in

M . Replacing ĝ by ψ∗0 ĝ, then one can extend ĝ to M̃ in an identical manner with g.
In fact, the diffeomorphism ψ is constructed explicitly: it is locally given by geodesic normal coordinates

of ĝ relative to H = {x̃ = 0}; due to the extension process from M to M̃ , ψ is the identity outside M .
The boundary rigidity problem is closely connected to the lens rigidity one; indeed the explicit way we

use the equality of dg|U×U and dĝ|U×U is via the pseudolinearization formula of Stefanov and Uhlmann
[27], which relies on the equality of the partial lens data. To define the lens data, we first introduce the
manifolds ∂±SM , defined as the sets of all vectors (x, v) with x ∈ ∂M , v unit in the metric g, and pointing
outside/inside M . We define the scattering relation

(1.1) L : ∂−SM −→ ∂+SM

in the following way: for each (x, v) ∈ ∂−SM , L(x, v) = (y, w), where (y, w) are the exit point and direction,
if exist, of the maximal unit speed geodesic γx,v in the metric g, issued from (x, v). Let

` : ∂−SM −→ R ∪∞
be its length, possibly infinite. If ` < ∞, we call M non-trapping. The maps (L, `) together are called lens
relation (or lens data). We identify vectors on ∂±SM with their projections on the unit ball bundle B∂M
(each one identifies the other uniquely) and think of L, ` as defined on the latter with values in itself again,
and in R∪∞, respectively. With this modification, any diffeomorphism fixing ∂M pointwise does not change
the lens relation.

The lens rigidity problem is whether the scattering relation L (and possibly, `) determine g (and the
topology of M) up to an isometry (i.e. the diffeomorphism invariance) as above. The lens rigidity problem
with partial data is whether we can determine the metric near some p from L known near the unit sphere
Sp∂M considered as a subset of ∂−SM , i.e., for vectors with base points close to p and directions pointing
into M close to ones tangent to ∂M , up to an isometry as above.

Assuming that ∂M is strictly convex at p ∈ ∂M with respect to g, the boundary rigidity and the lens
rigidity problems with partial data are equivalent: knowing d = dg near (p, p) is equivalent to knowing L
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in some neighborhood of Sp∂M . The size of that neighborhood however depends on a priori bounds of the
derivatives of the metrics with which we work. This equivalence was first noted by Michel [17], since the
tangential gradients of d(x, y) on ∂M × ∂M give us the tangential projections of −v and w, see also [23,
sec. 2]. Note that knowledge of ` may not be needed for the lens rigidity problem (if L is given only, then the
problem is called scattering rigidity in some works) in some situations. For example, for simple manifolds, `
can be recovered from either d or L; and this includes non-degenerate cases of non-strictly convex boundaries,
see for example the proof of [29, Theorem 5.2]. Also, in the same paper it is shown that the lens rigidity
problem makes sense even if we do not assume a priori knowledge of g|T∂M .

Vargo [34] proved that real-analytic manifolds satisfying an additional mild condition are lens rigid. Croke
has shown that if a manifold is lens rigid, a finite quotient of it is also lens rigid [3]. He has also shown
that the torus is lens rigid [4]. Stefanov and Uhlmann have shown lens rigidity locally near a generic
class of non-simple manifolds [28]. In a recent work, Guillarmou [8] proved that the lens data determine
the conformal class for Riemannian surfaces with hyperbolic trapped sets, no conjugate points and strictly
convex boundary, and deformational rigidity in all dimensions under these conditions. The only result we
know for the lens rigidity problem with incomplete (but not local) data is for real-analytic metric and metric
close to them satisfying the microlocal condition in the next sentence [28]. While in [28], the lens relation is
assumed to be known on a subset only, the geodesics issued from that subset cover the whole manifold and
their conormal bundle is required to cover T ∗M . In contrast, in this paper, we have localized information.

We then prove the following global consequence of our local results, in which (and also below) we assume
that each connected component of M has non-trivial boundary, or, which is equivalent in terms of proving
the result, M is connected with non-trivial boundary:

Theorem 1.3. Suppose that (M, g) is a compact n-dimensional Riemannian manifold, n ≥ 3, with strictly
convex boundary, and x is a smooth function with non-vanishing differential whose level sets are strictly
concave from the superlevel sets, and {x ≥ 0} ∩M ⊂ ∂M .

Suppose also that ĝ is a Riemannian metric on M and suppose that the lens relations of g and ĝ are the
same.

Then there exists a diffeomorphism ψ : M →M fixing ∂M such that g = ψ∗ĝ.

The assumptions of the theorem are for instance satisfied if x is the distance function for g from a point
outside M , near M , in M̃ , minus the supremum of this distance function on M , on a simply connected
manifold M̃ and if (M̃, g) has no focal points (near M).

We formulate a semiglobal result as well, whose proof is actually included in the proof of the global
Theorem 1.3.

Theorem 1.4. Suppose that M is a compact n-dimensional Riemannian manifold, n ≥ 3. Let x be a smooth
function on M with [−T, 0] in its range with T > 0, {x = 0} ⊂ ∂M and dx 6= 0 on {−T ≤ x ≤ 0}. Assume
that each hypersurface {x = t}, −T ≤ t ≤ 0, is strictly convex and let M0 be their union. Let D ⊂ ∂−SM
be a neighborhood of the compact set of all β ∈ ∂−SM which are initial points of geodesics γβ tangent to the
level surfaces of the foliation.

Suppose also that ĝ is a Riemannian metric on M and suppose that the lens relations of g and ĝ are the
same on D. Then there exists a diffeomorphism ψ : M0 → ψ(M0) fixing ∂M pointwise such that g = ψ∗ĝ.

A special important case arises when there exists a strictly convex function, which may have a critical
point x0 in M (if so, it is unique). Then we can apply Theorem 1.4 in the exterior of x0; which would
create a priori a possible singularity of the diffeomorphism at x0. In Section 8, we show that this singularity
is removable and obtain a global theorem under that assumption, see Theorem 8.1. This condition was
extensively studied in [18] (see also the references there). In particular Lemma 2.1 of [18] shows that such
a function exists if the sectional curvature of the manifolds is non-negative or if the manifold is simply
connected and the curvature is non-positive. Manifolds satisfying one of these conditions are lens rigid:

Corollary 1.1. Compact Riemannian manifolds (M, g) with boundary satisfying either of the conditions
(a) M is simply connected with a non-positive sectional curvature;
(b) M is simply connected and has no focal points;
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Figure 2. The scattering relation (x, v) 7→ (y, w) restricted to geodesics in the foliation for
the semi-global result.

(c) M has non-negative sectional curvature.
are lens rigid among all compact Riemannian manifolds with strictly convex boundaries.

Note that (c) can be replaced by the weaker condition of a lower negative bound of the sectional curvature;
depending on some geometric invariants of (M, g), see [18].

Acknowledgments. The authors thank Gabriel Paternain and Mikko Salo for their valuable suggestions.

2. The approach

There have been a number of methods approaching the global boundary rigidity problem, namely recover-
ing the metric on M from data on U = ∂M ; none of these was able to give a general result: typical results are
either for small perturbations of a given metric or are generic. One such method uses that the linearization
of the distance function near a metric g1 restricted to the boundary is the geodesic X-ray transform for this
metric g1. Recall here that the geodesic X-ray transform of 2-tensors along the geodesics of a metric g is a
map C∞(M ; Sym2T ∗M)→ C∞(S∗M)

If(β) =

∫
γβ

f(γβ(s))(γ̇β(s), γ̇β(s)) ds,

where for β ∈ S∗M , γβ is the geodesic through β, and in this transform the symmetric 2-tensor f is
evaluated on the tangent vector of γβ in both slots. Since we are working in a local setting this approach
seems troublesome: for any particular O, the geodesics we need to take into account for even very small
perturbations of g1 may leave O.

So instead we proceed via the Stefanov-Uhlmann formula which goes back to [27]. This is an identity
which gives the vanishing an X-ray transform-like integral of the difference of the Hamilton vector fields of the
two metrics, with the integrand being evaluated along the geodesics of the first metric, adding a microlocal
weight, i.e. a factor in the integrand that depends on (γβ(s), γ′β(s)), roughly resulting in an expression like
the following one ∫

γβ

a(γβ(s), γ̇β(s))f(γβ(s))(γ̇β(s), γ̇β(s)) ds,

with a specified. The actual transform we need is more complicated; see (7.15), and involves the first
derivatives of the difference f of two metric tensors. This fact should not be surprising: while the linearization
of the distance function is just If , the non-linear remainder terms involve derivatives of it, see, e.g., [24] and
the references there. Also, the generator of the geodesic flow depends on g and its first derivatives. When
we linearize the scattering relation, we naturally get f and its first order derivatives.

Note that in addition to the intrinsic benefit of proving a local result, such a local approach has the
key virtue of having a small parameter (how far one goes into the domain) which ultimately enables us to
show both injectivity (as opposed to merely a finite dimensional nullspace) of the linear transform, and to
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deal with arbitrary metrics: two metrics with the same boundary distance functions (locally) agree at the
boundary (locally) to infinite order [12], thus for local problems they are close in the whole region in which
the equality is shown.

Now, to fix the diffeomorphism invariance of the problem, there are two standard approaches: solenoidal
gauges and boundary normal coordinates. The advantage of the former for the linear problem, i.e. the X-ray
transform on tensors, is that it gives rise to an elliptic problem once the gauge term is added. However,
this seems troublesome since the gauge is global (elliptic problems need to be solved globally, which should
be thought of as the typical state of affairs, the atypical behavior is the ability to solve locally to get the
restriction the global solution, as for hyperbolic equations), in particular involves the whole open set O, i.e.
we a priori need to know how far we go into the domain M . Another difficulty is that a solenoidal tensor,
extended as zero outside M may not be solenoidal anymore

Instead we use the normal gauge in a product-decomposition of the underlying manifold, which for the
linear problem means working with tensors whose normal components vanish (for 2-tensors, this means
normal-normal and tangential-normal components; in the 1-form problem discussed below this means the
normal component). Thus, as an example, in normal coordinates relative to a hypersurface, the metric
tensor is in the normal gauge. In the normal gauge the linear obstruction, namely that the addition of
symmetric derivatives of one-forms vanishing at ∂M , i.e. of potential tensors, does not change the X-ray
transform, disappears, but the resulting operator is not elliptic. Note that putting an arbitrary one-form or
tensor into the normal gauge by adding a potential tensor requires solving what amounts to an evolution
equation, so this itself is not an elliptic process (though it is simpler than dealing with the non-ellipticity of
the X-ray transform in this gauge); the evolutionary nature allows one to work locally. In this linear setting,
namely that of the X-ray transform, it is thus easier to use the solenoidal gauge to recover the tensor up to
a potential term, and then argue that in fact this determines the tensor due to the vanishing of its normal
components. This does not work for the non-linear problem, however: once the coordinates are fixed, we
can make the tensor g1 − g2 solenoidal relative to a reference metric by enforcing δsz(g1 − g2) = 0, changing
g1 − g2 by a potential term, but this eliminates the identity I(g1 − g2) = 0 where I is the generalized X-ray
transform of the Stefanov-Uhlmann formula. So one would need to argue more directly using the boundary
normal coordinate structure, and deal with the lack of ellipticity. While in principle the latter is relatively
benign, it gets worse with the order of the tensor: for one-forms it should be roughly real principal type,
except that it is really real principal type times its adjoint (so quadratic vanishing at the characteristic set,
but with extra structure); in the case of symmetric 2-tensors quadratic vanishing in the first place so quartic
once one looks at the operator times its adjoint.

The key ingredient is then to understand the linear problem in this gauge in which one does not get an
elliptic operator even when the gauge condition is imposed. Our approach then is to appropriately modify
the operator L, which is roughly (but not exactly) taken to be a microlocally cutoff version of the adjoint
of I in our earlier works [33, 29, 31], and which is used to create the ‘generalized normal operator’ LI, to
make the order of vanishing lower. Here we recall the structure of L and of LI below in Section 3; LI is a
pseudodifferential operator of an appropriate class. Of course, L as constructed before, but now mapping
to tangential-tangential tensors (projecting out the other components, taking into account that we want to
recover a tensor in the normal gauge!) is perfectly fine on the elliptic set of LI, and even away from its
elliptic set it is partially elliptic in the sense that its principal symbol (which has values in endomorphisms of
a finite dimensional vector space) while not invertible, is non-degenerate on a rather large subspace. Thus,
we really want to replace L by a collection of operators Lj , of which one is our L0 from the earlier work, and
use them in combination to deal with the problem. All Lj will be similar integrals, but mapping to different
spaces, not just to tangential-tangential 2-tensors; in fact, they can be considered as the parts of the original
L mapping into other components, such as normal-tangential. Now, there is a related one-form problem
(in the normal gauge), for which this approach easily gives self-contained results and which we sketch in
Section 4. In the 2-tensor setting it is easier to use the elliptic solenoidal gauge estimate as a background
estimate, and compute what happens as one changes is the gauge; this we discuss in Sections 5-6 using
results on LjI. Thus, we use regularity theory for LjI rather than constructing a Fredholm framework from
scratch. These results are then used in Section 7 to prove the actual boundary rigidity results.



LOCAL AND GLOBAL BOUNDARY RIGIDITY 7

3. The transform in the normal gauge

3.1. The scalar operator L0. We first recall the definition of L0 from [31] and [33]. For this, it is convenient

to consider M as a domain in a larger manifold without boundary M̃ by extending M and the metric across
∂M . The basic input is a function x̃ whose level sets near the zero level set are strictly concave, from the side
of superlevel sets (at least near the 0-level set) (it suffices if this only holds on the intersection of these level
sets with M) whose 0 level set only intersects M at ∂M ; an example would be the negative of a boundary
defining function of our strictly convex domain. We also need that {x̃ ≥ −c} ∩M is compact for c ≥ 0
sufficiently small, and we let

Ω = Ωc = {x̃ > −c} ∩M
be the region in which, for small c > 0, we want to recover a tensor in normal gauge from its X-ray transform.
In the context of the elliptic results, both for functions, as in [33], and in the tensor case, as in [31], this
function x̃ need not have any further connections with the metric g for which we study the X-ray transform.
However, for obtaining optimal estimates in our normal gauge, which is crucial for a perturbation stable
result, it will be important that the metric itself is in the normal gauge near {x̃ = 0} ∩ M , i.e. writing
the region as a subset of (−δ0, δ0)x̃ × Y with respect to a product decomposition, the metric is of the form
g = dx̃2 + h(x̃, y, dy).

Concretely L0 is defined as follows in [31]. Near ∂Ω, one can use coordinates (x, y), with x = xc = x̃+c as
before, y coordinates on ∂Ω, or better yet H = {x̃ = 0}. Correspondingly, elements of TpM can be written
as λ∂x + ω ∂y. The unit speed geodesics which are close to being tangential to level sets of x̃ (with the
tangential ones being given by λ = 0) through a point p = (x, y) can be parameterized by say (λ, ω) (with
the actual unit speed being a positive multiple of this) where ω is unit length with respect to a metric on H
(say a Euclidean metric if one is working in local coordinates). These have the form (cf. [33, Equation (3.17)])

(3.1) (x+ λt+ α(x, y, λ, ω)t2 +O(t3), y + ωt+O(t2);

the strict concavity of the level sets of x̃, as viewed from the super-level sets means that α(x, y, 0, ω) is

positive. Thus, by this concavity, (for λ sufficiently small) d2

dt2 x̃ ◦ γ is bounded below by a positive constant
along geodesics in Ωc, as long as c is small, which in turn means that, for sufficiently small C1 > 0, geodesics
with |λ| < C1

√
x indeed remain in x ≥ 0 (as long as they are in M). Thus, if If is known along Ω-local

geodesics, meaning geodesic segments with endpoints on ∂M , contained within Ω, it is known for geodesics
(x, y, λ, ω) in this range. As in [33] we use a smaller range |λ| < C2x because of analytic advantages, namely
the ability work in the well-behaved scattering algebra even though in principle one might obtain stronger
estimates if the larger range is used (polynomial rather than exponential weights). Thus, for χ smooth, even,
non-negative, of compact support, to be specified, in the function case [33] considered the operator

L0v(z) = x−2

∫
χ(λ/x)v(γx,y,λ,ω) dλ dω,

where v is a (locally, i.e. on suppχ, defined) function on the space of geodesics, here parameterized by
(x, y, λ, ω). (In fact, L0 had a factor x−1 only in [33], with another x−1 placed elsewhere; here we simply
combine these, as was also done in [29, Section 3]. Also, the particular measure dλ dω is irrelevant; any
smooth positive multiple would work equally well.) The key result was that L0I is a pseudodifferential
operator of a certain class on X = {x ≥ 0}, considered as a manifold with boundary; note that only a

neighborhood of Ω in M̃ actually matters here due to the support of the functions to which we apply I. An
important point is that the artificial boundary that we introduced, {x = 0}, is what is actually important,
the original boundary of M simply plays a role via constraining the support of the functions f we consider.

3.2. Scattering pseudodifferential operators. More precisely then, the pseudodifferential operator class
is that of scattering pseudodifferential operators, introduced by Melrose in [15] in this generality, but having
precedents in Rn in the works of Parenti and Shubin [19, 22], and in this case it is also a special case of
Hörmander’s Weyl calculus with product type symbols [7]. Thus, on Rn the class of symbols a ∈ Sm,l one
considers are ones with the behavior

|Dα
zD

β
ζ a(z, ζ)| ≤ Cα,β〈z〉l−|α|〈ζ〉m−|β|, α, β ∈ Nn,
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quantized in the usual way, for instance as

Au(z) = (2π)−n
∫
ei(z−z

′)·ζa(z, ζ)u(z′) dz′ dζ,

understood as an oscillatory integral; one calls A a scattering pseudodifferential operator of order (m, l).
A typical example of such an A is a scattering differential operator of order m, thus of order (m, 0) as a
scattering pseudodifferential operator: A =

∑
|α|≤m aα(z)Dα

z , where for each α, aα is a 0th order symbol

on Rn: |Dγaα(z)| ≤ Cαγ〈z〉−|γ|, γ ∈ Nn. A special case is when each aα is a classical symbol of order
0, i.e. it has an expansion of the form

∑∞
j=0 aα,j(z/|z|)|z|−j in the asymptotic regime |z| → ∞. These

operators form an algebra, i.e. if a ∈ Sm,l, b ∈ Sm′,l′ , with corresponding operators A = Op(a), B = Op(b),

then AB = Op(c) with c ∈ Sm+m′,l+l′ ; moreover c − ab ∈ Sm+m′−1,l+l′−1. Correspondingly it is useful to
introduce the principal symbol, which is just the class [a] of a in Sm,l/Sm−1,l−1, suppressing the orders m, l
in the notation of the class; then [c] = [a][b]. Notice that this algebra is commutative to leading order both

in the differential and decay sense, i.e. if a ∈ Sm,l, b ∈ Sm
′,l′ , with corresponding operators A = Op(a),

B = Op(b), then [A,B] = Op(c), c ∈ Sm+m′−1,l+l′−1,

c−
(1

i

n∑
j=1

( ∂a
∂ζj

∂b

∂zj
− ∂a

∂zj

∂b

∂ζj

))
∈ Sm+m′−2,l+l′−2;

we have

Hab =

n∑
j=1

( ∂a
∂ζj

∂b

∂zj
− ∂a

∂zj

∂b

∂ζj

)
,

where Ha =
∑n
j=1

(
∂a
∂ζj

∂
∂zj
− ∂a

∂zj
∂
∂ζj

)
, is the Hamilton vector field of a.

In order to extend this to manifolds with boundary, it is useful to compactify Rn radially (or geodesically)
as a ball Rn; different points on ∂Rn correspond to going to infinity in different directions in Rn. Concretely
this is achieved by identifying, say, the exterior of the closed unit ball with (1,∞)r × Sn−1

ω via ‘spherical
coordinates’, which in turn is identified with (0, 1)x × Sn−1

ω via the map r 7→ r−1, to which we glue the
boundary x = 0, i.e. we consider it as a subset of [0, 1)x×Sn−1

ω . (More formally, one takes the disjoint union
of [0, 1)x×Sn−1 and Rn, and identifies (0, 1)×Sn−1 with the exterior of the closed unit ball, as above.) Note
that for this compactification of Rn a classical symbol of order 0 on Rn is simply a C∞ function on Rn; the
asymptotic expansion

∑∞
j=0 aα,j(z/|z|)|z|−j above is actually Taylor series at x = 0:

∑∞
j=0 x

jaα,j(ω).
It is also instructive to see what happens to scattering vector fields in this compactification: V =∑
|α|=1 aαD

α. A straightforward computation shows that Dj becomes a vector field on Rn which is of

the form xV ′, where V ′ a smooth vector field tangent to ∂Rn. In fact, when aα is classical of order 0, such
V correspond exactly to exactly the vector fields on Rn of the form xV ′, V ′ a smooth vector field tangent
to ∂Rn. We use the notation Vsc(Rn) for the collection of these vector fields on Rn. The corresponding
scattering differential operators are denoted by Diffsc(Rn), and the scattering pseudodifferential operators
by Ψm,l

sc (Rn).
If a ∈ S0,0 is classical (both in the z and ζ sense), i.e. it is (under the identification above) an element of

C∞(Rnz × Rnζ ), the principal symbol [a] can be considered as the restriction of a to

∂(Rnz × Rnζ ) = (Rnz × ∂Rnζ ) ∪ (∂Rnz × Rnζ ),

since if its restriction to the boundary vanishes then a ∈ S−1,−1. Here Rnz × ∂Rnζ is fiber infinity and

∂Rnz × Rnζ is base infinity. Then the principal symbol of Op(a) Op(b) is ab. The case of general orders m, l

can be reduced to this by removing fixed elliptic factors, such as 〈ζ〉m〈z〉l. The commutator version is that
is a ∈ S1,1, classical, then Ha is a smooth vector field on Rnz ×Rnζ tangent to all boundary faces. In general,

we define the rescaled Hamilton vector field scHa by removing the elliptic factor 〈ζ〉m−1〈z〉l−1.
The extension of Ψsc(Rn) to manifolds with boundary X, with the result denoted by Ψsc(X), is then

via local coordinate chart maps between X and Rn, plus demanding that restricted to disjoint open sets
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in the left and right factors X of X ×X the Schwartz kernel vanishes to infinite order at the boundary of
either factor, i.e. is, when so localized, in Ċ∞(X ×X). Note that open subsets of Rn near ∂Rn behave like
asymptotic cones in view of the compactification. Notice that in the context of our problem this means that
even though for g, {x = 0} is at a ‘finite’ location (finite distance from ∂M , say), analytically we push it to
infinity by using the scattering algebra. Returning to the general discussion, one also needs to allow vector
bundles; this is done as for standard pseudodifferential operators, using local trivializations, in which one
simply has a matrix of scalar pseudodifferential operators. For more details in the present context we refer
to [33, 31]. For a complete discussion we refer to [15] and to [35].

This is also a good point to introduce the notation Vb(X) on a manifold with boundary: this is the
collection, indeed Lie algebra, of smooth vector fields on X tangent to ∂X. Thus, Vsc(X) = xVb(X) if x
is a boundary defining function of X. This class will play a role in the appendix. Note that if yj are local
coordinates on ∂X, j = 1, . . . , n − 1, then x∂x, ∂y1 , . . . , ∂yn−1 are a local basis of elements of Vb(X), with
C∞(X) coefficients; the analogue for Vsc(X) is x2∂x, x∂y1 , . . . , x∂yn−1

. These vector fields are then exactly

the local sections of vector bundles bTX, resp. scTX, with the same bases. The dual bundles bT ∗X, resp.
scT ∗X, then have bases dx

x , dy1, . . . , dyn−1, resp. dxx2 ,
dy1
x , . . . , dyn−1

x . Thus, scattering covectors have the form

ξ dxx2 +
∑n−1
j=1 ηj

dyj
x . Tensorial constructions apply as usual, so for instance one can construct Sym2scT ∗X;

for p ∈ X, α ∈ Sym2scT ∗X gives a bilinear map from scTpX to C. Notice also that with this notation scHa

is an element of Vb(Rnz × Rnζ ), or in general scHa ∈ Vb(scT ∗X), where scT ∗X is the fiber-compactification of
scT ∗X, i.e. the fibers of scT ∗X (which can be identified with Rn) are compactified as Rn. Again, see [35] for
a more detailed discussion in this context.

3.3. The tensorial operator L0. In [31], with v still a locally defined function on the space of geodesics,
for one-forms we considered the map L0

(3.2) L0v(z) =

∫
χ(λ/x)v(γx,y,λ,ω)gsc(λ∂x + ω ∂y) dλ dω,

while for 2-tensors

(3.3) L0v(z) = x2

∫
χ(λ/x)v(γx,y,λ,ω)gsc(λ∂x + ω ∂y)⊗ gsc(λ∂x + ω ∂y) dλ dω,

so in the two cases L0 maps into one-forms, resp. symmetric 2-cotensors, where gsc is a scattering metric
(smooth section of Sym2scT ∗X) used to convert vectors into covectors, of the form

gsc = x−4 dx2 + x−2h,

with h being a boundary metric in a warped product decomposition of a neighborhood of the boundary.
Recall that the Euclidean metric is such a scattering metric when Rn is radially compactified; indeed, this
was the reason for Melrose’s introduction of this pseudodifferential algebra: generalizing asymptotically
Euclidean metrics. While the product decomposition near ∂X relative to which gsc is a warped product did
not need to have any relation to the underlying metric g we are interested in, in our normal gauge discussion
we use gsc which is warped product in the product decomposition in which g is in a normal gauge.

