DIFFRACTION BY EDGES

ANDRAS VASY

ABSTRACT. In these expository notes we explain the role of geometric optics
in wave propagation on domains or manifolds with corners or edges. Both
the propagation of singularities, which describes where solutions of the wave
equation may be singular, and the diffractive improvement under non-focusing
hypotheses, which states that in certain places the diffracted wave is more
regular than a priori expected, is described. In addition, the wave equation
on differential forms with natural boundary conditions, which in particular
includes a formulation of Maxwell’s equations, is studied.

1. INTRODUCTION

The aim of the present notes is twofold. On the one hand, these are expository
notes intended to explain certain aspects of diffraction by edges and corners. On
the other hand, they contain the announcement of three new results. The first
new result is joint with Richard Melrose and Jared Wunsch, namely diffractive
improvements for the scalar wave equation on X = M x R where M is a manifold
with corners equipped with a smooth Riemannian metric; this is explained in the
last section. The second new result is propagation of singularities for the scalar wave
equation on Lorentzian manifolds with corners (with time-like boundary faces), i.e.
where X is not a metric product like above. Furthermore, we explain the more
general setting of Maxwell’s equations with natural boundary conditions, and discuss
microlocal elliptic estimates for these. The proofs of the last two results turn out
to be a rather simple modification of the proofs for the scalar wave equation on
product spaces, in the sense that the same method works, but some additional care
needs to be taken in constructions, so we will not need to describe the technicalities
that do not need any change in too great detail. The proof of the propagation of
singularities results for natural boundary conditions are more technical, so it will
be discussed elsewhere.

The full details of the proof of the main propagation of singularities theorem,
Theorem 13, in the scalar metric product setting (also valid directly for the wave
equation on forms with Dirichlet or Neumann boundary conditions, which are how-
ever not the interesting ones), are written up in [27]. The diffractive improvement
in a model case, namely edge manifolds, defined in the last section, is proved in
[15], and its extension to manifolds with corners is currently being written up in
[14]. Moreover, [28] contains an expository description of the propagation results
for the scalar equation, while [26] provides an exposition at an intermediate level:
the main technical points are explained there.
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Light is described by Maxwell’s equations, which in turn imply that in free space
each component u of the electromagnetic field satisfies the wave equation,

Pu=0, Pu= Diu—Ayu,

A, is the Laplacian, so it is ¢? > D
(this corresponds to a Riemannian metric g = ¢=23 da3), Dy, = 0,,. If light
propagates in regions with boundaries, one also needs suitable boundary conditions.
A typical condition, if the boundary is a perfect conductor, is that the tangential
component of the electric field and the normal component of the magnetic field
vanish at the boundary hypersurfaces. This is an example of a natural boundary
condition, as we shall soon see.

As PDE are relatively complicated, it is natural to ask whether one can find
important qualitative information about solutions of the wave equation without
actually solving the equation. A step in this direction is given by geometric optics.

According to geometric optics, light propagates in straight lines (in homoge-
neous media), reflects/refracts from surfaces according to Snell’s law: energy and
tangential momentum are conserved. Thus, when reflecting from a hypersurface
(which has codimension one) one gets the usual law of incident and reflected rays
enclosing an equal angle to the normal to the surface. Indeed, conservation of tan-
gential momentum and kinetic energy implies that of the magnitude of the normal
component. When reflecting from a higher codimension (> 2) corner, the law is
unchanged (momentum tangential to the corner and energy are conserved) — but
now this allows each incident ray to generate a whole cone of reflected rays, see Fig-
ures 1-2. In addition, even the local geometry of the rays can be very complicated
because of rays tangential to a boundary face: one can even have an accummulation
of reflection points, as shown by an example of Taylor [22].

It is natural to ask how these points of view are related. One way of discussing
the relationship between these is that singularities (lack of smoothness) of solutions
of Pu = 0 follow geometric optics rays. Due to its relevance, this problem has a
long history, and has been studied extensively by Keller and others in the 1940s
and 1950s in various special settings, see e.g. [1, 9]. The present work (and ongoing
projects continuing it, especially joint work with Melrose and Wunsch [15], see also
[2, 16]) can be considered a justification of Keller’'s work in the general geometric
setting (curved edges, variable coefficient metrics, etc). In order to describe this
relationship precisely, I discuss an even more general setting.

The first main result discussed here is a precise statement of this result for
domains with corners in a general (Riemannian or Lorentzian) geometric setting,
including for the wave equation on differential forms with certain boundary condi-
tions. In the analytic setting for scalar equations this result is due to Lebeau.

The second result discussed here, which is joint work with R. Melrose and J. Wun-
sch [15], is that while the preceeding result is optimal, for a rather large class of
solutions of the wave equation, namely those ‘not focusing’ on the corner, it can
be improved. As an illustration, consider spherical waves emanating from a source
near the boundary or corner: on the one hand, most of the spherical wave misses
the corner, i.e. only a lower dimensional part hits it, but on the other hand, a full
dimensional part of the spherical wave hits the boundary hypersurfaces (or smooth
boundary).

Qj in R™, where c¢ is the speed of light
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FIGURE 1. Geometric optics rays hitting a surface at a codimen-
sion 2, dimension 1, corner (which may be called an edge). The
momentum component parallel to the edge is preserved when the
edge is hit, as is the magnitude of the normal component, so a sin-
gle incident ray generates a cone with apex at the point where the
edge is hit, axis given by the edge, and angle at the apex given by
the angle between the incident ray and the edge. On the picture
only the projection of the rays to the spatial factor, M, is shown;
time can be thought of as the arclength parameter along the rays.

FIGURE 2. Geometric optic rays hitting a corner. Even if a ray
hits the corner non-tangentially to any boundary hypersurface, the
reflected rays may be tangential to one of these, hence their geom-
etry may be complicated.

Informally stated, this second result is that under a non-focusing assumption,
which holds for instance for spherical waves emanating from a source near the edge,
the diffracted wave is 1/2 — e order more regular (in a Sobolev sense, for all € > 0)
than either the incident or the reflected wave. This result is expected to be useful
in inverse problems, e.g. when studying the reflection of seismic waves from cracks
in the Earth. In 2 dimensions, in the analytic category, there is a corresponding
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result due to Gérard and Lebeau [4] for conormal incident waves. There is also a
long history of the subject in applied mathematics, especially in the work of Keller.

The original version of these notes were based on my transparencies and lecture
notes at the inverse quantum scattering conference at Siéfok, Hungary, in August
2007, with additional material included later on. I am very grateful to the confer-
ence organizers for the invitation and for hosting the meeting so well, as well as for
their patience as I overran many deadlines while preparing these notes.

2. THE WAVE EQUATION

In this section we briefly discuss the wave equation on Lorentz manifolds. A
more thorough description can be found in Taylor’s book [24, Sections 2.10-2.11].
Below, if X is an n-dimensional C'*° manifold, 2X denotes the space of densities
on X, i.e. for z € X, Q. X consists of maps w : A"T. X — R (where A"T. X can be
identified with completely antisymmetric n-linear maps on 77 X) satisfying

WAV A AV, = Hw(VI A AV).

On R™, OR™ is trivialized by wg = |dz1 A...Adz,| which satisfies wo(0.,,...,0,,) =
1. One can naturally integrate densities, and on oriented manifolds they can be
identified with n-forms; see below for more. Here we will usually not differentiate
between real vector spaces and their complexification, so e.g. we write both the real
and complex tangent spaces at z as T,X, rather than say TCX for the complex
case.

On R”, each element f of C(R™) defines a continuous linear functional on
C°(R™) (still denoted by f), where the subscript ¢ denotes compact support, by

f:CPR") ¢ foeC.
R7L

While C2°(R™) can be thought of as the space of ‘extremely nice’ functions, D’(R™)
stands for the space of distributions on X (i.e. continuous linear functionals on
C2°(R™)), which, by the above observation, are ‘generalized functions’. On a man-
ifold X the same argument goes through except we can only integrate densities, so
D'(X) is the dual of C°(X;QX). (If we fix a non-vanishing density w, e.g. arising
from a Riemannian or Lorentzian metric, as discussed below, we can trivialize the
density bundle, and identify C°(X; QX)) with C2°(X).)

Suppose that X is a manifold without boundary of dimension n, and let h be
a Lorentz metric on X, i.e. h is a real non-degenerate symmetric 2-cotensor of
signature (1,n — 1). (Some people prefer signature (n — 1,1), which would amount
to switching some signs below.) Thus, for each z € X, h(z) is a symmetric bilinear
map T, X x T.X — R, h(z)(V,W) = 0 for all W € T, X implies V = 0, and the
maximal dimension of a subspace of T, X to which the restriction of h is positive
definite is 1. In local coordinates, h =, hij(2) dz; ® dz;, with (h;;) symmetric,
and having one positive and n — 1 negative eigenvalues as an endomorphism of R™.
With our signature convention, vectors V' € T, X are called time-like if L(V, V) > 0,
space-like if h(V, V) < 0, and light-like or characteristic if h(V,V) = 0. The metric h
gives rise to a smooth measure, or density, in local coordinates dvoly, = | det h| |dz|,
with deth = det(h;j), i.e. for f € C°(X) supported in the coordinate chart,
[ fdvoly, = [ f(z)|deth(z)|dz. As h is non-degenerate, the determinant never
vanishes, so in particular we get a positive definite inner product on C2°(X), and
on L?(X).
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A special case of such (X, h) is products X = M x R, where (M, g) is a Rie-
mannian manifold, and R is ‘time’, with the Lorentz metric on X being h =
dt?> — g. Thus, for a vector V = (Var, V), where Vyy € T,,M, Vi € R = T;R,
z=(myt) € X, h(V,V) = |Vp|* — g(Var, V). In particular, (Var,0) is space-like
(for Viy # 0), (0,Vr) is time-like (for Vp # 0), while (Vjy, V) is characteristic if
V| = g(Var, Var).-

The Lorentz metric also gives rise to a dual metric, which is a non-degenerate
symmetric bilinear form on 77X x T7X. Indeed, non-degeneracy implies that
the map h : T.X 2 V h(V,.) € TrX is injective, hence an isomorphism as
dim7,X = dim 7} X, and then we can define the dual metric H by

H(a, ) = h(h ', h7'B), o, B € T; X.

We call a covector o € T, X time-like, space-like or characteristic if H (o, ) > 0,
H(a,a) < 0 or H(a,a) = 0. We recall that if S is a submanifold of X then
N*S'is the conormal bundle of S; at a point p € S, the fiber NS consists of all
covectors a € TS such that a(V) = 0 for all V' € T),S. Another way of looking
at N*S is that the space of its smooth sections is spanned (over C*°(S)) by da, as
a ranges over all elements of C*°(X) that vanish on S. If S is a hypersurface, i.e.
has codimension 1, we call S space-like, time-like resp. characteristic, if non-zero
elements of its conormal bundle are time-like, space-like (note the reversal!), resp.
characteristic. In particular, in the product case, X = M x R, dt is time-like while
if f is a function on M pulled back to X, then df is space-like (whenever it is
non-zero). Correspondingly, M x {to} is space-like (with conormal dt), while if S
is a hypersurface in M, then Sy x R is time-like.

This bilinear form H on 77X then extends to the differential form bundle,
AX, i.e. for each z, one has a non-degenerate symmetric bilinear form on the 2"-
dimensional vector space A, X, with respect to which the grading of forms by degree
is an orthogonal decomposition. Namely, on k-forms,

H(dzi, N.. . Adz;,,, dzj, N . . Ndzj,,) = Z (sgnm)H(dz,, dzjﬂ(l)) . H(dzik,dzjﬂm),
TESK

where the sum is over all permutations 7 of (1,...,k), extended linearly to A*¥X.
Thus, one has a (non-positive but non-degenerate) inner product on sections of
A X, namely

(@) = [ (a8 dvols. (0.9 = H(o)
In particular, we can define formal adjoints for differential operators
P:C*®(X;AX) — C*(X;AX)
by
(P*u,v) = (u, Pv), u,v € C°(X;AX),

P*: D'(X;AX) — D'(X;AX), and it is then straightforward to check that P*
itself is a differential operator. Then the d’Alembertian [ on differential forms is
defined by

O=(d+d)? =dd* +d*d

in analogy with the Laplace-Beltrami operator in the Riemannian setting. Thus, for
u, f € C®°(X;AX), Ou = f if and only if (Ou,v) = (f,v) for all v € C(X; AX),
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i.e. in the symmetric quadratic form formulation, if and only if
(du, dv) + (d*u,d*v) = (f,v)

for all v € C°(X; AX); indeed this holds even if u, f € D'(X; AX).

A useful way of relating d and d* is given by the Hodge star operator *, which
requires that X be orientable (i.e. the existence of a global non-vanishing section
wo of A”X), and a choice of orientation. For such an X, there is a unique n-form
w with the correct orientation (i.e. being a positive multiple of a preferred section)
and with |H(w,w)| = 1; in fact, the choice of an orientation gives an isomorphism
between densities and n-forms. If X is oriented (which always holds locally), then
the Hodge star operator * : A¥X — A"~*X is characterized by u A xv = H (u, v)w.
Then d* = (sgnh)(—1)F+D+1 « dx on C=(X, A*X), where sgn h is the signature
of h (1 in the Riemannian setting, (—1)"~! in the Lorentz setting with our signs)
and *J = O, so u solves Ou = 0 if and only if *u solve O x u = 0.

