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N-body scattering:

Let (X, g) be a vector space with a translation
invariant Riemannian metric, X = {X, : a €
I} a finite collection of linear subspaces of X
closed under intersections, including Xg = X
and X; = {0}. Let X% = X, V, real valued
functions on X% decaying at infinity, e.g. V, €
S—P(X%), p > 0; for instance V,(z%) ~ c|z®|~1
(Coulomb decay). Let

H=A,+ Z(w“)*va, ™ X — X% orth. proj.;
acl

assume Vp = 0. Write V, for (#®)*V, as well.

Note that V, is constant on translates of X, so

it does not decay at infinity (except V7) unlike

in 2-body problems.

We may replace V, by formally self-adjoint first
or even second order operators on X%, with de-
caying coefficients, as long as H remains ellip-
tic in the usual sense.



This is a natural (linear algebra) generalization
of the standard N-body Hamiltonians

n=3

where x; is the position, m; the mass of the
ith particle, and V;; is the interaction between
particle 7+ and j.

Ay, 4 ) Vii(x; — x5)

h2
2m; i<j

Example: 3-body scattering (inside x1 + 2o +
r3 = 0): X;; = {z; = =z;} are the ‘collision
planes’; X1, and X7, are translates of X5, so
V1o is constant (does not decay) along these.
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Higher rank symmetric spaces:

I describe SL(N,R)/SO(N,R) in some detail,
although other higher rank spaces of non-compact
type work similarly. The corresponding rank-
one example, H2 = SL(2)/SO(2) is extremely
well understood.

If C € SL(N), we can write it uniquely as
C = VR where R € SO(N), V positive definite,
detV =1 — indeed, V = (CCH)1/2. So we may
identify SL(N)/SO(N) with the real analytic
manifold of NV x N positive definite matrices of
determinant 1.

Then SL(NN) acts on M by
SL(N) x M 3 (B, A) — (BA2BY)1/2,

The Killing form of SL(IN) gives a fiber metric
on ToM, o =1d, via identifying To,M with sym-
metric N x N matrices of trace 0, and if A is
such a matrix, its length is

(2N) Tr(AAY) = (2N) Y ag;.



This gives a Riemannian metric g on M via the
SL(N) action.

We now want to study H = Agy.

In fact, because of the SL(N)-action, it suf-
fices to study the action of A on K, = SO(N)-
invariant functions. Notice that ¢, is Ko-invariant,
hence so is (Ag—A)—léo for \ outside the spec-
trum of A4y, The main claim is that the ra-
dial Laplacian Ay,q, i.e. Ay acting on SO(N)-
invariant functions, has a many-body structure
(N — 1-body, to be precise). In particular, the
collision planes are (intersections of) the walls
of Weyl chambers.

To see this, we diagonalize A € M: A = OAO?,
O € SO(N), A diagonal, detA = 1. Neither
A nor O is completely determined. The di-
agonal entries of A are the eigenvalues of A,
so they are determined up to permutations.



If all eigenvalues are distinct, there is only a
finite indeterminacy of O. But if two eigenval-
ues coincide, the indeterminacy is bigger: the
eigenspaces, rather than the eigenvectors, of
A are well-defined.

So inside the ‘flat’ exp(a) of diagonal matrices
of determinant 1 we have a similar picture to
N-body scattering. (Here a is the space of
diagonal matrices with vanishing trace.)

Th metric g reflects this structure. Concretely,
for N = 3, for p € exp(a), on T,M, the metric
IS

d\?  dX\3 | d)\3
g=6< T —I— )




where the c¢;; are coordinates on SO(3) near
Id given by the off-diagonal entries in so(3).
Notice the polar coordinate degeneracy at the
walls.