We note here that geodesics of a scattering metric gsc are the projections to X of the integral curves of
the Hamilton vector field Hgsc ; it is actually better to consider scHgsc (which reparameterizes these), for one

has a non-degenerate flow on scT ∗X (and indeed scT ∗X). Note that if one is interested in finite points at
base infinity, i.e. points in scT ∗∂XX, it suffices to renormalize Hgsc by the weight, i.e. consider x−1Hgsc which
we also denote by scHgsc .

With L0 defined as in (3.2)-(3.3), it is shown in [31] that the exponentially conjugated operator N0,z =

e−z/xL0Ie
z/x is an element of Ψ−1,0

sc (X) (with values in scT ∗X or Sym2scT ∗X), and for (sufficiently large,
in the case of two tensors) z > 0, it is elliptic both at finite points at spatial infinity ∂X, i.e. points in
scT ∗pX, p ∈ ∂X, and at fiber infinity on the kernel of the principal symbol of the adjoint, relative to gsc, of

the conjugated symmetric gradient of g, namely on the kernel of the principal symbol of δsz = ez/xδse−z/x,
δs = (ds)∗. This allows one to conclude that N0,z + dszMδsz is elliptic, over a neighborhood of Ω (which is

what is relevant), in Ψ−1,0
sc (X; Sym2scT ∗X,Sym2scT ∗X) for suitable M ∈ Ψ−3,0

sc (X; scT ∗, scT ∗X). The rest
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of [31] deals with arranging the solenoidal gauge and using the parametrix for this elliptic operator; this
actually involves two extensions from Ω. It also uses that when c > 0 used in defining Ω is small, the error of
the parametrix when sandwiched between relevant cutoffs arising from the extensions is small, and thus the
appropriate error term can actually be removed by a convergent Neumann series. The reason this smallness
holds is that, similarly to the discussion in the scalar setting in [33], the map c 7→ N0,z+dszMδsz ∈ Ψ−1,0

sc (Xc)
is continuous, meaning that if one takes a fixed space, say X0, and identifies Xc (for c small) with it via a
translation, then the resulting map into Ψ−1,0

sc (X0) is continuous. Furthermore, the ellipticity (over a fixed
neighborhood of the image of Ωc) also holds uniformly in c, and thus one has a parametrix with an error
which is uniformly bounded in Ψ−∞,−∞sc (X0), thus when localized to x < c (the image of Ωc under the
translation) it is bounded by a constant multiple of c in any weighted Sobolev operator norm, and thus is
small when c is small.

As in the proof of boundary rigidity in the fixed conformal class setting of [29], it is also important to
see how N0,z (and dszMδsz) depend on the metric g. But this dependence is, completely analogously to
the scalar case, see [29, Proposition 3.2] and the remarks preceding it connecting g to Γ± in the notation
of that paper, continuous in the same sense as above, as long as g is close in a Ck-sense (for suitable k) to
a fixed metric g0 (in the region we are interested in), i.e. any seminorm in Ψ−1,0

sc (X0) is controlled by some
seminorm of g in C∞ in the relevant region.

3.4. Ellipticity of L0 at finite points. Returning to our normal gauge, an inspection of the proof of
[31, Lemma 3.5] shows that L0 is still elliptic at finite points even on tangential tensors (the kernel of the
restriction to the normal component, rather than the kernel of the principal symbol of δsz). Indeed, in the
case of one-forms, in Lemma 3.5 of [31] the principal symbol (at x = 0) is calculated to be (see also the
next paragraph below regarding how this computation proceeds), for appropriate choice of χ (exponentially
decaying, not compactly supported, which is later fixed, as discussed below), up to an overall elliptic factor,
and in coordinates in which at the point y, where the symbol is computed, the metric h is the Euclidean
metric,

(3.4)

(ξ2 + z2)−1/2∫
Sn−2

ν−1/2

(
−ν(ξ+iz)

ξ2+z2 (Ŷ · η)

Ŷ

)
⊗
(
−ν(ξ−iz)

ξ2+z2 (Ŷ · η) 〈Ŷ , ·〉
)
e−(Ŷ ·η)2/(2ν(ξ2+z2)) dŶ ,

where the block-vector notation corresponds to the decomposition into normal and tangential components,
and where ν = z−1α, α = α(0, y, 0, Ŷ ), α as in (3.1). Thus, this is a superposition of positive (in the sense
of non-negative) operators, which is thus itself positive. Moreover, when restricting to tangential forms, i.e.
those with vanishing first components, and projecting to the tangential components, we get

(3.5) (ξ2 + z2)−1/2

∫
Sn−2

ν−1/2Ŷ ⊗ 〈Ŷ , ·〉e−(Ŷ ·η)2/(2ν(ξ2+z2)) dŶ ,

which is positive definite: if v 6= 0 is tangential, taking Ŷ = v/|v| shows the non-vanishing of the integral.
The case of symmetric 2-cotensors is similar; when restricted to tangential-tangential tensors one simply
needs to replace Ŷ ⊗ 〈Ŷ , ·〉 by its analogue (Ŷ ⊗ Ŷ ) ⊗ 〈Ŷ ⊗ Ŷ , ·〉; since tensors of the form Ŷ ⊗ Ŷ span
all tangential-tangential tensors, the conclusion follows. Note that one actually has to approximate a χ
of compact support by these exponentially decaying χ = χ0, e.g. via taking χk = φ(./k)χ0, φ ≥ 0 even
identically 1 near 0, of compact support, and letting k → ∞; we then have that the principal symbols of
the corresponding operators converge; thus given any compact subset of scT ∗∂XX, for sufficiently large k the
operator given by χk is elliptic. (This issue does not arise in the setting of [31], for there one also has ellipticity
at fiber infinity, thus one can work with the fiber compactified cotangent bundle, scT ∗∂XX.) Of course, once
we arrange appropriate estimates at fiber infinity to deal with the lack of ellipticity of the principal symbol
there in the current setting (tangential forms/tensors), the estimates also apply in a neighborhood of fiber
infinity, thus this compact subset statement is sufficient for our purposes.
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3.5. The Schwartz kernel of scattering pseudodifferential operators. So it remains to consider the
principal symbol, and ellipticity, at fiber infinity. In [33, 31] this was analyzed using the explicit Schwartz
kernel; indeed this was already the case for the analysis at finite points considered in the previous paragraph.
In order to do connect the present paper with these earlier works we first recall some notation. Instead of the
oscillatory integral definition (via localization, in case of a manifold with boundary) discussed above, Ψsc(X)
can be equally well characterized by the statement that the Schwartz kernel of A ∈ Ψsc(X) (which is a priori a
tempered distribution on X2) is a conormal distribution on a certain resolution of X2, called the scattering
double space X2

sc; again this was introduced by Melrose in [15]. Here conormality is both to the (lifted)
diagonal and to the boundary hypersurfaces, of which only one sees non-trivial (non-infinite order vanishing)
behavior, the scattering front face. In order to make this more concrete, we consider coordinates (x, y) on
X, x a (local) boundary defining function and y = (y1, . . . , yn−1) as before, and write the corresponding
coordinates on X2 = X ×X as (x, y, x′, y′), i.e. the primed coordinates are the pullback of (x, y) from the
second factor, the unprimed from the first factor. Coordinates on X2

sc near the scattering front face then are

x, y, X =
x′ − x
x2

, Y =
y′ − y
x

, x ≥ 0;

the lifted diagonal is {X = 0, Y = 0}, while the scattering front face is x = 0. In [33, 31] the lifted diagonal
was also blown up, which essentially means that ‘invariant spherical coordinates’ were introduced around it,
so the conormal singularity to the diagonal (which corresponds to L0I being a pseudodifferential operator of
order −1) becomes a conormal singularity at the new front face. Concretely, in the region where |Y | > c|X|,
c > 0 fixed (but arbitrary), which is the case (with sufficiently small c) on the support of L0I when the

cutoff χ is compactly supported, valid ‘coordinates’ (Ŷ below is in Sn−2) are

(3.6) x, y,
X

|Y | , Ŷ =
Y

|Y | , |Y |.

In these coordinates |Y | = 0 is the new front face (the lifted diagonal), and x = 0 is still the scattering
front face, and

∣∣ X
|Y |
∣∣ < c in the region of interest. The principal symbol at base infinity, x = 0, of an

operator A ∈ Ψm,0
sc (X), evaluated at (0, y, ξ, η), is simply the (X,Y )-Fourier transform of the restriction of

its Schwartz kernel to the scattering front face, x = 0, evaluated at (−ξ,−η); the computation giving (3.4)
and its 2-tensor analogue is exactly the computation of this Fourier transform.

With this background, and with the notation

S =
X − α(Ŷ )|Y |2

|Y | , Ŷ =
Y

|Y | ,

where note that S is a smooth function of the coordinates in (3.6), the Schwartz kernel of N0,z at the
scattering front face x = 0 is, as in [31, Lemma 3.4], given by

e−zX |Y |−n+1χ(S)
((
S
dx

x2
+ Ŷ · dy

x

)(
(S + 2α|Y |)(x2∂x) + Ŷ · (x∂y)

))
on one forms, respectively

e−zX |Y |−n+1χ(S)(((
S
dx

x2
+ Ŷ · dy

x

)
⊗
((
S
dx

x2
+ Ŷ · dy

x

))))
((

(S + 2α|Y |)(x2∂x) + Ŷ · (x∂y)
)
⊗
(

(S + 2α|Y |)(x2∂x) + Ŷ · (x∂y)
))

on 2-tensors, where Ŷ is regarded as a tangent vector which acts on covectors, and where (S+2α|Y |)(x2∂x)+

Ŷ · (x∂y) maps one forms to scalars, thus(
(S + 2α|Y |)(x2∂x) + Ŷ · (x∂y)

)
⊗
(

(S + 2α|Y |)(x2∂x) + Ŷ · (x∂y)
)
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maps symmetric 2-tensors to scalars, while S dxx2 + Ŷ · dyx maps scalars to one forms, so(
S
dx

x2
+ Ŷ · dy

x

)
⊗
(
S
dx

x2
+ Ŷ · dy

x

)
maps scalars to symmetric 2-tensors. In order to make the notation less confusing, we employ a matrix
notation, (

S
dx

x2
+ Ŷ · dy

x

)(
(S + 2α|Y |)(x2∂x) + Ŷ · (x∂y)

)
=

(
S(S + 2α|Y |) S〈Ŷ , ·〉
Ŷ (S + 2α|Y |) Ŷ 〈Ŷ , ·〉

)
,

with the first column and row corresponding to dx
x2 , resp. x2∂x, and the second column and row to the

(co)normal vectors. For 2-tensors, as before, we use a decomposition

dx

x2
⊗ dx

x2
,
dx

x2
⊗ dy

x
,
dy

x
⊗ dx

x2
,
dy

x
⊗ dy

x
,

where the symmetry of the 2-tensor is the statement that the 2nd and 3rd (block) entries are the same. For
the actual endomorphism we write
(3.7)

S2

S〈Ŷ , ·〉1
S〈Ŷ , ·〉2

〈Ŷ , ·〉1〈Ŷ , ·〉2

((S + 2α|Y |)2Ŷ1Ŷ2 (S + 2α|Y |)Ŷ1Ŷ2〈Ŷ , ·〉1 (S + 2α|Y |)Ŷ1Ŷ2〈Ŷ , ·〉2 Ŷ1Ŷ2〈Ŷ , ·〉1〈Ŷ , ·〉2
)
.

Here we write subscripts 1 and 2 for clarity on Ŷ to denote whether it is acting on the first or the second
factor, though this also immediately follows from its position within the matrix.

In the next two sections we further analyze these operators first in the 1-form, and then in the 2-tensor
setting, although the oscillatory integral approach will give us the precise results we need.

4. One-forms and Fredholm theory in the normal gauge

We first consider the X-ray transform on 1-forms in the normal gauge. The overall form of the transform
is similar in the 2-tensor case, but it is more delicate since it is not purely dependent on a principal symbol
computation, so the 1-form transform will be a useful guide.

4.1. The lack of ellipticity of the principal symbol in the one-form case. Now, the standard principal
symbol of N0,z is that of the conormal singularity at the diagonal, i.e. X = 0, Y = 0. Writing (X,Y ) = Z,
(ξ, η) = ζ, we would need to evaluate the Z-Fourier transform as |ζ| → ∞. This was discussed in [33]
around Equation (3.8); the leading order behavior of the Fourier transform as |ζ| → ∞ can be obtained by

working on the blown-up space of the diagonal, with coordinates |Z|, Ẑ = Z
|Z| (as well as z = (x, y)), and

integrating the restriction of the Schwartz kernel to the front face, |Z|−1 = 0, after removing the singular

factor |Z|−n+1, along the equatorial sphere corresponding to ζ, and given by Ẑ · ζ = 0. Now, concretely
in our setting, in view of the infinite order vanishing, indeed compact support, of the Schwartz kernel as
X/|Y | → ∞ (and Y bounded), we may work in semi-projective coordinates, i.e. in spherical coordinates in
Y , but X/|Y | as the additional tangential variable, |Y | the defining function of the front face; the equatorial

sphere then becomes (X/|Y |)ξ + Ŷ · η = 0 (with the integral of course relative to an appropriate positive

density). With S̃ = X/|Y |, keeping in mind that terms with extra vanishing factors at the front face, |Y | = 0
can be dropped, we thus need to integrate

(4.1)

(
S̃2 S̃〈Ŷ , ·〉
S̃Ŷ Ŷ 〈Ŷ , ·〉

)
χ(S̃) =

(
S̃

Ŷ

)
⊗
(
S̃ Ŷ

)
χ(S̃),

on this equatorial sphere in the case of one-forms. Now, for χ ≥ 0 this matrix is a positive multiple of
the projection to the span of (S̃, Ŷ ). As (S̃, Ŷ ) runs through the (ξ, η)-equatorial sphere, we are taking a
positive (in the sense of non-negative) linear combination of the projections to the span of the vectors in this
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orthocomplement, with the weight being strictly positive as long as χ(S̃) > 0 at the point in question. Now,
for tangential one forms, if we project the result to tangential one forms, this matrix simplifies to

(4.2) Ŷ 〈Ŷ , ·〉χ(S̃).

Hence, working at a point (0, y, ξ, η) (considered as a homogeneous object, i.e. we are working at fiber

infinity) if we show that for each non-zero tangential vector v there is at least one (S̃, Ŷ ) with χ(S̃) > 0 and

ξS̃ + η · Ŷ = 0 and Ŷ · v 6= 0, we conclude that the integral of the projections is positive, thus the principal
symbol of our operator is elliptic, on tangential forms. But this is straightforward if χ(0) > 0 and ξ 6= 0:

(1) if v 6= 0 and v is not a multiple of η, then take Ŷ orthogonal to η but not to v, S̃ = 0,

(2) if v = cη with v 6= 0 (so c and η do not vanish) then Ŷ · v = cŶ · η = −cξS̃ under the constraint so

we need non-zero S̃; but fixing any non-zero S̃ choosing Ŷ such that Ŷ · η = ξS̃ (such Ŷ exists again

as η ∈ Rn−1, n ≥ 3), Ŷ · v 6= 0 follows. We thus choose S̃ small enough in order to ensure χ(S̃) > 0,

and apply this argument to find Ŷ .

This shows that the principal symbol is positive definite on tangential one-forms for ξ 6= 0; indeed it shows
that on Span{η}⊥ we also have positivity even if ξ = 0. Notice that if we restrict to Span{η}⊥, but do
not project the result to Span{η}⊥, the Span{η} component actually vanishes at ξ = 0 as the integral is

over Ŷ with Ŷ · η = 0, i.e. with Π⊥ the projection to Span{η}⊥, σ−1,0(N0,z)Π⊥ = Π⊥σ−1,0(N0,z)Π⊥.

On the other hand, still for ξ = 0, with Π‖ to projection to Span{η}, as the integral is over Ŷ with

Ŷ · η = 0, σ−1,0(N0,z)Π‖ = 0. Thus, in the decomposition of tangential covectors into Span{η}⊥⊕Span{η},
σ−1,0(N0,z) (mapping into Span{η}⊥) has matrix of the form(

O(1) O(ξ)
O(ξ) O(ξ)

)
where all terms are order (−1, 0) (so they have appropriate elliptic prefactors) and the O(1) term is elliptic;
in fact, the (1,1) term Π‖σ−1,0(N0,z)Π‖ is non-negative, so it necessarily is O(ξ2)! Thus, the difficulty in
obtaining a non-degenerate problem is Span{η} when ξ = 0.

4.2. The operator L̃1: first version. To deal with Span{η} when ξ = 0, we also consider another operator.
For this purpose it is convenient to replace χ by a function χ1 which is not even. It is straightforward to
check how this affects the computation of the principal symbol at fiber infinity: one has to replace the result
by a sum over ± signs, where both Ŷ and S are evaluated with both the + sign and the − sign. Thus, for
instance the Schwartz kernel of N0,z on one-forms is at the scattering front face∑

±
e−zX |Y |−n+1χ1(±S)

((
± S dx

x2
± Ŷ · dy

x

)(
± (S + 2α|Y |)(x2∂x)± Ŷ · (x∂y)

))
.

Here the ± are all the same, thus the cancel out in the product, and one is left with
∑
± χ1(±S) times an

expression independent of the choice of ±, i.e. only the even part of χ1 enters into N0,z and thus non-even
χ1 are not interesting for our choice of L0. Thus, we need to modify the form of L0 as well; concretely
consider L̃1 defined by

(4.3) L̃1v(z) = x−1

∫
χ1(λ/x)v(γx,y,λ,ω) dλ dω,

which maps into the scalars! (Here the power of x in front is one lower than that of L0 on one forms (which
is x0 = 1), because, as discussed in [31], both factors of γ̇ in I, which are still present, and gsc(γ̇), which are
no longer present, give rise to factors of x−1 in the integral expression, and we normalize them by putting
the corresponding power of x into the definition of L, with the function case having an x−2 due to the
localization itself.) Then the Schwartz kernel of Ñ1,z = e−z/xL̃1Ie

z/x on the scattering front face is, for
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not necessarily even χ1,∑
±
e−zX |Y |−n+1χ1(±S)

(
± (S + 2α|Y |)(x2∂x)± Ŷ · (x∂y)

)
= e−zX |Y |−n+1(χ1(S)− χ1(−S))

(
(S + 2α|Y |)(x2∂x) + Ŷ · (x∂y)

)
,

so now odd χ1 give non-trivial results. In particular, on tangential one-forms this is

e−zX |Y |−n+1(χ1(S)− χ1(−S))Ŷ · (x∂y).

The corresponding principal symbol at fiber infinity is still the integral over the equatorial sphere ξS̃+η·Ŷ = 0
of

(χ1(S̃)− χ1(−S̃))Ŷ

up to an overall elliptic factor. Applied to elements of Span{η}, restricted to the equatorial sphere, this is

(χ1(S̃)− χ1(−S̃))ξS̃,

which is twice the even part of S̃χ1(S̃) times ξ. Thus, for odd χ1, as long as χ1(S̃) > 0 for some S̃ > 0 and
χ1 ≥ 0 on (0,∞), the principal symbol at fiber infinity, restricted to Span{η}, is a positive multiple of ξ (up to

an overall elliptic factor). On the other hand, at ξ = 0, the integral is simply over Ŷ orthogonal to η, and the

integral vanishes as the integrand is odd in Ŷ . Correspondingly, in the decomposition Span{η}⊥⊕ Span{η},
σ−1,0(Ñ1,z) at fiber infinity is an elliptic multiple of

(4.4)
(
bξ aξ

)
with a > 0.

4.3. The operator L1: second version. There is a different way of arriving at the operator L̃1, or
rather a very similar operator L1 which works equally well. Namely, if one considers L0 as a map not
into tangential forms but all one-forms, without projecting out the normal, dx

x2 , component, the normal

projection L1 is exactly L̃1 with appropriate χ1. Indeed, this component arises from gsc(λ∂x) (as opposed
to gsc(ω∂y)) for a warped product scattering metric gsc, which is λx−4 dx = x−2(λx−2 dx) (as opposed
to x−2h(ω∂y) = x−1(x−1h(ω∂y)), with the parenthesized factor being a smooth scattering one-form; the
trivialization factors out x−2 dx. Thus, recalling (3.2), the normal component of L0v is

(4.5)

∫
χ(λ/x)v(γx,y,λ,ω)x−2λ dλ dω = x−1

∫
χ1(λ/x)v(γx,y,λ,ω) dλ dω,

this is exactly L̃1 with χ1(s) = sχ(s).

4.4. Microlocal projections. Before we proceed with our computations, it is useful to have a decomposi-
tion when one has an orthogonal projection at the principal symbol level, such as Π⊥ and Π‖.

Proposition 4.1. Suppose that over an open subset U of ∂scT ∗X, a symbol Π of order (0, 0) is orthogonal
projection to a subbundle of the pullback of a vector bundle E, with a Hermitian inner product, over X to
scT ∗X by the bundle projection map, so Π2 = Π and Π∗ = Π. Then for any U1 ⊂ U1 ⊂ U , there exists
P ∈ Ψ0,0

sc (X) such that microlocally on U1, the principal symbol of P as Π, and furthermore P 2 = P , P ∗ = P ,
i.e. WF′sc(P 2 − P ) ∩ U1 = ∅, WF′sc(P − P ∗) ∩ U1 = ∅.
Proof. This is a standard iterative construction, which is completely microlocal. We first write down the
argument with U1 = U = ∂scT ∗X, i.e. globally, and then simply remark on its microlocal nature.

One starts by taking any operator P0 ∈ Ψ0,0
sc with principal symbol Π; one can replace P0 by 1

2 (P0 + P ∗0 )

and thus assume that it is self-adjoint. Now let E1 = P 2
0 − P0 ∈ Ψ−1,−1

sc be the error of P0 in being a
projection (note that the principal symbol of P 2

0 − P0 in Ψ0,0
sc is Π2 − Π = 0, hence its membership in

Ψ−1,−1
sc ). Note that P0E1 = P 3

0 − P 2
0 = E1P0, so if e1 is the principal symbol of E1, then Πe1 = e1Π. Now

we want to correct P0 by adding P1 ∈ Ψ−1,−1
sc so that P ∗1 = P1 and (P0 + P1)2 − (P0 + P1) ∈ Ψ−2,−2

sc has
lower order than E1 = P 2

0 − P0; note that E∗1 = E1. We compute this:

(P0 + P1)2 − (P0 + P1) = P 2
0 − P0 + P0P1 + P1P0 − P1 + P 2

1 = E1 + P0P1 + P1P0 − P1 + F2,
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where F2 ∈ Ψ−2,−2
sc , so irrelevant for our conclusion on the improved projection property. Hence, the

membership of (P0 + P1)2 − (P0 + P1) in Ψ−2,−2
sc is equivalent to the principal symbol p1 of P1 satisfying

e1 + Πp1 + p1Π− p1 = 0. So let
p1 = −Πe1Π + (1−Π)e1(1−Π);

notice that p∗1 = p1 since e∗1 = e1 (being the principal symbol of a symmetric operator). Then, as Π2 = Π,
Π(1−Π) = 0,

e1 + Πp1 + p1Π− p1 = e1 −Πe1Π−Πe1Π + Πe1Π− (1−Π)e1(1−Π)

= e1 −Πe1Π− (1−Π)e1(1−Π) = 0

since e1 = Πe1Π + Πe1(1−Π) + (1−Π)e1Π + (1−Π)e1(1−Π) = Πe1Π + (1−Π)e1(1−Π) as e1 commutes
with Π, so Πe1(1−Π) = 0, etc. Thus, e1 + Πp1 + p1Π− p1 = 0 holds. Taking any P1 with principal symbol
p1, replace P1 by 1

2 (P1 + P ∗1 ) so one has self-adjointness as well (and still the same principal symbol), we

have the desired property (P0 + P1)2 − (P0 + P1) ∈ Ψ−2,−2
sc .

The general inductive procedure is completely similar; in step j + 1, j ≥ 0 (so j = 0 above), if (P (j))2 −
P (j) = Ej+1 ∈ Ψ−j−1,−j−1

sc and (P (j))∗ = P (j), one finds Pj+1 ∈ Ψ−j−1,−j−1
sc such that P ∗j+1 = Pj+1, which

one can easily arrange at the end, and such that (P (j) + Pj+1)2 − (P (j) + Pj+1 ∈ Ψ−j−2,−j−2
sc ; for this

one needs (with analogous notation to above) ej+1 + Πpj+1 + Πpj+1 − pj+1 = 0, which is satisfied with
pj+1 = −Πej+1Π + (1−Π)ej+1(1−Π) by completely analogous arguments as above.

An asymptotic summation of
∑∞
j=0 Pj gives the desired operator P in the global case.