We can now turn to boundaries and corners. First, we define C'°° manifolds
with corners. These are topological manifolds with boundary with a C*° structure
with corners, which means that each point p in X has a neighborhood O = O,
diffeomorphic to an open subset U of [0, 00)* x R"~*; we denote the corresponding
coordinates by (z,y), so © = (x1,...,2k), ¥ = (Y1,---,Yn—k), k depends on O,
with the transition maps between the coordinate charts C*°. The tangent and
cotangent bundles on X can be either defined the usual way on X, or by embedding
X in a manifold without boundary (by ‘doubling’ it locally over each boundary
hypersurface), and restricting the the resulting bundles to X. Thus, covectors have
the form

k n—k
(1) a=> &dri+ Y (idyi,
=1 =1

and (z,y,£,(¢) give local coordinates on T*X. (Actually, they are global on the
fibres of T*X — X.)

If X is a manifold with C°° boundary, d,d*,0 are differential operators on X
with smooth coefficients, defined at first by the above formulae for C$°(X°; AX),
then noting that by the smoothness of their coefficients, they act on C*°(X;AX).
We assume that 0X is time-like. This is the case for instance if X = M x R, where
now M is a manifold with boundary. As usual, one needs boundary conditions so
that OJ is symmetric. For instance, one could take Dirichlet boundary conditions,
which amounts to requiring that u € C*°(X; AX) vanishes at 0X, and

(2) (du, dv) + (d*u, d*v) = (f,v)

for all v € C2°(X; AX) that vanishes at 9X. Or, we could take Neumann boundary
conditions, which amounts to requiring u € C*°(X;AX) and (2) holds for all v €
C(X;AX). However, for either of these boundary conditions, d + d* itself is not
symmetric.

Natural boundary conditions for forms are v Au = 0 at X if v is a non-vanishing
conormal to H = 0X, called the relative boundary condition, and its dual ¢, u = 0,
called the absolute boundary condition (with these conditions being independent of
the choice of v). ¥ Au = 0 is interpreted as u is normal to H, while t,u =0 as u
being tangential to H. We write Ar(H) for the subbundle of AX |y consisting of
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normal forms; it is thus the kernel of the endomorphism « +— v A a. We also write
CR(X;AX)={ueC®(X;AX): ulg € C*(H;ArH)}.

Note that the wvanishing of v A u is well-defined, independent of the choice of h,

while the vanishing of ¢, depends on h: one needs the non-degenerate h to iden-

tify v with a vector H(v,.) = h™'(v), and then ¢, = Lj~1(,)> With ty being the

evaluation of forms on a vector field V. However, these conditions are dual to

each other in that (,v = 0 if and only if v A xv = 0, i.e. v satisfies absolute
boundary conditions if and only if *v satisfies relative boundary conditions. In
local coordinates (x,y1,...,Yn—1) near 0X, x = x; (recall 9X is C°), one can

take v = dz. For a form u, dr A u = 0 states that w is a linear combination of
dx A dyj, N...A\dyj,,, explaining why w is normal. On the other hand, if v = dx
is orthogonal to dy, . ..,dy,—1 with respect to H, t4,u = 0 states that u is a linear
combination of dy;, A ... A dy;,., explaining why u is tangential. In the product
case, X = M x Ry, it is natural to keep ¢ as one of the y variables, i.e. y,—1 = t.

If X is a manifold with corners, d,d*,[J are still differential operators with
smooth coefficients, and the boundary conditions are required for all codimen-
sion 1 boundary faces, i.e. for all boundary hypersurfaces. The local form of the
relative boundary conditions is as follows: at a codimension k corner, given by
x1 = ... = x = 0, the condition on v € C*°(X,AX) is that dz; Au = 0 at
H; = {z; = 0} for all j. In order to make these compatible for our analysis, we need
a local trivialization of APX for all p, i.e. a map APO — O xRN, N = dim A* being
given by the binomial coefficient, and an index set J; C {1,..., N} for j =1,... k,
such that for each j and at each ¢ € O N Hj, for a form « to satisfy dr; Au =0
requires that o, = 0 for m € J;, where a = (aq,...,ay) with repect to the
trivialization. This is straightforward, however, using

(3) dr;, N ... Ndx;, ANdye, N ... A\ dye i <...<is, &1 <...<Lp_s,

p—s)
as the basis of ALX, dzrj A u = 0 amounts to saying that all components of « in
which j is not one the i,’s vanish. Similarly, using the Hodge star operator, there
is such a good trivialization for the absolute boundary condition as well, namely *
applied to the basis of (3).

Now recall that if X is a smooth manifold with corners, H*(X) can be defined
as the completion of C2°(X) in the H* norm (here k > 0 integer), or equivalently
as the space of restrictions of H* functions from the ‘double of X’ in which X has
been extended across all boundary hypersurfaces. In the Riemannian setting there
is a natural H* norm given by V and the metric, but over compact set all choices
of metrics give rise to equivalent norms, so in fact HF (X) and H*(X) are defined
independently of such choices. This immediately extends to sections of vector
bundles: we again need a metric on the fibers of the bundle for a global definition,
but the local definition is independent of any such choices. Now, the restriction
to boundary hypersurfaces for C*°(X; E) induces a restriction map H'(X; E) —
HY%(H;; E), as usual, and in view of the trivialization (3), C3°(X;AX), resp.
OF(X;AX) are dense in Hp . (X; AX), resp. H}LC(X; AX), where H}MOC(X, AX)
and Hp, (X, AX) are defined analogously to C (X; AX).

For products X = M x R, h = dt? — g, one also has a functional analytic
picture. Namely, with Dirichlet, Neumann, or natural boundary conditions, A, is
self-adjoint on L?(M; AM) (with respect to the induced inner product). Moreover,
as shown by Mitrea, Taylor and the author in [23], the quadratic form domain D =
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Dy of A, with respect to natural boundary conditions is the subspace H* (M, AM)
given v A u = 0, resp. t,u = 0, at all boundary hypersurfaces, where v denotes a
conormal. In addition, there is an orthogonal decomposition of the form bundle,
AX =AM @ (dt NAM), and C®(X; AM), resp. C*°(X;dt AAM) are preserved by
A, and D2, so the d’Alembertian on X gives rise to the wave equation on M xR with
values in AM. Thus, the solutions of the wave equation in this functional analytic
sense, i.e. the solutions of D?u = Aju with v € C(R; D) N CY (R, L*(M,AM)) are
exactly the v € H} (X;AM) satisfying the boundary condition (say, v Au = 0 at
0X), such that (2) holds for all v € H!(X; AM) satisfying the boundary condition,
with f = 0.

We can now explain Maxwell’s equations in units in which the speed of light is
1. In R* = R? x Ry, writing the coordinates on R? as (21, 22, 23), we can identify
the electric field E : R* — R? and magnetic field B : R* — R3 with the 2-form on
R* given by

—F =Bi1dzo ANdz3 + Badzz ANdz1 + Bsdz N dzs
+ E1dzy Ndt + Esdzo N dt + E3dzs N dt.

Maxwell’s equations in free space (without charges and currents) are then equivalent
to OF = 0; the general version is JF = f, with f given by the charges and currents.
If we impose Maxwell’s equations in z3 > 0, and write x1 = 23, y; = 25, j = 1,2, F
being normal means that B3 = 0 and E; = E5 = 0, i.e. the electric field is normal
to the boundary while the magnetic field is tangential to it. This then generalizes
to other regions with smooth boundaries and also to other Lorentz metrics (i.e. a
background from general relativity) to fit into the framework described above, with
X a 4-manifold, and u being a 2-form. We refer to [24, Section 2.11] for a more
detailed discussion.

It is often useful to choose local coordinates with somewhat more care. First,
in the product setting, we always use local coordinates (z,¥) arising from an open
set U in M and t as local coordinates on X, i.e. on X we have local coordinates
w = (x,y) where y = (¢,t). In such local coordinates the dual metric G on M is

4) Gx,y) = Aij(@,§) 0, 0u, + Y 2Ci;(x,7) Ou, g, + ¥, Bij(x,§) Iy, 0y,
ij ij ij

with A, B, C' smooth. Moreover, the coordinates on M can be chosen (i.e. the g;

can be adjusted) so that C(0,4) = 0. Then on U x R,

(5) Hlpmo =07 =Y Aij(§) Ou, 0n; — Y Bij(§) 05, 0y,
ij ij
with fl, B positive definite matrices depending smoothly on .

In the more general Lorentzian setting, the analogue of (4) on X is

(6) H({E, y) = Z Aij (:E, y) 8951 awj + Z QCij (:E, y) 8951 ayj + Z Bij (:E, y) 8y'i allj

i, 0.J 0J
with A, B, C smooth. In this paper we assume that every boundary face F' is time-
like in the sense that the restriction of H to N*F is negative definite, so A is
negative definite (for the conormal bundle N*F is given by ( = 0 at = 0). Then
H is Lorentzian on the H-orthocomplement (N*F)+ of N*F. In fact, note that
for pg € F,

* * * 1
(7) T:X = N% X @ (N3, X)L,



DIFFRACTION BY EDGES 9

for if V' is in the intersection of the two summands, then H(V,V) = 0 and V €
N, F', so the definiteness of the inner product on N*F shows that V' = 0, hence
(7) follows as the dimension of the summands sums up to the dimension of T, X.
Choosing an orthogonal basis of (N*F)* at a given point pg € F°, and then
coordinates y; with differentials equal to these basis vectors, we have in the new
basis that C;;(0,0) =0 and

> Bi(0,000,,0,, =), — > .
i<n—k
and we write coordinates on T*X as
x, t= Yn—k, g = (ylv cee 7yn7k71)7 57 T = Cnfkv 5 = (Clv cee 7Cn7k71)a
cf. (1). Thus B is non-degenerate, Lorentzian, near py, so a simple calculation
shows that and the coordinates on X can be chosen (i.e. the y; can be adjusted)
so that C'(0,y) = 0. Then

(8) H|m:0 = Z Aij (07 y) 87“1 8?“7 + Z Bij (07 y) 8?/1 8?/_7‘
.5 i,J

Note that in the product setting (with ¢ = y,_x) Ai; = —flij, Ci; = =Cij,j < n—k,
Cim-t=0,Bj; = Byj,4,) <n—k,By_pnt =1, Bp_p;=DBjnp=0if j <n—k.

It is also useful to have a positive definite inner product on AX. Thus, in addition
to the given Lorentzian metric h we often also consider a Riemannian metric h. Let
H, resp. H denoting the dual metrics, as well as the induced metrics on forms; these
can be thought of as maps A, X — (A, X)*, hence

9) J=H'H
is an isomorphism of A, X. Note that the form inner products then satisfy
(10) (u, Juyg = (u,v) g,

and the inner product on the right hand side is positive definite.

One nice feature of the product case is that there is a natural Riemannian metric
on X as well, namely h = dt*> + g. Then J commutes with A, and D;. Moreover,
it preserves CF (X; AX) as well as CP(X; AX). In fact, with (z, ) coordinates on
M,y = (g,t), it maps o = dws, A...ANdx;, Ndyg, N... Ndye, , to Ja = (—1)Paif
ly—s #n —k, and to Ja = (—1)Plaif b,_s =n — k.

In the general case we cannot pick h arbitrarily because we need to preserve
boundary conditions. However, with coordinates as in (8), taking h=—¢ A+ ]2
does the job, for with respect to this metric the summands in (7) are orthogonal,
J =H1H = —1 on the span of the dx;, so in particular J maps normal forms to
normal forms (it affects the dy terms in (3), but not the dz terms, up to an overall
negative sign.)

In this paper we will be concerned with the general Lorentzian setting, assuming
that every boundary face F' of X is time-like in the sense that H restricts to be
negative definite on N*F. We will fully treat the scalar equation, as well as the
equation on forms, with Dirichlet or Neumann boundary conditions. However, for
natural boundary conditions we only deal with the elliptic regions due to some
issues that are explained in the penultimate section. The propagation results will
be taken up elsewhere.
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3. MICROLOCAL ANALYSIS ON MANIFOLDS WITHOUT BOUNDARY

Suppose X is a manifold without boundary of dimension n. As outlined in
the introduction, we want to connect analytic objects (such as the wave operator)
with geometric objects (such as certain curves related to the light rays). This is
accomplished by the so-called microlocal, or phase space, analysis. The standard
setting for microlocal analysis is the cotangent bundle — T*X is the phase space.
If z; are local coordinates on X, and we write one-forms as ) (; dz;, then (z;, (),
j=1,...,n, are local coordinates on T*X.

For our purposes there are two important structures on T*X. First, being a
vector bundle, T*X is equipped with an RT -action (dilation in the fibers): R} x
T*X 5 (s,2,() — (z,s¢). In particular, homogeneous degree m functions with
respect to the RT-action, also called positively homogeneous functions on T*X \ o
(o denoting the zero section) are those functions p for which p(z,s¢) = s™p(z, ()
for s > 0. (There are no smooth functions p which are homogeneous of order
m € R\ N, with the problem being smoothness at the zero section, which explains
why we disregard the latter.) T*X is also a symplectic manifold, equipped with a
canonical symplectic form w, w =Y d(; A dz; in local coordinates.

