
DIFFRACTION BY EDGES

ANDRÁS VASY

Abstract. In these expository notes we explain the role of geometric optics
in wave propagation on domains or manifolds with corners or edges. Both
the propagation of singularities, which describes where solutions of the wave
equation may be singular, and the diffractive improvement under non-focusing
hypotheses, which states that in certain places the diffracted wave is more
regular than a priori expected, is described. In addition, the wave equation
on differential forms with natural boundary conditions, which in particular
includes a formulation of Maxwell’s equations, is studied.

1. Introduction

The aim of the present notes is twofold. On the one hand, these are expository
notes intended to explain certain aspects of diffraction by edges and corners. On
the other hand, they contain the announcement of three new results. The first
new result is joint with Richard Melrose and Jared Wunsch, namely diffractive
improvements for the scalar wave equation on X = M × R where M is a manifold
with corners equipped with a smooth Riemannian metric; this is explained in the
last section. The second new result is propagation of singularities for the scalar wave
equation on Lorentzian manifolds with corners (with time-like boundary faces), i.e.
where X is not a metric product like above. Furthermore, we explain the more
general setting of Maxwell’s equations with natural boundary conditions, and discuss
microlocal elliptic estimates for these. The proofs of the last two results turn out
to be a rather simple modification of the proofs for the scalar wave equation on
product spaces, in the sense that the same method works, but some additional care
needs to be taken in constructions, so we will not need to describe the technicalities
that do not need any change in too great detail. The proof of the propagation of
singularities results for natural boundary conditions are more technical, so it will
be discussed elsewhere.

The full details of the proof of the main propagation of singularities theorem,
Theorem 13, in the scalar metric product setting (also valid directly for the wave
equation on forms with Dirichlet or Neumann boundary conditions, which are how-
ever not the interesting ones), are written up in [27]. The diffractive improvement
in a model case, namely edge manifolds, defined in the last section, is proved in
[15], and its extension to manifolds with corners is currently being written up in
[14]. Moreover, [28] contains an expository description of the propagation results
for the scalar equation, while [26] provides an exposition at an intermediate level:
the main technical points are explained there.
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Light is described by Maxwell’s equations, which in turn imply that in free space
each component u of the electromagnetic field satisfies the wave equation,

Pu = 0, Pu = D2
tu− ∆gu,

∆g is the Laplacian, so it is c2
∑n

j=1D
2
xj

in R
n, where c is the speed of light

(this corresponds to a Riemannian metric g = c−2
∑

dx2
j ), Dxj

= 1
i ∂xj

. If light
propagates in regions with boundaries, one also needs suitable boundary conditions.
A typical condition, if the boundary is a perfect conductor, is that the tangential
component of the electric field and the normal component of the magnetic field
vanish at the boundary hypersurfaces. This is an example of a natural boundary
condition, as we shall soon see.

As PDE are relatively complicated, it is natural to ask whether one can find
important qualitative information about solutions of the wave equation without
actually solving the equation. A step in this direction is given by geometric optics.

According to geometric optics, light propagates in straight lines (in homoge-
neous media), reflects/refracts from surfaces according to Snell’s law: energy and
tangential momentum are conserved. Thus, when reflecting from a hypersurface
(which has codimension one) one gets the usual law of incident and reflected rays
enclosing an equal angle to the normal to the surface. Indeed, conservation of tan-
gential momentum and kinetic energy implies that of the magnitude of the normal
component. When reflecting from a higher codimension (≥ 2) corner, the law is
unchanged (momentum tangential to the corner and energy are conserved) – but
now this allows each incident ray to generate a whole cone of reflected rays, see Fig-
ures 1-2. In addition, even the local geometry of the rays can be very complicated
because of rays tangential to a boundary face: one can even have an accummulation
of reflection points, as shown by an example of Taylor [22].

It is natural to ask how these points of view are related. One way of discussing
the relationship between these is that singularities (lack of smoothness) of solutions
of Pu = 0 follow geometric optics rays. Due to its relevance, this problem has a
long history, and has been studied extensively by Keller and others in the 1940s
and 1950s in various special settings, see e.g. [1, 9]. The present work (and ongoing
projects continuing it, especially joint work with Melrose and Wunsch [15], see also
[2, 16]) can be considered a justification of Keller’s work in the general geometric
setting (curved edges, variable coefficient metrics, etc). In order to describe this
relationship precisely, I discuss an even more general setting.

The first main result discussed here is a precise statement of this result for
domains with corners in a general (Riemannian or Lorentzian) geometric setting,
including for the wave equation on differential forms with certain boundary condi-
tions. In the analytic setting for scalar equations this result is due to Lebeau.