In the local case, when U is a proper subset of ∂scT ∗X, one simply notes that all the algebraic steps
are microlocal (i.e. local in ∂scT ∗X modulo Ψ−∞,−∞sc ) including the composition of microlocally defined
operators. One thus obtains a sequence of microlocal operators Pj defined on U ; taking any Q ∈ Ψ0,0

sc with

WF′sc(Q) ⊂ U , WF′sc(Id−Q) ∩ U1 = ∅, one then asymptotically sums
∑∞
j=0QPj (with each term making

sense modulo Ψ−∞,−∞sc ) to obtain the globally defined P with the desired properties. �

Remark 4.1. Proposition 4.1 means that if one has orthogonal projections Π⊥ and Id−Π⊥ to orthogonal
subspaces of, say, scT ∗X, microlocally on U , then one can take P⊥ as guaranteed by the proposition, so
P⊥, Id−P⊥ are microlocal orthogonal projections, write u = u⊥ + u‖ with u⊥ = P⊥v, u‖ = (Id−P⊥)w

microlocally on U1 (i.e. WFsc(u⊥ − P⊥v) ∩ U1 = ∅, etc.), and u⊥, u‖ are microlocally uniquely determined,

i.e. any other u′⊥, u′‖ satisfy WFsc(u′⊥ − u⊥) ∩ U1 = ∅, etc. Indeed, for such u‖, P
⊥u‖ has WFsc disjoint

from U1, so P⊥u = P⊥u⊥ = (P⊥)2v = P⊥v = u⊥ microlocally on U1, and similarly for u‖. Since operators
with wave front sets disjoint from the region we are working on are irrelevant for our considerations, we may
legitimately write one forms as (

u0

u1

)
,

where u0 is microlocally in RanP⊥, u1 in Ran(Id−P⊥): u0 = P⊥u, u1 = (Id−P⊥)u.

4.5. The principal symbol in the one form setting. In order to do the computation of the principal
symbol of LjI in x > 0 in a smooth (thus uniform) manner down to x = 0, in a way that also describes the
boundary principal symbol near fiber infinity (the previous computations were at fiber infinity only!), it is
convenient to utilize a direct oscillatory integral representation of LjI, or indeed L0I, j = 0, 1. We in fact
do the complete form computation from scratch, initially using a general localizer χ̃ (potentially explicitly
dependent on x, y, ω as well, with compact support in λ/x), not just the kind considered above, noting that
we already know that we have a pseudodifferential operator Aj,z = e−z/xLjIe

z/x ∈ Ψ−1,0
sc , with Aj the

component mapping to tangential (j = 0) or normal (j = 1) one forms given by

Aj,zf(z) =

∫
e−z/x(z)ez/x(γz,λ,ω(t))x−jλj(h(y)ω)⊗(1−j)

χ̃(z, λ/x, ω)f(γz,λ,ω(t))(γ̇z,λ,ω(t)) dt |dν|,
where Aj,z is understood to apply only to f with support in M , thus for which the t-integral is in a fixed
finite interval, and where h(y)ω is the image of ω under the metric h = h(y) induced on the level sets of x by
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gsc. Then Aj,z will be the left quantization of the symbol aj,z where aj,z is the inverse Fourier transform
in z′ of the integral: if KAj,z is the Schwartz kernel, then in the sense of oscillatory integrals (or directly if
the order of aj,z is sufficiently low)

KAj,z(z, z′) = (2π)−n
∫
ei(z−z

′)·ζaj,z(z, ζ) dζ,

i.e. (2π)−n times the Fourier transform in ζ of (z, ζ) 7→ eiz·ζaj,z(z, ζ), so taking the inverse Fourier transform
in z′ yields (2π)−naj,z(z, ζ)eiz·ζ , i.e.

(4.6) aj,z(z, ζ) = (2π)ne−iz·ζF−1
z′→ζKAj,z(z, z′).

Now,

KAj,z(z, z′) =

∫
e−z/x(z)ez/x(γz,λ,ω(t))x−jλj(h(y)ω)⊗(1−j)χ̃(z, λ/x, ω)

γ̇z,λ,ω(t)δ(z′ − γz,λ,ω(t)) dt |dν|

= (2π)−n
∫
e−z/x(z)ez/x(γz,λ,ω(t))x−jλj(h(y)ω)⊗(1−j)χ̃(z, λ/x, ω)

γ̇z,λ,ω(t)e−iζ
′·(z′−γz,λ,ω(t)) dt |dν| |dζ ′|;

as remarked above, the t integral is actually over a fixed finite interval, say |t| < T , or one may explicitly
insert a compactly supported cutoff in t instead. (So the only non-compact domain of integration is in ζ ′,
corresponding to the Fourier transform.) Thus, taking the inverse Fourier transform in z′ and evaluating at
ζ gives

aj,z(z, ζ) =

∫
e−z/x(z)ez/x(γz,λ,ω(t))x−jλj(h(y)ω)⊗(1−j)χ̃(z, λ/x, ω)

γ̇z,λ,ω(t)e−iz·ζeiζ·γz,λ,ω(t) dt |dν|.
Translating into sc-coordinates, writing (x, y) as local coordinates, scattering covectors as ξ dxx2 + η · dyx , and

γ = (γ(1), γ(2)), with γ(1) the x component, γ(2) the y component, we obtain

(4.7)

aj,z(x, y, ξ, η)

=

∫
e−z/xez/γ

(1)
x,y,λ,ω(t)x−jλj(h(y)ω)⊗(1−j)χ̃(x, y, λ/x, ω)γ̇x,y,λ,ω(t)

ei(ξ/x
2,η/x)·(γ(1)

x,y,λ,ω(t)−x,γ(2)
x,y,λ,ω(t)−y) dt |dν|

and
γx,y,λ,ω(t) = (x+ λt+ αt2 + t3Γ(1)(x, y, λ, ω, t), y + ωt+ t2Γ(2)(x, y, λ, ω, t))

while as a scattering tangent vector, i.e. expressed in terms of x2∂x and x∂y, so as to act on sections of
scT ∗X, recalling that the x coordinate of the point we are working at is γ

(1)
x,y,λ,ω(t),

γ̇x,y,λ,ω(t) = γ
(1)
x,y,λ,ω(t)−1(γ

(1)
x,y,λ,ω(t)−1(λ+ 2αt+ t2Γ̃(1)(x, y, λ, ω, t)), ω + tΓ̃(2)(x, y, λ, ω, t)),

with Γ(1),Γ(2), Γ̃(1), Γ̃(2) smooth functions of x, y, λ, ω, t. We recall from [33] that we need to work in a
sufficiently small region so that there are no geometric complications, thus the interval of integration in t,
i.e. T , is such that (with the dot denoting t-derivatives) γ̈(1)(t) is uniformly bounded below by a positive
constant in the region over which we integrate, see the discussion in [33] above Equation (3.1), and then
further reduced in Equations (3.3)-(3.4) so that the map sending (x, y, λ, ω, t) to the lift of (x, y, γx,y,λ,ω(t))
in the resolved space X2 with the diagonal being blown up, is a diffeomorphism in t ≥ 0, as well as t ≤ 0.
In the present paper the restriction to small T will occur in a closely related manner, when dealing with the
stationary phase expansion.

We change the variables of integration to t̂ = t/x, and λ̂ = λ/x, so the λ̂ integral is in fact over a fixed
compact interval, but the t̂ one is over |t̂| < T/x which grows as x→ 0. We get that the phase is

ξ(λ̂t̂+ αt̂2 + xt̂3Γ(1)(x, y, xλ̂, ω, xt̂)) + η · (ωt̂+ xt̂2Γ(2)(x, y, xλ̂, ω, xt̂)),
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while the exponential damping factor (which we regard as a Schwartz function, part of the amplitude, when
one regards t̂ as a variable on R) is

−z/x+ z/γ(1)
x,y,λ,ω(t)

= −z(λt+ αt2 + t3Γ(1)(x, y, λ, ω, t))x−1(x+ λt+ αt2 + t3Γ(1)(x, y, λ, ω, t))−1

= −z(λ̂t̂+ αt̂2 + t̂3xΓ̂(1)(x, y, xλ̂, ω, xt̂)),

with Γ̂(1) a smooth function. The only subtlety in applying the stationary phase lemma is that the domain
of integration in t̂ is not compact, so we need to explicitly deal with the region |t̂| ≥ 1, say, assuming that
the amplitude is Schwartz in t̂, uniformly in the other variables. Notice that as long as the first derivatives
of the phase in the integration variables have a lower bound c|(ξ, η)| |t̂|−k for some k, and for some c > 0, the
standard integration by parts argument gives the rapid decay of the integral in the large parameter |(ξ, η)|.
At x = 0 the phase is ξ(λ̂t̂+ αt̂2) + t̂η · ω; if |t̂| ≥ 1, say, the λ̂ derivative is ξt̂, which is thus bounded below
by |ξ| in magnitude, so the only place where one may not have rapid decay is at ξ = 0 (meaning, in the

spherical variables, ξ
|(ξ,η)| = 0). In this region one may use |η| as the large variable to simplify the notation

slightly. The phase is then with ξ̂ = ξ
|η| , η̂ = η

|η| ,

|η|(ξ̂(λ̂t̂+ αt̂2) + t̂η̂ · ω),

with parameter differentials (ignoring the overall |η| factor)

ξ̂t̂ dλ̂, (t̂η̂ + t̂2ξ̂∂ωα) · dω, (ξ̂(λ̂+ 2αt̂) + η̂ · ω) dt̂.

With Ξ̂ = ξ̂t̂ and ρ = t̂−1 these are

Ξ̂ dλ̂, t̂(η̂ + Ξ̂∂ωα) · dω, (Ξ̂(ρλ̂+ 2α) + η̂ · ω) dt̂,

and now for critical points Ξ̂ must vanish (as we already knew from above), then the last of these gives
that η̂ · ω vanishes, but then the second gives that there cannot be a critical point (in |t̂| ≥ 1). While this
argument was at x = 0, the full phase derivatives are

(ξ̂t̂(1 + xt̂∂λα+ x2t̂2Γ(1)) + η̂ · x2t̂2∂λΓ(2)) dλ̂,

(t̂η̂ + xt̂2η̂ · ∂ωΓ(2) + t̂2ξ̂∂ωα+ xt̂3ξ̂∂ωΓ(1)) · dω,
(ξ̂(λ̂+ 2αt̂+ 3xt̂2Γ(1) + x2t̂3∂tΓ

(1)) + η̂ · ω + 2xt̂Γ(2) + x2t̂2∂tΓ
(2)) dt̂,

i.e.
(Ξ̂(1 + t∂λα+ t2Γ(1)) + η̂ · t2∂λΓ(2)) dλ̂,

t̂(η̂ + η̂ · t∂ωΓ(2) + Ξ̂∂ωα+ tΞ̂∂ωΓ(1)) · dω,
(Ξ̂(λ̂ρ+ 2α+ 3tΓ(1) + t2∂tΓ

(1)) + η̂ · ω + 2tΓ(2) + t2∂tΓ
(2)) dt̂,

and now all the additional terms are small if T is small (where |t| < T ), so the lack of critical points in the
x = 0 computation implies the analogous statement (in |t̂| > 1) for the general computation.

This implies that one can use the standard stationary phase lemma, see e.g. [7, Theorem 7.7.6]. At x = 0,

the stationary points of the phase are t̂ = 0, ξλ̂+η ·ω = 0, which remain critical points for x non-zero due to
the xt̂2 vanishing of the other terms, and when T is small, so xt̂ is small, there are no other critical points.
(One can see this in a different way: above we worked with |t̂| ≥ 1, but for any ε > 0, |t̂| ≥ ε would have
worked equally.) These critical points lie on a smooth codimension 2 submanifold of the parameter space,
and the Hessian matrix at x = 0, ξ = 0, in whose neighborhood we are focusing on, is, in terms of (t̂, ω‖)

with ω‖ = ω · η̂ the η̂ component of ω,

(
0 |η|
|η| 0

)
, which is elliptic. This means that all terms of the form

t̂x times smooth functions will have contributions which are 1 differentiable and 1 decay order lower than
the main terms, while t̂3x-type terms will have contributions which are 2 differentiable and 1 decay order
lower than the main terms. For us in this section only the principal terms matter, unlike in the 2-tensor case
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considered in the next section, so any O(xt̂) terms are actually ignorable for our purposes. Moreover, when
evaluated on tangential-tangential tensors (which is our interest here), γ̇x,y,λ,ω(t) can be replaced by

γ̇
(2)
x,y,λ,ω = γ

(1)
x,y,λ,ω(t)−1(ω + t̂xΓ̃(2)(x, y, xλ̂, ω, xt̂))

= x−1(ω + t̂xΓ̂(2)(x, y, xλ̂, ω, t̂))

with Γ̂(2) smooth.
Notice that Aj,zP

⊥, Aj,zP
‖, with P⊥, resp. P ‖, the microlocal orthogonal projection with principal

symbol Π⊥, resp. Π‖, will have principal symbol given by the composition of principal symbols. Thus, with

χ̃ = χ(λ/x) = χ(λ̂), we have that on

Span{η}⊥ (k = 0), resp. Span{η} (k = 1),

writing the sections in Span{η} factors explicitly as a multiple of η
|η| ,

(4.8)
aj,z(x, y, ξ, η)

=

∫
e
i(ξx−2(γ

(1)

x,y,xλ̂,ω
(xt̂)−x)+ηx−1(γ

(2)

x,y,xλ̂,ω
(xt̂)−y))

e−z(λ̂t̂+αt̂2)λ̂j(h(y)ω)⊗(1−j)χ(λ̂)|η|−k(xγ̇
(2)

x,y,xλ̂,ω
(xt̂) · η)k(xγ̇

(2)

x,y,xλ̂,ω
(xt̂)·)⊗(1−k) dt̂ dλ̂ dω

=

∫
ei(ξ(λ̂t̂+αt̂

2+xt̂3Γ(1)(x,y,xλ̂,ω,xt̂))+η·(ωt̂+xt̂2Γ(2)(x,y,xλ̂,ω,xt̂)))

e−z(λ̂t̂+αt̂2)λ̂j(h(y)ω)⊗(1−j)χ(λ̂)|η|−k(ω · η)k
(
ω ·
)⊗(1−k)

dt̂ dλ̂ dω,

up to errors that are O(x〈ξ, η〉−1) relative to the a priori order, (−1, 0), arising from the 0th order symbol
in the oscillatory integral and the 2-dimensional space in which the stationary phase lemma is applied.

Now we want to see, for k = 1 (since the k = 0 statement is trivial), that (xγ̇
(2)

x,y,xλ̂,ω
(xt̂) · η)k , while an

order k symbol, in this oscillatory integral is actually equivalent to the sum of terms over `, 0 ≤ ` ≤ k, each of
which is the product of ξ` and an order 0 symbol, essentially due to the structure of the set of critical points
of the phase. In order to avoid having to specify the latter in x > 0, we proceed with a direct integration by
parts argument. Notice that

(xγ̇
(2)

x,y,xλ̂,ω
(xt̂) · η)e

iηx−1(γ
(2)

x,y,xλ̂,ω
(xt̂)−y)

= x∂t̂e
iηx−1(γ

(2)

x,y,xλ̂,ω
(xt̂)−y)

,

integration by parts gives that (4.8) is, with k = 1,

aj,z(x, y, ξ, η)

=

∫
e
iηx−1(γ

(2)

x,y,xλ̂,ω
(xt̂)−y)

xk∂k
t̂

(
e
i(ξx−2(γ

(1)

x,y,xλ̂,ω
(xt̂)−x))

e−z(λ̂t̂+αt̂2)(xγ̇
(2)

x,y,xλ̂,ω
(xt̂)·)

)
λ̂j(h(y)ω)⊗(1−j)χ(λ̂)|η|−k dt̂ dλ̂ dω.

Expanding the derivative, if ` derivatives hit the first exponential (the phase term) and thus k− ` the second

(the amplitude) one obtains ξ` times the oscillatory factor e
i(ξx−2(γ

(1)

x,y,xλ̂,ω
(xt̂)−x))

times a symbol of order 0
— notice that

x∂t̂(x
−2(γ

(1)

x,y,xλ̂,ω
(xt̂)− x)) = λ̂+ 2αt̂+ t̂2xΓ̃(1)(x, y, xλ̂, ω, xt̂)

— so in view of the overall weight |η|−k, we deduce that, modulo terms one order down (so subprincipal),
in terms of the differential order, aj,z is a sum of terms of the form of symbols of order (−k− 1, 0) times ξ`,
0 ≤ ` ≤ k.

We remark here that γ, and thus Nj,z, depend continuously on the metric g, and furthermore the same
is true for aj and the decomposition into components as in the following theorem.
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This proves:

Proposition 4.2. Let ξz = ξ+ iz. The full symbol of the operator Nz with domain restricted to tangential
one-forms is, relative to the Span{η}-based decomposition of the domain,(

N0,z
N1,z

)
,

has the form (
a

(0)
00 a

(1)
01 ξz + a

(0)
01

a
(0)
10 a

(1)
11 ξz + a

(0)
11

)
,

where a
(k)
ij ∈ S−1−j,0 for all i, j, k.

Furthermore, a
(k)
ij ∈ S−1−j,0 depend continuously on the metric g (with the C∞ topology on g) as long as

g is Ck-close (for suitable k) to a background metric g0 satisfying the assumptions on the metric.

Remark 4.2. The statement of this proposition would be equally valid with ξz replaced by ξ, since one can
absorb the difference into the lower order, in terms of ξ-power, terms. The reason we phrase it this way is

that in Proposition 4.4 this will no longer be the case due to the order of e.g. a
(0)
01 there, with the decay order

being the issue.

In addition, at x = 0 we have

aj,z(0, y, ξ, η)

=

∫
ei(ξ(λ̂t̂+αt̂

2)+η·(ωt̂))e−z(λ̂t̂+αt̂2)λ̂j(h(y)ω)⊗(1−j)χ(λ̂)|η|−k(ω · η)k(ω·)⊗(1−k) dt̂ dλ̂ dω

=

∫
ei((ξ+iz)(λ̂t̂+αt̂2)+η·(ωt̂))λ̂j(h(y)ω)⊗(1−j)χ(λ̂)|η|−k(ω · η)k(ω·)⊗(1−k) dt̂ dλ̂ dω

=

∫
Sn−2

|η|−k(ω · η)k(h(y)ω)⊗(1−j)(ω·)⊗(1−k)
(∫

ei((ξ+iz)(λ̂t̂+αt̂2)+(η·ω)t̂)λ̂jχ(λ̂) dt̂ dλ̂
)
dω.

We recall that α = α(x, y, λ, ω) so at x = 0, α(0, y, 0 · λ̂, ω) = α(0, y, 0, ω), and it is a quadratic form in ω.
Some of the computations below become notationally simpler if we assume that the coordinates are such

that at y at which the principal symbol is computed h is the Euclidean metric. We thus assume this from
now on; note that even the integration by parts arguments are unaffected, as h would not be differentiated,
since it is a prefactor of the integral used in the integration by parts.

We now apply the projection P⊥ (quantization of the projection to Span{η}⊥ as in Proposition 4.1) from
the left: for the tangential, resp. normal components we apply P⊥, resp. Id, which means for the symbol
computation that we compose with Π⊥, resp. I from the left. This replaces (h(y)ω)⊗1−j = ω⊗(1−j) by
((h(y)ω)⊥)⊗(1−j) = (ω⊥)⊗(1−j) with the result

ãj,z(0, y, ξ, η) =

∫
Sn−2

|η|−k(ω · η)k(ω⊥)⊗(1−j)(ω⊥·)⊗(1−k)

×
(∫

ei((ξ+iz)(λ̂t̂+αt̂2)+(η·ω)t̂)λ̂jχ(λ̂) dt̂ dλ̂
)
dω,

where we used that (ω·)⊗(1−k) is being applied to the η-orthogonal factors, so it may be written as (ω⊥·)⊗(1−k).
This means that at ξ = 0 the overall parity of the integrand in ω⊥ is (−1)j+k apart from the appearance of

ω⊥ in the exponent (via α) of e−z(λ̂t̂+αt̂2), which due to the t̂2 prefactor of α, giving quadratic vanishing at
the critical set, only contributes one order lower terms, so modulo these the integral vanishes when j and k
have the opposite parity. This proves that Nz, when composed with the projections as described, has the
following form:

Proposition 4.3. Let ξz = ξ + iz. The symbol of the operator(
P⊥N0,z
N1,z

)
,
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with domain restricted to tangential 1-forms, relative to the Span{η}-based decomposition of the domain, at
x = 0 has the form (

a
(0)
00 a

(1)
01 ξz + a

(0)
01

a
(1)
10 ξz + a

(0)
10 a

(1)
11 ξz + a

(0)
11

)
,

where a
(k)
ij ∈ S−1−max(i,j),0 for all i, j, k. Moreover, this restriction depends continuously on χ in these spaces

when χ is considered as an element of the Schwartz space.

We can compute the leading terms quite easily: for j = k = 0 this is

ã0,z(0, y, ξ, η)

=

∫
Sn−2

ω⊥(ω⊥·)
(∫

ei((ξ+iz)(λ̂t̂+αt̂2)+(η·ω)t̂)χ(λ̂) dt̂ dλ̂
)
dω

=

∫
Sn−2

ω⊥(ω⊥·)
(∫

ei((ξλ̂t̂+αt̂
2)+(η·ω)t̂)e−z(λ̂t̂+αt̂2)χ(λ̂) dt̂ dλ̂

)
dω

which at the critical points of the phase, t̂ = 0, ξλ̂ + η · ω = 0, where ω⊥ and λ̂ give variables along the
critical set, gives, up to an overall elliptic factor,∫

Sn−3

ω⊥(ω⊥·)
(∫

χ(λ̂) dλ̂
)
dω⊥,

which is elliptic for χ ≥ 0 with χ(0) > 0.
On the other hand, for j = k = 1,

ã1,z(0, y, ξ, η)

=

∫
Sn−2

|η|−1(ω · η)
(∫

ei((ξ+iz)(λ̂t̂+αt̂2)+(η·ω)t̂)λ̂χ(λ̂) dt̂ dλ̂
)
dω,

Writing i(ω · η)ei(η·ω)t̂ = ∂t̂e
i(η·ω)t̂ and integrating by parts yields

(4.9)

ã1,z(0, y, ξ, η)

= i

∫
Sn−2

|η|−1
(∫

ei((ξ+iz)(λ̂t̂+αt̂2)+(η·ω)t̂)(ξ + iz)(λ̂+ 2αt̂)λ̂χ(λ̂) dt̂ dλ̂
)
dω

= i|η|−1(ξ + iz)

∫
Sn−2

(∫
ei((ξ+iz)(λ̂t̂+αt̂2)+(η·ω)t̂)(λ̂+ 2αt̂)λ̂χ(λ̂) dt̂ dλ̂

)
dω,

and now the integral (the factor after |η|−1(ξ + iz)) at the critical points of the phase t̂ = 0, ξλ̂+ η · ω = 0,
gives, up to an overall elliptic factor,∫

Sn−3

ω⊥(ω⊥·)
(∫

λ̂2χ(λ̂) dλ̂
)
dω⊥,

modulo S−2,0, i.e. for the same reasons as in the j = k = 0 case above, when χ ≥ 0, χ(0) > 0, (4.9) is an
elliptic multiple of |η|−1(ξ + iz)!

Finally, when j = 0, k = 1, we have

ã0,z(0, y, ξ, η)

=

∫
Sn−2

|η|−1ω⊥(ω · η)
(∫

ei((ξ+iz)(λ̂t̂+αt̂2)+(η·ω)t̂)χ(λ̂) dt̂ dλ̂
)
dω,

which, using i(ω · η)ei(η·ω)t̂ = ∂t̂e
i(η·ω)t̂ as above, gives

(4.10)

ã0,z(0, y, ξ, η)

= i|η|−1(ξ + iz)

∫
Sn−2

(∫
ei((ξ+iz)(λ̂t̂+αt̂2)+(η·ω)t̂)(λ̂+ 2αt̂)χ(λ̂) dt̂ dλ̂

)
dω,
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and now the leading term of the integral, due to the contributions from the critical points, is (up to an
overall elliptic factor) ∫

Sn−3

ω⊥
(∫

λ̂χ(λ̂) dλ̂
)
dω⊥,

modulo S−2,0, which vanishes for χ even, so for such χ, the (0, 1) entry has principal symbol which at x = 0
is a multiple of ξz, and the multiplier is in S−3,0 (one order lower than the previous results).

In summary, we have the following result:

Proposition 4.4. Suppose χ ≥ 0, χ(0) > 0, χ even. Let ξz = ξ + iz. The full symbol of the operator(
P⊥N0,z
N1,z

)
,

with domain restricted to tangential 1-forms, relative to the Span{η}-based decomposition of the domain, at
x = 0 has the form (

a
(0)
00 a

(1)
01 ξz + a

(0)
01

a
(1)
10 ξz + a

(0)
10 a

(1)
11 ξz + a

(0)
11

)
,

where a
(k)
ij ∈ S−1−max(i,j),0 for all i, j, k, and a

(0)
00 and a

(1)
11 (these are the multipliers of the leading terms

along the diagonal) are elliptic in S−1,0 and S−2,0, respectively and a
(0)
01 , a

(0)
11 ∈ S−2,−1, i.e. in addition to

the statements in the previous propositions vanish at x = 0 and a
(1)
01 also has one lower differential order at

x = 0: a
(1)
01 ∈ S−3,0 + S−2,−1.

Corollary 4.1. By pre- and postmultiplying (
P⊥N0,z
N1,z

)
by elliptic operators in Ψ0,0

sc , one can arrange that the full principal symbol of the resulting operator is of the
form (

T 0

0 ã(ξ + iz) + b̃

)
,

with T , resp. ã elliptic in S−1,0, resp. S−2,0, near ξ = 0 at fiber infinity, and b̃ ∈ S−2,−1.
Furthermore, ã, b̃, T in the indicated spaces depend continuously on the metric g (with the C∞ topology

on g) as long as g is Ck-close (for suitable k) to a background metric g0 satisfying the assumptions on the
metric.