If F' is a vector bundle over X, 7 : T"X — X the bundle projection, then 7*F
is a vector bundle over T*X whose fiber over (z,() is F;, the fiber of F over z. If p
is a section of 7* F', then for fixed z, but different {’s, p(z, ¢) lies in the same vector
space, F,, so one can talk about positively homogeneous sections of degree m of
7*F, namely the ones for which p(z, s¢) = s™p(z, () for s > 0.

We can now turn to differential operators. It is useful to recall the multiindex
notation: if & = (a1,...,0a,) € N", |a| = a1 + ... + ap, then DY = D2t ... Dgn,
with D; =D, = %82_7. (and N is the set of non-negative integers). (The appearance
of the factor of % is explained by the intertwining relation given by the Fourier
transform.)

If P is a scalar differential operator on X, say P =}, <, @a(2)DZ

< in some

local coordinates, one can associate a principal symbol

P(,0) = om(P)(z,0) = Y aa(z)¢

lee|=m

to P; this is a positively homogeneous degree m function on 7% X \ o.

If P is an mth order differential operator acting on sections of a rank ¢ vector
bundle FE over X (the set of which is denoted by Diff (X, E)), then in local coordinate
charts in which E is trivial, P is given by a ¢-by-¢ matrix P = (Pj;), where each
Pji = 3" a|<m ik,a(2) D is a scalar differential operator, hence has its principal
symbol pji = Z|a\:m ajk,a(2)(* as above, and the principal symbol of P itself is
the ¢-by-¢ matrix of the pj;. Invariantly, o, (P) is a positively homogeneus degree
m function on T*X \ o valued in endomorphisms of 7*E (which is 7*Hom(E, E),
i.e. the pull back of a bundle from X itself). We say that P has a scalar principal
symbol if for all (z,(), o (P) is a multiple of the identity operator on E,.

As an example, d € Diff' (X, AX) has principal symbol iCA, i.e. at (z,() € T*X,
o1(d)(z, Qu = iCAu, u € m(, - AX, while 01(d") = —ii, where icu is the evaluation
of the form w on the tangent vector at z associated to ¢ by the dual metric H, i.e.
H(C) — see [24, Section 2.10] for details. As

(11) e(CN)+C A =H( ).,
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it follows that
oo(0p) = o2(d*d + dd*) = H1d,

where H on the right hand side is understood as the metric function (i.e. H(z,({) =
H, (¢, ¢) is the squared length of a covector ¢ € T, X). In particular, O has scalar
principal symbol.

In fact, the same works for a more general class of operators, called pseudodiffer-
ential operators, or ps.d.o.’s for short. I will give a concrete description of what these
are, but one may learn more by listing their properties first. For P € ¥7}(X, E),
i.e. P is a classical pseudodifferential operator of order m acting on sections of F,
p = om(P) is homogeneous degree m function with values in endomorphisms of
7*E on T*X \ o, o denoting the zero section. There is also a slightly larger class
consisting of all pseudodifferential operators, U™ (X, E'), whose principal symbols
are merely (equivalence classes of) symbols in the sense discussed below, see (12).
We will always work with properly supported ps.d.o’s, i.e. such that either projec-
tion X x X — X is proper (compact sets have compact pre-image) when restricted
to the support of the Schwartz kernel of the operators — this ensures that the op-
erators can be composed, etc., and as the Schwartz kernels of these operators are
non-smooth only at the diagonal, this is not a serious restriction.

From an algebraic point of view, some of the most important properties are that
U2 (X F)=U,¥%"(X, E) is an order-filtered ring, the space ¥ (X, E) increasing
with m, so

AeVU™(X,E), Be V" (X, E)= AB € ¥ (X, E),

that the principal symbol is a ring homomorphism, that ¥9(X, E) is bounded on
L*(X), Y"(X, E) (m arbitrary) maps C*° (X, E) (and distributional sections of E,
D'(X, E)) to itself, and that there is a short exact sequence

0— 9" YX,E) = U7X, E) — S (T*X \ o,m*Hom(E, E)) — 0;

where SJ7  stands for €' homogeneous functions of degree m.

On the other hand, for X = R", there are explicit maps, called quantizations,
sending appropriate classes of functions on T* X to pseudodifferential operators on
X. The standard class of such functions to consider is that of symbols: a symbol
of order m on T*X (X = R") is a C™ function with specified behavior as £ — oo
(and uniform control as © — oo, although this is much less relevant here): for all
a, f € N™ there is Cy g > 0 such that for all (x,&) € T*X,

(12) |D2Dla(w,€)| < Cas(1+ [€))™10.

The set of these symbols is denoted by S™(7™X) or S™(R7;RE) if one wants
emphasize explicit coordinates (hence product structure on 7*X). This generalizes
polynomials in £ (recall that symbols of differential operators are polynomials): the
order of a polynomial decreases each time one differentiates it. Note that a smooth
homogeneous function of degree m on T*X \ o is in fact a symbol of order m in
|€] > 1 over bounded regions in z, i.e. it satisfies the symbol estimates (12) there —
we need to work away from the zero section, £ = 0, for any smooth homogeneous
function on all of T* X is in fact a polynomial. A one-step polyhomogeneous symbol
a of order m is a symbol of order m for which there exist smooth homogeneous
degree m — j functions a; (j € N) on T*X \ o such that, for all k, a — Zj;é a; is a
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symbol of order m — k in |[£| > 1. For quantization, for instance, one can take the
‘left quantization’

(13) (qr(a)u)(z) = (2m)~" / = €0z, €yuly) dy de,

]R2n

qr(a) is (by definition) a ps.d.o. of order m if a is a symbol of order m. Note that
if a is a polynomial in { depending smoothly on z, i.e. a(z,§) = 3|4 <m @a ()€,
then qr.(a) = X, <m da(2)D®, explaining the connection to differential operators.
Vector bundles E (of rank £) over R™ are trivial, and one can use a given trivializa-
tion to quantize a € ST (T* X; m*Hom(E, E)) by identifying a with an ¢-by-¢ matrix
of functions a;x, and letting ¢r,(a) = (qr(a;x)) be the matrix of the quantizations.
For general manifolds one can transfer this definition by localization. These quan-
tizations ¢ have the property that o,,(¢(a)) — a is a symbol of order m — 1 — so to
leading order ¢(a) is independent of the choice of g, but there are still many choices.

It should be emphasized that, in the present setting, the relevant region for
microlocal analysis is the asymptotic regime as £ — oo. Making various objects
homogeneous, or conic, is a way of ‘bringing infinity to a finite region’. Another
way of accomplishing this is to compactifying the fibers of the cotangent bundle —
this is the approach taken by Melrose, e.g. in [11].

The symplectic form w turns scalar valued functions p, or rather the differen-
tial dp, into a vector field H, (called the Hamilton vector field of p) on T*X via
demanding that w(V, H,) = Vp for all vector fields V. Thus,

Note that H,, is homogeneous of degree m —1. If p € S{ (T*X \ o; m*Hom(E, E))
is a scalar multiple of identity, p = pld, then we write H,, = H;. Note that we
only define H, is p is scalar valued. As mentioned above, an example with p = h, a
Riemannian or Lorentzian metric, with FE being either scalars or differential forms,
is P = Ay, the Laplace-Beltrami operator (in the Riemannian case) and P = O,

the d’Alembertian or wave operator (in the Lorentzian case).

Definition 1. Suppose that p is homogeneous degree m on T*X \ o and scalar
valued. The characteristic set of p is ¥ = p~*({0}). Bicharacteristics are integral
curves of H), inside X.

The role that H,, plays in analysis becomes apparent upon noticing that if P €
U(X), Q € U7 (X) then [P,Q] = PQ — QP € "™ ~1(X), and
(14) Uerm’fl(i[Pa Q]) = HpQ-

If instead P € ¥}(X, E), Q € \I'gf/ (X, E) and P has scalar principal symbol, then
[P,Q] € W™ ~L(X | E) still since

Omtm! (PQ) = 0m(P)om (Q) = om/ (Q)om(P) = Tpgmy (QP),
SO Omtm ([P, Q]) = 0, but the principal symbol is given by a more complicated
expression, for it depends on P modulo \I/ZTQ(X, E). However, if both P and Q
have scalar principal symbols, then (14) holds as can be seen by locally trivializing
FE and computing the commutator.
To do analysis, we also need a notion of singularity of a function or distribution
u. The roughest notion is that of the wave front set WF(u), which locates at
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which points and in which direction a function u is not smooth, here meaning
C*°. Immediately from the definition, given below, this is a closed conic subset of
T*X \ 0; u is C* if and only if WF(u) = 0. In fact, for any point 2o € X, 2¢ has a
neighborhood in X on which u is C°° if and only if WF(u) N (T} X \ 0) = 0.

One way of defining WF(u) for distibutions wu is the following;:

Definition 2. Suppose that v € D'(X, E). We say that ¢ € T*X \ 0 is not in
WPF(u) if there exists A € U9(X, E) such that o¢(A)(q) invertible (i.e. A is elliptic
at ¢; in the scalar case this just means oo(4)(q) # 0) and Au € C*°(X, E).

To get a feeling for this, one should think of A as the quantization of a scalar
symbol a which is supported in a cone around ¢, identically 1 on the R¥-orbit
through ¢ (at least outside some compact subset of T*X).

For example, if &g is the delta distribution at the origin, then

WE(d0) = {(0,¢) : ¢ # 0} = N*{0} \ o,

i.e. dp is singular only at the origin, and it is singular there in every direction — which
is quite reasonable. As an aside, conormal bundles are Lagrangian submanifolds of
T*X, i.e. the symplectic form vanishes when restricted to their tangent space, and
are maximal dimensional (i.e. n-dimensional) with this property. Conic Lagrangian
submanifolds of 7* X \ o play an important role in many parts of microlocal analysis.

A more interesting example is that of a domain 2 with a C*° boundary, and xq
the characteristic function of Q. If locally 0f is defined by f, i.e. over some open
set O C X,00N0={2€0: f(z) =0} and df never vanishes on 9Q N O, then,

over O, the space of sections of N*0f) is spanned by df, so any covector in N*9€)
has the form adf, o € C*°(92). In this case,

WF(xq) = N*OQ\ o.

That is, xqo is smooth both in Q and in the complement of its closure (after all, it
is constant there!), and it is singular at 92, but it is only singular in the conormal
directions: it is smooth when one moves along 9. (This can be seen directly from
the definition of WF': consider differentiating yq along a vector field tangential to
the boundary, and note that the principal symbol of such a vector field vanishes on
the conormal bundle!)

One can measure singularities with respect to other spaces: e.g. the Sobolev
spaces Hy (X, FE), where we would write WF*(u), or with respect to real analytic
functions, where we would write WF 4(u). Indeed, WF?*(u) plays a role in the
proofs of various results stated below; one often proves in an inductive manner that
u is microlocally in H® for every s (hence is C™ microlocally), rather than proving
directly that w is C°° microlocally. We can define WF*(u) for u € D'(X, E) by
saying that ¢ € T*X \ o is not in WF®(u) if there exists A € ¥(X, E) such that
00(A)(¢) # 0 and Au € H{ (X, E). Equivalently, one can shift the weight to the
ps.d.o. from the function space:

Definition 3. Suppose that v € D'(X, E). We say that ¢ € T*X \ o is not in
WF*(u) if there exists A € U¥(X, E) with 0¢(A)(q) # 0 and Au € L2 (X, E).

loc
The main facts about the analysis of P, which in this generality are due to
Hormander and Duistermaat-Hormander [6, 3, 8] are:

(1) Microlocal elliptic regularity. Let 3(P) be the characteristic set of P, i.e.
the set of points in T*X \ o at which o(P) is not invertible. (Thus, if
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o(P) = pld is scalar, this is just p~1({0}).) If u € D'(X, E) then WF(u) C
WF (Pu) U 3(P). In particular, if Pu € C*(X, E) then WF(u) C X(P).
(2) Propagation of singularities. Suppose that o(P) = pId is scalar, p is real,
Pu € C*°(X,E). Then WF(u) is a union of maximally extended bichar-
acteristics in X(P). That is, if ¢ € WF(u) (hence in X(P)) then so is the
whole bicharacteristic through q.
For analogy with the manifolds with corners setting, we restate part of these
conclusions in a special case:

Theorem 4. (See Hormander and Duistermaat-Hormander [6, 3, 8].) Suppose
P e Y"(X,E), 0,(P) = pId is scalar, real, Pu = 0, u € D'(X,E). Then
WF(u) C ¥ = X(P), and it is a union of mazimally extended bicharacteristics of
P.

Note that (2) may be vacuous; indeed, if H), is radial, i.e. tangent to the orbits
of the Rt-action, then it does not give any information on WF(u), as the latter
is already known to be conic. Such points are called radial points, and in recent
work with Hassell and Melrose [5], they have been extensively analyzed under non-
degeneracy assumptions. If P is the wave operator, there are no radial points in
¥ = ¥(P), but such points are very important in scattering theory (where the
R*-action, or its remnants, are in the base variables z).