The second result discussed here, which is joint work with R. Melrose and J. Wun-
sch [15], is that while the preceeding result is optimal, for a rather large class of
solutions of the wave equation, namely those ‘not focusing’ on the corner, it can
be improved. As an illustration, consider spherical waves emanating from a source
near the boundary or corner: on the one hand, most of the spherical wave misses
the corner, i.e. only a lower dimensional part hits it, but on the other hand, a full
dimensional part of the spherical wave hits the boundary hypersurfaces (or smooth
boundary).
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Figure 1. Geometric optics rays hitting a surface at a codimen-
sion 2, dimension 1, corner (which may be called an edge). The
momentum component parallel to the edge is preserved when the
edge is hit, as is the magnitude of the normal component, so a sin-
gle incident ray generates a cone with apex at the point where the
edge is hit, axis given by the edge, and angle at the apex given by
the angle between the incident ray and the edge. On the picture
only the projection of the rays to the spatial factor, M , is shown;
time can be thought of as the arclength parameter along the rays.
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Figure 2. Geometric optic rays hitting a corner. Even if a ray
hits the corner non-tangentially to any boundary hypersurface, the
reflected rays may be tangential to one of these, hence their geom-
etry may be complicated.

Informally stated, this second result is that under a non-focusing assumption,
which holds for instance for spherical waves emanating from a source near the edge,
the diffracted wave is 1/2− ǫ order more regular (in a Sobolev sense, for all ǫ > 0)
than either the incident or the reflected wave. This result is expected to be useful
in inverse problems, e.g. when studying the reflection of seismic waves from cracks
in the Earth. In 2 dimensions, in the analytic category, there is a corresponding
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result due to Gérard and Lebeau [4] for conormal incident waves. There is also a
long history of the subject in applied mathematics, especially in the work of Keller.

The original version of these notes were based on my transparencies and lecture
notes at the inverse quantum scattering conference at Siófok, Hungary, in August
2007, with additional material included later on. I am very grateful to the confer-
ence organizers for the invitation and for hosting the meeting so well, as well as for
their patience as I overran many deadlines while preparing these notes.

2. The wave equation

In this section we briefly discuss the wave equation on Lorentz manifolds. A
more thorough description can be found in Taylor’s book [24, Sections 2.10-2.11].
Below, if X is an n-dimensional C∞ manifold, ΩX denotes the space of densities
on X , i.e. for z ∈ X , ΩzX consists of maps ω : ∧nTzX → R (where ∧nTzX can be
identified with completely antisymmetric n-linear maps on T ∗

zX) satisfying

ω(tV1 ∧ . . . ∧ Vn) = |t|ω(V1 ∧ . . . ∧ Vn).

On Rn, ΩRn is trivialized by ω0 = |dz1∧ . . .∧dzn| which satisfies ω0(∂z1 , . . . , ∂zn
) =

1. One can naturally integrate densities, and on oriented manifolds they can be
identified with n-forms; see below for more. Here we will usually not differentiate
between real vector spaces and their complexification, so e.g. we write both the real
and complex tangent spaces at z as TzX , rather than say TC

z X for the complex
case.

On Rn, each element f of C(Rn) defines a continuous linear functional on
C∞

c (Rn) (still denoted by f), where the subscript c denotes compact support, by

f : C∞
c (Rn) ∋ φ 7→

∫

Rn

fφ ∈ C.

While C∞
c (Rn) can be thought of as the space of ‘extremely nice’ functions, D′(Rn)

stands for the space of distributions on X (i.e. continuous linear functionals on
C∞

c (Rn)), which, by the above observation, are ‘generalized functions’. On a man-
ifold X the same argument goes through except we can only integrate densities, so
D′(X) is the dual of C∞

c (X ; ΩX). (If we fix a non-vanishing density ω, e.g. arising
from a Riemannian or Lorentzian metric, as discussed below, we can trivialize the
density bundle, and identify C∞

c (X ; ΩX) with C∞
c (X).)

Suppose that X is a manifold without boundary of dimension n, and let h be
a Lorentz metric on X , i.e. h is a real non-degenerate symmetric 2-cotensor of
signature (1, n− 1). (Some people prefer signature (n− 1, 1), which would amount
to switching some signs below.) Thus, for each z ∈ X , h(z) is a symmetric bilinear
map TzX × TzX → R, h(z)(V,W ) = 0 for all W ∈ TzX implies V = 0, and the
maximal dimension of a subspace of TzX to which the restriction of h is positive
definite is 1. In local coordinates, h =

∑

ij hij(z) dzi ⊗ dzj , with (hij) symmetric,
and having one positive and n− 1 negative eigenvalues as an endomorphism of Rn.
With our signature convention, vectors V ∈ TzX are called time-like if h(V, V ) > 0,
space-like if h(V, V ) < 0, and light-like or characteristic if h(V, V ) = 0. The metric h
gives rise to a smooth measure, or density, in local coordinates dvolh = | deth| |dz|,
with deth = det(hij), i.e. for f ∈ C∞

c (X) supported in the coordinate chart,
∫

f dvolh =
∫

f(z)| deth(z)| dz. As h is non-degenerate, the determinant never
vanishes, so in particular we get a positive definite inner product on C∞

c (X), and
on L2(X).
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A special case of such (X,h) is products X = M × R, where (M, g) is a Rie-
mannian manifold, and R is ‘time’, with the Lorentz metric on X being h =
dt2 − g. Thus, for a vector V = (VM , VT ), where VM ∈ TmM , VT ∈ R = TtR,
z = (m, t) ∈ X , h(V, V ) = |VT |2 − g(VM , VM ). In particular, (VM , 0) is space-like
(for VM 6= 0), (0, VT ) is time-like (for VT 6= 0), while (VM , VT ) is characteristic if
|VT |2 = g(VM , VM ).