Proof. Let T = a
(0)
00 . By multiplying from the left by the elliptic symbol(

1 0

−(a
(1)
10 ξz + a

(1)
10 )T−1 1

)
we obtain (

T a
(1)
01 ξz + a

(0)
01

0 ã
(1)
11 ξz + ã

(0)
11

)
, ã

(k)
11 = a

(k)
11 − (a

(1)
10 ξz + a

(0)
10 )T−1a

(k)
01 ,

so ã11 has the same properties as a11 for ξ near 0 (the case of interest), in particular the ellipticity of ã
(1)
11

follows from the one differential order lower behavior (at x = 0) than a priori expected for a
(1)
01 , stated in

Proposition 4.4, while the vanishing of ã
(0)
11 from that of a

(0)
01 (at x = 0). Multiplying from the right by(

1 −T−1(a
(1)
01 ξz + a

(0)
01 )

0 1

)
we obtain (

T 0

0 ã
(1)
11 (ξ + iz) + ã

(0)
11

)
,

as desired. �
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4.6. Analysis at radial points. We now have a principally diagonal real principal type system, and thus
in x > 0 the standard propagation of singularities results applies. The boundary behavior is also not hard
to see due to the leading order decoupling: one has radial points in the second (index 1) component.

In general, when the principal symbol is real, for such radial points there is a threshold regularity below
which one can propagate estimates towards the radial points and above which one can propagate estimates
away from the radial points. In our case the standard principal symbol (at fiber infinity) is real, but the
principal symbol at ∂X, while real at fiber infinity, is not so at finite points, thus near fiber infinity. In such
a situation even the weight does not help, and the imaginary part of the principal symbol (which of course is
only non-zero at ∂X) must have the correct sign. Fortunately, this is the case for us since, as we have seen,
the principal symbol of the second component, in both senses, is an elliptic multiple of ξ + iz, z > 0. To
illustrate why this is the correct sign, note that ξ+ iz is the principal symbol of x2Dx+ iz, whose nullspace
contains functions like e−z/xa(y), which are exponentially decaying as z > 0, and indeed these give the
asymptotic behavior of solutions of the inhomogeneous equation as x → 0, i.e. one can expect Fredholm
properties in the polynomially weighted Sobolev spaces. A different connection one can make is with the
standard propagation of singularities: when the imaginary part of the principal symbol is non-negative, one
can still propagate estimates in the backward direction along the bicharacteristics; in this case the usual
principal symbol in x > 0, where this applies, is real, but this fact illustrates the consistency of our present
result (propagating to x = 0 is backward propagation and z > 0) with other phenomena. That the Fredholm
statement holds for operators of this type follows from the following proposition, which we state for bundle
valued pseudodifferential operators for use in the 2-tensor setting:

Proposition 4.5. Suppose for two vector bundles Ẽ, F̃ , P ∈ Ψ1,0
sc (X; Ẽ, F̃ ) has principal symbol (ξ + iz)p̃

in x < ε0, ε0 > 0, where p̃ is elliptic in S0,0(scT ∗X; Hom(Ẽ, F̃ )) and z > 0.
Suppose first that Bj ∈ Ψ0,0

sc , WF′sc(B1) contained near the radial set L of ξ+ iz at fiber infinity at x = 0,
B2 is elliptic at x = ε0/2, B3 is elliptic at fiber infinity for x ∈ [0, ε0/2] and on WF′sc(B1). Then for all
s, r,M,N we have estimates

‖B1u‖s,r ≤ C(‖B2u‖s,r + ‖B3Pu‖s,r + ‖u‖−N,−M ).

Suppose now instead that Bj ∈ Ψ0,0
sc , WF′sc(B1) contained near L, B3 is elliptic at fiber infinity for

x ∈ [0, ε0/2] and on WF′sc(B1). Then for all s, r,M,N we have estimates

‖B1u‖s,r ≤ C(‖B3P
∗u‖s,r + ‖u‖−N,−M ).

Proof. By multiplying from the left by an operator whose principal symbol is p̃−1 (recall the ellipticity
assumption), one may assume that p̃ is the identity homomorphism at each point, i.e. that the principal

symbol of P is ξ + iz times the identity operator on the fibers of the vector bundle Ẽ. Equip Ẽ with a
Hermitian fiber metric; since P has scalar principal symbol, so does the adjoint, namely ξ − iz times the
identity. Now write P = PR + iPI , with PR = P+P∗

2 ∈ Ψ1,0
sc formally self-adjoint, with principal symbol

ξ times the identity, PI ∈ Ψ0,0
sc formally skew-adjoint, with principal symbol at ∂X given by z times the

identity, thus is of the form z + xα, α ∈ S0,0.
Due to a standard iterative argument, improving the regularity and decay by 1/2 in each step while

shrinking the support of B1 slightly, it suffices to show the estimates under the a priori assumption that u

is in H
s−1/2,r−1/2
sc on WF′sc(B1). Furthermore, as ξ ± iz have real principal symbol in the standard sense,

the usual propagation of singularities theorem applies in x > 0, which reduces the estimate to the case when
ε0 > 0 is fixed but small; we choose it so that |xα| < z/2 for x ∈ [0, ε0).

To prove the first statement of the proposition, with ρ a defining function of fiber infinity, such as ρ = |η|−1

near L, consider the scalar symbol

a = χ(x)x−rρ−sχ1(ξ/η)χ2(ρ),

where χ1, χ2 are identically 1 near 0 and have compact support, χ ≡ 1 near 0, dχ supported near ε0/2;
note that on supp d(χ1χ2) we have elliptic estimates (as P is elliptic there since either ξ/η is non-zero, or
one is at finite points where z gives the ellipticity), while on supp dχ we have a priori regularity of u (in
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terms of control on B2u). Then with Ã = A∗A, A ∈ Ψs,r
sc having principal symbol a times the identity

homomorphism, consider

(4.11) i(P ∗Ã− ÃP ) = i[PR, Ã] + (PIÃ+ ÃPI).

Now the first term is in Ψ2s,2r+1
sc , the second is in Ψ2s,2r

sc , so while they have the same differential order,
the second actually dominates in the decay sense, thus at finite points of scT ∗∂XX; at fiber infinity of course
they need to be considered comparable. The principal symbol of the second term, in Ψ2s,2r

sc , is 2(z+ xα)a2,
which is positive, bounded below by za2, say, for x small, in particular on supp a by our arrangements.
The principal symbol of the first term, on the other hand, is 2xaHξa = 2ax(x∂x + η∂η)a. Thus, in view

of x∂x + η∂η being a smooth vector field tangent to all boundaries of scT ∗X, i.e. an element of Vb(scT ∗X),
the principal symbol of the first term can be absorbed into 2za2 away from the boundary of the support of
χ1χ2 and χ; at both of those locations, however, we have a priori/elliptic control. Thus, we have

(4.12) i(P ∗Ã− ÃP ) = B∗B + E + E0 + F,

where E0, due to d(χ1χ2), has WF′sc(E0) is in the elliptic set of P , while WF′sc(E), due to χ, is near x = ε
and F ∈ Ψ−1,−1

sc . This gives

‖Bu‖2 ≤ 2|〈Ãu, Pu〉|+ |〈Eu, u〉|+ |〈E0u, u〉|+ |〈Fu, u〉|.
Now, the first term is handled by the Cauchy-Schwartz inequality in a standard way (cf. below), while the
latter terms (iteratively improving regularity for the F term) are controlled by a priori assumptions, proving

the estimate, a priori for u ∈ Ċ∞(X; Ẽ).
A standard regularization argument, see e.g. [36, Proof of Propositions 2.3-2.4] or [35], which is normally

delicate at radial points, but not in this case, due to the skew-adjoint part, PI , proves the result. To see
this, one replaces a by aε = asεrε throughout this computation, where

sε = (1 + ερ−1)−δ, rε = (1 + εx−1)−δ, ε ∈ (0, 1],

where any δ ≥ 1 suffices. This makes the corresponding Aε ∈ Ψs+δ,r+δ
sc for ε > 0, but uniformly bounded in

Ψs,r
sc , ε ∈ (0, 1], with Aε → A as ε→ 0 in Ψs−δ′,r−δ′

sc for any δ′ > 0. Then in the analogue of (4.11),

(4.13) i(P ∗Ãε − ÃεP ) = i[PR, Ãε] + (PIÃε + ÃεPI), Ãε = A∗εAε,

the principal symbol of the second term, considered uniformly in Ψ2s,2r
sc , is 2(z+xα)a2

ε which is positive for
x small, that of the first term is 2xaεHξaε = 2aεx(x∂x + η∂η)aε. Now,

dsε = (δ + 1)ερ−2(1 + ερ−1)−δ−1 dρ = (δ + 1)sεερ
−1(1 + ερ−1)−1 dρ

ρ
,

with a similar computation also holding for rε. Since x∂x + η∂η ∈ Vb(scT ∗X), dρ
ρ (x∂x + η∂η) is smooth on

scT ∗X, while ερ−1(1 + ερ−1)−1 is uniformly bounded in S0,0, with analogous statements also holding for the
rε contributions, the principal symbol of the first term of (4.13) can be absorbed into 2za2

ε away from the
boundary of the support of χ1χ2 and χ, where aε has a lower bound csεrε for some c > 0. As before, at
both of these remaining locations we have a priori/elliptic control. One then still has the analogue of (4.12),
which gives for ε > 0,

‖Bεu‖2 ≤ 2|〈Ãεu, Pu〉|+ |〈Eεu, u〉|+ |〈E0,εu, u〉|+ |〈Fεu, u〉|,
and now all terms but the first on the right hand side remain bounded as ε→ 0 due to the a priori assumptions
and elliptic estimates. On the other hand, one can apply the Cauchy-Schwartz inequality to the first term
of the right hand side, bounding it from above by ε̃‖Aεu‖2 + ε̃−1‖AεPu‖2, absorbing a small multiple (ε̃ > 0
small) of ‖Aεu‖2 into ‖Bεu‖2 modulo lower order terms (which are bounded by the a priori assumptions),
which is possible as the principal symbol of Bε is an elliptic multiple of aε, and thus one obtains the uniform
boundedness of ‖Bεu‖2, ε ∈ (0, 1]. This which proves Bu ∈ L2, completing the proof of the first half of the
proposition.
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For the second case, we take the same commutant, but now making sure that χχ′ = −ψ2 for a smooth
function ψ. Then P ∗ has skew-adjoint part with the opposite sign of that of P , −PI , and

i(PÃ− ÃP ∗) = i[PR, Ã]− (PIÃ+ ÃPI).

has principal symbol

2ax(x∂x + η∂η)a− 2a2z = −2b2 − 2a2(z + xβ) + e,

where e is supported where d(χ1χ2) is (thus in the elliptic set), while

b = ψ(x)x−r+1ρ−sχ1(ξ/η)χ2(ρ)

is elliptic for x ∈ [0, ε0/2]. Since the two terms not controlled by elliptic estimates have matching signs, there
is no need for a priori control of u in the sense of propagation, and we obtain the claimed estimate by going
through the regularization argument as above. �

4.7. Full estimates in the one-form setting. This gives real principal type estimates up to x = 0, which
together with the rest of the preceding discussion gives the coercivity of the system given by L0 and L1,
taking into account that N0,z, N1,z are in Ψ−1,0

sc :

Proposition 4.6. Let ε > 0. For u supported in x < ε, writing u = (u0, u1) for the decomposition relative
to Span{η}, we have estimates

‖u0‖s,r + ‖u1‖s−1,r + ‖x2Dxu1‖s−1,r ≤ C(‖N0,zu‖s+1,r + ‖N1,zu‖s+1,r + ‖u‖−N,−M ).

Remark 4.3. Here the decomposition (u0, u1) is defined only at fiber infinity and even there only near ξ = 0.
However, away from fiber infinity the estimates for u0 and u1 are in the same space, and the same is true at
fiber infinity away from ξ = 0 (in view of the ellipticity of x2Dx there), so this is irrelevant.

Proof. Microlocally away from fiber infinity the estimate holds without ‖N1,zu‖s+1,r even (i.e. ‖B0u‖s,r can
be so estimated if WF′sc(B0) is disjoint from fiber infinity, with B0 ∈ Ψ0,0

sc ), and it also holds at fiber infinity
away from ξ = 0 in the same manner; namely for such B0 we have

‖B0u‖s,r ≤ C(‖N0,zu‖s+1,r + ‖u‖s−2,r−1).

Now we write the pre- and postmultiplied version of(
P⊥N0,z
N1,z

)
,

defined microlocally near fiber infinity, as (
A00 A01

A10 A11

)
with Aij ∈ Ψ−2,−1

sc if i 6= j, A00 ∈ Ψ−1,0
sc elliptic and A11 ∈ Ψ−1,0

sc satisfying the hypotheses of Proposition 4.5.
We write the components of u as (u0, u1) corresponding to the decomposition relative to η, and we write

ũ = (ũ0, ũ1) for the modified decomposition obtained by multiplying u by the postmultiplier of

(
P⊥N0,z
N1,z

)
.

Since the inverse of the premultiplier preserves Hs+1,r
sc ⊕Hs+1,r

sc , we then have(
A00 A01

A10 A11

)(
ũ0

ũ1

)
controlled in Hs+1,r

sc ⊕Hs+1,r
sc by P⊥N0,zu and N1,zu in Hs+1,r

sc . Thus, using the first equation (involving
A0j), writing it as A0ũ = f0, gives the microlocal elliptic estimate

‖B1ũ0‖s,r ≤ C(‖ũ0‖s−1,r−1 + ‖A00ũ‖s+1,r)

≤ C(‖ũ0‖s−1,r−1 + ‖ũ1‖s−1,r−1 + ‖A0ũ‖s+1,r),
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where B1 ∈ Ψ0,0
sc has wave front set near ξ = 0 at fiber infinity, elliptic on a smaller neighborhood of ξ = 0 at

fiber infinity. On the other hand, by Proposition 4.5, taking into account the order of A11 ∈ Ψ−1,0
sc and the

support of ũ1 (so that the B2 term of the proposition is irrelevant), the second equation gives the estimate

‖B1ũ1‖s−1,r ≤ C(‖ũ1‖s−2,r−1 + ‖A11ũ1‖s+1,r)

≤ C(‖ũ1‖s−2,r−1 + ‖ũ0‖s−1,r−1 + ‖A1ũ‖s+1,r),

with B1 as above. Moreover, since A11 is an elliptic multiple or order (−2, 0) of x2Dx + iz microlocally, we
have the microlocal elliptic estimate

‖B1(x2Dx + iz)ũ1‖s−1,r ≤ C(‖ũ1‖s−2,r−1 + ‖A11ũ1‖s+1,r)

≤ C(‖ũ1‖s−2,r−1 + ‖ũ0‖s−1,r−1 + ‖A1ũ‖s+1,r).

Thus, for α ≥ 1,

α‖B0u‖s,r + ‖B1ũ0‖s,r + α‖B1ũ1‖s−1,r + ‖B1(x2Dx + iz)ũ1‖s−1,r

≤ C(α‖N0,zu‖s+1,r + α‖u‖s−2,r−1

+ ‖ũ0‖s−1,r−1 + α‖ũ0‖s−1,r−1 + ‖ũ1‖s−1,r−1 + α‖ũ1‖s−2,r−1

+ ‖A0ũ‖s+1,r + ‖A1ũ‖s+1,r).

Taking α > 1 sufficiently large, C‖ũ1‖s−1,r−1 on the right hand side can be absorbed into the left hand side
modulo ‖ũ1‖s−2,r−2:

‖ũ1‖s−1,r−1 ≤ C ′(‖B0u‖s−1,r−1 + ‖B1ũ1‖s−1,r−1 + ‖ũ1‖s−2,r−2)

if B0 and B1 are so chosen that at each point at least one of them is elliptic, as can be done. This gives the
estimate (with a new constant C, corresponding to any fixed sufficiently large value of α)

‖B0u‖s,r + ‖B1ũ0‖s,r + ‖B1ũ1‖s−1,r + ‖B1x
2Dxũ‖s−1,r

≤ C(‖ũ0‖s−1,r−1 + ‖ũ1‖s−2,r−1 + ‖N0,zu‖s+1,r + ‖A0ũ‖s+1,r + ‖A1ũ‖s+1,r),

and then the usual iteration in s, r improves the error term to

(4.14)
‖B0u‖s,r + ‖B1ũ0‖s,r + ‖B1ũ1‖s−1,r + ‖B1x

2Dxũ‖s−1,r

≤ C(‖ũ0‖s−k,r−k + ‖ũ1‖s−1−k,r−k + ‖N0,zu‖s+1,r + ‖A0ũ‖s+1,r + ‖A1ũ‖s+1,r)

for all k.
Now,

‖A0ũ‖s+1,r + ‖A1ũ‖s+1,r ≤ C(‖N0,zu‖s+1,r + ‖N1,zu‖s+1,r),

as explained above. Similarly one has microlocal control of (u0, u1) in terms of ũ0, ũ1, with the key point

being that the premultiplier of

(
P⊥N0,z
N1,z

)
, and its inverse, are upper triangular with top right entry having

principal symbol of the form (ξ + iz)c̃ + d̃, with c̃, d̃ ∈ S−1,0, so the regularity we proved on ũ1 only gives
rise to contributions to u0 in Hs,r

sc , not in the space Hs−1,r
sc as one would a priori expect. Therefore (4.14)

gives the claimed estimate of the proposition. �

For c > 0 small, the error term on the right hand side of the estimate of Proposition 4.6 can be absorbed
into the left hand side, as in [33], [31], and thus one obtains an invertibility result for 1-forms in the normal
gauge that is analogous to Corollary 6.1 below in the 2-tensor setting, but here without using the solenoidal
gauge results of [31].
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5. The transform on 2-tensors in the normal gauge

5.1. The operators L1 and L2. Now we turn to the 2-tensor setting; recall the only issue with the transform
in this case is the lack of ellipticity of L0I at fiber infinity. In this case, as for 1-forms, the problem is still
ξ = 0, but we have ellipticity of N0,z only on Span{η}⊥ ⊗ Span{η}⊥. A computation similar to the one
above shows the vanishing of the principal symbol on Span{η}⊥ ⊗s Span{η} and Span{η} ⊗ Span{η}, with
the vanishing being simple in the first case and quadratic in the second, essentially because as above in
Section 4, on Span{η} one may replace Ŷ · by ξS̃, so the order of vanishing is given by the number of factors
of Span{η}. Then a similar argument as above directly deals with Span{η}⊥ ⊗s Span{η}, namely we just
need to consider the map

(5.1) L̃1v(z) = x

∫
χ1(λ/x)v(γx,y,λ,ω)gsc(ω ∂y) dλ dω,

where now we are mapping to (tangential) one-forms rather than scalars in the one-forms setting. Again,
this is better considered as the normal-tangential component of the map giving L0, without projection to
tangential-tangential tensors, for that is, by (3.3), trivializing the normal 1-forms with x−2 dx as in the
1-form setting,

L1v(z) = x2

∫
χ(λ/x)v(γx,y,λ,ω)λx−2gsc(ω ∂y) dλ dω,

which gives exactly this result when χ1(s) = sχ(s). The resulting N1,z still has the same even/odd properties
as the L1 considered in the one form setting due to the odd number 1 + 2 = 3 of vector/one-form factors
appearing. Correspondingly, calculations as above would give a real principal type system if there were no
Span{η}⊥ ⊗ Span{η}⊥ components.

Now, one is then tempted to consider the operator

(5.2) L̃2v(z) =

∫
χ2(λ/x)v(γx,y,λ,ω) dλ dω,

mapping 2-cotensors to scalars to deal with Span{η}⊥ ⊗ Span{η}⊥. This arises as the normal-normal
component of the L0 transform without projection to tangential-tangential tensors:

L2v(z) = x2

∫
χ(λ/x)v(γx,y,λ,ω)(λx−2)2 dλ dω,

provided we take χ2(s) = s2χ(s) in this case. Unfortunately this produces similar behavior to L0, and while
at the principal symbol level it is not hard to see that the appropriate rows of the resulting matrix are
linearly independent in an relevant (non-elliptic) sense, see the discussions around (5.6), this is not so easy
to see at the subprincipal level, which is needed here.

5.2. The symbol computation. In spite of this, for our perturbation result involving microlocal weights,
we need to compute the full symbol of L2I (more precisely, the computation involves the symbol modulo
terms two orders below the leading term in the differential sense, one order in the sense of decay, terms with
more vanishing are irrelevant below), which is just the normal-normal component of Nz, to find its form, in
particular its precise vanishing properties at fiber infinity at ξ = 0. To do so, as in the one-form case, we
perform the full symbol computation of [33] without restricting to tangential-tangential tensors, with χ̃ the
localizer which is an arbitrary smooth function on the cosphere bundle (not just the kind considered above
for χ), using the oscillatory integral representation as in Section 4, proceeding from scratch.

We already know that we have a pseudodifferential operator

Aj,z = e−z/xLjIe
z/x ∈ Ψ−1,0

sc ,

with Aj the component mapping to tangential-tangential (j = 0), tangential-normal (j = 1) or normal-
normal (j = 2) tensors given by

Aj,zf(z) =

∫
e−z/x(z)ez/x(γz,λ,ω(t))x−jλj(h(y)ω)⊗(2−j)

χ̃(z, λ/x, ω)f(γz,λ,ω(t))(γ̇z,λ,ω(t), γ̇z,λ,ω(t)) dt |dν|,
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where Aj,z is understood to apply only to f with support in M , thus for which the t-integral is in a fixed
finite interval.

Now,

KAj,z(z, z′) =

∫
e−z/x(z)ez/x(γz,λ,ω(t))x−jλj(h(y)ω)⊗(2−j)χ̃(z, λ/x, ω)

(γ̇z,λ,ω(t)⊗ γ̇z,λ,ω(t))δ(z′ − γz,λ,ω(t)) dt |dν|

= (2π)−n
∫
e−z/x(z)ez/x(γz,λ,ω(t))x−jλj(h(y)ω)⊗(2−j)χ̃(z, λ/x, ω)

(γ̇z,λ,ω(t)⊗ γ̇z,λ,ω(t))e−iζ
′·(z′−γz,λ,ω(t)) dt |dν| |dζ ′|;

as remarked above, the t integral is actually over a fixed finite interval, say |t| < T , or one may explicitly
insert a compactly supported cutoff in t instead. (So the only non-compact domain of integration is in ζ ′,
corresponding to the Fourier transform.) Thus, using (4.6), so taking the inverse Fourier transform in z′ and
evaluating at ζ, gives

(5.3)
aj,z(z, ζ) =

∫
e−z/x(z)ez/x(γz,λ,ω(t))x−jλj(h(y)ω)⊗(2−j)χ̃(z, λ/x, ω)

(γ̇z,λ,ω(t)⊗ γ̇z,λ,ω(t))e−iz·ζeiζ·γz,λ,ω(t) dt |dν|.
Translating into sc-coordinates, writing (x, y) as local coordinates, scattering covectors as ξ dxx2 + η · dyx , and

γ = (γ(1), γ(2)), with γ(1) the x component, γ(2) the y component, we obtain

aj,z(x, y, ξ, η)

=

∫
e−z/xez/γ

(1)
x,y,λ,ω(t)x−jλj(h(y)ω)⊗(2−j)χ̃(x, y, λ/x, ω)(γ̇x,y,λ,ω(t)⊗ γ̇x,y,λ,ω(t))

ei(ξ/x
2,η/x)·(γ(1)

x,y,λ,ω(t)−x,γ(2)
x,y,λ,ω(t)−y) dt |dν|,

as in (4.7). We recall that

γx,y,λ,ω(t) = (x+ λt+ αt2 + t3Γ(1)(x, y, λ, ω, t), y + ωt+ t2Γ(2)(x, y, λ, ω, t))

while as a scattering tangent vector, i.e. expressed in terms of x2∂x and x∂y,

γ̇x,y,λ,ω(t) = γ
(1)
x,y,λ,ω(t)−1(γ

(1)
x,y,λ,ω(t)−1(λ+ 2αt+ t2Γ̃(1)(x, y, λ, ω, t)), ω + tΓ̃(2)(x, y, λ, ω, t)),

with Γ(1),Γ(2), Γ̃(1), Γ̃(2) smooth functions of x, y, λ, ω, t. Here the interval of integration in t, i.e. T , will be
small due to having to deal with the stationary phase expansion as in the 1-form case.

Still following the argument in the 1-form case, we change the variables of integration to t̂ = t/x, and

λ̂ = λ/x, so the λ̂ integral is in fact over a fixed compact interval, but the t̂ one is over |t̂| < T/x which
grows as x→ 0. We recall that the phase is

ξ(λ̂t̂+ αt̂2 + xt̂3Γ(1)(x, y, xλ̂, ω, xt̂)) + η · (ωt̂+ xt̂2Γ(2)(x, y, xλ̂, ω, xt̂)),

while the exponential damping factor (which we regard as a Schwartz function, part of the amplitude, when
one regards t̂ as a variable on R) is

−z/x+ z/γ(1)
x,y,λ,ω(t)

= −z(λt+ αt2 + t3Γ(1)(x, y, λ, ω, t))x−1(x+ λt+ αt2 + t3Γ(1)(x, y, λ, ω, t))−1

= −z(λ̂t̂+ αt̂2 + t̂3xΓ̂(1)(x, y, xλ̂, ω, xt̂)),

with Γ̂(1) a smooth function. The only subtlety in applying the stationary phase lemma is still that the
domain of integration in t̂ is not compact, but this is handled exactly as in the 1-form setting, for the 1-form
vs. 2-tensor values play no role in the argument.