As an example, consider the wave operator P = D7 — Ay, X = M xR, M
a manifold without boundary. Then p = 09(P) = 7> — [£|2, where (z,t,&,7) are
coordinates on T*X (so ¢ is dual to x, and 7 is dual to t), and the projection of
bicharacteristics to M are geodesics. If M C R™ and g is the Euclidean metric, then
H, = 270, — 2¢ - 9,, and bicharacteristics inside p = 0, i.e. |7| = |{], are straight
lines

5+ (g — 250, to + 2705,&0, 70),
which explains geometric optics in the absence of boundaries.

4. PROPAGATION OF SINGULARITIES ON MANIFOLDS WITH CORNERS: THE PHASE
SPACE

On manifolds with corners, roughly, the results have the same form as in the
boundaryless case, but the definitions of wave front set and the bicharacteristics
change significantly. In particular, the relevant wave front set is WF (), introduced
by Melrose (see [17], [7, Section 18.2] for the setting of smooth boundaries, [19] for
manifolds with corners). Both WF,(u) and the image of the (generalized broken)
bicharacteristics are subsets of a new phase space, the b-cotangent bundle *T* X .

The reason for this is that one cannot microlocalize in T*X: naively defined
ps.d.o’s do not act on functions on X in general, and even when they do, they do
not preserve boundary conditions. This causes technical complications, for we are
interested in the wave operator, P = D? — A, whose principal symbol is a O
function on T*X, not on *T* X where we microlocalize. In fact, from a PDE point
of view, this discrepancy is what causes the diffractive phenomena.

Rather than defining *7* X directly, I describe its main properties: these can
be easily made into a definition as we shortly see. Being a vector bundle, locally
in X it is trivial, and in the local coordinate product decomposition above, it will
take the form U, , x Rk x ]RZ*’“, with U C [0,00)% x R7~F, where o is the ‘b-dual’
variable of x and ( is the b-dual variable of .
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There is a natural map 7 : T*X — ®T* X which in these local coordinates takes
the form

ﬂ—(x’ y7 57 C) = (x’ y7 x£7 C)’

(15) with z€ = (z11, . - ., Tk&k)-

(That is, o = x;&;.) Thus, 7 is a C* map, but at X, it is not a diffeomorphism.
Over the interior X° of X, *T*X and T*X are naturally identified via 7, and

WFp(u) N T5e X = m(WF(u) N Tio X).

Note that if ¢ is a linear function on each fiber of ®T* X, then it has the form

g=> a;(z,y)a;+ > bi(x,9)¢,
SO
Tq =Y aj(@y)z& + Y bi(n,y)G,

which is the principal symbol of
(16) Q= Z aj(z,y)x; Dy, + Z bj(z,y) Dy,

Vector fields of this form are exactly the vector fields tangent to all boundary faces
of X; we denote their space by V(X).

In fact, this indicates how ®T'X can be defined intrinsically: the set of all smooth
vector fields tangent to all boundary faces is the set of all smooth sections of a vector
bundle; indeed, x,y, a;, b; above give local coordinates on T X. Then *T*X can be
defined as the dual vector bundle. However, as long as all considerations are local,
and they are mostly such here, it is safe to consider *T*X a space arising from a
singular change of variables on T*X (given by (15)) — it is for this reason that it is
sometimes called the compressed cotangent bundle.

There are two closely related pseudodifferential algebras microlocalizing Vj,(X)
and the induced algebra of differential operators Diff,(X), corresponding to ¥ (X)
and U(X) in the boundaryless case. These are denoted by Wy(X) and Wy.(X),
respectively. There is also a principal symbol on ¥}*(X); this is now a homogeneous
degree m function on *T*X \ 0. W,(X) has the algebraic properties analogous to
U(X) on manifolds without boundary. ¥,(X) can be described quite explicitly;
this was done for instance in [19, 27] in the corners setting, and in [7, Section 18.3]
for smooth boundaries. In particular, a subset of Uy(X) (which would morally
suffice for our purposes here) consists of operators with Schwartz kernels supported
inU x U, U C X a coordinate chart with coordinates x,y as above, with Schwartz
kernels of the form
(17)

q(a)u(z,y)

/

= (2m)~" / = O §(E— D aa,y, w6, Qula’ o) da' dy de dC.

understood as an oscillatory integral, where a € S™ (R} ;R7 ) (with o = ¢, cf.

(15)), ¢ € C=((—1/2,1/2)F) is identically 1 near 0, 2= = (T2 ZeThi)

T T
and the integral in 2’ is over [0,00)¥. This formula is similar to (13), but ¢ is
replaced by ¢ here. Thus, if a is a polynomial in its third and fourth slots, i.e. in
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z¢ and ¢, depending smoothly on x,y, i.e.
a(xvyafvg) = Z aaﬁ(xvy)(xf)acﬁv

la|+]8]|<m
then
d@)= Y aus(e.y)@D,) DL,
la|+]8]|<m

thus connecting V,(X) and Diff(X) to ¥p(X) in view of (16). One can also
construct U, (X; E, F) — acting between distributional sections of vector bundles E
and F' over X. Elements of ¥]"(X) have the important property that they map
C>®(X) — C*(X), and more generally they map 2;C®(X) — z,;C>(X), so if
A € U'(X), then (Au)|g,; depends only on u|p, for u € C*°(X). In particular,
Dirichlet boundary conditions are automatically preserved by such A, which makes
U, (X) easy to use in the analysis of the Dirichlet problem in [27]. We will need
more care for natural boundary conditions, which is a point we address in the next
section.

Now WFp(u) can be defined analogously to WF(u). For simplicity we state
this here for u € L (X;E) where E is a vector bundle; this is how the main
theorem is stated below, but see [27, Section 3] for the more general setting. (Here
we put an arbitrary Riemannian metric on X and an arbitrary fiber metric on F;
the resulting L?-norms are equivalent over compact sets.) The space of ‘very nice’
functions corresponding to V,(X) and Diff,(X), replacing C*°(X), is the space of
L? conormal functions to the boundary, i.e. functions v € L2 (X;FE) such that

loc

Qu e L2 (X;E) for every Q € Diff,(X; E) (of any order). Then ¢ € *T*X \ o is
loc

not in WFy(u) if there is an A € U(X; E) such that o;,0(A)(q) is invertible and
Auw is L2-conormal to the boundary. Spelling out the latter explicitly:

Definition 5. (See [27, Section 3] for the more general setting.) Suppose u €
Lio(X; E). Then g € *T*X \ 0 is not in WFy(u) if there is an A € WO(X; E) such

that op,0(A)(q) is invertible and QAu € L% (X; E) for all Q € Diff,(X; E).

loc

Note that the definition of WF could be stated in a completely parallel manner:
we would require (for X without boundary) QAu € L?(X) for all Q € Diff(X) —
this is equivalent to Au € C*°(X) by the Sobolev embedding theorem.

Moreover, the wave front set is microlocal, i.e. WF,(Bu) C WF;(B) N WF(u),
so the standard characterization applies: ¢ ¢ WFy(u) if there is an open set O
containing ¢ such that for every B € ¥°(X; E) with WF,(B) C O, Bu is L*-
conormal to the boundary.

In fact, technically it is useful to work with the space of functions conormal
relative to H\. (X;E), as the latter is almost the quadratic form domain when
E = AX. Moreover, we also need spaces of distributions possessing finite regularity.
Definition 6. Suppose u € H}!

L(X;E). Then g € *T*X \ 0 is not in WF,™ (u) if
there is an A € V9(X; E) such that o3,0(A)(q) is invertible and QAu € H} (X; E)
for all @ € Diffy(X; E).

Moreover, ¢ € *T*X \ o is not in WFim(u) if there is an A € U™ (X; E) such
that 05,0(A)(q) is invertible and Au € HL (X; E).

The key observation in making the definition useful is that any A € U9 (X; E)

with compact support defines a continuous linear maps A : H'(X; E) — H'(X; E)
with norms bounded by a seminorm of A in ¥) (X;E). This follows from the



DIFFRACTION BY EDGES 17

analogous statement for scalar operators, proved in [27, Lemma 3.2], by using local
trivializations. However, we recall the essence of the argument as it involves some
important concepts.

The indicial operators Nj(A)(a;), introduced by Melrose, see [27, Section 2] for
a discussion in the present context, play an important role below. These capture
the behavior of A at a boundary hypersurface H;. For a differential operator,

A= Z aa,g(x,y)(xDm)aDy’g =
le|+|8]<m
Ni(A) = > aap((#,0),y)057 (£Dz)* D}
leel+18]<m
where we write & for & with the coordinate x; dropped, similarly for &, and (,0)
is © with the jth coordinate replaced by 0. Thus, Nj(A) captures A fully at Hj,
i.e. not merely its principal symbol (which only captures the highest derivatives),

in the sense that N;(A)(o;) = 0 for all o; € R implies A € x;Diffy"(X) (this also
holds for ps.d.o’s). More invariantly, also for A € U} (X),

Nj(A)(o)(,y) = (x;"7 Az w)|u,, ulm, = 1,
which follows from xj_wj ij-”j € U'(X), which hence maps C*(X) — C*(X)
and z;C(X) — z;C>(X) (so the left hand side is independent of the particular
choice of u). One application of indicial operators is to note that

AcU(X) = [x;D,,, Al € 2;V5(X)

(rather than merely in W72 (X)), since its indicial operator is [N (2D, ), N(A)] =0,
for N;(z; D, ;) = 0 is a constant (rather than a general differential operator). This
implies that for A € U9 (X), A: HY(X) — H*(X), for A is bounded on L?(X),
and

(18) D, A= a:j_l(ijmj)A = a:j_l[a:ijj,A] + (a:j_lej)ij,

with the first term on the right hand side in ¥9 (X), hence bounded on L?(X),
and x;lej € UP (X), hence bounded on L?*(X) as well. In view of a:;lAa:j =

A+ xj_l[A7 x;], an immediate consequence of (18) is the following

Lemma 7. (Lemma 2.8 of [27]) Let 0.,, 05, denote local coordinate vector fields
on *T*X in the coordinates (x,y,0,(). For A € W(X) with Schwartz kernel
supported in the coordinate patch, a = oym(A) € C*°(PT*X \0), we have [D,,, A] =
A1D,, + Ay € DIff "0 (X) with Ag € U (X), Ay € U} (X) and

1 1
(19) Opm—1(A1) = E&,ja, obm(Ao) = Eamja.
This result also holds with ¥y(X) replaced by ¥po(X) everywhere.

Here we introduced some notation for operators of the form

(20) > QjA;, Q; € Diff*(X), A; € T (X),
J
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where the sum is locally finite; we write Diffk\I!Z”(X ) for their set, and analogously
for Diff*¥7"(X). A calculation analogous to (18), see [27, Lemma 2.5] shows that

Bj € Dift" ¥y (X) (j=1,2) =
B1Bs € DiffF1 k2 \I/ZHerz (X), [Bl, BQ] e DiffF1tk2 \I/Zthmzfl(X)
i.e. the b-ps.d.o order of the commutator is one order lower than that of the prod-
ucts.

Again, one has microlocality, see [27, Lemma 3.9]: for B € V¥(X;E), u €
Hyy, o (X5 E),

loc

)

WEF} ™ ¥(Bu) € WF},(B) N WF, ™ (u).
One can also work relative to the dual space, H~1(X), of H'(X), and define
WE, " (f) for f € H~'(X); we simply refer to [27, Section 3] here.

5. ELLIPTIC ESTIMATES

If P € Diff™"(X), with o(P) = pId scalar, the characteristic set %(P) = p~1({0})
is a subset of T*X. Let ¥ = 7(X(P)) C *T*X be the compressed characteristic set.
If P is elliptic, then ¥ is empty, but even if P is not elliptic, 3 is often a proper
subset of *T* X, outside which P behaves as if it were elliptic. In particular, as we
prove below, if P is the wave operator on forms, Pu = 0 with Dirichlet, Neumann or
natural boundary conditions, then WFi’DO(u) C Y. If P= A — ), A the Laplacian
on forms, then Pu = 0 with Dirichlet, Neumann or natural boundary conditions
implies that u is H'-conormal, which is the statement of elliptic reqularity.

We make this more concrete for the wave operator P = D? — A, on X = M x R.
Using coordinates from Section 2, namely such that (5) holds, on T}5, z X \ o,

(21) Pla=o = 7° = € A@)§ — {- BH)C,

with fl, B positive definite matrices depending smoothly on y. Thus, with U =
{z =0} N°Ty, z X \ o, writing local coordinates on *T*X as (z,7,t,0,(,7),

(22) S0U={(0,5,t,0,(7): 7 > B, (1) # 0}

Note that 3 = 7(X(P)) is disjoint from all points (x,9,t,0,(,7) with z = 0 at
which either o # 0 (for o; = x;&; = 0 for all j) or 72 < ¢ - B(g)C.

In the more general Lorentzian setting, by Section 2 we have coordinates, namely
such that (8) holds, in which

(23) pla=o =& - A(y)§ + ¢ - B(y)¢.
This gives that
(24) SnU={(0,5,0,¢): 0<¢-By), ¢ 0}

We have already seen that any A € U9 (X) preserves Dirichlet boundary con-
ditions. For natural boundary conditions we need to be more careful, which is a
topic we now address.