To make the formula truly comparable to the
Euclidean setting, we need to write A = exp(D),
D € a (symmetric, trace 0), so it has diagonal
entries x; = log \A;. The metric on D then is
6 times the Euclidean metric. Since in local

coordinates z; on M,

A, =S 1D 45D,
g EJI N V9Dz;,
and since we can identify Ko-invariant func-
tions on M with W-invariant functions on a,
A,5q IS @ 3-body Hamiltonian, apart from ‘po-
lar coordinate’ singularities. There is nothing
special about the walls in any compact region
(they are an artifact of using singular coordi-
nates); the structure is only relevant at infinity.



In general, on symmetric spaces of non-compact
type G/K, there is a similar expression for the
radial Laplacian on areg. TO state it, recall that
roots arise by considering the Cartan decom-
position g = ¢ 4+ p, with € the Lie algebra of
K, p the orthocomplement with respect to the
Killing form, so p can be identified with T,M.
Now let a be a maximal abelian subspace of p.
The symmetric homorphisms ad H, H € a, on g
commute, hence are simultaneously diagonal-
izable. A simultaneous eigenvector X satisfies

(ad H)(X) = a(H) X

for each H € a; here o is a linear functional,
SO @ € a*. The set of a's that arise this way is
the set A of (restricted) roots, and the space of
eigenvectors associated to « is the ‘root space’

Jo-

Each o« € N determines the associated Weyl
chamber wall Wy = a~1(0) C «;

dreg = a \ UgeAWa



is the set of regular vectors. The orthogonal
reflections across the walls generate the Weyl
group W this is a finite group. Fixing a con-
nected component a™ of areg to be the posi-
tive Weyl chamber, we denote by AT the set
of positive roots (i.e. roots that are positive on

at).

T hen

1
Arad — Aa _I- 5 Z (ma COth CV) Ha,
aeN

where A4 iIs the standard Laplacian on the
vector space a, mq = dimga and Hy is the
root vector associated to the root a. Not-
ing that mq = m_,, coth(—a) = — cotha and
H_, = —H,, we also have

Arag = Dg + Z (mq cotha) Hy,,.
aENT



Note first that cotha is singular at the wall
a—1(0), and it converges (exponentially fast)
to the constant 1 as a(.) — +oo. Thus, far
away from the walls but inside at, one can con-
sider A 54 as a perturbation of the translation-
invariant operator Aq + 2H, on a, where

p=l Y maac€a’

2046/\"‘

In fact, the resulting analysis is the starting
point of Harish-Chandra’'s work on spherical
functions: one constructs local ‘eigenfunctions
of A,yq In aT in perturbation series (in the
spirit of Cauchy-Kovalevskaya), and then uses
group theory to show that these can be com-
bined into genuine global generalized eigen-
functions.



The action of W on areg leaves A 54 invariant.
The singularities in the coefficients of these
first order terms along the Weyl chamber walls
might seem to complicate the process of ex-
tending this operator to all of a, and indeed this
would be the case if we were to try to let A,4g
act on C*°(a), for example. However, this dif-
ficulty disappears if we restrict to W-invariant
functions. Indeed, we recall that C°(M)¥ is
naturally identified with C*°(a)"W, and so (tau-
tologically) A,yq extends to this latter space,
and then also to W-invariant distributions, etc.



The parametrix point of view: how to con-
struct the resolvent approximately. In N-body
scattering, for o ¢ spec(H), one can construct
an approximate inverse for H — o by inverting
model operators Hy, — o, a € I, of the various
subsystems. Since these are k-body Hamilto-
nians with £ < N, these in turn can be inverted
by an iterative construction.

The most elegant version of this construction
uses non-commutative (operator valued) sym-
bols. However, in the particular cases we con-
sider, a patching construction suffices. (N.B.
The patching construction would not suffice if
we had second order interactions, or, worse,
considered a truly geometric generalization of
N-body Hamiltonians.) To describe this, we
need a partition of unity and cutoffs adopted
to the geometry.