Therefore one can use the standard stationary phase lemma, with the stationary points (including the
Hessian) having exactly the same structure as in the 1-form setting, so at x = 0, the stationary points of the
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phase are t̂ = 0, ξλ̂ + η · ω = 0, which remain critical points for x non-zero due to the xt̂2 vanishing of the
other terms, and when T is small, so xt̂ is small, there are no other critical points, so these critical points
lie on a smooth codimension 2 submanifold of the parameter space. This means that all terms of the form
t̂x will have contributions which are 1 differentiable and 1 decay order lower than the main terms, while t̂3x
will have contributions which are 2 differentiable and 1 decay order lower than the main terms, and thus
ignorable for our purposes. Moreover, when evaluated on tangential-tangential tensors (which is our interest
here), γ̇x,y,λ,ω(t) can be replaced by

γ̇
(2)
x,y,λ,ω = γ

(1)
x,y,λ,ω(t)−1(ω + t̂xΓ̃(2)(x, y, xλ̂, ω, xt̂))

= x−1(ω + t̂xΓ̂(2)(x, y, xλ̂, ω, t̂))

with Γ̂(2) smooth.
We recall from the one form discussion that Aj,zP

⊥, Aj,zP
‖, with P⊥, resp. P ‖, the microlocal orthogonal

projection with principal symbol Π⊥, resp. Π‖, will have principal symbol given by the composition of
principal symbols, but here we need to compute to the subprincipal level. Moreover, as Aj,z is written as a

left quantization, if P ‖, P⊥ are written as right quantizations, the full amplitude is the composition of the full
symbols, evaluated at (x, y) (the left, or ‘outgoing’ variable of Aj,z), resp. (x′, y′) (the right, or ‘incoming’,

variable of P⊥, P ‖). In addition, to get the full left symbol one simply ‘left reduces’, i.e. eliminates (x′, y′) by
the standard Taylor series argument at the diagonal (x, y) = (x′, y′); in the Euclidean notation, to which the
scattering algebra reduces to locally, this involves taking derivatives of aj,z in the momentum variables and

derivatives of the full symbol of P ‖, P⊥ in the position variables, evaluating the latter at (x′, y′) = (x, y),
with each derivative reducing the symbolic order both in the differential and in the decay sense by 1.

Thus, with χ̃ = χ(λ/x) = χ(λ̂), we have that on

Span{η}⊥ ⊗ Span{η}⊥ (k = 0), Span{η} ⊗s Span{η}⊥ (k = 1),

resp. {η} ⊗ Span{η} (k = 2),

writing the sections in Span{η} factors explicitly as multiples of η
|η| ,

(5.4)
aj,z(x, y, ξ, η)

=

∫
e
i(ξx−2(γ

(1)

x,y,xλ̂,ω
(xt̂)−x)+ηx−1(γ

(2)

x,y,xλ̂,ω
(xt̂)−y))

e−z(λ̂t̂+αt̂2)λ̂j(h(y)ω)⊗(2−j)χ(λ̂)|η|−k(xγ̇
(2)

x,y,xλ̂,ω
(xt̂) · η)k(xγ̇

(2)

x,y,xλ̂,ω
(xt̂)·)⊗(2−k) dt̂ dλ̂ dω

=

∫
ei(ξ(λ̂t̂+αt̂

2+xt̂3Γ(1)(x,y,xλ̂,ω,xt̂))+η·(ωt̂+xt̂2Γ(2)(x,y,xλ̂,ω,xt̂)))

e−z(λ̂t̂+αt̂2)λ̂j(h(y)ω)⊗(2−j)χ(λ̂)|η|−k((ω + t̂xΓ̂(2)(x, y, xλ̂, ω, t̂)) · η)k(
(ω + t̂xΓ̂(2)(x, y, xλ̂, ω, t̂)) ·

)⊗(2−k)
dt̂ dλ̂ dω,

up to errors that are O(x〈ξ, η〉−1) relative to the a priori order, (−1, 0), arising from the 0th order symbol
in the oscillatory integral and the 2-dimensional space in which the stationary phase lemma is applied, and
indeed the error can be improved to O(x〈ξ, η〉−2) if the composition with the projections P ‖ ⊗ P ‖, etc., is
written out as discussed in the paragraph above. However, we will deal with k = 2, when this improvement
would be important, in a different manner below.

Notice that

(xγ̇
(2)

x,y,xλ̂,ω
(xt̂) · η)e

iηx−1(γ
(2)

x,y,xλ̂,ω
(xt̂)−y)

= x∂t̂e
iηx−1(γ

(2)

x,y,xλ̂,ω
(xt̂)−y)

,
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when k ≥ 1, integration by parts once gives that this is

aj,z(x, y, ξ, η)

= −
∫
e
iηx−1(γ

(2)

x,y,xλ̂,ω
(xt̂)−y)

x∂t̂

(
e
i(ξx−2(γ

(1)

x,y,xλ̂,ω
(xt̂)−x))

e−z(λ̂t̂+αt̂2)(γ̇
(2)

x,y,xλ̂,ω
(xt̂)·)⊗(2−k)(xγ̇

(2)

x,y,xλ̂,ω
(xt̂) · η)k−1

)
λ̂j(h(y)ω)⊗(2−j)χ(λ̂)|η|−k dt̂ dλ̂ dω.

If k = 1, expanding the derivative, if ` derivatives (so ` = 0, 1) hit the first exponential (the phase term) and

thus k− ` the second (the amplitude) one obtains ξ` times the oscillatory factor e
i(ξx−2(γ

(1)

x,y,xλ̂,ω
(xt̂)−x))

times

a symbol of order 0 (notice that x∂t̂(x
−2(γ

(1)

x,y,xλ̂,ω
(xt̂)−x)) = λ̂+2αt̂+ t̂2xΓ̃(1)(x, y, xλ̂, ω, xt̂)), so in view of

the overall weight |η|−k, we deduce that, modulo terms two orders down, in terms of the differential order,
aj,z is a sum of terms of the form of symbols of order (−k − 1, 0) times ξ`, 0 ≤ ` ≤ k. Notice that here η
can be replaced by any other element of S1,0 which has the same principal symbol, i.e. differs from η by an

element r of S0,−1, for one then expands (xγ̇
(2)

x,y,xλ̂,ω
(xt̂) · (η + r))k into terms involving (xγ̇

(2)

x,y,xλ̂,ω
(xt̂) · η)k

′

and (xγ̇
(2)

x,y,xλ̂,ω
(xt̂) · r)k−k′ ; for the latter factors one does not need an integration by parts argument to get

the desired conclusion, while for the former it proceeds exactly as beforehand.
If k = 2, there are subtleties because subprincipal terms are involved. So to complete the analysis, we use

that I ◦ ds = 0, so Iez/xdsz = 0. Concretely, we use that the microlocal projection to Span{η} ⊗ Span{η},
P ‖ ⊗ P ‖, given by Proposition 4.1, is (modulo microlocally smoothing terms) (ds

Y dY )G(ds
Y dY )∗, where

G ∈ Ψ−4,0
sc (X) is a parametrix for the microlocally elliptic operator (ds

Y dY )∗ds
Y dY (note that dY ,d

s
Y are in

Ψ1,0
sc between various scattering bundles, e.g. dY v =

∑
(x∂yjv)

dyj
x ), since it is satisfies all requirements of

Proposition 4.1, in particular has the correct principal symbol, Π‖⊗Π‖, so the computation on the range of
P ‖ ⊗ P ‖, amounts to that on the range of ds

Y dY . Now, a computation gives that on tangential (scattering)
forms, such as those in the range of dY , when g is in the normal gauge,

ds
zu =

(
e−z/x(x2∂x + x2a)ez/xu

)
⊗s

dx

x2
+ ds

Y u

for suitable smooth a, which means that

Iez/xds
Y u = −Iez/x

((
e−z/x(x2∂x + x2a)ez/xu

)
⊗s

dx

x2

)
.

Composing with dY from the right, and commuting e−z/x(x2∂x + x2a)ez/x through dY , we have that

(5.5) Iez/xds
Y dY v = −Iez/x

((
dY
(
e−z/x(x2∂x + x2a)ez/x

)
+ x2ã

)
v ⊗s

dx

x2

)
,

with ã smooth. The x2ã term is two orders lower than the a priori order, and thus completely negligible
for our purposes. (Even if a one order lower term had been created, it would not cause any issues: one
would either have a x2Dx factor or a dY factor left, modulo two orders lower terms, and each of these can
be handled as above.) The advantage of this rewriting is that we can work with Iez/xdY , and we only need
to be concerned about it at the principal symbol level; we obtain an extra factor of ξ + iz− ix2ã after the
composition. Correspondingly, Nj,zdY has principal symbol given by, up to a non-zero constant factor,

bj,z(x, y, ξ, η)

=

∫
e−z/xez/γ

(1)
x,y,λ,ω(t)x−jλj(h(y)ω)⊗(2−j)χ̃(x, y, λ/x, ω)(x2γ̇

(1)
x,y,λ,ω(t))(xγ̇

(2)
x,y,λ,ω(t) · η)

ei(ξ/x
2,η/x)·(γ(1)

x,y,λ,ω(t)−x,γ(2)
x,y,λ,ω(t)−y) dt |dν|;
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here x2γ̇
(1)
x,y,λ,ω(t) appears due to ⊗s dxx2 above in (5.5). This gives

bj,z(x, y, ξ, η)

=

∫
e
i(ξx−2(γ

(1)

x,y,xλ̂,ω
(xt̂)−x)+ηx−1(γ

(2)

x,y,xλ̂,ω
(xt̂)−y))

e−z(λ̂t̂+αt̂2)λ̂j(h(y)ω)⊗(2−j)χ(λ̂)|η|−1(xγ̇
(2)

x,y,xλ̂,ω
(xt̂) · η)(x2γ̇

(1)

x,y,xλ̂,ω
(xt̂)·) dt̂ dλ̂ dω.

This can be handled exactly as above, so an integration by parts as above in t̂ gives

bj,z(x, y, ξ, η)

= −
∫
e
iηx−1(γ

(2)

x,y,xλ̂,ω
(xt̂)−y)

x∂t̂

(
e
i(ξx−2(γ

(1)

x,y,xλ̂,ω
(xt̂)−x))

e−z(λ̂t̂+αt̂2)(x2γ̇
(1)

x,y,xλ̂,ω
(xt̂))

)
λ̂j(h(y)ω)⊗(2−j)χ(λ̂)|η|−1 dt̂ dλ̂ dω,

and again the derivative either produces a ξ factor, or a term which is one order lower than the a priori
order. Taking into account to the extra factor of x2Dx + iz − ix2ã we had, as well as G(ds

Y dY )∗ ∈ Ψ−2,0
sc ,

and also the same continuity properties as in the 1-form setting, this proves:

Proposition 5.1. Let ξz = ξ+ iz. The full symbol of the operator Nz with domain restricted to tangential-
tangential tensors, relative to the Span{η}-based decomposition of the domain,N0,z

N1,z
N2,z

 ,

has the form a
(0)
00 a

(1)
01 ξz + a

(0)
01 a

(2)
02 ξ

2
z + a

(1)
02 ξz + a

(0)
02

a
(0)
10 a

(1)
11 ξz + a

(0)
11 a

(2)
12 ξ

2
z + a

(1)
12 ξz + a

(0)
12

a
(0)
20 a

(1)
21 ξz + a

(0)
21 a

(2)
22 ξ

2
z + a

(1)
22 ξz + a

(0)
22

 ,

where a
(k)
ij ∈ S−1−j,0 for all i, j, k.

Furthermore, a
(k)
ij ∈ S−1−j,0 depend continuously on the metric g (with the C∞ topology on g) as long as

g is Ck-close (for suitable k) to a background metric g0 satisfying the assumptions on the metric.

In addition, at x = 0 we have

aj,z(0, y, ξ, η)

=

∫
ei(ξ(λ̂t̂+αt̂

2)+η·(ωt̂))e−z(λ̂t̂+αt̂2)λ̂j(h(y)ω)⊗(2−j)χ(λ̂)|η|−k(ω · η)k(ω·)⊗(2−k) dt̂ dλ̂ dω

=

∫
ei((ξ+iz)(λ̂t̂+αt̂2)+η·(ωt̂))λ̂j(h(y)ω)⊗(2−j)χ(λ̂)|η|−k(ω · η)k(ω·)⊗(2−k) dt̂ dλ̂ dω

=

∫
Sn−2

|η|−k(ω · η)k(h(y)ω)⊗(2−j)(ω·)⊗(2−k)
(∫

ei((ξ+iz)(λ̂t̂+αt̂2)+(η·ω)t̂)λ̂jχ(λ̂) dt̂ dλ̂
)
dω.

We recall that α = α(x, y, λ, ω) so at x = 0, α(0, y, 0 · λ̂, ω) = α(0, y, 0, ω), and it is a quadratic form in ω.
Again, it is notationally convenient to assume, as we do from now on, that at y at which we perform the

computations below, h is the Euclidean metric. As in the one form setting, this does not affect even the
integration by parts arguments below since h(y) would be a prefactor of the integrals.

We now apply the projection P⊥ (quantization of the projection to Span{η}⊥ as in Proposition 4.1)
and its tensor powers from the left: for the tangential-tangential, tangential-normal, resp. normal-normal
components we apply P⊥⊗P⊥, resp. P⊥, resp. Id, which means for the symbol computation (we are working
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at x = 0!) that we compose with Π⊥ ⊗ Π⊥, resp. Π⊥ ⊗s I, resp. I from the left. This replaces ω2−j by
(ω⊥)2−j with the result

ãj,z(0, y, ξ, η)

=

∫
Sn−2

|η|−k(ω · η)k(ω⊥)⊗(2−j)(ω⊥·)⊗(2−k)
(∫

ei((ξ+iz)(λ̂t̂+αt̂2)+(η·ω)t̂)λ̂jχ(λ̂) dt̂ dλ̂
)
dω,

where we used that (ω·)⊗(2−k) is being applied to the η-orthogonal factors, so it may be written as (ω⊥·)⊗(2−k).
This means that at ξ = 0 the overall parity of the integrand in ω⊥ is (−1)j+k apart from the appearance of

ω⊥ in the exponent (via α) of e−z(λ̂t̂+αt̂2), which due to the t̂2 prefactor of α, giving quadratic vanishing at
the critical set, only contributes one order lower terms, so modulo these the integral vanishes when j and k
have the opposite parity. This proves that the first two rows of Nz, when composed with the projections as
described, have the following form:

Proposition 5.2. Let ξz = ξ + iz. The symbol of the operator(
(P⊥ ⊗ P⊥)N0,z
(P⊥ ⊗s I)N1,z

)
,

with domain restricted to tangential-tangential tensors, relative to the Span{η}-based decomposition of the
domain, at x = 0 has the form(

a
(0)
00 a

(1)
01 ξz + a

(0)
01 a

(2)
02 ξ

2
z + a

(1)
02 ξz + a

(0)
02

a
(1)
10 ξz + a

(0)
10 a

(1)
11 ξz + a

(0)
11 a

(2)
12 ξ

2
z + a

(1)
12 ξz + a

(0)
12

)
,

where a
(k)
ij ∈ S−1−max(i,j),0 for all i, j, k.

We can compute the leading terms quite easily: for j = k = 0 this is

ã0,z(0, y, ξ, η)

=

∫
Sn−2

(ω⊥)⊗2(ω⊥·)⊗2
(∫

ei((ξ+iz)(λ̂t̂+αt̂2)+(η·ω)t̂)χ(λ̂) dt̂ dλ̂
)
dω

=

∫
Sn−2

(ω⊥)⊗2(ω⊥·)⊗2
(∫

ei((ξλ̂t̂+αt̂
2)+(η·ω)t̂)e−z(λ̂t̂+αt̂2)χ(λ̂) dt̂ dλ̂

)
dω

which at the critical points of the phase, t̂ = 0, ξλ̂ + η · ω = 0, where ω⊥ and λ̂ give variables along the
critical set, gives, up to an overall elliptic factor,∫

Sn−3

(ω⊥)⊗2(ω⊥·)⊗2
(∫

χ(λ̂) dλ̂
)
dω⊥,

which is elliptic for χ ≥ 0 with χ(0) > 0. On the other hand, for j = k = 1,

ã1,z(0, y, ξ, η)

=

∫
Sn−2

|η|−1(ω · η)(ω⊥)(ω⊥·)
(∫

ei((ξ+iz)(λ̂t̂+αt̂2)+(η·ω)t̂)λ̂χ(λ̂) dt̂ dλ̂
)
dω,

Writing i(ω · η)ei(η·ω)t̂ = ∂t̂e
i(η·ω)t̂ and integrating by parts yields

(5.6)

ã1,z(0, y, ξ, η)

= i

∫
Sn−2

|η|−1(ω⊥)(ω⊥·)
(∫

ei((ξ+iz)(λ̂t̂+αt̂2)+(η·ω)t̂)(ξ + iz)(λ̂+ 2αt̂)λ̂χ(λ̂) dt̂ dλ̂
)
dω

= i|η|−1(ξ + iz)

∫
Sn−2

(ω⊥)(ω⊥·)
(∫

ei((ξ+iz)(λ̂t̂+αt̂2)+(η·ω)t̂)(λ̂+ 2αt̂)λ̂χ(λ̂) dt̂ dλ̂
)
dω,

and now the integral (the factor after |η|−1(ξ + iz)) at the critical points of the phase t̂ = 0, ξλ̂+ η · ω = 0,
gives, up to an overall elliptic factor,∫

Sn−3

(ω⊥)(ω⊥·)
(∫

λ̂2χ(λ̂) dλ̂
)
dω⊥,
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i.e. for the same reasons as in the j = k = 0 case above, when χ ≥ 0, χ(0) > 0, (5.6) is an elliptic multiple
of |η|−1(ξ + iz)!

Finally, when j = 0, k = 1, we have

ã0,z(0, y, ξ, η)

=

∫
Sn−2

|η|−1(ω⊥)⊗2(ω⊥·)(ω · η)
(∫

ei((ξ+iz)(λ̂t̂+αt̂2)+(η·ω)t̂)χ(λ̂) dt̂ dλ̂
)
dω,

which, using i(ω · η)ei(η·ω)t̂ = ∂t̂e
i(η·ω)t̂ as above, gives

(5.7)

ã0,z(0, y, ξ, η)

= i|η|−1(ξ + iz)

∫
Sn−2

(ω⊥)⊗2(ω⊥·)
(∫

ei((ξ+iz)(λ̂t̂+αt̂2)+(η·ω)t̂)(λ̂+ 2αt̂)χ(λ̂) dt̂ dλ̂
)
dω,

and now the leading term of the integral, due to the contributions from the critical points, is∫
Sn−3

(ω⊥)⊗2(ω⊥·)
(∫

λ̂χ(λ̂) dλ̂
)
dω⊥,

which vanishes for χ even, so for such χ, the (0, 1) entry has principal symbol which at x = 0 is a multiple
of ξz, and the multiplier is in S−3,0 (one order lower than the previous results).

In summary, we have the following result:

Proposition 5.3. Suppose χ ≥ 0, χ(0) > 0, χ even. Let ξz = ξ + iz. The full symbol of the operator(
(P⊥ ⊗ P⊥)N0,z
(P⊥ ⊗s I)N1,z

)
,

with domain restricted to tangential-tangential tensors, relative to the Span{η}-based decomposition of the
domain, at x = 0 has the form(

a
(0)
00 a

(1)
01 ξz + a

(0)
01 a

(2)
02 ξ

2
z + a

(1)
02 ξz + a

(0)
02

a
(1)
10 ξz + a

(0)
10 a

(1)
11 ξz + a

(0)
11 a

(2)
12 ξ

2
z + a

(1)
12 ξz + a

(0)
12

)
,

where a
(k)
ij ∈ S−1−max(i,j),0 for all i, j, k, and a

(0)
00 and a

(1)
11 (these are the multipliers of the leading terms

along the ‘diagonal’) are elliptic in S−1,0 and S−2,0, respectively and a
(0)
01 , a

(0)
11 ∈ S−2,−1, i.e. in addition to

the above statements vanish at x = 0, and a
(1)
01 ∈ S−3,0.

The problem with this result is that we have too few equations: we would have needed to prove some
non-degeneracy properties of an operator like L2 to have a self-contained result. We deal with this by
using our results in the twisted solenoidal gauge as a background estimate. When doing so, the last column
(corresponding u2) can be regarded as forcing based on the background estimate. This is not the case for
the first two columns, however, so it is useful to note that they can be diagonalized:

Lemma 5.1. The first two columns of

(
(P⊥ ⊗ P⊥)N0,z
(P⊥ ⊗s I)N1,z

)
expanded relative to the Span{η}-based decom-

position of the domain, can be multiplied from the left by an operator with symbol

(
1 0

b(1)ξz + b(0) 1

)
and

from the right by an operator with symbol of the form

(
1 c(1)ξz + c(0)

0 1

)
with b(j) and c(j) in S−1,0, such

that the result has principal symbol of the form(
ã

(0)
00 0

0 ã
(1)
11 ξz + ã

(0)
11

)
,

with ã
(0)
00 = a0

00 elliptic in S−1,0, ã
(1)
11 ∈ S−2,0 elliptic, ã

(0)
11 ∈ S−2,−1.
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Furthermore, ã
(0)
00 , ã

(k)
11 depend continuously (in the indicated spaces) on the metric g (with the C∞ topology

on g) as long as g is Ck-close (for suitable k) to a background metric g0 satisfying the assumptions on the
metric.

Proof. The proof is completely parallel to that of Corollary 4.1. �

This lemma will be used below as the input for the regularity theory in the normal gauge.

6. Fredholm theory for 2-tensors in the normal gauge

6.1. Fredholm theory for the geodesic X-ray transform in the normal gauge. We are now ready to
discuss Fredholm properties for the 2-tensor transform in the normal gauge. The solenoidal gauge approach
tells us that one can recover the solenoidal part of u from Nzu in a lossless, in terms of the order of the
weighted Sobolev spaces involved, manner, at least for c small (where c defines the domain Ω):

Theorem 6.1. Let s = 0. There exists c0 > 0 such that for 0 < c < c0, on Ωc = {xc > 0} ∩M , xc = x̃+ c,
one has u = us + ds

zv, where

(6.1) ‖us‖s,r ≤ C‖Nzu‖s+1,r.

Furthermore, the constants c0 and C can be taken to be independent of the metric g as long as g is Ck-close
(for suitable k) to a background metric g0 satisfying the assumptions on the metric.

Remark 6.1. We remark that even the loss would not be an issue if ∂intΩ∩ ∂X = ∅, for then in (6.2) below,
in the second appearance of PΩ1\Ω, which is the problematic one, γ∂intΩPΩ1\Ω is lossless as the loss of weight
is irrelevant in this case. Here ∂intΩ = ∂M ∩X. Thus, even the lossy estimate would suffice to if we assumed
that ∂intΩ ∩ ∂X = ∅, i.e. we worked globally within the boundary.

Remark 6.2. It would be straightforward to allow general s ≥ 0, but this would require an improvement of
the results of [31] by developing elliptic boundary regularity theory in the boundary-scattering setting for the
Dirichlet problem for δszds

z for various domains such as Ω. This would proceed by proving b-sc regularity, ‘b’
(i.e. conormal regularity) at ∂intΩ, ‘sc’ at ∂X at first, and then using the operator to improve the regularity
to full standard Sobolev regularity at ∂intΩ, in the appropriate uniform sense to ∂X, analogously to how one
proves first tangential regularity for standard boundary value problems (on compact domains with smooth
boundary), and then obtains normal regularity using the operator. Note that even though Ω is a domain
with corners, there are no additional issues at the corners unlike for standard boundary value problems in
domains with corners, since the scattering operators are very differently behaved from standard operators
at ∂X. Since this theory and improvement are not needed for our main results, we refrain from developing
this theory in the present paper.

Proof. Recall first that ∂intΩ = ∂M ∩X is the internal (in X) part of ∂Ω, and similarly for neighborhoods
of Ω, such as Ω1, considered in [31].

We have the formula

(6.2)
(Id +(r10 − ds

zBΩγ∂intΩPΩ1\Ω)K2)−1

◦ (r10 − ds
zBΩγ∂intΩPΩ1\Ω)Sz,Ω1r21Sz,Ω2GNz = Sz,Ω

from [31, Equation (4.20)], with the various operators defined and estimated in that paper, and for s = 0
the discussions of that paper almost give this estimate: Lemma 4.13 of that paper, which controls PΩ1\Ω, a
local left inverse of ds

z on Ω1 \Ω with Dirichlet boundary conditions on ∂intΩ1, loses decay (relevant for the
second appearance of this operator only in this formula, as K2 gains infinite order decay), and the result one
gets directly is

‖us‖s,r−α ≤ C‖Nzu‖s+1,r

for α = 2, which is too weak for the theorem. However, we improve Lemma 4.13 of [31] below in the appendix
in Lemma A.2 to a lossless version, which directly proves (6.1) for s = 0.