The basic idea of proving microlocal estimates for solutions of the wave equation,
ie. foru e H}MOC(X; AX) (so v Au =0 at 0X) satisfying

(25) (du, dv) + (d*u, d*v) = (f,v)

for all v € H}%(X;AX), is to use the equation with v replaced by an operator
applied to u, and then rewrite it to obtain an estimate for |[Bul/3,, for some B.
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More concretely, we would like to use A € U%(X;AX) with v = A*Au. In order
to do this, we need that A*Au € H'(X;AX) which is automatically true if A €
\IIEC(X; AX), and v N A*Au = 0. This latter part is what requires particular care,
in fact does not work in general, but we have the following result:

Lemma 8. Suppose that a € S™(*T*X). Then there exists an A = q(a) €
Wit (X,AX) such that opm(A)(w,n) = a(w,n)l(wy) (I being the identity opera-
tor on ™ AX ) and N;(A) : C®(H;; Ar(H;)) — C®(H;; Ar(H;)) for each bound-
ary hypersurface H;. Thus, for m = 0, A : H}%(X;AX) — H}%(X;AX), and
similarly for the local spaces..

Proof. Using a partition of unity {¢x} on X, it suffices to prove the result with
a replaced by ¢ra, for if Aj denotes the associated operator, A = > Aj satisfies
the requirements of the theorem. Thus, we may assume that a is supported in
a coordinate chart O, in which the trivialization u = (u.,), as in (3), of AX can
be used (with the notation of Section 2), so v A u|g; = 0 means exactly that
Um|a, = 0 for m € J;. Then let Ay € V}"(X) be a scalar operator with principal
symbol ¢ and Schwartz kernel supported in O x O, and let A € ¥*(X;AX) be
given, using the trivialization, by the diagonal matrix of operators on AX with all
diagonal entries equal to Ag. Then Nj (A) is diagonal with respect to the induced
trivialization of AX|py, with diagonal entries Nj(Ap). If u € C®(X;AX) then
(4w, = Nj(A)(uli,), 50 if uly, € C=(X; An(H,)) then (N;(A)(ul,))m =
]\Afj(Ao)(um|Hj) = 0 for m € J; proving the claim.

Due to the density of C¥.(X; AX) in Hp, .(X;AX), fora € SO(bT*X) we deduce
that the A given by the lemma maps Hp, .(X;AX) — Hp (X;AX). O

If Ais as in the Lemma, A* does not map Hp .(X;AX) — Hp (X;AX) in
general, for that would correspond to Nj(A) mapping sections of (AgH;)" to itself.
However, we can use as replacement the operator A" with AT = ¢(a), writing Ag
be Ag of the lemma constructed with @ in place of a, and then oy, (A*) = al =
Ob,m (AT)

We also want to rewrite (du, dv) + (d*u,d*v), u € C*(X,AX), v € C*(X,AX).
Here recall that (.,.) is the inner product given by h, so is not positive definite
if h is Lorentzian, only if h is Riemannian. The following calculation follows [23,
Section 4], which in turn was based on the work of Mitrea [21] and Mitrea, Mitrea
and Taylor [20]. Let V be any first order differential operator with the same symbol
of the Levi-Civita connection, so

o1 (V) (w,)u =i @u, ue sz,f)AX'
Writing § = d*, 02(dd + db) = 02(V*V) (as both are given by the dual metric
function, H), and

6d 4 dé — V*V = R € Diff' (X; AX)

is formally self-adjoint. We remark that the Levi-Civita connection itself is special
because if V is the Levi-Civita connection then R € Diff’(X; AX), i.e. is a bundle
isomorphism, due to the Weitzenbock formulae (see [24, Chapter 10, Section 4]),
but this does not play a role here. Since for any first order differential operator
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P € Diff (X; E, F') one has (see [24, Chapter 2, Proposition 9.1])
. 1
(Pu,v)p2(x;r) =(u, P*0) 2 (x;m) + {<01 (P)(vw)u,v) L2(ax;F),

(01 (P) ()t ) 2 05,) = /6 @ ()0, dS(w),

where P* is the formal adjoint of P, and in the last term one takes the inner
product on the fiber F,, of F' over w € 0X and integrates with respect to the
surface measure induced by the restriction of h to X (which is non-degenerate by
the time-like assumption), one deduces that for u € C*°(X;AX), v € CX(X; AX),

((dé 4 6d — V*V)u,v)

= (du, dv) + (du, v) — (Vu, Vv) + /ax((y Adu,v) — (v Vdu,v) + (Vyu,v))dS

= (du, dv) + (du, v) — (Vu, Vv) + / ((v A du,v) — (du,v Av) + (Vyu,v))dS.
0X

If v Av =0 (i.e. v is normal), the penultimate term on the right can be dropped.
Writing the integral over 9.X as a sum of integrals over the boundary hypersurfaces
Hj;, and extending the conormal v; to H; to a smooth 1-form on X for each j,
note that if u is normal, so v; Au = 0 at Hj;, then v; A u = z;u for some smooth
form @, so 6(v; Au) = 0(z;4) = ;00 — dx; V 4 is equal to —dz; V @ at Hj, so
(0(vj ANu),v) = —(dzj V @,v) = (4,dz; Av) =0 at H; if v is normal. Thus, the
integral over H; can be rewritten as

I,

where P, u = 6(v; Au)+v; ANdu+V,, u is a priori a first order differential operator.
However, the principal symbol of iP,, is EV (U AN)+v AEV.) = (v, ). = 0 (this
is just the polarized version of (11)), so P, is in fact zeroth order, i.e. a bundle
endomorphism. We thus have for u € CF(X;AX), v € OF (X;AX):

(0(vj ANu) + v Ndu+V, u,v)dS = / (Py,u,v)dS,
H;

(du, dv) + (Ju, ov) = (Vu, Vo) + (Ru, v) —|—/ (Ru,v) dS
o0X
for some smooth bundle endomorphism R and a first order differential operator R;
by continuity and density this holds for all u € Hp ), (X;AX), v € H}LC(X; AX).
Thus, the inhomogeneous wave equation becomes

(26) (f,0) = (Vu, Vo) + (Ru, v) + / (Ru,v) dS

X
forallv e H}%’C(X; AX). We can think of the last two terms on the right hand side
as error terms, for

(27) |(Ru,v)],| /8X(Ru7v)d5| < C(llullgrllolle + llullc2 vl 1),

can be estimated using one derivative on u and v altogether, while (Vu, Vv) in-
volves two derivatives altogether. This formula is valid both for Lorentzian and
Riemannian metrics g; the difference is that for Lorentz metrics the quadratic form
given by V is not positive. However, it is microlocally positive in the elliptic region
for scalar operators, and in general can be adjusted in this region by use of a twist
J discussed below, giving rise to the elliptic estimates.
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If a € S"(*T*X) and A € U7(X;AX) is given by Lemma 8, then we may take
v = A" JAu, where J is the bundle isomorphism given by (9). As our formula is
valid for any V with principal symbol ié@, we may choose to V to be the gradient
corresponding to the flat metric in the coordinate chart O (where v is supported),
and then (keeping in mind that the inner products still correspond to the actual
metric h!)

(Vu, VAT JAu) =Y (HopHijDu,tia, Du, Al Agug) 12 x),
ij o,
where the remaining pairing is the L?-pairing on functions, i.e. is the integral of
the product (with a complex conjugation). Thus, commuting A(]; through D,
taking the adjoint, commuting through the metric factors and then D,,,, and also
commuting J through D,,;, with each commutator giving an operator of one lower
b-differential order,
(Vu, VAT JAu) =3 " (HopHij Doy, (A}) tt, J Doy, Agug)
ij o,
+ Z Z(<Baﬁ,iuaa ijA0u6> + <Dwiua7 éa,@,jAOuﬁ»

j a,B

with
Baﬁ,i; éozﬁ,j S Dlﬁ‘l\lfgz_l(X7 AX)) WF2(3067)7 WFé(éaﬁ,J) - WF;, (A)7

see (20) for the definition of Diff Wy, (X). As (A(];)* —Ap € ¥" (X)), the contribution

of this difference can be absorbed into B, ;, so one obtains in view of (10),

<VU/, VATJAU> = Z Z<I~{05H”DU)7A0UO,, ij A()U,ﬁ>

ij B
+ Z Z(<Baﬁ,zua; ij A0Uﬂ> + <Dw,;uoz7 C(xﬂ,jAOuﬁ>7
ij a3

with Bag; and C,p; having similar properties to Bag; and Cyp ;. The first term
on the right hand side is just the twisted Dirichlet form,

(28) Q(AU, AU) = <VAU, VAU’>L2(X7AX®T*XI:I®H)’

with the inner product on AX ® T*X induced by H (which is positive definite) on
AX,and H on T*X (which is not positive definite). Rewriting

(Ru, ATAu) = ((A")* Ru, Au) = (RAu, Au) + (((AT)* — A)Ru, Au) + ([A, R]u, Au),

((A")* — A)R, [A, R] € Diff' W;"~*(X; AX), so the commutator in (Ru, A* Au) can
be treated as the B,g,; terms. Moreover,

(Ru, AT Au) = (Ru, N(AT)N (A)u)
= (RN(A)u, N(A)u)ox + (N((A)*) = N(A)) Ru, N(A)u)ox
+ ([N (A), Rlu, N(A)u)ox,

and similar estimates apply again.
Now suppose that

P=45d+ds+ P, =0+ P, P, € Diff' (X),
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with natural boundary conditions, that is uw solves Pu = f, f € Hil(X, AX) in
the sense that u € H (X;AX) with v Au =0 and

(29) (du, dv) + (du, dv) + (Pru,v) = (f,v)

for all v € H(X; AX) with v Av = 0. Then in the argument above P; can simply
be incorporated into R, so the same arguments work.

If a € S™(*T*X) is supported near a point q € bT*X\(WF;Lm(f)UZ), a(q) # 0,
so that WF}(A) N (WF, 2™ (f) US) = 0, and WF}™2(u) 0 WF)(A) = 0 then
(Bap,itta; Dw; Aoug) and (D, ta, Cap, jAous) are finite, and similarly all the terms
arising from R and R’, while (f, A" JAu) can be handled by Cauchy-Schwartz. If
the calculation we performed were directly valid, this would give that the twisted
Dirichlet form Q(Au, Au) is finite, i.e. ¢ ¢ WF,""(u). As the calculation actually
requires more regularity, we need to run an approximation argument, replacing A
by a family A, € ¥, >(X), r € (0,1], such that A, is uniformly bounded in ¥}*(X),
and A, — Aasr — 0in ¥} ¢(X) for all € > 0 (we cannot do the approximation
without losing €). The calculation with A replaced by A, applies directly, and
now gives that the twisted Dirichlet form Q(A,u, A,u) is uniformly bounded. If
the metric is Riemannian, the (twisted) Dirichlet form is positive definite (there
is of course no need for twisting in this case, but on the other hand it does not
hurt either), so this (together with the metrizability and weak-* compactness of
the unit ball in H'(X, AX)) gives directly that for any sequence of ’s converging
to 0 there is a weak-* convergent subsequence, A, u, in H HX,AX); as Apu— Au
in distributions, we deduce that Au € H'(X,AX), so that u ¢ WF,™(q).

In general, if the metric is not Riemannian, we need to note that away from 3,
the twisted Dirichlet form Q(u,u) is microlocally positive, u ¢ WF, ™ (g) still holds.
As given the uniform estimate for A,u this part of the argument is essentially the
same as in the scalar product case (except that one specifies the localization in
y as well, so that A is supported sufficiently close to y = 0), we refer the reader
to [27, Section 4] for details, and we simply state the result on microlocal elliptic
regularity:

Theorem 9 (Microlocal elliptic regularity for Riemannian and Lorentz metrics.).
Suppose that uw € Hp 1, (X;AX), Pu = f € H N (X;AX) in the sense of (29).
Then

loc

WE, ™ (u) \ 3 € WE, "™ (£).

In particular, if f =0, then WF;OO(U) C %, while if h is Riemannian (but f #0
necessarily) then WE,™ (u) € WEF, "™ (f).

In fact, we can switch to the L? (rather than H') based b-wave front set: as
shown in [27, Lemma 6.1], for solutions of the scalar wave equation Ou = 0,
WF;’m(u) = WF}"*(u), and given the elliptic estimates we just sketched, the
proof goes through unchanged for the form-valued wave equation. In fact, the
stronger statement holds (again, as in [27, Lemma 6.1]):

(30) WE, ™ (u) \ WE, V"™ (Pu) = WEP T (u) \ WF, V" (Pu).
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6. PROPAGATION OF SINGULARITIES ON MANIFOLDS WITH CORNERS: THE
BICHARACTERISTIC GEOMETRY

After the elliptic discussion, we turn to propagation and bicharacteristics. So we
let

(31) P € Diff*(X, E), 0o(P) =pld, p=h,

where % is Lorentzian. Recall that 3 = 7(X(P)) C *T*X is the compressed char-
acteristic set. Generalized broken bicharacteristics are curves inside 3, satisfying a
Hamilton vector field condition, plus an additional requirement where the boundary
is smooth. More precisely:

Definition 10. Generalized broken bicharacteristics are continuous maps 7 : I —
3, where I is an interval, satisfying
(1) for all f € C>(*T*X) real valued,

timing 2 )(6) = (f 27)(s0)

$— S0 S — 8o
> inf{Hy(7"f)(q) : g €7 (v(50)) NT(P)},
(2) and if go = v(s0) € *T}; X, and po lies in the interior of a boundary hyper-

0
surface (i.e. a boundary face which has codimension 1, so near py, 0X is
smooth), then in a neighborhood of sg, 7 is a generalized broken bicharac-

teristic in the sense of Melrose-Sjéstrand [12], see also [7, Definition 24.3.7].