First, we need a way of succintly stating prop-
erties of functions near infinity, to avoid mak-
ing statements analogous to (but more compli-
cated than) ‘¢ € C°°(X) homogeneous degree
zero, with respect to dilations, outside a com-
pact subset of X'. Thus, we let X be the radial
(or geodesic) compactification of X to a ball.
Namely, we add the sphere S"~1 (n = dim X)
to X asits boundary. Near 90X, X is of the form
[0,1), x S2~1; we can take the identification of
this region with a subset of X to be given by
inverse polar coordinates (p,w) — p~lw € X.

Then ¢ € C®(X) means, in particular, that ¢
has an asymptotic expansion at infinity, namely
the Taylor series at the boundary: o(p,w) ~
> pjaj(w), i.e. ¢ is a (classical) symbol of order
0.



We also let S, = 0X, be the sphere at infinity
for the collision plane X,. Woe illustrate the
geometry of the compactification below on the
left hand side. X and X/ are translates of the
collision plane X ; the hat denotes their closure

~~

in X.

B*0X

To indicate the relationship of this geometry
to N-body potentials, note that V, is not con-
tinuous, let alone smooth, on X; to make it so
we need to blow up S,;. The collision planes
are really only relevant at infinity, i.e. only the
Sq are relevant — the X, do not play any role
in any compact region of X.



Definition: A partition of unity {x; : b€ I} is
X-adapted if

1. each xp, € C®(X),

2. suppxi is a compact subset of X = X7,

3. supp xp N Se = 0 unless S, C Se.

Sa
So

SUpP Xe Sb

supp X1
Supp Xo

SUpp Xb s,

Supp Xa



There exists such a partition of unity. We can
also construct cutoffs ¢, with the same prop-
erties, and in addition with ¢, =1 on a neigh-
borhood of supp xp.

We also need model operators. Near Sy, b = 1,
the natural model is given by

Hy=H'+ Ay, H =Ap+ Y Vi

here H? is the subsystem Hamiltonian for the
cluster b, which is an operator on (functions
on) XY This model ‘works’ (for at most first
order V, with coefficients in S™7, i.e. decaying
like |z%~P) because on suppy, A — Hy is a
first order differential operator with decaying
coefficients (in S—7P).



A parametrix for H — o is then given by
P(o)= Y. UpRy(o)xp+ voPoxo
bel, b#0

where Pj is a parametrix in the usual sense
for H — 0. Note that P] is sandwiched be-
tween compactly supported functions, so the
precise sense in which P(’) is constructed (re-
garding behavior near infinity) does not make
much difference.

Then with
E(o) = (H—0)P(o)-1d, E'(¢) = P(0)(H—-0)-Id,

P(o) : HS*(R™) — H5T2K(R™)
E(o) : Hs,k(Rn) . Hs—i—l,k—l—p(Rn)
E/(O‘) : Hs,k(Rn) N Hs—l—l,k:—l—p(Rn)
for all s,k € R. Here H5F(R™) is the weighted

Sobolev space (z)"*HS(RZ). In particular, the
error terms E(o), E'(c) are compact on LZ2.



An immediate corollary is the HVZ-theorem:

speC.(H) = Upey, p1SPEC(Hj}),
spec(Hy) = spec(H®) + [0, +0).

In general, the spectrum is quite complicated,
as only the continuous spectrum is predicted by
the theorem, not the eigenvalues. Moreover,
the continuous spectrum of H depends on the
whole spectrum of its proper subsystems, i.e.
L2-eigenvalues of the subsystems give rise to
branches of continuous spectrum.

H,

T X
T X

Hy



T his analysis remains valid on symmetric spaces
G/K as well, as long as one restricts to K-

invariant functions. The only additional re-

quirement is that we make the partition of

unity, and the cutoffs, W-invariant, and one

also needs to work with weighted Sobolev spaces
of K-invariant functions. In this case the coef-

ficients decay exponentially, i.e. one can take

p > 0 arbitrarily large. One slight issue relates

to labelling; it is in practice better to work only

with the compactified positive Weyl chamber

aT rather than with @. If X[;F is an open face

of the closure of at in a, there is a unique

‘collision plane’ (intersection of walls) X; con-

taining it as an open subset. Let IT denote

the set of b € I that arise this way.