Finally the uniformity of the estimate in g follows from the continuous dependence of Nz on g, as noted
at the end of Section 3.3. �
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Now, we solve for v in the decomposition u = us + ds
zv when u is in the normal gauge, i.e. its normal

components vanish. As shown in [31], in the decomposition of 1-forms, resp. symmetric 2-tensors, into
normal and tangential, resp. normal-normal, normal-tangential and tangential-tangential components, the
principal symbol of ds

z is ξ + iz 0
1
2η⊗ 1

2 (ξ + iz)
a η⊗s

 ,

where a is a smooth bundle map. In fact, if we use normal coordinates for g, then the full operator in
the top right entry (and not just its principal symbol) is identically 0, as follows from a Christoffel symbol
computation: denoting the index corresponding to the normal variable by 0, the Christoffel symbol needed
is Γi00 (where i 6= 0), which is given by 1

2g
ij times ∂0gj0 + ∂0g0j − ∂jg00, and in normal coordinates (relative

to a level set of x) all the components being differentiated are constant. Thus, if u is in the normal gauge,
so uNN = 0 and uNT = 0, we get equations for vN and vT :

(6.3)
usNN +ANNvN = 0,

usNT +ANT vT +BNT vN = 0,

where ANN ∈ Diff1
sc has principal symbol ξ + iz, BNT ∈ Diff1

sc has principal symbol 1
2η⊗, and ANT has

principal symbol 1
2 (ξ + iz). But from the first equation of (6.3), using Proposition 4.5, we deduce that

‖vN‖s,r + ‖x2DxvN‖s,r ≤ C‖usNN‖s,r ≤ C‖Nzu‖s+1,r.

Then from the second equation of (6.3) we deduce that

‖vT ‖s−1,r + ‖x2DxvT ‖s−1,r

≤ C(‖usNT ‖s−1,r + ‖BNT vN‖s−1,r)

≤ C(‖Nzu‖s,r + ‖vN‖s,r) ≤ C‖Nzu‖s+1,r.

In fact, applying x2Dx to the second equation of (6.3) and using that x2DxvN ∈ Hs,r
sc (with an estimate as

above), we conclude that

ANT (x2Dx)vT = −x2Dxu
s
NT − [x2Dx, BNT ]vN −BNTx2DxvN − [x2Dx, ANT ]vT ,

so, using that x2Dx commutes with ANT at the principal symbol level, so the commutator is of order (0,−2),

‖x2DxvT ‖s−1,r + ‖(x2Dx)2vT ‖s−1,r

≤ C(‖usNT ‖s,r + ‖vN‖s,r−1 + ‖BNTx2DxvN‖s−1,r + ‖vT ‖s−1,r−2)

≤ C(‖Nzu‖s+1,r + ‖vN‖s,r−1 + ‖x2DxvN‖s,r + ‖Nzu‖s+1,r) ≤ C‖Nzu‖s+1,r.

This gives that u, which is us + ds
zv, satisfies

(6.4) ‖u‖s−2,r ≤ C(‖Nzu‖s+1,r + ‖v‖s−1,r) ≤ C‖Nzu‖s+1,r,

which is a loss of 2 derivatives relative to the solenoidal gauge. Notice also that v satisfies x2Dxv ∈ Hs−1,r
sc ,

thus ds
zv satisfies a similar estimate (here the action of x2Dx on tangential tensors makes sense directly):

(x2Dx)ds
zv = ds

z(x2Dxv) + [ds
z, x

2Dx]v

implies, as the commutator is in xDiff1
sc,

‖(x2Dx)ds
zv‖s−2,r ≤ C(‖x2Dxv‖s−1,r + ‖v‖s−1,r+1) ≤ C‖Nzu‖s+1,r.

Hence

(6.5) ‖x2Dxu‖s−2,r ≤ C‖Nzu‖s+1,r

as well. Finally (x2Dx)2v ∈ Hs−1,r
sc as well:

(x2Dx)2ds
zv = ds

z(x2Dx)2v + 2[x2Dx,d
s
z](x2Dxv)− [x2Dx, [d

s
z, x

2Dx]]v,
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so

‖(x2Dx)2ds
zv‖s−2,r ≤ C(‖(x2Dx)2v‖s−1,r + ‖x2Dxv‖s−1,r−1 + ‖v‖s−1,r−2).

This gives

(6.6) ‖(x2Dx)2u‖s−2,r ≤ C‖Nzu‖s+1,r,

i.e. u satisfies coisotropic estimates.
Now, v in fact only enters into particular components of u in the decomposition of u as (u0, u1, u2)

corresponding to the decomposition relative to Span{η}, and it is then straightforward to obtain a more
precise estimate directly from the argument above. We, however, proceed differently and instead recover it
from Proposition 5.3 above: Proposition 5.3 is crucial in any case for the microlocally weighted transform
considered below.

Theorem 6.2. There exists c0 > 0 such that for 0 < c < c0, on Ωc = {xc > 0} ∩M , xc = x̃ + c, with
s = 0, we have for u in the normal gauge, written as u = (u0, u1, u2) relative to the Span{η}-based tensorial
decomposition, that

(6.7)

‖u0‖s,r + ‖u1‖s−1,r + ‖x2Dxu1‖s−1,r

+ ‖u2‖s−2,r + ‖(x2Dx)u2‖s−2,r + ‖(x2Dx)2u2‖s−2,r

≤ C‖Nzu‖s+1,r.

Furthermore, the constants c0 and C can be taken to be independent of the metric g as long as g is Ck-close
(for suitable k) to a background metric g0 satisfying the assumptions on the metric.

Proof. We use the operator matrix in Proposition 5.3, pre- and postmultiplied as in Lemma 5.1, after
regarding the u2 terms as forcing. Note that the postmultiplication preserves the space Hs+1,r

sc . Write

the new combination of u0 and u1 given by

(
1 C(1)(x2Dx + iz) + C(0)

0 1

)−1(
u0

u1

)
with C(j) in Ψ−1,0

sc as

in Lemma 5.1, as

(
ũ0

ũ1

)
. With B0,z, B1,z ∈ Ψ−1,0

sc as the two rows of the result of Proposition 5.3, and

the tilded version arising from Lemma 5.1, we obtain pseudodifferential equations, in which we regard the
off-diagonal terms as forcing, i.e. put them on the right hand side of the equation. Thus, the 0th row, i.e.

that of B̃0,z, yields an elliptic estimate (keeping in mind the order of b̃
(0)
00 )

(6.8)

‖ũ0‖s,r ≤ C(‖ũ0‖s−1,r−1 + ‖ũ1‖s−2,r−1 + ‖x2Dxũ1‖s−2,r−1

+ ‖u2‖s−2,r−1 + ‖(x2Dx)u2‖s−2,r−1 + ‖(x2Dx)2u2‖s−2,r−1 + ‖B̃0,zũ‖s+1,r)

≤ C‖Nzu‖s+1,r,

where we used (6.4)-(6.6).

Turning to the 1st row, i.e. that of B̃1,z, due to the imaginary part of the principal symbol, independently
of the weight r, the combination of Proposition 4.5 and standard real principal type estimates yields

(6.9)

‖ũ1‖s−1,r + ‖x2Dxũ1‖s−1,r ≤ C(‖ũ1‖s−2,r−1 + ‖ũ0‖s−2,r−1 + ‖(x2Dx)ũ0‖s−2,r−1

+ ‖u2‖s−2,r−1 + ‖(x2Dx)u2‖s−2,r−1

+ ‖(x2Dx)2u2‖s−2,r−1 + ‖B̃1,zũ‖s+1,r)

≤ C‖Nzu‖s+1,r.

Together with (6.4)-(6.6), (6.8)-(6.9) imply (6.7) with (u0, u1) replaced by (ũ0, ũ1). Finally,(
u0

u1

)
=

(
1 C(1)(x2Dx + iz) + C(0)

0 1

)(
ũ0

ũ1

)
proves the theorem. �
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We now consider
Nz : X → Y

where
X = {u = (u0, u1, u2) : u0 ∈ Hs,r

sc , u1, x
2Dxu1 ∈ Hs−1,r

sc ,

u2, (x
2Dx)u2, (x

2Dx)2u2 ∈ Hs−2,r
sc , suppu ⊂ Ω},

with the natural norm (and inner product: this is a Hilbert space), so elements of X are tangential-tangential
tensors, and

Y = Hs+1,r
sc (X; Sym2scT ∗X).

Notice that this mapping property of Nz follows from Proposition 5.1, and that the spaces are independent
of the metric g, with the dependence of Nz on g continuous as a map between these spaces as long as g is
Ck-close to a metric g0 satisfying the assumptions on the metric (with both in the normal gauge).

We then have from Theorem 6.2:

Corollary 6.1. There exists c0 > 0 such that for 0 < c < c0, on Ωc = {xc > 0} ∩M , xc = x̃+ c, and with
X ,Y as above, the operator Nz : X → Y satisfies

(6.10) ‖u‖X ≤ C‖Nzu‖Y , u ∈ X ,
so Nz injective and has closed range.

Thus, it has a left inverse, which we denote by N−1
z with a slight abuse of notation, which is continuous

Y → X .
Furthermore, the constants c0 and C can be taken to be independent of the metric g as long as g is Ck-close

(for suitable k) to a background metric g0 satisfying the assumptions on the metric.

Proof. Due to Theorem 6.2, resulting in (6.10), Nz : X → Y is injective and has closed range. Letting R be
this range, being a closed subspace of Y it is a Hilbert space, so Nz : X → R is invertible, with a continuous
inverse, by the open mapping theorem. Composing this inverse from the right with the orthogonal projection
from Y to R we obtain the desired left inverse. �

6.2. Extension to microlocal weights. We are also interested in generalizations of I by adding microlocal
weights:

Ĩf(β) =

∫
γβ

a(γ(s), γ̇(s))f(γ(s))(γ̇(s), γ̇(s)) ds

with the notation of Section 2, so β ∈ S∗M̃ , γβ the geodesic through β, a a given weight function. More
generally consider an N ×N system of transforms, f = (f1, . . . , fN ),

(Ĩf)i(β) =

∫
γβ

Aji (γ(s), γ̇(s))fj(γ(s))(γ̇(s), γ̇(s)) ds

Namely, with L defined identically to the case of I in the first case, and the N × N diagonal matrix with
the previous L as the diagonal entry in the second case, we have

Theorem 6.3. There exists c0 > 0 such that for 0 < c < c0, on Ωc = {xc > 0}∩M , xc = x̃+c, the operator

Ñz = L ◦ Ĩ maps

Ñγ : XN → YN .
Moreover, if Aji is close to δji (or a constant multiple, such as − 1

2δ
j
i ) at ∂M then, for a potentially smaller

c0 > 0, with 0 < c < c0, we have

(6.11) ‖u‖XN ≤ C‖Ñzu‖YN , u ∈ XN ,
so Ñz injective and has closed range.

Thus, it has a left inverse, which we denote by Ñ−1
z with a slight abuse of notation, which is continuous

YN → XN .
Furthermore, the constants c0, and C in (6.11), can be taken to be independent of the metric g as long as

g is Ck-close (for suitable k) to a background metric g0 satisfying the assumptions on the metric.
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Proof. The first part is almost immediate by explicitly writing out Ñz as in Section 5. For instance, the

additional weight does not affect the phase function, so the fact that Ñz is in Ψ−1,0
sc , and what its principal

symbol is, is unaffected. There is only one subtlety, namely where Ids = 0 was used in the k = 2 case
(range of P ‖ ⊗ P ‖) to deal with subprincipal terms; this is not satisfied for Ĩ. However, Ids = 0 relies
on XιXu = dsu(X,X) for all u, where X is the tangent vector field of a geodesic, see the discussion in the
appendix; the integral of Xv along the geodesic vanishes for any function v (such as v = ιXu) of compact
support by the fundamental theorem of calculus. Thus, if fj = dsuj , X = γ̇,

(6.12)

(Ĩf)i(β) =

∫
γβ

Aji (γ(s), γ̇(s))X(γ(s))ιX(γ(s))uj(γ(s)) ds

=

∫
γβ

X(γ(s))
(
Aji (γ(s), γ̇(s))(γ(s))ιX(γ(s))uj(γ(s))

)
ds

−
∫
γβ

X(γ(s))(Aji (γ(s), γ̇(s)))ιX(γ(s))uj(γ(s)) ds

= −
∫
γβ

X(γ(s))(Aji (γ(s), γ̇(s)))ιX(γ(s))uj(γ(s)) ds

= −
∫
γβ

Ãji (γ(s), γ̇(s))uj(γ(s))(γ̇(s)) ds,

Ãji (γ(s), γ̇(s)) = (γ̇(s))(Aji (γ(s), γ̇(s)))

and now notice that the right hand side is a microlocally weighted 1-form X-ray transform. Crucially this
means that Ñj,zds

z, while not 0, is a transform of the same form with the same γ̇, resp. xγ̇(2) appearing

in the argument as in (5.3) and (5.4), albeit only to the first power. Notice that a priori Ñzds
z ∈ Ψ0,0

sc ,
but (6.12) shows that it is in Ψ−1,0

sc , and then the appearance of γ̇ as mentioned means that the principal
symbol has the same vanishing at ξ = 0, since the same integration by parts is possible, showing that the
analogue of Proposition 5.1 holds (with an N ×N matrix of operators, each with the same structure as in
that proposition), which gives the claimed mapping property just as in the case of Nz.

Moreover, if the weight is close to the identity, then Nz⊗ IN − Ñz is small as an operator between these
Hilbert spaces, and Nz ⊗ IN : XN → YN has a left inverse N−1

z ⊗ IN . Correspondingly,

Ñ−1
z = (Id +(N−1

z ⊗ IdN )(Ñz − (Nz ⊗ IdN )))−1(N−1
z ⊗ IdN ),

is the desired left inverse. �

7. Boundary rigidity

7.1. Preliminaries. Before proceeding with boundary rigidity, we recall from [12] that if the boundary
distance functions of two metrics g, ĝ are the same on an open set U0 of ∂M and ∂M is strictly convex
with respect to these metrics (indeed, convexity suffices), then for any compact subset K of U0 there is a
diffeomorphism of M fixing ∂M such that the pull back of ĝ by this diffeomorphism agrees with g to infinite
order at K. For a more general result not requiring convexity, see [28]. Concretely, the local statement is:

Lemma 7.1 ([12]). Let ∂M be convex at p with respect to g and ĝ. Let d = d̃ on ∂M × ∂M near (p, p).
Then there exists a local diffeomorphism ψ of a neighborhood of p in M to another such neighborhood with
ψ = Id on ∂M near p so that ∂αg = ∂α(ψ∗ĝ) on ∂M near p for every multiindex α.

Since ψ can be obtained by putting g and ĝ in semigeodesic coordinates, this local statement immediately
implies the semiglobal statement we made above it, namely the existence of a single diffeomorphism ψ for
compact subsets K of U0 ⊂ ∂M such that ∂αg = ∂α(ψ∗ĝ) on K for every multiindex α.

We simply denote the pullback ψ∗ĝ by ĝ, i.e. we assume, as we may, that g and ĝ agree to infinite order
on K. Applying this with an open smooth subdomain U1 of ∂M with U1 ⊂ U0 compact, we can then extend
g and g̃ to a neighborhood of M in the ambient manifold without boundary M̃ so that the extensions are
identical in a neighborhood O1 of U1; from this point on we work in such a neighborhood of U1.
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Recall also that the above linear results in the normal gauge required that the metric itself, whose geodesics
we consider, is in the normal gauge. So for the non-linear problem we proceed as follows. First, we are given
a function x with strictly concave level sets from the side of its superlevel sets at least near the 0-level set,
assume that the zero level set only intersects M at ∂M , {x ≥ −c} ∩M is compact for c > 0 small.

In fact, only the zero level set of the function x will be relevant for local boundary rigidity. Thus, the
open set U0 above is a neighborhood of {x = 0} ∩ ∂M , and the open set on which the metric is recovered
will be a neighborhood of {x = 0} ∩M .

Namely, using H = {x = 0} as the initial hypersurface, we put the metrics g, ĝ into normal coordinate
form relative to H in a neighborhood of H, thus we pull them back by a diffeomorphism fixing H, so,
dropping the diffeomorphism from the notation (as it will not be important from now on), they are of the

form g = dx̃2 + h(x̃, y, dy), ĝ = dx̃2 + h̃(x̃, y, dy), and correspondingly the dual metrics are of the form

g−1 = ∂2
x̃ + h−1(x̃, y, ∂y), ĝ−1 = ∂2

x̃ + h̃−1(x̃, y, ∂y). It is with the so obtained x̃ that we apply our linear
normal gauge result; note that as {x̃ = 0} = H, and {x̃ ≥ −c0} ∩M is compact, we still have the concavity
(as well as the other) assumptions satisfied for the level sets {x̃ = −c} when c is small. In addition, g − ĝ,
as well as g−1 − ĝ−1, have support whose intersection with O1 is a subset of M .

7.2. Pseudolinearization. Our normal gauge result then plugs into the pseudolinearization formula based
on the following identity which appeared in [27], see also [29]. Let V , Ṽ be two vector fields on a manifold

M which will be replaced later with S∗M . Denote by X(s,X(0)) the solution of Ẋ = V (X), X(0) = X(0),

and we use the same notation for Ṽ with the corresponding solution are denoted by X̃.

Lemma 7.2. For any t > 0 and any initial condition X(0), if X̃
(
·, X(0)

)
and X

(
·, X(0)

)
exist on the interval

[0, t], then

(7.1) X̃
(
t,X(0)

)
−X

(
t,X(0)

)
=

∫ t

0

∂X̃

∂X(0)

(
t− s,X(s,X(0))

)(
Ṽ − V

)(
X(s,X(0))

)
ds.

The proof is based on the application of the Fundamental Theorem of Calculus to the function

F (s) = X̃
(
t− s,X(s,X(0))

)
, 0 ≤ s ≤ t.

Let g, ĝ be two metrics. The corresponding Hamiltonians and Hamiltonian vector fields are

(7.2) H =
1

2
gijξiξj , V =

(
g−1ξ,−1

2
∂x|ξ|2g

)
,

and the same ones related to ĝ. Here, |ξ|2g := gijξiξj .
In what follows, we denote points in the phase space T ∗M , in a fixed coordinate system, by z = (x, ξ).

We denote the bicharacteristic with initial point z by Z(t, z) = (X(t, z),Ξ(t, z)).
Then we obtain the identity already used in [27, 29]:

(7.3) Z̃(t, z)− Z(t, z) =

∫ t

0

∂Z̃

∂z
(t− s, Z(s, z))

(
Ṽ − V

)
(Z(s, z)) ds.

We can naturally think of the scattering relation L and the travel time ` as functions on the cotangent
bundle instead of the tangent one, which yields the following.

Proposition 7.1. Assume

(7.4) L(x0, ξ
0) = L̃(x0, ξ

0), `(x0, ξ
0) = ˜̀(x0, ξ

0)

for some z0 = (x0, ξ
0) ∈ ∂−S∗M . Then

(7.5)

∫ `(z0)

0

∂Z̃

∂z
(`(z0)− s, Z(s, z0))

(
V − Ṽ

)
(Z(s, z0)) ds = 0

with V as in (7.2).
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Recall from the introduction that the boundary distance function determines the lens data locally, thus
Proposition 7.1 is the geometric input of Theorems 1.1-1.2 establishing the connection between the given
geometric data and a transform (which depends on g and ĝ) of V − Ṽ , namely (7.5).

7.2.1. Linearization near g Euclidean. As a simple exercise, we first consider the special case of the Euclidean
metric to develop a feel for this identity. So let gij = δij and linearize for ĝ near g first under the assumption
ĝij = δij outside an open region Ω ⊂ Rn. Then

(7.6) Z(s, z) =

(
In sIn
0 In

)
z,

∂Z(s, z)

∂z
=

(
In sIn
0 In

)
,

with In being the identity n× n matrix, and we get the following formal linearization of (7.5)

(7.7)

∫ t

0

(
fξ − 1

2
(t− s)∂xf ijξiξj , −

1

2
∂xf

ijξiξj

)
(x+ sξ, ξ) ds = 0,

for t� 1 with

(7.8) f ij := δij − ĝij .
Equation (7.7) is obtained by replacing ∂Z̃/∂z in (7.3) by ∂Z/∂z. The last n components of (7.7) imply

(7.9)

∫
∂xf

ij(x+ sξ)ξiξj ds = 0.

We integrate over the whole line s ∈ R because the integrand vanishes outside the interval [0, `(x, ξ)]. We
can remove the derivative there and get that the X-ray transform If of the tensor field f vanishes. Now,
assume that this holds for all (x, ξ). Then f = dsv for some covector field v vanishing at ∂M . This is a
linearized version of the statement that ĝ is isometric to g with a diffeomorphism fixing ∂M pointwise. Even
in this simple case we see that we actually obtained at first that I(∂xf) = 0 rather than If = 0 and needed
to integrate.

7.2.2. The general case. We take the second n-dimensional component on (7.3). We get, with f = g−1− ĝ−1,∫
∂Ξ̃

∂x
(`(z)− s, Z(s, z))(fξ)(Z(s, z)) ds

− 1

2

∫
∂Ξ̃

∂ξ
(`(z)− s, Z(s, z))(∂xfξ · ξ)(Z(s, z)) ds = 0

(7.10)

for any z ∈ ∂−SM for which (7.4) holds. As before, we integrate over s ∈ R because the support of the
integrand vanishes for s 6∈ [0, `(x, ξ)] (for that, we extend the bicharacteristics formally outside so that they
do not come back).

Introduce the exit times τ(x, ξ) defined as the minimal (and the only) t > 0 so that X(t, x, ξ) ∈ ∂M .
They are well defined near Sp∂M , if ∂M is strictly convex at p. We have

∂Z̃

∂z
(`(z)− s, Z(s, z)) =

∂Z̃

∂z
(τ(Z(s, z))).

Then we get, with fkl = gkl − ĝkl,

Jif(γ) :=

∫ (
Aji (X(t),Ξ(t))(∂xjf

kl)(X(t))Ξk(t)Ξl(t)

+Bi(X(t),Ξ(t))fkl(X(t))Ξk(t)Ξl(t)
)

dt = 0

(7.11)

for any bicharacteristic γ = (X(t),Ξ(t)) related to the metric g in our set, where

Aji (x, ξ) = −1

2

∂Ξ̃i
∂ξj

(τ(x, ξ), (x, ξ)),

Bi (x, ξ) =
∂Ξ̃i
∂xj

(τ(x, ξ), (x, ξ))gjk(x)ξk.

(7.12)
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The exit time function τ(x, ξ) (recall that we assume strong convexity) becomes singular at (x, ξ) ∈ T ∗∂M .
More precisely, the normal derivative with respect to x when ξ is tangent to ∂M has a square root type of
singularity. This is yet another reason to extend the metrics g and ĝ outside M , in an identical manner.
Then for any (x, ξ) ∈ ∂−S

∗M close enough to S∗H∩MM , H = {x = 0} = {x̃ = 0}, the bicharacteristics
originating from it will be identical once they exit T ∗M but are still close enough to it. Similarly, instead of
starting from T ∗∂M , we could start at points and codirections close to it, but away from M̄ .

Based on those arguments, we push the boundary away a bit, to x̃ = δ. For (x, ξ) with x near H ∩M ,
redefine τ(x, ξ) to be the travel time from (x, ξ) to Hδ = {x̃ = δ}. Let U− ⊂ ∂−SHδ be the set of all points
on Hδ and incoming unit directions so that the corresponding geodesic in the metric g is close enough to
one tangent to ∂M at H ∩M . Similarly, let U+ be the set of such pairs with outgoing directions. Redefine
the scattering relation L locally to act from U− to U+, and redefine ` similarly, see Figure 3. Then under

the assumptions of Theorems 1.1-1.2, L = L̃ and ` = ˜̀ on U−. We can apply the construction above by
replacing ∂±SM locally by U±. The advantage we have now is that on U−, the travel time τ is non-singular.
Equalities (7.11), (7.12) are preserved then.
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Figure 3. The redefined scattering relation (x−, ξ−) 7→ (y+, η+), with v, resp. w, the
tangent vectors corresponding to ξ, resp. η.

We now have

Aji (x0, ξ) = −1

2

∂Ξ̃i
∂ξj

(r, (x0, ξ)),

Bi(x0, ξ) =
∂Ξ̃i
∂xj

(r, (x0, ξ))g
ik(x0)ξk.

(7.13)

Then by the strict convexity,

(7.14) Aji (x, ξ) = −1

2
δji +O(

√
δ), for (x, ξ) ∈ S∗M near S∗H∩M∂M.

7.3. Local boundary rigidity. Proof of Theorem 1.2. Since in Section 6 we analyzed the X-ray
transform on symmetric cotensors with microlocal weights, it is convenient to replace f in (7.11) by its
cotensor version. Thus, with fkl = gkl − ĝkl, we have

Jif(γ) :=

∫ (
Aji (X(t),Ξ(t))gkr(X(t))gls(X(t))(∂xjf

rs)(X(t))

gkr
′
(X(t))Ξr′(t)g

ls′(X(t))Ξls′(t)

+Bi(X(t),Ξ(t))gkr(X(t))gls(X(t))frs(X(t))

gkr
′
(X(t))Ξr′(t)g

ls′(X(t))Ξls′(t)
)

dt = 0,
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where now g−1Ξ(t) in the arguments of gkrgls∂xjf
rs and gkrglsf

rs is the tangent vector of the geodesic
(projected bicharacteristic) at X(t). Here, γ = Z(·, z) and the equality is true for every z for which `(z) =
˜̀(z).