(1) is a very natural requirement. In the interior of X, we have defined bicharac-
teristics as integral curves of the Hamilton vector field of p in the characteristic set.
Thus, if v is an bicharacteristic segment over X°, then for all f € C*°(T*X), the

derivative of f along «y at sg, i.e. lim,_g, %W, is equal to (Hp f)(v(s0))-
When we go back to the manifold with corners X, H, is a vector field on T%X,
while the image of v lies in *7*X. Moreover, 7 is not one-to-one, even when re-
stricted to X(P). Thus, the preimage of 7(s¢) under 7 often contains many points
(although it is still compact). Hence we cannot expect that f is differentiable
along v, although we can still expect bounds for the liminf (and limsup) of the
difference quotients by taking the worst case scenario as we evaluate Hp(7* f)(q)
over ¢ € m (v(sp)) N X(P), which explains the infimum. Note that replacing f
by —f, the liminf estimate for —f gives a limsup estimate for f, so (1) really
gives a two-sided estimate. Thus, it is very natural to demand the estimate in the
definition above — and conversely, this gives a useful notion of generalized broken
bicharacteristics.

Without (2) the propagation theorem below would still hold, but would be
weaker. In fact, our definition, without the strengthening given by (2), is equivalent
to Lebeau’s [10], see Lemma 11 below. While it is nice to have a stronger result,
it is important to note what (2) actually achieves: it rules out certain rays tangent
to the boundary hypersurface (where the boundary is smooth): it prevents rays
gliding along the boundary to enter the shadow of an obstacle. We remark that
this strengthening, which is a result of Melrose and Sjostrand [12], is special to C*°
singularities; if we were discussing the analytic wave front set, we could not do so.

Now, if P is a ‘perturbed wave operator’, as in (31), then Snell’s law is encoded in
the statement that v is continuous. Indeed, any (locally defined) smooth functions
on *T*X, such as z,§,t, 0, 5, T, are continuous along v, i.e. their composition with
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7 is continuous (since 7 is a continuous map into *7*X). However, & = xj_loj is
not continuous, so the normal momentum may jump.

In order to better understand the generalized broken bicharacteristics for P as
in (31), we divide ¥ into two subsets. We thus define the glancing set G as the set
of points in ¥ whose preimage under # = 7|y, consists of a single point, and define
the hyperbolic set H as its complement in 3. Thus, ¢ € 3 lies in G if and only if on
77 ({q}), & = 0 for all j. More explicitly, with the notation of (24),

GnU={(0,94,0,0): ¢-B(y)¢ =0, ¢#0},
HOU={(0,9,0,0): ¢-B(y)¢ >0, ¢#0}.

In particular, for product metrics on X = M x R,

GNU ={(0,5.1,0.{,7) = 7 = - B@)C, () # 0},
HAU={(0,5,,0,¢,7): 7° > (- B, (C.7) # 0}

We can then describe broken bicharacteristics more concretely:

(32)

(33)

Lemma 11. (Stated and proved in [28] in the product setting, but the same proof
works in general.) Suppose vy is a generalized broken bicharacteristic. Then

(1) If v(so) € G, let qo be the unique point in the preimage of vy(sg) under

7t =m7ls. Then for all f € C=°(*T*X) real valued, f o~ is differentiable at

S0, and
d(f o) .
T|S:SO = Hpﬂ- f(q())'

(2) If v(s0) € H, lying over a corner given in local coordinates by x = 0, then
exists € > 0 such that z(v(s)) = 0 for s € (so — €,50 + €) if and only
if s = so. That is, v does not meet the corner {x = 0} in a punctured
neighborhood of so. (Here, as usual, x is considered as a vector valued
function, x = (x1,...,2k).)

Part (2) of this lemma indicates the possibility of an iterative description of the
bicharacteristics: at H, where we do not know in which direction they will travel, we
still know that they will be in a less singular stratum (a lower codimensional corner)
in a punctured neighborhood of sy. Thus, if we already understand bicharacteristics
in less singular strata, we can also understand their behavior at the corner under
consideration.

In fact, we have an even stronger description of generalized broken bicharacter-
istics at H, as in Lebeau’s paper.

Lemma 12. (Lebeau, [10, Proposition 1]) If v is a generalized broken bicharacteris-
tic, so € I, gqo = y(so), then there exist unique G+,d— € S(P) satisfying m(G+) = qo
and having the property that if f € C*>(*T*X) then f oy is differentiable both from
the left and from the right at so and

(£) (o less =ty a2,

Thus, one can associate an incoming and an outgoing point in 7* X, rather than
merely in °T* X, into which the curve v maps — the point being that even incoming
and outgoing normal momenta are defined, although they can certainly differ. This
indicates that, at least away from rays hitting the boundary tangentially, Figure 1
gives an accurate indication of the bicharacteristic geometry.
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7. PROPAGATION OF SINGULARITIES ON MANIFOLDS WITH CORNERS: THE MAIN
THEOREM

We are now ready to state the main propagation theorem for the perturbed
wave equation with Dirichlet boundary condition on Lorentzian manifolds — the

Neumann case is completely analogous. Thus, consider u € H&lOC(X ) satisfying

(34) (Pu,v) = (Vu, Vo) 2 (x;7- x) + (Ru, v) 12(x) = (f,v), v € H§7C(X),

R € Diff'(X), where the first equality defines (Pu,v). In fact, we may consider
systems, i.e. allow u to be C"-valued, with an inner product (.)x,) on C" depending
smoothly on p € X, and write

(&, V) L2 (x;07) :/X(¢,1/J)k dvoly,.

and demand that u € H& (X;C") satisfies

loc
(35)  (Pu,v) = (Vu, Vv)r2(x;crer+x) + (Ru, v)2(x,cry = 0, v € H&C(X; ch,

R € Diff'(X;C"). As propagation results are local, the (globally) more general
case of u being a section of a vector bundle with an inner product is an immedi-
ate consequence; in particular, we obtain propagation of singularities for the wave
equation on differential forms, which is of this form, with Dirichlet or Neumann
(but not natural) boundary conditions.

Theorem 13 (See [27] for the scalar equation if X = M x R with a product
metric.). Suppose u € H&}]OC(X;CT) and Pu = f in the sense of (35) holding for

allv e Hy (X;C"). Then (WE, ™ (u)NE)\WFE, V"™ (f), is a union of mazimally
extended generalized broken bicharacteristics of P in ¥\ WF, " (f).

In particular, if Pu = 0 then WF;’oo(u) C Y is a union of mazimally extended
generalized broken bicharacteristics of P.

The scalar version of this theorem for X = M x R with product metrics was
proved in the real analytic setting by Lebeau [10], and in the C°° Lorentzian setting
with C°° boundaries (and no corners) by Melrose, Sjostrand and Taylor [12, 13, 22].
This result is thus the C*° version of Lebeau’s theorem: the geometry is similar in
the real analytic vs. C'*° settings, but the analysis is quite different, though the C'*°
proof can be considered as an infinitesimal version of the real analytic argument.

The general technique in proving the theorem is to prove positive commutator
estimates. We start by discussing the scalar case. In view of (30), it suffices to
prove an L%-based wave front estimate, i.e. to show that Bu € L? for certain
B e \I/;”“(X ), with invertible principal symbol at a point ¢ in question. In fact,
B will have scalar principal symbol b, and will arise as a commutator. Namely,
from Section 5 we deduce that for u € C°°(X) vanishing at 0X, A € U7*(X) with
principal symbol o4, (A4) = a,

(f, A" Auy — (A" Au, f) = (Vu, VA* Au) + (Ru, A" Au) — (VA* Au, Vu) — (A* Au, Ru)

The leading terms are the ones involving V, as they have the highest differential
order, and expanding V in local coordinates over a coordinate chart U, assuming
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A is supported in U x U,
(Vu, VA" Au) 12 (x 1+ x) — (VA" Au, Vu) 2 (x .7+ x)
= Z(HUDUHU, Doy A*Au) 2(x) — (Hij Do, A" Au, Dy u) 12 (x)
ij
= (A"AH;;Dy,t, Doyu) + Y (HijDuu, [Duy;, A" Alu)
J— ([HijDuw,, A* Alu, Dy, u) i (A*AHi;Dy;u, Dy u),
and the first and last terms on the right cancel. As
[Da;, A*A] = A1Dy; + Ao, with Ay € U3 H(X), Ag € U (X)
o(Ar) =i'0,,a%, o(Ag) =i '0,,a?
and
[D,,, A*A] € U (X), with o(i[D,,, A*A]) = 9,,a”,
[Hij, A*A] € B3 H(X),
with o (i[Hij, A*A]) = = (240, Hij)0s,0® = > _(0y, Hij)0g,a.
k k

Here we use that if B € U¥ (X) then B* € Uk (X) with principal symbol that of
the adjoint of B, i.e. if the principal symbol of B is scalar, b, then that of B* is b.
We deduce that

<VU, VA*AU>L2(X;T*X) — <VA*A'LL, VU>L2(X;T*X)

= > (QijDg,u, Dyju)r2(x)
(37) Xj: ! ’

+ ) (QiDa,u) p2(x) + (Qu, Do) 12(x)) + (Qou, u) p2(x)

where (with H = Y A;;6& + 25 Cii&il + > BijGiéj)
Qij € i N (X), Qi Q) € TP(X), Qo € T (X)),
with

i0(Qij) = (05,0 + 05,0°) Aij = Y (w402, Aij)0g,a® =Y (Dy, Aij)dc,a”,
k k

i0(Qi) = i0(Q}) =Y Cij0y,,a°G + Y Aijdy,a®
J J

— (D (2482, Cij)05,0® + ) (8,,Cij),a%);
k

k
and finally

i0(Qo) =Y Cij(9:5,a*)¢j + ) Bij(9y,0° + 9,,0°) GG
i

J
= O (@k02, Bij)0s,a® + Y _(Dy, Bij)0c, a*)GiG;.
ik k

All but the first term in i0(Qo)|z=0 arise from considering the commutator of A* A
with Op, the d’Alembertian on F' given by B|,—¢. Also, at = 0 all terms with C
vanish. For the proof of the theorem we choose a appropriately, based on different
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ideas at G and H. The basic (rough!) idea is that at G, D,u can be estimated
by a small multiple of D;u modulo lower order terms, so all terms but (Qou, u)
in (37) are negligible. Hence, one can proceed essentially as if one was studying
propagation of singularities on the boundaryless manifold F', which explains why
at go € G singularities move in the direction of H,(7#71(go)), cf. Definition 10. At
‘H more terms matter, but fortunately we need a weaker estimate — essentially that

singularities leave F' immediately, for which the basic idea is explained below.
As

(R, A*Au) — (A* Au, Ru) = ([A*A, Rlu,u) + ((R — R*)A* Au, u),

and [A* A, R] € Diff' W71 (X), this commutator can be absorbed into the @; and
Qo terms above without affecting the principal symbols, thus can be neglected. If
R = R* i.e. P =V*V + R is formally self-adjoint, the last term vanishes, thus can
be dropped. In general this is not the case, but

R—R* € Diff (X), R— R* =) RiD,, + Ry, Ry € Diffy(X), R; € C™(X),

so ((R — R*)A* Au,u) has the same form as the @; and Qo terms in (37), with
principal symbol a multiple of a? (rather than a multiple of a derivative of a?).
Making the derivative of a? large compared to the size of a? (which is what one
usually does in any case to deal with regularization, see the discussion following
[27, Equation (6.19)]), this term also becomes negligible as well. Thus, R does not
affect the propagation estimates hence can be neglected.

Allowing u to be C"-valued barely affects the calculations. A key point though
is that if A € ¥}*(X;C") with scalar principal symbol a, then A* € U}*(X;C")
with scalar principal symbol @, and A*A preserves Dirichlet or Neumann boundary
conditions. Thus, the above calculation goes through unchanged (except that all
(.,.) now are replaced by (.,.)r2(x;cr)), thus the proof can be finishes exactly as in
the scalar case [27].