Let A, denote the set of roots vanishing at
some (hence all) p € Xj reg.

Then H, — Hp, € X3, and H,, € X = a’.



For such b, the models are now

Ly =Ty, 4+ Ay rad

Ty = AXb + 2(Hp — Hp,)

Ab,rad = Aab —I— QHpb —I— Z ma(COth o — 1)Ha.
aEAj

Thus, T, is a translation-invariant differential

operator on X, and Ay (54 is the radial part of

the Laplacian on a lower rank symmetric space

The HVZ-type theorem in this setting is thus
spec.(Ayad)
= Uper+, pe1(SPeC(Ay raq) + [lp — pp|?, +00)).

The first sign of a miracle in this setting is
that the spectrum is simple: there are no L2-
eigenvalues at all, so in fact

spec(Araq) = [p%, +00).



In general, results are similar in N-body scat-
tering and on symmetric spaces, but there are
many special coincidences on symmetric spaces.
AS an example, consider the analytic continu-
ation of the resolvent through the spectrum.

In the N-body setting, under appropriate as-
sumptions for the potentials V, (basically Vj,
can be compactly supported on X%, dilation
analytic on X% with respect to the dilations
I will discuss, or more generally dilation ana-
lytic near infinity on X%), R(o) = (H — o)1
continues analytically to a Riemann surface >
including C \ spec(H) (e.g. in the sense that
its Schwartz kernel, i.e. R(o)dp, continues as a
distribution). This Riemann surface is usually
very complicated, and one may have only be
able to extend only a little beyond the continu-
ous spectrum. (This approach started with the
work of Aguilar-Balslev-Combes; the stated re-
sult is due to Ch. Gérard.)



Normalizing logz on C\ [0, +00) to take values
in (—2m,0)+4R, and \/z to take valuesin Im z <
0, on symmetric spaces GG/K we have

Theorem 1 For a suitable constant L > 0O, the
Green function Go(o) continues analytically as
a distribution to the logarithmic plane in o —og
with the half-lines

log(o—0g) € i(—m+2kn)+[210g L, +00), k € Z\{0},

removed, if n is even, and to the Riemann sur-

face of \/o — oo, With /o —oqg € i[L,+o0) re-

moved, if n is odd.

A weaker version of this, in which one allows
ramifications points arising from poles of the



analytic continuation of subsystem resolvents,
is actually a rather simple result from the N-
body perspective.

One considers the scaling A — AY, which is
dilations along geodesics through o =1d. (The
Euclidean analogue is = — wz.) For w = e >
O, this is a diffeomorphism &y, so

(Upf)(A) = (det D 49)1/2(d)f)(A)

defines a unitary operator on L2. Then Ay =
UQAUe_l extends analytically to the strip |[Im 8] <
7T

?.
In the case of R", the similar scaling gives Ay =

e_QQA; notice that this rotates the continuous
spectrum. Same happens for A,5q. Then

(fs (Drag — ) tg) = (Ugf, (Dgrad — ) *Upg)
for a dense set of f,g. One can modify the

scaling to actually show that for g € DL(M),
(A —0)"lgeD(M).



The symmetric space miracle is that the rami-
fication points do not occur. Note that an in-
nocent looking improvement, namely that one
can improve the statement that the subsys-
tems have only poles (no ramification points;
one even knows that these poles cannot go
to infinity in certain cones) outside ramifica-
tion points given by their subsystems’ poles, to
them having no poles at all, gives a huge im-
provement due to the inductive construction.