In order to fit into the framework of Section 6, we further want to consider this as a transform on the
n + 1 functions (fj)ik = girgks∂j(g

rs − ĝrs), (f0)ik = girgks(g
rs − ĝrs); thus ultimately the transform we

consider is

(7.15)

Ĩi(β)(f0, f1, . . . , fn)

=

∫
γβ

Aji (X(t),Ξ(t))fj(X(t))(X ′(t), X ′(t))

+Bi(X(t),Ξ(t))f0(X(t))(X ′(t), X ′(t))) dt,

where γβ is the geodesic through β ∈ S∗X. Moreover, −2Aji is close to δji if one is sufficiently close to

the boundary of the domain. Thus, considering the resulting transform Ñz on the n components u′ =
(u1, . . . , un), with u = e−z/xf , we get, as in [31], in this case using Theorem 6.3, that there is c0 > 0 such
that for 0 < c < c0,

(7.16) ‖u′‖Xn ≤ C(‖Ñzu
′‖Yn + ‖u0‖X ).

We note that here c0 and C can be taken to be independent of g as long g is Ck-close to a background metric
(satisfying the assumptions) for suitable k. We also need that

Lemma 7.3. Suppose δ̃ > 0. There exists c0 > 0 such that for 0 < c < c0, ‖u0‖X ≤ δ̃‖u′‖Xn . Furthermore,
c0 can be taken to be independent of g as long as, for suitable k, g is Ck-close to a background metric g0

satisfying our assumptions.

Proof. Recall that (uj)ik = e−z/xgirgks∂j(g
rs − ĝrs), (u0)jk = e−z/xgirgks(g

rs − g̃rs), i.e. uj = (g ⊗
g)e−z/x∂j(g

−1− g̃−1), u0 = (g⊗g)e−z/x(g−1− g̃−1). Thus, uj = (g⊗g)e−z/x∂je
z/x(g−1⊗g−1)u0. Writing

the first n − 1 coordinates as the y variables and the nth as the x variable, the result is proved if we can
show that ‖u0‖X ≤ δ̃‖un‖X when c is suitably small. Now

−ix2un = (g ⊗ g)e−z/x(x2Dx)ez/x(g−1 ⊗ g−1)u0,

and (g ⊗ g)e−z/x(x2Dx)ez/x(g−1 ⊗ g−1) has principal symbol ξ + iz times the identity. Thus, by Proposi-
tion 4.5 we have ‖u0‖s,r ≤ C‖x2un‖s,r: indeed, at first we have ‖u0‖s,r ≤ C(‖x2un‖s,r+‖u0‖−N,−M ), but as

(g⊗ g)e−z/x(x2Dx)ez/x(g−1⊗ g−1) has no nullspace on distributions supported in Ω, a standard functional
analysis argument lets one drop the error term. So if un is supported in x < c0, we get ‖u0‖s,r ≤ c20C‖un‖s,r,
and thus the lemma follows. �

Then as in [31], for δ̃ > 0 sufficiently small, one can absorb the u0 term from the right hand side of
(7.16) in the left hand side. This proves the stable recovery of u, thus f , from the transform, and thus local
boundary rigidity: restricted to x̃ ≥ −c, the metrics are the same.

This concludes the proof of Theorem 1.2.

7.4. Semiglobal and global lens rigidity. Proof of Theorem 1.3 and Theorem 1.4. Our approach
also allows us to prove a global rigidity result. The key point for this is to make the local boundary rigidity
argument uniform in how far from an initial hypersurface H the metrics g and ĝ can be shown to be identical
in geodesic normal coordinates.

Notice first that by [28], the lens relation (L, `) is well defined even if g is not a priori known on T∂M .
Indeed, given (x, v′) ∈ B∂M , we can consider v′ in polar coordinates separating its direction from its length
|v′|g ≤ 1. The lens relation identifies uniquely the exit point y of γx,v(t) with v unit projecting to v′, and
`(x, v′) = dist(x, y) because for y close enough to x, the distance dist(x, y) is determined by the shortest
geodesic connecting them (with (M, g) extended smoothly outside of M) but by assumption, that short
geodesic is in M , and its length is `(x, v′)→ 0, as |v′|g → 1. The map v′ 7→ y is locally 1-1; therefore given
the boundary points x and y close enough, we know v′ (its direction and length) and `(x, v′), even if we do
not a priori know g. Now we can recover g|T∂M by taking y → x, and then we can recover the full get of
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g at ∂M in boundary normal coordinates, as before. In particular, we get that ∂M is strictly convex w.r.t.
any other metric with the same lens relation.

Next, we note that the normal gauge relative to a hypersurface provides a local diffeomorphism at a
uniform distance to it if one has a uniform estimate for the second fundamental form of the hypersurface
and of the curvature of the manifold. We do it by proving differential injectivity first at a uniform distance,
i.e. giving a lower bound for the flow parameter for non-zero Jacobi fields to vanish. This follows from
comparison geometry (essentially the Rauch comparison theorem), namely comparing the ODE for Jacobi
fields to that of the constant curvature case, when it is explicitly solvable. To prove that this map is a
diffeomorphism to its image, notice that the geodesic flow from the unit normal bundle of the hypersurface
is globally well defined (if M̃ is complete, as one may assume). The question is if it is injective. For points a
fixed distance apart, geodesics cannot intersect in short times and there is a uniform lower bound but that
bound depends not just on the second fundamental form and the curvature. Concretely:

Lemma 7.4.
(a) Suppose H is an embedded hypersurface in a Riemannian manifold without boundary (M̃, g), the

sectional curvature of g is ≤ µ, µ > 0, and suppose that the second fundamental form II of H satisfies
|II| ≤ K. Then the normal geodesic exponential map is a local diffeomorphism on the 1√

µ cot−1K (two

sided) collar neighborhood of H, and the there is a uniform bound for the differential of the local inverse on
collars of strictly smaller radii.

(b) Moreover, if H is a compact subset of Hc = {x = c} with dx 6= 0 on Hc, there exists ε0 > 0 depending
on x, g and uniform under small perturbations of c so that the normal geodesic exponential map is a (global)
diffeomorphism on the ε0 collar neighborhood of H; and hypersurfaces dist(·, Hc) = s are strictly convex for
|s| ≤ ε0 under a small perturbation of c.

Proof. We use the result of [11, Theorem 4.5.1], which shows that if J is a Jacobi field, µ > 0, and fµ =
|J(0)| cos(

√
µt)+ |J |·(0) sin(

√
µt) and fµ(t) > 0 for 0 < t < τ then fµ(t) ≤ |J(t)| for 0 ≤ t ≤ τ ; here · denotes

derivatives in t. In particular, if J(0) 6= 0, the first zero of J(t) cannot happen before the first zero of fµ, at

which | cot(
√
µt)| = ||J|·(0)|

|J(0)| , i.e. |t| = 1√
µ cot−1 ||J|·(0)|

|J(0)| .

Furthermore, the discussion of [11, Section 4.6], which is directly stated for the distance spheres from a
point, more generally applies to geodesic normal coordinates to a submanifold. Thus, using the computation
following Equation (4.6.12), considering a Jacobi field arising from varying the initial point in H of the

normal geodesic along a curve in H, one has J̇(0) = S(J(0), N) where N is the unit normal vector to H,
where S is the second fundamental form considered as a map TpH ×NpH → TpH, with NpH denoting the
normal bundle.

Now, (|J |2)· = 2|J ||J |· (where J 6= 0), but also (|J |2)· = 2〈J̇ , J〉, so |J|
·(0)

|J(0)| = 1
|J(0)|2 〈J̇(0), J(0)〉. Substi-

tuting in the above expression for J̇(0), we have

|J |·(0)

|J(0)| =
1

|J(0)|2 〈S(J(0), N), J(0)〉 =
1

|J(0)|2 II(J(0), J(0))

since II is related to S by II(X,Y ) = 〈S(X,N), Y 〉. Correspondingly, with the assumed bound on II, we have
||J|·(0)|
|J(0)| ≤ K and thus, as cot is decreasing on (0, π/2], so its inverse is such on [0,∞), |t| = 1√

µ cot−1 ||J|·(0)|
|J(0)| ≥

1√
µ cot−1K.

Hence the normal geodesic exponential map is a local diffeomorphism up to distance 1√
µ cot−1K from H.

One has a uniform bound for the differential of the inverse map if one obtains a uniform bound for |J(t)|;
this is provided for by the explicit bound involving fµ above for a strictly smaller collar.

To prove the second statement, notice first that we can find c0 > 0 so that if p, q ∈ H with distH(p, q) < c0,
then p and q have distinct images under ψ; and c0 depends on K and µ only. Its complement K is compact
and dist(p, q) > 1/C0 there with C0 > 0 depending on H, g, K and µ but the latter two depend on x and g.
Then if ε0 < 1/(2C0), such p and q would have distinct images. Under a small perturbation of c, c0 can be
chosen uniform, and then by a perturbation argument for distH(p, q) ≥ c0, p and q have distinct images if
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ε0 < 1/(4C0). The string convexity statement follows from the fact that we can perturb the strict inequality
II > 0 on a compact set. �

Proof of Theorem 1.3. As before, we may assume that M is a domain in M̃ , and g and ĝ are defined on
M̃ , identically equal outside M . It is convenient to work with open sets U0, U1 in M̃ with U0 compact and
M ⊂ U0 ⊂ U0 ⊂ U1 with x smoothly extended to U1 so that the concavity and the condition {x ≥ 0} ∩M ⊂
∂M hold for this extension, and so that all derivatives of x are bounded. Notice that either g or ĝ geodesics
cannot reach the complement of U1 from U0 before a uniformly bounded time, namely the geodesic distance
between these two disjoint sets, one of which is compact, and the other closed.

We prove below that there is a diffeomorphism ψ : M → M (defined on a larger region in M̃ as a
diffeomorphism), fixing ∂M pointwise. We do it step by step (by “layer stripping”) by going down along
the level sets of x. The proof actually show that ψ is a diffeomorphism from M to its image but the a priori
assumption that M is connected easily implies that the ψ is surjective, as well.

We start with preliminary observations. By Lemma 7.4 (b), applied to g, there is a uniform (independent
of c) constant ε0 > 0 such that g-geodesic normal coordinates around H = Hc = {x = −c} are valid on the
ε0-collar neighborhood, i.e. for an open subset V of Hc containing U0∩Hc, the g-normal geodesic exponential
map φ : V × (−ε0, ε0) → M̃ is a diffeomorphism onto its image. By reducing ε0 if needed, we may assume
that the image is included in U1. Similarly, by Lemma 7.4 (a), there is a uniform (independent of c as well

as ψ) constant ε̂0 > 0 such that for any diffeomorphism ψ such that ψ∗ĝ = g on one side of Ĥc = ψ(Hc),

the ĝ-normal exponential map φ̂ : V̂ × (−ε̂0, ε̂0) → M̃ is a local diffeomorphism onto its image included in
U1. It can be made global, i.e., injective for ε̂0 � 1 but a priori, we do not know that this ε̂0 can be chosen
uniform, i.e., independent of Ĥc to achieve the latter because Lemma 7.4 (b) requires control over ψ∗g for

uniformity (on both sides of Ĥ), and we do not have such a control yet. A priori, Hc may have points very
close to each other (which can happen with a fixed K), this would reduce the maximal ε̂0 we can choose if we

want the ĝ-normal exponential map to be a diffeomorphism there. For that reason, we work in V̂ × (−ε̂0, ε̂0)
as an intermediate manifold for now, instead of working on its image under the ĝ-normal exponential map,
see Figure 4.

By shrinking ε0 or ε̂0 if necessary, we can assume that they are equal and will denote it by ε. We denote
the g-signed distance function (corresponding to the normal coordinates around Hc) by x̃ = x̃c as above.

Note also that for δ̃ > 0 there exists δ0 > 0 such that for all c, {0 ≥ x̃c ≥ −δ̃} ∩ U0 contains {−c ≥
x ≥ −c− δ0} ∩ U0; notice that by the compactness of U0, x is bounded on U0 so we only need to consider a
compact set of c’s. But this is straightforward, for if this does not hold, then there exists a sequence cj and

points pj ∈ U0 such that x̃cj (pj) < −δ̃ but −cj ≥ x(pj) ≥ −cj − 1/j. We may now extract a subsequence
indexed by jk such that cjk as well as pjk converge to c, resp. p; then x(p) = −c on the one hand, but

x̃c(p) ≤ −δ̃, so p /∈ Hc = {x = −c}, on the other, giving a contradiction. Hence the desired δ0 > 0 exists.

φ φ̂

Hc

ĤcHc
∼= Ĥc

0

ε

(M, g) (M, ĝ)

Figure 4. The incremental step in the proof of the global rigidity. In the middle, Hc×[−ε, 0]

is shown. A priori, (Hc, g) and (Ĥc, ĝ) are isometric and equal outside M . The identification

between Hc and Ĥc is ψ|Hc .
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As the next observation, suppose that we have a diffeomorphism ψ : U → ψ(U) ⊂ U1, where U is a
neighborhood of x−1([−c,∞)) ∩ U0, such that ψ∗ĝ and g agree in {x ≥ −c}. This means that if φ is the g-
normal geodesic exponential map around H = {x = −c} (more precisely around a neighborhood of H ∩ U0),
then φ∗g = φ∗ψ∗ĝ in x̃ = x̃c ≥ 0, and now both metrics are of the form dx̃2 + h(x̃, y, dy) on Vy × [0, ε)x̃,

i.e. (ψ ◦ φ ◦ (ψ|−1
Hc
× id))−1 gives geodesic normal coordinates for ĝ around ψ(H ∩ U0), at least in x̃ ≥ 0

(here ψ|−1
Hc

enters to identify ψ(H ∩ U0) and H ∩ U0, and in ψ|−1
Hc
× id, id is the identity map on (−ε, ε)),

and thus is the same as φ̂−1 in x̃ ≥ 0 (where we use the notation x̃ for the first factor variable both for

V × (−ε, ε) and V̂ × (−ε, ε)). Since we have a uniform (independent of c) bound of the collar neighborhood of
the geodesic normal coordinates as long as the second fundamental form, which is diffeomorphism invariant,
is bounded, and is determined from x̃ ≥ 0, thus the same as that of g at H, the normal geodesic exponential

map gives a uniform extension of ψ, via φ̂ ◦ (ψ|Hc × id) ◦ φ−1, to x̃ ≥ −ε (note that by the above remarks

the map φ̂ ◦ (ψ|Hc × id) ◦ φ−1 is ψ in x̃ ≥ 0, so we really have an extension); we continue to denote this

by ψ. Notice that if φ̌ is the ψ∗ĝ-normal exponential map on H (instead of that of ĝ on Ĥ, which is φ̂),

then ψ ◦ φ̌ = φ̂ ◦ (ψ|H × id). As explained above, the so extended ψ is a local diffeomorphism to its image
by construction but a priori, we do not know if it is global (i.e. if it is injective) due to the appearance of

φ̂ in its definition. If g and ψ∗ĝ have the same lens data at H, then φ∗g and φ∗ψ∗ĝ = (ψ|Hc × id)∗φ̂∗ĝ
have the same data on V × {0}, and are in the normal gauge, i.e. are tangential-tangential tensors plus
dx̃2. Then the pseudolinearization formula holds, and by (7.16) and Lemma 7.3, they are the same within a
uniform (independent of c: this uses that in the semi-product coordinates the metric depends continuously
on c) ε-collar neighborhood around it, or more precisely around V as above, in respective geodesic normal

coordinates, i.e. φ∗g = φ∗ψ∗ĝ in V ×(−ε, ε). We show below that φ̂ is a global (vs. just local) diffeomorphism.
Then this says exactly that the extension of ψ which we just gave is indeed an isometry between these two
metrics: g = ψ∗ĝ in x̃ ≥ −ε.

We prove that φ̂ is a global diffeomorphism from V̂ × (−ε, ε) to its image based on two arguments: (1) if it

is not, there should be a hypersurface St := φ̂
(
V̂ × {t}

)
with one piece of it tangent to another one; and (2)

this cannot happen because those pieces are strictly convex and are touching each other from their concave
sides. Below we denote the variable on (−ε, ε) by t (rather than x̃). Indeed, assume that there exist pairs of

points (yi, ti), ti < 0, yi ∈ V̂ , i = 1, 2 with the same image under φ̂, with t1 and t2 in [−ε, 0]. The set of such
pairs would be compact, and there would be a maximal value t0 for min(t1, t2). Therefore, we can assume

t2 = t0, and then t1 ≥ t2. If this inequality is strict, we have φ̂(y1, t1) = φ̂(y2, t2), and we can perturb t2 and

increase it slightly to t′2 and find a new point (y′1, t
′
1) near (y1, t1) by the inverse function theorem (as φ̂ is

a local diffeomorphism) with φ̂(y′1, t
′
1) = φ̂(y2, t

′
2) (and t′1 > t0 still). This would contradict the maximality

property of t0. Therefore, t1 = t2 = t0. By the maximality property, St0 near (y1, t1) (meaning the image

S(1) of a neighborhood of (y1, t0) under φ̂) is tangent to its piece S(2) near (y2, t2) (in the same image

sense), which proves (1). Then S(1) and S(2) have common tangent vectors at q := φ̂(y1, t1) = φ̂(y2, t2), and
opposite outer unit normals (along which t increases, which determines an orientation for each one of them).
Any geodesic starting from that point in a fixed tangential direction would stay on the concave side of each

piece, which corresponds to φ̂
(
V̂ × (t0, ε)

)
, for a sufficiently short time. If φ̂j are the localized φ̂ near (yj , tj),

j = 1, 2, so that they are actually invertible, then on any such geodesic γ, the first component of φ̂−1
j (which

is just the localized signed distance to V̂ ) will increase as it leaves q. That leads to a contradiction because
that means existence of points (namely γ(s) for small s 6= 0) with two preimages with tj > t0. Therefore,

φ̂ is a global diffeomorphism as stated. Then so is φ̂ ◦ (ψ|Hc × id) ◦ φ−1 above and the extended ψ is a
diffeomorphism, as well.

Finally, in the step described in the previous paragraph, one cannot encounter the boundary in (M, ĝ)
without encountering it in (M, g), i.e. if ψ(p) ∈ ∂M for some p ∈ M , with ψ the extended map of the
previous paragraph then p ∈ ∂M , provided that this property already held for the original map ψ of that
paragraph. Indeed, the lens relations of (M, g) and (M̃, g) being the same plus ψ being a diffeomorphism
in a neighborhood of x−1([−c,∞)) ∩ U0, shows that if for the extended ψ we have ψ(p) ∈ ∂M , then taking
in the normal coordinates a constant-y (normal to ψ(Hc)!) geodesic segment through p, within the range
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of the ĝ-geodesic normal coordinate map φ̃, it will go through a point q in ψ(Hc). But the equality of
lens relations shows that the g-geodesic through ψ−1(q) (again, normal to Hc) will then also hit ∂M in the
range of the g-geodesic normal coordinate map φ since the two lens relations are the same, and since in
x−1([−c,∞)) ∩ U0 the metrics are already the same (thus lens data connecting Hc, resp. ψ(Hc), to ∂M , are

the same). Correspondingly, ψ|M actually maps into M , for ∂M separates the interior of M from M̃ \M .
Finally, on the “illuminated” part of ∂M , where dx makes an acute angle with the outer conormal at ∂M ,
ψ is identity. On the “un-illuminated” part of ∂M this is still true because the lens relations are the same.

Now we turn to the actual proof. Let

S = {c ≥ 0 : ∃ψ : U → ψ(U) ⊂ U1 diffeo, ψ|∂M∩U = id,

U neighborhood of x−1([−c,+∞)) ∩ U0,

ψ∗ĝ|x−1([−c,+∞)) = g|x−1([−c,+∞)}.
Then 0 ∈ S by hypothesis, with ψ the identity map. By the discussion of the paragraph above, if c ∈ S,
the ψ that exists by definition of c ∈ S can be extended to a neighborhood of Hc ∩ U0 so that ψ∗ĝ and g
agree near H = Hc, namely in x̃ > −c, c > 0. Taking into account the observations above, this means that
ψ is defined in x > −c − δ0 for some δ0 > 0. Thus, the set S is open, as [0, c + δ0) ⊂ S. Finally S is also
closed since by the discussion of the paragraph above, if c ∈ S, the ψ that exists by definition of c ∈ S can
be extended to a uniform (c-independent) neighborhood of Hc ∩ U0 so that ψ∗ĝ and g agree near H = Hc,
namely in x̃ > −c, c > 0. The observation above shows then that g and ψ∗ĝ are the same in x ≥ −c − δ0,
with δ0 > 0 independent of c, proving that S is closed (if c /∈ S, cj ∈ S, cj → c, then take j such that
cj > c− δ0 to obtain a contradiction), and thus the theorem. �

Note that the function x need not satisfy the properties globally on M ; in this case a completely analogous
argument implies that if in x > −T the assumptions of the theorem hold, then the conclusions hold on x ≥ −t,
t < T . Moreover, the 0 level set condition may be replaced by an arbitrary level set (if needed, shift x by a
constant).

Thus, for instance, if x is the distance function from a point in M◦, this gives that under the hypotheses
of the theorem, which hold if g has no focal points, for any ε > 0, in x ≥ ε, ĝ is the pullback of g by a
diffeomorphism. In particular, this proves Theorem 1.4.

8. The foliation condition and corollaries

The assumption of an existence of a strictly convex function appears also in some works on Carleman
estimates, see, e.g., [32] and the references there. Existence of such a function is also assumed in the recent
work [18] on integral geometry. We will connect such functions with our foliation condition below.

A C2 function f on M is called strictly convex on some set, if Hess f > 0 as a form on that set, where
Hess is the Riemannian Hessian defined through covariant derivatives. Such a function can have at most
one critical point which is a local minimum. It was shown in [18] that if the foliation condition holds with
{x = 0} = ∂M , then there exists a strictly convex function f in M . We will show that the converse is true,
which is actually an easier statement to prove.

Lemma 8.1. Let f be a strictly convex function on (M, g) near a non-critical point x = x0. Then the level
hypersurfaces f(x) = c are strictly convex near x0 when viewed from f > c.

Proof. We have

(8.1)
d2

dt2
f(γ(t)) = Hess (f)(γ̇, γ̇)) ≥ c0 > 0.

for any geodesic γ as long as γ(t) is close to x0 where f is strictly convex. We can always assume f(x0) = 0;
we will prove strict convexity of S := {f = 0} near x0. Take γ(0) = x0, with γ̇(0) tangent to the level set
f(x) = 0. Then

(8.2) f(γ(t)) ≥ (c0/4)t2 for |t| � 1
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for any such tangent geodesic through x0. Since f is a defining function of S, (8.2) implies strict convexity

of the latter. Indeed, (8.1) when (d/dt)f(γ(t)) = 0 at t = 0 is preserved for any other defining function f̃

of S preserving the orientation, which is easy to check, since f̃ = fh with h > 0 on S. If we take f̃ to be
the signed distance to S, positive on {f > c}, (8.1) becomes just the second fundamental form of S, up to a
positive multiplier. �

Therefore, existence of a strictly convex function implies our foliation condition away from the possibly
unique critical point (when M is connected). In particular, if the sectional curvature is positive or negative,
our foliation condition is satisfied on M \ {x0} by [18, section 2] , where x0 is the critical point, if exists;
otherwise, on M .

We show next that existence of a critical point of f still allows us to prove global lens rigidity.

Theorem 8.1. Let (M, g) be a compact n-dimensional Riemannian manifold, n ≥ 3, with a strictly convex
boundary so that there exists a strictly convex function f on M with {f = 0} = ∂M . Let ĝ be another
Riemannian metric on g, and assume that ∂M is strictly convex w.r.t. ĝ as well. If g and ĝ have the same
lens relations, then there exists a diffeomorphism ψ on M fixing ∂M pointwise such that g = ψ∗ĝ.

Proof. The interesting case we have not covered so far is when f can have a critical point, x0, in (the interior
of) M , which is also the minimum of f in M . For 0 < ε� 1, let M0 = {x| f(x) ≤ f(x0) + ε}. If ε� 1, then
M0 can be covered by a single chart and it is diffeomorphic to a closed ball. By the semiglobal Theorem 1.4,

(M \M0, g) is isometric to (M \ M̂0, ĝ), with some compact connected M̂0 with smooth boundary in the
interior of M , and the diffeomorphism realizing the isometry fixes ∂M pointwise. If ε� 1, then M0 is simple
and it can be foliated by strictly convex surfaces without a critical point in its closure, for example by the
Euclidean spheres centered at a point a bit away from its boundary. Then by our global Theorem 1.3, (M0, g)

and (M̂0, ĝ) are isometric. Since one can perturb ε a bit, the diffeomorphism from outside can be extended a
bit inside. On the other hand, if two metrics are isometric near the boundary, with a diffeomorphism fixing
the latter, that diffeomorphism is determined uniquely near the boundary by identifying boundary normal
coordinates. Therefore, the two diffeomorphisms coincide in the overlapping region. �

This result implies Corollary 1.1 of the introduction:

Proof of Corollary 1.1. The proof follows directly from [18], where it is shown that under either of those
conditions, there exists a smooth strictly convex function x with {x = 0} = ∂M . �

Finally, we give some sufficient conditions for the foliation condition to hold. As shown in [29, 30], for
metrics c−2dx2 in a domain in Rn, the generalized Herglotz [6] and Wiechert and Zoeppritz [37] condition
∂r(r/c(rω)) > 0, where r, ω are polar coordinates, is equivalent to the requirement that the Euclidean spheres
|x| = C are strictly convex in the metric c−2dx2. If M is given locally by xn > 0, if ∂xnc > 0, then the
hyperplanes xn = C ≥ 0 form a strictly convex foliation. Then our results prove rigidity for such metrics in
the class of all metrics, not necessarily conformal to the Euclidean.