This also shows the difficulty with natural boundary conditions on differential
forms. In order to preserve the boundary conditions, we need to replace A*A by
ATA, with A, AT as in Lemma 8. (We remark that there is an additional boundary
term, the R term in (26), but as R is zeroth order, one can handle it just as
the R term is handled above, using (27).) Then in (36) we have an extra term,
(((ATA)* — ATA)H;; Dy, u, Dy, u), and (ATA)* — ATA € U7 1 (X;AX). Now,
modulo commutator terms we can control (because they are lower order), we can
shift this to one of the u’s, i.e. we need to deal with (H;;Dy,u, Dy, ((ATA)* —
AtA)u). If (ATA)* — AT A preserves the natural boundary condition, this vanishes
modulo the lower order R term in (34), so the previous argument goes through
unchanged. If (ATA)* — ATA = E+ F, where E preserves boundary conditions and
F e \Ilz2)m72(X ; AX), the argument still goes through, and indeed it goes through
even if F € 7" 1(X;AX) but ¢(F)|,—o vanishes. However, this is not necessarily
the case, and in general it seems that one needs to blow up the corner x = 0 (see
the next section for a discussion of blow-ups) to construct a well-behaved A.

To be more precise, the proof of the theorem is thus based on two propositions
giving propagation estimates at hyperbolic, resp. glancing points. Given these
propositions, an argument of Melrose and Sjostrand [12, 13], see also [7, Chap-
ter XXIV] and [10], implies the theorem immediately — in particular, the proof
from [27, Section 8] applies unchanged.
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We only state the following propagation results for propagation in the forward
direction along the generalized broken bicharacteristics. A similar result holds in
the backward direction. The propagation results are local, so we can work in local
coordinates (x, 7, t) on some open set U, and are very rough in the sense that they do
not localize sharply along generalized broken bicharacteristics. It is the argument
of Melrose and Sjostrand that gives the precise bicharacteristic propagation then.

For instance, the tangential result states that in order to ensure that a point
go in G is not in the wave front set of u, we only need to ensure that for some
sufficiently small § > 0, an O(62)-sized ball at distance § backwards along the
H,(771(go)) direction from #7!(qp) is disjoint from the wave front set of u. (Here
recall that # = m|y. There is also a uniformity statement in the proposition for
compact subsets that is used in turning the result into the theorem, i.e. in the
Melrose-Sjostrand argument.) Because of the O(§?)-sized requirement, which is
necessary as we are not following a bicharacteristic precisely (we are simply fixing
H,, at the point in question and extending it as a constant vector field using the
local coordinates), we could use integral curves of any vector field W on T*X with
W (7~ Y(q0)) = Hy(77(g0)), at the cost of changing the constant in O(§?).

To motivate the normal result, consider the function n = —> o, /|7| (in the
local coordinates) on *T*X \ o, so 1 vanishes on ¥ N *T%X, F = {z = 0}. Then
TN = — Z‘”&] and if

== A;W&& + ) Bi()GG,
with t = y,—x, T = (u—i, then

o = ZAW )&i&j — ; ZatBij n= ZBW )GG — 1,
ij

so in particular, it is positive on #~1(H) N T%X, for py and 7 vanish there, and
> Bij(y)¢¢; > 0 by (32). Thus, n is an ncreasing function along generalized
broken bicharacteristics in view of Definition 10. Thus, the normal propagation
result states that in order to conclude that gy is not in the wave front set in u it
suffices to know that go has a neighborhood such that WF(u) is absent from the
half of the neighborhood where 7 is negative — note that 7 is certainly negative along
backward generalized broken bicharacteristic segments from ¢y as we just remarked,
and n(g) < 0 implies q ¢ F.

It is remarkable that the argument of Melrose and Sjostrand allows one to com-
bine these rather rough results rather simply to get the full precise Theorem; here
we merely point out that as n(¢) < 0 implies ¢ ¢ F' in the normal case, there is
a possibility for an induction on the dimension of boundary faces, cf. the remarks
following Lemma 11. Below we simply state the results; as we already mentioned,
the proofs require only simple modification of the proofs given for the Dirichlet (and
Neumann) problems given in [27] and the positive commutator calculation above
to compute the principal symbol of the commutator.

Proposition 14. (Normal propagation.) Let qo = (0, go, to, 0, Co, 70) € HNPTHX,
FNU =Un{x =0}, and let n =

coordinates discussed above, and suppose that u € H&7IOC(X; C"), g0 ¢ WE, ">(f),
f = Pu in the sense of (35). If there exists a conic neighborhood U of qo in *T*X




DIFFRACTION BY EDGES 29

such that
(38) qeU andn(q) <0=q¢ WF, > (u)

then qo ¢ WEF, ™ (u).
In fact, if the wave front set assumptions are relaxzed to qo ¢ WF;l’SH(f) (f =
Pu) and the existence of a conic neighborhood U of qo in *T*X such that

(39) g€ U andn(q) <0=q¢ WF,*(u),
then we can still conclude that gy ¢ WE,*®(u).

Proposition 15. (Tangential propagation.) Let u € H&IOC(X;(CT), and let 7 :
T*X — T*F be the coordinate projection 7 : (x,g],t,f,f,r) — (g},t,é,r). Given
K CbS; X compact with

(40) K C(GNTEX)\WF, "> (f), f = Pu,
in the sense of (34), t@ere exist constants Cy > 0, 6o > 0 such that the following
holds. If qo = (§o,t0,C0,70) € K, g = 7 (qo), Wo = Hp(aw) considered as a
constant vector field in local coordinates, and for some 0 < § < g, Cpé < e <1
and for all o = (x,y,t,£,(,7) € X(P)

aeT*X and |7(a—ag — dWy)| < €d and |z(a)] < €d

) = 7(a) ¢ WEL(u),

then qo ¢ WEF, ™ (u).
8. GEOMETRIC IMPROVEMENT

We now discuss a geometric improvement to the propagation theorem for the
scalar wave equation; this is joint work with Richard Melrose and Jared Wunsch.

Definition 16. Suppose F' is a boundary face (boundary hypersurface or edge) of
X, and let ¢ € HN°T}. X. The b-flow-out of g, .7;"07(17 is the union of the images of
generalized broken bicharacteristics 7 : [0, 00) — % with v(0) = ¢. The b-flowout of
aset SCH ﬂbT}o is .7;"075 = qusj:o,q- Also let the time T flow-outs .7.-'07,1(T) and
Fo.5(T) defined similarly, replacing [0, 00) by [0,T). The b-flow-in F , is defined
similarly, with the domain of definition of 4 replaced by (—o0,0].

Requiring ¢ € H makes the flow-out better behaved; indeed if F' = 90X is smooth,
then the flowout is a smooth manifold; indeed, as long S is an open subset of
HN bT;ioX with compact closure, the flowout is smooth for short times, i.e. for
sufficiently small 7' (depending on S), Fo s(T) is smooth.

If X has corners, even if a bicharacteristic is normal to a corner F' (of codimension
k > 2), it may be tangential to one of the boundary hypersurfaces through F,
hence all the complications in bicharacteristic geometry that may take place on
manifolds with smooth boundaries for bicharacteristics tangent to the boundary
are still present, even for small times. We are thus led to distinguish between
different kinds of rays in .7-.'07,1.

Near an interior point p of F', one has local coordinates (1, ..., Tk, Y1, - - Yn—k)
centered at p such that locally X is given by z; > 0,...,z, > 0, and F' is given
by z =0 (ie. z1 = ... =2 = 0). Write H; for the boundary hypersurface given
by z; = 0. Below we also need the (real) blow-up of X at F, [X;F], in which
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F is replaced by a new boundary hypersurface, ff. Thus, [X; F] is a manifold
with corners with a smooth blow-down map ( : [X; F| — X that restricts to a
diffeomorphism [X; F|\ ff — X \ F away from a boundary hypersurface, called the
front face and denoted by ff, that is mapped onto F.

In order to describe this, first consider the blow-up [R¥;{0}] of the origin in
R*; this amounts to introducing spherical coordinates around 0, i.e. [R¥;{0}] =
[0,00), x SE~1, and the blow-down map 3 maps G (r,w) = rw € R*, which is thus
a diffeomorphism away from the boundary hypersurface » = 0, but is degenerate
(though smooth) at 7 = 0. We can intersect this with the positive quadrant [0, 00)*;
thus [[0,00)*; {0}] = [0, 00), x (S57').,, where S5~ is the positive sector in S¥~1,
i.e. writing w = (w1,...,ws), is given by w; > 0 for all j. Note that, away from
r=0,r=,/> x? and w; = % — this is slightly cumbersome as one has to use k—1
of the w;’s as local coordinates, and there are no k — 1 of them that work globally.
One can use projective coordinates instead, which can be made global: then with
r =Y xj, 0; =x;/r, r together with any k—1 of the 6;’s gives global coordinates —
taking say 61, ..., 60k_1, the cross section (which in this point of view is the standard
k — 1-simplex), Sk is given by 0, > 0, j=1,...,k—1, 37~/ 0; < 1.

Now, on a neighborhood of a point p € F° in X, one can use local coordinates
(z,y) as above, so in particular X is locally a product UxV, U C [0,00)*, V Cc R*~*
open and then f~1(U x V) is a product U x V, where U = [U;{0}] is an open
subset of [0, 00) X Si_l. It is not hard to check to check that the smooth structure
of [X; F] is independent of the choice of local coordinates, etc., so it is a manifold
with corners. We refer to [18], the appendix of [11], and [25, Section 2] for more
detailed discussions of blow-ups.

Definition 17. A generalized broken bicharacteristic segment 7, defined on [0, so)
or (—s0,0], 7(0) = ¢ € HN T}, X is said to approach F normally as s — 0 if for

all j
5 00s)
s—0% S
this limit always exists by Lemma 12.

# 0;

This definition is independent of the particular choices of the x;’s. Indeed,
equivalently, by Lemma 12, v approaches F' normally if ¢, (or ¢_), given by the
Lemma, satisfies

G+ € T*X \US_, T*H;,
where T H is the cotangent space given by the metric (i.e. the image of the tangent
space under the Riemannian isomorphism), for by the Lemma, the limit above is
—23°, Ay (§((44+)))&i(G4), i-e. is the x;-component of the image of the covector g4
under the inverse Riemannian isomorphism up to a constant factor.

The limits in Definition 17 are either all nonnegative or nonpositive, depending
on the sign of s, and cannot vanish for all j simultaneously as v(0) = ¢ € HN*T}:. X,
s0 30 Aij(§((d+)))€(G+)€5(G4) > 0. Thus, using r = Yz or r = (3 a3)!/? as
the defining function of ff in [X; F], and considering the positive time case for
definiteness, we see from Lebeau’s result (using that r(v(s)) is comparable to s,
so dividing by s in Definition 17 is analogous to dividing by r in constructing
coordinates on the blown-up space) that the projection of v|( s,) to X extends to
a continuous map c. : [0, sg) — [X; F], and 7 being normally incident means that
c+(0) € ff does not lie on the lift of any of the boundary hypersurfaces H;.
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Note also that if v approaches I’ normally then for s; > 0 sufficiently small,
Y(0,51) (OF V|(—s,,0)) lies in "T%. X = T*X°, i.e. the restriction of 7o to a smaller
open interval is actually a null-bicharacteristic, and its projection is a geodesic. In
particular, as bicharacteristics through a point ¢’ € T*X° are unique until they
hit 90X, we deduce that for s € (0,s1) (resp. s € (—s1,0)), the only generalized
broken bicharacteristics through «(s) are reparameterizations of extensions of ~.
Correspondingly, we make the definition:

Definition 18. For ¢ € H N T5. X, the reqular part Fo qreg of the flow-out of

g is the union of images ((0,s¢)) of normally approaching generalized broken

bicharacteristics 7 : [0, s9) — 3 with v(0) = ¢ and v(s) € T*X° for s € (0, s).
The regular part of the flow-out of a set S C H N T, X is

fO,S,reg = UqES]:O,q,reg-

In fact, one can easily see that Fp g rce is @ smooth embedded submanifold of
T*X° (by using the standard bicharacteristic flow to parameterize it), and if U is an
open subset of [X; F], with U disjoint from the lifts of the boundary hypersurfaces
(but intersecting the front face ff, i.e. the lift of F'), then for sufficiently small T
(depending on U)

Fo.4(T) N T g X C Fo,qree;

i.e. the small-time flow-out over U is smooth. Moreover, if S is a conic open subset
of H N TE. X with § € H N Y75 X, then Fo (T) N ng\ﬂpX is a smooth conic
coisotropic submanifold of T*X° \ o, i.e. its tangent space contains its symplectic
orthocomplement.

Definition 19. We say that a generalized broken bicharacteristic v : (—sg, so) — by
with v(0) € H N TE. X is limiting at F if it is the limit of generalized broken
bicharacteristics in 3\ *T%: X, i.e. if there exist v, : I — 2\ *T5:X such that v, — v
uniformly.

Thus, limiting generalized broken bicharacteristics are limits of bicharacteristics
v, that just miss the edge F. As the ~, hit only lower codimensional boundary
faces, e.g. if ' has codimension 2, only boundary hypersurfaces are hit, one has a
better picture of propagation along the ~,, — e.g. if v, only hits boundary hypersur-
faces, and only does so normally, singularities of solutions u of the wave equation
necessarily propagate along -, as generalized broken bicharacteristics are unique
through a given point in this region, so if v has a singularity along =, for some
negative time, say y(—s1) € WFi’T(u), then it also has a singularity along -, for
positive times, i.e. y(s) € WF,"(u) for all s. Thus, the limiting process indicates
that one can expect that singularities along - for positive times are as strong as
those along v for negative times.