Propagation of singularities: this is best stated
in terms of a wave front set at infinity, but this
would require some background. Roughly, it is
a statement that the (appropriate) wave front
set, i.e. the singularities in T*X measuring mi-
crolocal decay at infinity in X, of (tempered)
generalized eigenfunctions, is a union of max-
imally extended generalized broken bicharac-
teristics. Instead, I state the result for ‘per-
turbed plane waves’ in a rank 2 setting. For
symmetric spaces, these are Harish-Chandra’s
spherical functions.

First, what are perturbed plane waves coming
in from some direction &, of energy ¢ = £ - &7
Note that in the N-body setting one usually
considers & real. An unperturbed plane wave is
e—if'z; the phase —¢-z is smallest, resp. largest,
where z is parallel, resp. anti-parallel to &. A
perturbed plane wave is supposed to have the
same asymptotic behavior ‘on the incoming



side’ (to be precise this would be a microlo-
cal statement); thus,

ug(2) = ¥(2)e **—R(04i0) (H—0) (1h(2)e %)

is a natural candidate; here ¢ € C®(X) identi-
cally 1 near £ Note that here Y is not really
needed (one can take 3 = 1, and the result
is independent of ¢ anyway), but its presence
makes the comparison with symmetric spaces
easier. In fact, such ug can be characterized by
the statement that they are the unique (tem-
pered) generalized eigenfunctions of H which
microlocally near the ‘incoming set’ are given
by e 182

T hese Ug also show up as the Schwartz kernel
of the ‘Poisson operator’, and they contain (in
an accessible manner!) the information about
the scattering matrices corresponding to free
incoming particles, as well as about part of
the spectral projector. (One needs to have
plane waves corresponding to bound states in
general.)



The complex analogue, when £ is not real,
works similarly. Then one would want ¢ iden-
tically 1 near |II”n1%2|: the real part of the ex-
ponent is Im¢& - z, which is largest where z is
parallel to Imé&. Thus, (H — o) (¥ (2)e %?) is
in a weighted L2 space corresponding to less
growth at infinity, and in certain cases, e.qg. if
£ = c€g with &g real, this implies that R(o) can
be applied to it. (¢ — 1, Ime > 0, corresponds
to the real limit. It is different from ¢ — 1,
Imc < 0, which would correspond to fixing the

‘outgoing’ asymptotics of ug, § real.)

For &€ = c€&g with &g real, Im¢ € at, one can de-
fine the spherical function Ug similarly, noting
that now o = &-£+ |p|2 is the energy, by choos-
ing ¥ to be vanishing near the walls, regarding
Ug(z) = (2)e P2 supported in aT, as
a W-invariant function on a, or a K-invariant
function on M:

Ue(2) = UP(2) — R(0)(Arag — o) (UL (2))



In fact, if one makes a better first approxima-
tion than ¥ (2)e P(*)e~€ 2 as I discuss below,
it is easy to define Usg analogously in general.

To make the underlying geometry identical,
consider 3-body scattering with the collision
planes given by the SL(3)-walls. (This corre-
sponds to three one-dimensional particles with
equal masses.) The space on which expansions
live in this case is the blow-up of X along the
Sa:

X =[X;{Sa: acI}



If we in addition assume that no proper sub-
system has bound states, e.g. we have three
electrons interacting repulsively, then 3-body
perturbed plane waves with incoming direction
£ and energy o (so £-£ = o) can be written as
a sum

ug(z) = Y es(2)e " DF 4 (2) 712V g (2),

seS3

with ¢s smooth on X away from the direc-
tion of —s€ (where it has a ‘conic’ singular-
ity), cs rapidly decreasing in the direction of
s& for s = 1, and c¢1 ~ 1 in the direction of
¢&. The sum over S3 contains the reflections of
the incoming wave from the collision planes,
corresponding to particles that have collided.