Appendix A. An improvement of a lemma from [31].

We need a new version of Lemma 4.13 of [31] which is lossless in terms of decay in order to apply the
perturbation argument above in Section 6 culminating in the proof of Theorem 6.3, namely that the X-ray
transform of g with microlocal weights (as opposed to the standard X-ray transform) is invertible, in the
sense of a left inverse on Ω, when the weight is close to the identity. Recall that this lemma gives an estimate
of u in terms of ds

zu on Ω1 \ Ω for u vanishing at ∂intΩ1, but not necessarily at ∂intΩ (i.e. ∂M ∩ Ω). The
loss of the lemma is in the decay at ∂X, which we now fix. In order to obtain this improved version, we first
prove a similar lemma for the symmetric gradient of a scattering metric.
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A.1. A lossless estimate for scattering metrics. Thus, we consider scattering metrics of the form

gsc = dx2

x4 + h
x2 with respect to a product decomposition of a neighborhood of the boundary x = 0, where h

is a metric on the boundary: h = h(y, dy), and let ds
sc be the symmetric gradient of gsc, and let

ds
sc,z = e−z/xds

sce
z/x : Hs,r

sc (X; scT ∗X)→ Hs−1,r
sc (X; Sym2scT ∗X).

Then we have a lossless estimate for expressing u in terms of ds
sc,zu:

Lemma A.1. Let Ḣ1,0
sc (Ω1 \Ω) be as in Lemma 4.12 of [31], but with values in one-forms, and let ρΩ1\Ω be a

defining function of ∂intΩ as a boundary of Ω1\Ω, i.e. it is positive in the latter set. Suppose that ∂xρΩ1\Ω > 0
at ∂intΩ (with ∂x understood with respect to the product decomposition); note that this is independent of the
choice of ρΩ1\Ω satisfying the previous criteria (so this is a statement on x being increasing as one leaves Ω
at ∂intΩ). Then there exists z0 > 0 such that for z ≥ z0, on one-forms the map

ds
sc,z : Ḣ1,r

sc (Ω1 \ Ω)→ H0,r
sc (Ω1 \ Ω)

is injective, with a continuous left inverse Psc,Ω1\Ω : H0,r
sc (Ω1 \ Ω)→ Ḣ1,r

sc (Ω1 \ Ω).

Moreover, for z ≥ z0, the norms of zPsc,Ω1\Ω : H0,r
sc (Ω1 \Ω)→ H0,r

sc (Ω1 \Ω), Psc,Ω1\Ω : H0,r
sc (Ω1 \Ω)→

H1,r
sc (Ω1 \ Ω) are uniformly bounded.

Proof. In [31, Proof of Lemma 4.13] the following formula from [21, Chapter 3.3] played a key role:

(A.1)
∑
i

[v(γ(s))]iγ̇
i(s) =

∫ s

0

∑
ij

[ds
scv(γ(t))]ij γ̇

i(t)γ̇j(t) dt,

where γ is a unit speed geodesic of the metric whose symmetric gradient we are considering (so the scattering
metric gsc in the present case) with γ(0) ∈ ∂intΩ1 (so v(γ(0)) vanishes) and γ(τ) ∈ ∂intΩ∪∂X, with γ|(0,τ) in

Ω1\Ω. The identity (A.1) is just an application of the Fundamental Theorem of Calculus with the s-derivative
of the l.h.s. computed using the rules of covariant differentiation. In this formula we use [ds

scv(γ(t))]ij for
the components in the symmetric 2-cotensors corresponding to the standard cotangent bundle, and similarly
for [v(γ(s))]i. Notice that this formula gives an explicit left inverse for ds

sc,z.
Here we use the differential version of this (i.e. prior to an application of the fundamental theorem of

calculus):

(A.2)
d

ds

∑
i

[v(γ(s))]iγ̇
i(s) =

∑
ij

[ds
scv(γ(s))]ij γ̇

i(s)γ̇j(s),

and note that the left hand side is simply

γ̇(.)
(∑

i

[v(γ(.))]iγ̇
i(.)
)∣∣∣
s
,

with the first γ̇ considered as a vector field differentiating the function to which it is applied. Thus, taking
any smooth family of such geodesics emanating from ∂intΩ1, parameterized by ∂intΩ1, and letting their
tangent vectors define a vector field X on Ω1, we have on Ω1 \ Ω:

XιXv = (ds
scv)(X,X),

which we consider a PDE for ũ = ιXv. We can then proceed as in Lemma 4.12 of [31].
We first need to discuss the geometry. For a general scattering metric, see [16, Lemma 2], the limiting

geodesics on ∂X (which make sense directly as projected integral curves of the rescaled Hamilton vector field
scHgsc on scT ∗X) are geodesics on ∂X connecting distance π points (i.e. they have length π). More precisely,
the projection of these integral curves in scT ∗∂XX is either a single point, or a length π h-geodesic. (Note
that in the case of Euclidean space this is simply the statement that geodesics at infinity tend to antipodal
points on the sphere at infinity, and this remains true if the geodesics move uniformly to infinity.) Since our
metric gsc is homogeneous of degree −2 under dilations in x, the analogous statement remains true for all
geodesics, i.e. they are either radial, so that y is fixed along them, or their projection to the ∂X factor of
[0, δ)x × ∂Xy is a length π geodesic of h, with appropriate behavior in x.
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Now, recalling the basic b- and sc- objects (vector fields, bundles, etc.) from Section 3, the tangent vector
of a reparameterized (corresponding to the renormalization of the Hamilton vector field, by a factor x−1,
used to define scHgsc) geodesic, considered as a point in bTγ(s)X, is the pushforward of the rescaled Hamilton
vector field scHgsc (which is a vector field on scT ∗X tangent to its boundary) under the bundle projection
scT ∗X → X; the actual tangent vector to the geodesic is an element of scTγ(s)X (corresponding to reinserting
the x-factor). The explicit formula for this pushed forward vector field, if coordinates on scT ∗X are written

as (x, y, ξ, η), corresponding to 1-forms being written as ξ dxx2 +
∑
j ηj

dyj
x , is, modulo terms that push forward

to 0, ξ(x2∂x) +
∑
hij(y)ηi(x∂yj ), see [15, Equation (8.17)], with the second term coming from the Hamilton

vector field of the dual boundary metric h−1, and ξ2 + |η|2hy = 1 by virtue of the geodesic flow being the

Hamilton flow on the unit cosphere bundle (a factor of 2 has been removed from the vector field to make
the geodesics unit speed).
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Figure 5. Geodesics of gsc tending towards the point p, including the limiting boundary geodesic.

For instance, as an illustration (we use a different family below for the actual proof) geodesics tending to
a fixed point p ∈ ∂X ∩ Ω◦ (corresponding to a family of parallel lines in Euclidean space) give a family of
geodesics we could consider below in many cases, e.g. if we are working in a suitable small neighborhood of
a point on ∂M (see Figure 5); −ξ (thus the x2∂x component of the tangent vector) is cosine of the distance
from γ(s) to p within (i.e. for the projection to) the ∂X factor, while −η is the tangent vector of the h-
geodesic given by the ∂X projection times (1 − ξ2)1/2 (i.e. sine of the distance within ∂X); see again [16,
Lemma 2]. We consider cases when ∂X is large metrically but ∂X ∩ Ω1 is small, so all points in ∂X ∩ Ω1

are distance < ε̃ < π/2 distance from each other; this is relevant because of the length π-behavior of the
projected geodesics and the appearance of sine and cosine above. In this case, varying p, taking finitely
many appropriate nearby choices gives rise to geodesics whose tangent vectors span scTqX for each q as is
immediate from the above discussion; for instance if h is the flat metric, the η component is simply the unit
vector (up to sign) from the projection of q to ∂X to p times the sine of the distance, and the −ξ component
is, as always, the cosine of the distance, so it is straightforward to arrange finitely many choices of p’s with
spanning geodesic tangent vectors; in general for ε̃ > 0 small, a similar conclusion holds.

In fact, for the general considerations below (as opposed to certain special cases), it is best to take a
codimension 1 submanifold S in ∂X ∩ Ω near ∂intΩ, namely a slight inward perturbation of ∂intΩ, e.g. a
short time flow by the h-normal geodesics on ∂X from ∂intΩ, and use a 1-dimensional family of geodesics
tending to each of the points on it locally near ∂X (for a total (n − 1)-dimensional family), e.g. pick a
vector field on S close to the h-normal vector field of S, and use geodesics whose ∂X-projection is a length
π h-geodesic with this given tangent vector at the end point in S; see Figure 6. These form a one parameter
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Figure 6. Geodesics of gsc tending towards the submanifold S (here shown as 2 points),
with the family extended by radial geodesics to cover ∂intΩ

◦. For n ≥ 3 (as is the case here),
for a better illustration, the picture should be imagined rotationally symmetric around the
vertical axis through the middle of the figure, so the indicated two points on S are in the
same rotation orbit.

family since the normal to ∂X component of the tangent vector is arbitrary (but we will take it relatively
small). Then the geodesics all intersect ∂intΩ close to their limiting point on S (close e.g. in the sense that
the affine parameter in the projection to ∂X, when considered as a unit speed h-geodesic, is close to that on
S, i.e. the h-geodesic segment is short), and in particular near ∂X, thus do so transversally, so the derivative
of ρΩ1\Ω along the tangent vector of the geodesics (when rescaled by x−1) has a definite (negative) sign at
∂intΩ. (The actual tangent vector of the gsc-geodesic will give a derivative ≤ −Cx, C > 0, corresponding
to the x∂y-component of the pushforward of scHgsc .) One can then smoothly combine this with geodesics
crossing ∂intΩ farther away from ∂X (e.g. specifying their tangent vectors at ∂intΩ smoothly extending the
already specified tangent vectors near ∂X ∩ ∂intΩ) to obtain the full (n− 1)-dimensional family of geodesics
in such a manner that, when rescaled by x−1, the derivative of ρΩ1\Ω along the family has a negative definite
sign at ∂intΩ. For instance, one can use radial geodesics or their small perturbations (changing the direction
at ∂intΩ

◦ slightly) in the extension, i.e. ones in which the ∂X component is constant; these behave as desired
due to the assumption on ∂xρΩ1\Ω. We then eventually take finitely many such families of geodesics as
discussed above to span the scattering tangent space (starting by varying the vector field specified on S);
note that the latter is just the standard tangent space away from ∂X, hence the usual considerations apply
there, while near ∂X our previous discussion applied to geodesics close to the initial point (now on S)
our previous discussion applies, with only the h-distance along the ∂X-projections of these geodesics from
the initial point to ∂intΩ1 required to be small (so for any h, if Ω1 is chosen so that Ω1 \ Ω is small, the
construction works). (This contrasts with the discussion of the previous paragraph, where geodesics tending
to a single fixed point p were used, in which the h-diameter of Ω1 had to be small.)

Now, to use these observations, first notice that as we consider geodesics of a scattering metric, X ∈ Diff1
sc.

Thus, let V = 1
iX, P = e−z/xV ez/x ∈ Diff1

sc and consider ‖Pu‖2 again keeping in mind that we need to be
careful at ∂intΩ since u does not vanish there (though it does vanish at ∂intΩ1). Thus, there is an integration
by parts boundary term, which we express in terms of the characteristic function χΩ1\Ω:

‖Pu‖2L2(Ω1\Ω) = 〈χΩ1\ΩPu, Pu〉L2(Ω1) = 〈P ∗χΩ1\ΩPu, u〉L2(Ω1)

= 〈P ∗Pu, u〉L2(Ω1\Ω) + 〈[P ∗, χΩ1\Ω]Pu, u〉L2(Ω1).

Writing P = PR + iPI (as in Lemma 4.2 of [31]), PR = P+P∗

2 ,

‖PRu‖2L2(Ω1\Ω) = 〈P ∗RPRu, u〉L2(Ω1\Ω) + 〈[P ∗R, χΩ1\Ω]PRu, u〉L2(Ω1).
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On the other hand, with PI = P−P∗
2i being 0th order, the commutator term vanishes for it. Correspondingly,

‖Pu‖2L2(Ω1\Ω) = 〈P ∗Pu, u〉L2(Ω1\Ω) + 〈[P ∗, χΩ1\Ω]Pu, u〉L2(Ω1)

= 〈P ∗RPRu, u〉L2(Ω1\Ω) + 〈P ∗I PIu, u〉L2(Ω1\Ω) + 〈i[PR, PI ]u, u〉L2(Ω1\Ω)

+ 〈[P ∗, χΩ1\Ω]Pu, u〉L2(Ω1)

= ‖PRu‖2L2(Ω1\Ω) + ‖PIu‖2L2(Ω1\Ω) + 〈i[PR, PI ]u, u〉L2(Ω1\Ω)

+ 〈[P ∗, χΩ1\Ω]Pu, u〉L2(Ω1) − 〈[P ∗R, χΩ1\Ω]PRu, u〉L2(Ω1).

Now, as P − PR is 0th order, [P ∗, χΩ1\Ω] = [P ∗R, χΩ1\Ω], so the last two terms on the right hand side give

(A.3) 〈[P ∗, χΩ1\Ω]iPIu, u〉L2(Ω1) = 〈(XχΩ1\Ω)PIu, u〉L2(Ω1).

Now, P = V −zx−2V x with V −V ∗ ∈ xDiff0
sc (since it has real principal symbol in the full scattering sense),

and hence PI = zx−2Xx + a, a ∈ xC∞. Thus, (A.3) is non-negative, at least if x is sufficiently small (or
z large) on ∂intΩ since χΩ1\Ω is χ(0,∞) ◦ ρΩ1\Ω times a similar composite function of the defining function
of ∂intΩ1 (which however plays no role as u vanishes there by assumption), XρΩ1\Ω and Xx can be arranged

to be negative (i.e. x decreasing along the geodesics being considered) in the strong ≤ −Cx2 sense (with
C > 0). Correspondingly, this term can be dropped. In addition, [PR, PI ] ∈ xC∞, so the corresponding
term can be absorbed into the ‖PIu‖2 terms, and one obtains

(A.4) ‖u‖L2(Ω1\Ω) ≤ C‖Pu‖L2(Ω1\Ω),

at least if x is small on Ω1 just as in the proof of [31, Lemma 4.2]. (In fact, z large also works as [PR, PI ] =
O(z), while ‖PIu‖2 gives an upper bound for c2z2‖u‖2 if z ≥ z0, z0 > 0 sufficiently large, see below for
more detail.) This in turn gives with u = e−z/xũ,

‖e−z/xũ‖L2(Ω1\Ω) ≤ C‖Pe−z/xũ‖L2(Ω1\Ω) = C‖e−z/xXũ‖L2(Ω1\Ω)

i.e. with ũ = ιXv, using XιXv = (ds
scv)(X,X),

‖ιX(e−z/xv)‖L2(Ω1\Ω) = ‖e−z/xιXv‖L2(Ω1\Ω)

≤ C‖e−z/x(ds
scv)(X,X)‖L2(Ω1\Ω) = C‖ds

sc,z(e−z/xv)‖L2(Ω1\Ω)

in this case. The case of x not necessarily small on Ω1 (though small on Ω) follows exactly as in [31,
Lemma 4.13] discussed above, using the standard Poincaré inequality, and even the case where x is not small
on Ω can be handled similarly since one now has an extra term at ∂intΩ, away from x = 0, which one can
control using the standard Poincaré inequality. (Again, one can instead simply take z sufficiently large.)

Taking a finite number of families of geodesics with tangent vectors spanning scT ∗X then gives, with
ṽ = e−z/xv,

(A.5) ‖ṽ‖L2(Ω1\Ω) ≤ C‖ds
sc,zṽ‖L2(Ω1\Ω).

To obtain the H1 estimate, we use Lemma 4.5 of [31], which is stated there for ds
z (symmetric gradient with

respect to a standard metric) but which works equally well for ds
sc,z since it treats the 0th order term, by

which these symmetric gradients differ from that of a flat metric, as an error term, which in both cases is a
0th order scattering differential operator between the appropriate bundles; see below for more detail in the
large parameter discussion. This gives, for ṽ ∈ H̄1,r

sc (Ω1 \ Ω),

‖ṽ‖2
H̄1,r

sc (Ω1\Ω)
≤ C(‖ds

sc,zṽ‖2H0,r
sc (Ω1\Ω)

+ ‖ṽ‖2
H0,r

sc (Ω1\Ω)
),

which combined with (A.5) proves

‖ṽ‖Ḣ1,r
sc (Ω1\Ω) ≤ C‖ds

sc,zṽ‖H0,r
sc (Ω1\Ω), ṽ ∈ Ḣ1,r

sc (Ω1 \ Ω),

where recall that our notation is that membership of Ḣ1,r
sc (Ω1 \ Ω) only implies vanishing at ∂intΩ1, not at

∂intΩ. In particular, this shows the claimed injectivity of ds
sc,z. Further, this gives a continuous inverse from

the range of ds
sc,z, which is closed in L2(Ω1 \Ω); one can use an orthogonal projection to this space to define

the left inverse PΩ1\Ω, completing the proof when k = 0.
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For general k, one can proceed as in [31, Lemma 4.4], conjugating ds
sc,z by xk, which changes it by x

times a smooth one form; this changes P by an element of xC∞(X), with the only effect of modifying the a
term in (A.3), which does not affect the proof.

To see the final claim, observe that ‖PIu‖2 ≥ c2z2‖u‖2L2(Ω1\Ω) for some c > 0, when z ≥ z0, and thus

the estimate (A.4) actually holds with cz‖u‖L2(Ω1\Ω) on the left hand side, which in turn gives the estimate

(A.6) z‖ṽ‖L2(Ω1\Ω) ≤ C‖ds
sc,zṽ‖L2(Ω1\Ω).

Finally, the proof of the modified Korn’s inequality, Lemma 4.5 of [31], gives the estimate, for u ∈ H̄1,r
sc (Ω1\Ω),

‖u‖H̄1,r
sc (Ω1\Ω) ≤ C(‖ds

sc,zu‖H0,r
sc (Ω1\Ω) + z‖u‖H0,r

sc (Ω1\Ω));

indeed the proof there has a direct estimate for the symmetric gradient of the flat metric and then regards
the 0th order terms, by which a general symmetric gradient differs from this flat symmetric gradient as error
terms to be absorbed into the second term on the right hand side; in our case these 0th order terms have
Cz bounds (corresponding to the exponential conjugation), so the conclusion follows, proving the claim.
Applying it in our setting we have

(A.7) ‖ṽ‖H1,0
sc (Ω1\Ω) ≤ C‖ds

sc,zṽ‖L2(Ω1\Ω).

Again, adding polynomial weights proceeds without difficulties. �

A.2. The extension of the results to ‘standard’ metrics. Now, a straightforward calculation of the
Christoffel symbols shows that they do not contribute to the full principal symbol of the gradient relative
to gsc, in Diff1

sc(X; scT ∗X; scT ∗X ⊗ scT ∗X), and thus this principal symbol is, as a map from one-forms to
2-tensors (which we write in the four block form as before) is

(A.8)


ξ 0
η⊗ 0
0 ξ
0 η⊗

 ,

and thus that of ds
sc in Diff1

sc(X; scT ∗X; Sym2scT ∗X) (with symmetric 2-tensors considered as a subspace of
2-tensors) is 

ξ 0
1
2η⊗ 1

2ξ
1
2η⊗ 1

2ξ
0 η⊗s

 .

Thus the symbol of ds
sc,z = e−z/xds

sce
z/x, which conjugation effectively replaces ξ by ξ+iz (as e−z/xx2Dxe

z/x =

x2Dx + iz), is 
ξ + iz 0

1
2η⊗ 1

2 (ξ + iz)
1
2η⊗ 1

2 (ξ + iz)
0 η⊗s

 .

It is useful to consider this as a semiclassical operator with Planck’s constant h = z−1, i.e. to analyze
what happens when h is small, i.e. z is large. Thus, consider the semiclassical operator hds

sc = z−1ds
sc; its

full (i.e. at h = 0, fiber infinity and base infinity all included) semiclassical principal symbol (since it only
depends on z via this explicit prefactor) is, writing ξh = hξ = ξ/z and ηh = hη = η/z as the semiclassical
variables 

ξh 0
1
2ηh⊗ 1

2ξh
1
2ηh⊗ 1

2ξh
0 ηh⊗s

 .
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Correspondingly, the full (i.e. at h = 0, fiber infinity and base infinity all included) semiclassical principal
symbol of hds

sc,z is 
ξh + i 0
1
2ηh⊗ 1

2 (ξh + i)
1
2ηh⊗ 1

2 (ξh + i)
0 ηh⊗s

 .

On the other hand, the proof of Lemma 3.2 of [31] shows that the full principal symbol of ds, relative to
a standard metric g, in Diff1

sc(X; scT ∗X; Sym2scT ∗X) is
ξ 0

1
2η⊗ 1

2ξ
1
2η⊗ 1

2ξ
a η⊗s

 ,

with a a symmetric 2-tensor, so the full semiclassical principal symbol of hds = z−1ds is
ξh 0

1
2ηh⊗ 1

2ξh
1
2ηh⊗ 1

2ξh
ha ηh⊗s

 .

and thus that of hds
z = e−z/xhdsez/x is 

ξh + i 0
1
2ηh⊗ 1

2 (ξh + i)
1
2ηh⊗ 1

2 (ξh + i)
ha ηh⊗s

 .

This proves that, with the subscript h on Diffsc denoting semiclassical operators,

(A.9) R = hds
z − hds

sc,z ∈ hDiff0
sc,h(X; scT ∗X; Sym2scT ∗X).

This allows us to prove the following sharp form of Lemma 4.13 of [31]:

Lemma A.2. Let Ḣ1,0
sc (Ω1 \Ω) be as in Lemma 4.12 of [31], i.e. with dot implying vanishing at ∂intΩ1 only,

but with values in one-forms, and let ρΩ1\Ω be a defining function of ∂intΩ as a boundary of Ω1 \ Ω, i.e.
it is positive in the latter set. Suppose that ∂xρΩ1\Ω > 0 at ∂intΩ (with ∂x defined relative to the product
decomposition reflecting the warped product structure of gsc); note that this is independent of the choice of
ρΩ1\Ω satisfying the previous criteria (so this is a statement on x being increasing as one leaves Ω at ∂intΩ).
Then there exists z0 > 0, such that for z ≥ z0, the map

ds
z : Ḣ1,r

sc (Ω1 \ Ω)→ H0,r
sc (Ω1 \ Ω)

is injective, with a continuous left inverse PΩ1\Ω : H0,r
sc (Ω1 \ Ω)→ Ḣ1,r

sc (Ω1 \ Ω).

Proof. We let Psc;Ω1\Ω be the left inverse given in Lemma A.1; then with R as in (A.9),

Psc;Ω1\Ωds
z = Psc;Ω1\Ωds

sc,z + Psc;Ω1\Ωh
−1R = Id +Psc;Ω1\Ωh

−1R.

Now

h−1Psc;Ω1\Ω = zPsc;Ω1\Ω : H0,r
sc (Ω1 \ Ω)→ H0,r

sc (Ω1 \ Ω)

and

Psc;Ω1\Ω : H0,r
sc (Ω1 \ Ω)→ Ḣ1,r

sc (Ω1 \ Ω)

are uniformly bounded in z ≥ z0 by Lemma A.1, which means in terms of semiclassical Sobolev spaces
(recall that H0,r

sc (Ω1 \ Ω) = H0,r
sc,h(Ω1 \ Ω)) that

h−1Psc;Ω1\Ω = zPsc;Ω1\Ω : H0,r
sc (Ω1 \ Ω)→ Ḣ1,r

sc,h(Ω1 \ Ω).
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On the other hand, R ∈ hDiff0
sc,h(X; scT ∗X; Sym2scT ∗X) shows that h−1R bounded Ḣ1,r

sc,h(Ω1 \ Ω) →
Ḣ1,r

sc,h(Ω1\Ω). In combination, Psc;Ω1\Ωh
−1R = h(h−1Psc;Ω1\Ω)(h−1R) is bounded by Ch as a map Ḣ1,r

sc,h(Ω1\
Ω)→ Ḣ1,r

sc,h(Ω1 \ Ω), and thus Id +Psc;Ω1\Ωh
−1R is invertible for h > 0 sufficiently small. Then

PΩ1\Ω = (Id +Psc;Ω1\Ωh
−1R)−1Psc;Ω1\Ω

gives the desired left inverse for ds
z with the bound

h−1PΩ1\Ω : H0,r
sc (Ω1 \ Ω)→ Ḣ1,r

sc,h(Ω1 \ Ω),

which in particular means for finite (sufficiently large) z that

PΩ1\Ω : H0,r
sc (Ω1 \ Ω)→ Ḣ1,r

sc (Ω1 \ Ω)

is bounded, proving the lemma. �
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