In order to understand the limiting process better, it is useful to blow up F' as
above. The front face fI of [X; F] has a fibration arising from § : [X;F] — X,
namely it is ¢o = Olg. As explained above, the fibers Z, = qﬁal(p), p € F, of
¢ are diffeomorphic to S’_fl, or equivalently the standard simplex. Moreover,
the Riemannian metric on X induces a metric on the fibers. Indeed, it is best to
consider for each p € F, coordinates (x,y) as in (4) with C(0,y) = 0, then on
[0, 00)k, >_i; @ij(y) dz; dxj gives a translation-invariant Riemannian metric (where
a;; is the inverse of A;;) which in terms of spherical coordinates corresponding to
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FIGURE 3. Geometric optic rays hitting a corner F, emanating
from a point 0. The rays labelled G are geometric at F', while those
labelled NG are non-geometric at F'. The leftmost geometric ray is
a limit of rays like the unlabelled one shown on the figure that just
miss F'. The blown up version of the picture is shown on the right,
with the reflecting line indicating the broken geodesic of length 7
induced on the front face ff (which is one fiber in this case). Thus,
the total length of the three segments shown on ff is 7r; this can be
thought of as the sum of three angles on the picture on the left:
namely the angles between the incident ray and the right boundary
(corresponding to the first segment), the right and left boundaries,
finally the left boundary and the emanating reflected ray.

this metric, i.e. letting Si_l be given by Y a;jw;w; = 1, has the form dr? + r?k,
h =% a;j dw; dw; a Riemannian metric on Z, = S’i‘l. Thus, Z, is a manifold
with corners with a Riemannian metric, and correspondingly one can talk about
generalized broken geodesics (projections of wunit speed generalized broken bichar-
acteristics on Z, x R; to Zy, i.e. (‘f—z = =+1 along these) on Z,. It turns out that
families v, — 7 can be rescaled to give rise to such generalized broken geodesics
¢:|-m/2,7/2] — Z, of length 7 (this length 7 corresponds to the antipodal map
if there are no breaks), with é(£7n/2) = lims_o+ c4(s), with ¢y the continuous
extensions of the projection of v to X lifted to [X; F], as discussed above. We thus
make the following definition:

Definition 20. We say that a generalized broken bicharacteristic v : (—sg, so) — by
with ¢ = v(0) € HﬁbT}”;X is geometric at F if there is a generalized broken geodesic
¢:[-m/2,7/2] = Zr(q) of length 7, where ¢(47/2) = lim, o+ cx(s), with ci the
continuous extensions of the projection of v to X lifted to [X; F], as discussed
above.

Definition 21. Suppose ¢ € HN’T}. X, 70 : (—s0,0] — ¥ is a generalized broken
bicharacteristic with v9(0) = ¢. The non-geometric diffracted front Fo ng,,(T)
emanating from ~ is the union of the images v|jo ) of non-geometric generalized

broken bicharacteristics 7y : (—sg,T] — ) with Yl(=s0,0) = 70,
The regular part of the non-geometric diffracted front emanating from - is

FO,NG,'yo,reg(T) = ‘7':07NG,’YO (T) N ‘7:07’)’0(0)71”3%7

i.e. the union of the images v|jo,7) of non-geometric generalized broken bicharac-
teristics v : (—so,T) — Y with Yl(=s0,00 = 70, such that | 7y approaches F'
normally.
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We expect that unless one is dealing with a solution that focuses on the corner,
on the non-geometric broken bicharacteristics the reflected wave should be less
singular than the incident wave. Although the full result (which would also include
results along non-normally approaching bicharacteristics emananting from F) is
too hard with the current state of technology, we have partial results on manifolds
with corners (with corners of arbitrary codimension), and the full result in a model
setting (manifolds with so-called edge metrics).

An example is the fundamental solution of wave equation with pole o near the
edge, and we state the first version of the theorem in this case in order to make
it more concrete. The general version is stated below in Theorem 28. Let s =
—n/2+4+ 1, n=dim M = dim X — 1, so that the fundamental solution of the wave
equation with pole o € X° lies in HfolC(Xo) for all s’ < s for non-zero times.

Theorem 22 (Melrose, Vasy and Wunsch, [14]). Let F' be a codimension k corner
of X.

Suppose that U is an open subset of the front face ff of [X; F|, with U cf°, and
S C HNT}. X is compact. Then there is an open set U in [X; F] with U C U and
T > 0 such that the following holds.

Let o € UN X°, and let v : [—50,0] — 2, 0 < so < T, be a bicharacteristic
normally approaching F with vo(0) € S, vo(—s0) € TS X. Let u be the forward
fundamental solution of the wave equation with pole at o.

Then microlocally near the regular part of the non-geometric diffractive front

emanating from g, u is in Hsl+(k71)/2(X°) foralls' < —n/241,n=dim M, i.e.

loc
(42) WEF T F=D/2(0) 0 Fo NG oren = 0.

Remark 23. The role of U, S and T is to ensure that there are no generalized
broken bicharacteristics that go through both ~¢(0) and N*o, apart from ~0(0). In
particular, there are no non-normally approaching generalized broken bicharacter-
istics through N*o and gq.

A different way of stating the result would be not to specify S, T, but say that if
o hits F' in a sufficiently small time (depending on o), and does so normally, then
(42) holds, with the point being that the first rays emanating from o to hit F do
so at hyperbolic points. This is how the analogue of this result for edge metrics is
stated below in Theorem 24.

In order to explain the more general version, we start by considering a geometri-
cally simpler case. Our model is manifolds with edge metrics. These are manifolds
with boundary M, whose boundary has a fibration, ¢o : 9M — Y with compact
fibers Z (without boundary), and a Riemannian metric g compatible with this
fibration.

More precisely, we assume that on a neighborhood U of OM, in which z is a
boundary defining function, g is of the form

g=da®+ éah + 2k, where

h e C®([0,€) x Y;Sym? T*([0,€) x Y)), k € C(U; Sym* T*M);
we further assume that h|,—o is a nondegenerate metric on Y and k|,—o is a
nondegenerate fiber metric. Here we extended the fibration ¢y to a fibration

do: U — [0,€) x Y on a neighborhood U of OM, and Sym? stands for symmetric
2-cotensors.
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As an example, let M be the real blow up of a C°° submanifold Y of a manifold
without boundary M: M = [M;Y]. As explained above this means that we intro-
duce ‘spherical coordinates’ around Y in M. Then the fibers Z are spheres, and a
smooth metric on M would give rise to an edge metric on M. A particular example
is the z axis in R® blown up. This amounts to replacing the z-axis by its spherical
normal bundle, R, x S}. Thus, one replaces R? by R, x [0,00), x S}, with the two
identified away from the 2 axis, resp. the ‘front face’ r = 0 (i.e. R, x {0} x S!)
by the diffeomorphism ®(z,r,6) = (rcosf,rsinf, z), i.e. by introducing cylindrical
coordinates. The boundary is then » = 0 (so @ = r), the fiber Z is S!, and the
Euclidean metric becomes dz? + dr? + r2 df?.

A more interesting case is if M is a manifold with corners, and M ‘total boundary
blow up’ (blow up all corners in the manner sketcked above for a single submanifold,
starting with the corner of lowest dimension). In this case the fibers Z have a
boundary, so this does not quite fit previous framework, e.g. one has 6 € [0, 8] rather
than # € S' when one blows up the corner of a wedge domain in R?. However,
as long as one stays away from bicharacteristics hitting the face F° in question
tangentially to the other faces, the methods used in the analysis of edge metrics
still work.

For edge manifolds the compressed characteristic sets, generalized broken bichar-
acteristics, geometric broken bicharacteristics (where now the induced curve ¢ is an
unbroken geodesic of length © on Z) and the non-geometric diffracted front are
defined analogously to manifolds with corners (its regular part is now all of it), and
the analogue of Theorem 22 holds:

Theorem 24 (Melrose, Vasy and Wunsch, Corollary 1.4 of [15]). Suppose (M, g)
is an edge manifold, X = M x Ry. Suppose that o € X° is sufficiently close to 0X,
and let u be the forward fundamental solution of the wave equation with pole at o.

Then microlocally near the non-geometric part .7;"07NG7A of the diffractive front

emanating from the flow-out A of N*o, u is in HS/Jr(k*l)/Q(XO) foralls < —n/2+

loc

1, n=dimM, i.e. WF*+ED2(0) 0 Fo yaa = 0.

In the setting of edge metrics, resp. manifolds with corners with smooth metrics,
let vp be a bicharacteristic segment on [0, sg), so > 0, 70(0) € T;x X, resp. 70(0) €
T, X. Let T denote the set of all generalized broken bicharacteristics extending 7o
(extending backwards is the interesting part here). The theorem on the propagation
of singularities states that if

(43) I = J((=e.0): yeT}

is disjoint from WFy(u), then so is the image of 7o; similarly for WEF}" (u).

In the edge manifold setting, let F; be the b-flow-in of X, defined analogously
to Definition 16. Thus, 7 \ Tz X is a smooth conic coisotropic submanifold of
T*X° \ o, analogously to the manifolds with corners case. Note that as the fibers
in the boundary have no boundaries themselves, there is no analogue of the normal
incidence considerations required in the manifolds with corners setting.

We now recall the definition of coisotropic distributions. Let S be a conic
coisotropic submanifold of T*X°. Let M be the set of first order ps.d.o’s with
symbol vanishing along S, and let M7 be the set of finite sums of products of at
most j factors, each of which is in M.
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Definition 25. We say that a distribution u is H%coisotropic associated to S if
forall N,and all A; e M, j=1,...,N, A;...Ayu € H.

This definition is applicable to all coisotropic submanifolds S (with M defined
as the set of first order ps.d.o’s with symbols vanishing on S), in particular when
S = A is a conic Lagrangian; then one calls H*-coisotropic distributions associated
to A Lagrangian. An example of a Lagrangian distribution is the fundamental
solution of the wave equation for small non-zero times and pole o in X°; this is
associated to the flowout of N*o in ¥ under H,,.

Non-focusing is the dual condition to coisotropy. For edge manifolds, it takes
the following form:

Definition 26. Suppose (M, g) is an edge manifold, M the module corresponding
to Fr NT*X°. We say that a distribution u satisfies the non-focusing condition of
order ¢ for g € H if for some € > 0, microlocally near Fr 4(¢), and for some N,

(44) u = ZAjUj’ Aj S MN, vj € H*.

For manifolds with corners, the non-focusing statement does not make sense for
non-normally incident bicharacteristics, so we need to add an assumption.

Definition 27. Suppose (M, g) is a manifold with corners with a smooth metric,
F' a codimension k > 2 corner, M the module corresponding to Fr rce. We say that
a distibution u saisfies the non-focusing condition of order ¢ for ¢ € H N°T5, X if
for some € > 0,

(1) if v : (—€,0] — ¥ satisfies v(0) = ¢ and 7 is not normally approaching F,
then WF}(u) N y|_c0) =0, and
(2) microlocally near Fr g req(€), and for some N,

(45) u= ZAjUj, AJ‘ S MN, v € He.

Thus, v € H*=N only, but along Frreg it is ‘better’ in the sense of (45): ‘better’
refers to the A; being products of operators with vanishing principal symbols at
Fireg, hence are lower order than their order indicates ‘at’ (rather than ‘near’)
Frreg- If w € H® but u is H'non-focusing for £ > s, we call £ — s the non-focusing
improvement.

A Lagrangian distribution satisfies a non-focusing condition if the Lagrangian A
intersects the coisotropic manifold F; transversally inside 3(P), see [15, Section 14].
In fact, inside A, the codimension of this intersection is the codimension k of the
corner, minus 1, which implies that u satisfies the non-focusing condition with an
improvement of (k—1)/2 — 6 for all § > 0. Very roughly speaking, one can think of
a Lagrangian distribution u associated to A is smooth along A, so one can divide
u by some first order factors vanishing at F; N A (symbols of ps.d.o.’s) and still
improve Sobolev regularity — for the precise argument see [15, Proposition 14.2].

Theorem 28. [Melrose- Vasy- Wunsch, [14], analogue of [15, Theorem 1.3] for man-
ifolds with edge metrics] Suppose that (M, g) is a manifold with a smooth metric,
X = M xR, and u is an admissible solution of Pu =0, P = D? — A. Let F be
a corner of X, let vo : [0,80) — Y be a normally incident bicharacteristic segment
(with so small), and suppose that u satisfies the non-focusing assumption of order

¢ for v0(0).
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Then for R < £, Yol(0,50) N WEF®(u) = 0 provided that, for some e > 0, all geo-
metric generalized broken bicharacteristics v € I' extending o satisfy v((—e€,0)) N
WE®(u) = 0.

That is, singularities of order R < £ can only propagate into vy from geometric
generalized broken bicharacteristics extending it; note the contrast with the prop-
agation of singularities result: in (43) all extension of v are needed. Theorems 22
and 24 are immediate consequences of this theorem, together with the non-focusing
property of the flowout of N*o, as well as the fact that over Tg\ﬂX , the flow-

in of v0(0) is regular, .7.-'1’70(0) (TN bTIj\HX C Fr,40(0),reg SO generalized broken
bicharacteristics other than 7y cannot go through ¢ and N*o.
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