/ X9

Xa3



The situation in symmetric spaces is quite sim-
ilar, except that one should consider the co-
efficients as either living on at, or being W-
invariant on a, so it is no longer the case that cg
is rapidly decreasing in the direction of s&, and
there is also an additional exponential weight
e~ P. Denoting the spherical function by Ug, we
have the following behavior:

Ue(2) = Y cs(2)e PPemilet)=,
se€S3
valid in a neighborhood of the closure of at in
a. (From a different point of view, based on
Harish-Chandra’'s approach, such a description
is due to Trombi and Varadarajan.)

The miracles in this case (apart from the mirac-
ulous geometry, which we already assumed for
the purposes of illustration in the 3-body set-
ting) are that c¢s € C>®(@)" (i.e. there is no
‘conic’ singularity where waves coming from



different directions meet up) and that there is
no spherical wave, i.e. a = 0. The absence of
the conic singularity actually does follow from
the construction; it is a combination of geo-
metric coincidence and that the model oper-
ators are Laplacians on symmetric spaces, so
their scattering matrices have certain symme-
tries.

Here, as in the 3-body setting, the coefficients
are constructed iteratively, starting with cq,
corresponding to the size of the real part of
the exponent in at. (For real &, one replaces
‘real part of the exponent’ by ‘phase’.) They
are obtained by ensuring that the incident and
reflected waves combine to give an approxi-
mate generalized eigenfunction at the wall at
which the reflection takes place.

(If we do not assume the absence of bound
states in subsystems, the spherical wave is re-
placed by a more complicated expression.)



In fact, there is one more miracle, the coeffi-
cients cs(z) are actually smooth on a smaller
space a than a. This space a is the polyhe-
dral or dual-cell compactification. Roughly,
it compactifies at as a cube, using the pos-
itive simple roots o € /\i‘r’;d. Namely, the lat-
ter, denoted by a, form a basis of a*, hence
(a1, ...,an) (Where dima = n) is a coordinate
system on a. We compactify at, the neighbor-
hood O(T) = ﬂ?zlozj_l((T-,—l—oo)) by identify-
ing it with H?’zl(T-,—l—oo), and compactifying
the latter as H?Zl[o,e_Tj) via the map t; —
e 'i. Thus, we effectively make the 7; = e~
a coordinate system on a neighborhood of at
in a.




It is worth pointing out now what a is in terms
of a: first, one takes the logarithmic blowup
dlog (i.e. makes aj_l the coordinates), then one
performs a ‘total boundary blow-up’, starting
with boundary faces of the smallest dimension.
Thus, the blow-down map 8 :a — a is smooth,
and the smoothness of ¢s(z) on @ near a™t is a
much stronger statement than its smoothness

on a in the same region.



FO a Sa

NN 2,
v

The thin lines without arrows show the bound-
ary of O(T) for T7 < 0, T> < 0; the thin lines
with arrows are geodesic emanating from O;
in particular they bound conic regions. The
labels are a = (23), b = (12), ¢ = (13).



However, this miracle only holds for the spher-
ical functions, a.k.a. perturbed plane waves,
not for the asymptotics of the Green’'s func-
tion, a.k.a. spherical waves. In fact:

Theorem 2 On M = SL(3)/SO(3), if o ¢
spec(A) = [og, +0), oo = |p|?, then

R(o)do = pﬁpﬁxl/zxﬁxﬁ exp(—iv/o — og/x)g
where g € C®(M \ {o}). Here M is the com-
pactification of M analogous to d, etc., x(.) =
d(o,.) Is the distance function from o, py and
pf are defining functions of the two boundary
hypersurfaces of M, so e~ P ~ pyp* in O(T), and
zy, xf are the defining functions of the lifts of
these boundary hypersurfaces to M, i.e. in the
d picture, of Fyo> and F>3. Here the leading
term g|yx; IS Strictly positive.

Note the similarity to 3-body spherical waves!
A weaker version of this theorem, with a con-
tinuous rather than smooth statment, is due
to Anker, Guivarch, Ji and Taylor.