The Lorentz metric also gives rise to a dual metric, which is a non-degenerate
symmetric bilinear form on T ∗

zX × T ∗
zX . Indeed, non-degeneracy implies that

the map ĥ : TzX ∋ V 7→ h(V, .) ∈ T ∗
zX is injective, hence an isomorphism as

dimTzX = dimT ∗
zX , and then we can define the dual metric H by

H(α, β) = h(ĥ−1α, ĥ−1β), α, β ∈ T ∗
zX.

We call a covector α ∈ TzX time-like, space-like or characteristic if H(α, α) > 0,
H(α, α) < 0 or H(α, α) = 0. We recall that if S is a submanifold of X then
N∗S is the conormal bundle of S; at a point p ∈ S, the fiber N∗

pS consists of all
covectors α ∈ T ∗

pS such that α(V ) = 0 for all V ∈ TpS. Another way of looking
at N∗S is that the space of its smooth sections is spanned (over C∞(S)) by da, as
a ranges over all elements of C∞(X) that vanish on S. If S is a hypersurface, i.e.
has codimension 1, we call S space-like, time-like resp. characteristic, if non-zero
elements of its conormal bundle are time-like, space-like (note the reversal!), resp.
characteristic. In particular, in the product case, X = M ×R, dt is time-like while
if f is a function on M pulled back to X , then df is space-like (whenever it is
non-zero). Correspondingly, M × {t0} is space-like (with conormal dt), while if S0

is a hypersurface in M , then S0 × R is time-like.
This bilinear form H on T ∗

zX then extends to the differential form bundle,
ΛX , i.e. for each z, one has a non-degenerate symmetric bilinear form on the 2n-
dimensional vector space ΛzX , with respect to which the grading of forms by degree
is an orthogonal decomposition. Namely, on k-forms,

H(dzi1∧. . .∧dzik
, dzj1∧. . .∧dzjk

) =
∑

π∈Sk

(sgnπ)H(dzi1 , dzjπ(1)
) . . . H(dzik

, dzjπ(k)
),

where the sum is over all permutations π of (1, . . . , k), extended linearly to Λk
zX .

Thus, one has a (non-positive but non-degenerate) inner product on sections of
ΛX , namely

〈α, β〉 =

∫

X

(α, β)H dvolh, (α, β)H = H(α, β).

In particular, we can define formal adjoints for differential operators

P : C∞(X ; ΛX) → C∞(X ; ΛX)

by

〈P ∗u, v〉 = 〈u, Pv〉, u, v ∈ C∞(X ; ΛX),

P ∗ : D′(X ; ΛX) → D′(X ; ΛX), and it is then straightforward to check that P ∗

itself is a differential operator. Then the d’Alembertian � on differential forms is
defined by

� = (d+ d∗)2 = dd∗ + d∗d

in analogy with the Laplace-Beltrami operator in the Riemannian setting. Thus, for
u, f ∈ C∞(X ; ΛX), �u = f if and only if 〈�u, v〉 = 〈f, v〉 for all v ∈ C∞

c (X ; ΛX),
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i.e. in the symmetric quadratic form formulation, if and only if

〈du, dv〉 + 〈d∗u, d∗v〉 = 〈f, v〉

for all v ∈ C∞
c (X ; ΛX); indeed this holds even if u, f ∈ D′(X ; ΛX).

A useful way of relating d and d∗ is given by the Hodge star operator ∗, which
requires that X be orientable (i.e. the existence of a global non-vanishing section
ω0 of ΛnX), and a choice of orientation. For such an X , there is a unique n-form
ω with the correct orientation (i.e. being a positive multiple of a preferred section)
and with |H(ω, ω)| = 1; in fact, the choice of an orientation gives an isomorphism
between densities and n-forms. If X is oriented (which always holds locally), then
the Hodge star operator ∗ : ΛkX → Λn−kX is characterized by u ∧ ∗v = H(u, v)ω.
Then d∗ = (sgnh)(−1)(k+1)n+1 ∗ d∗ on C∞(X,ΛkX), where sgnh is the signature
of h (1 in the Riemannian setting, (−1)n−1 in the Lorentz setting with our signs)
and ∗� = �∗, so u solves �u = 0 if and only if ∗u solve � ∗ u = 0.

We can now turn to boundaries and corners. First, we define C∞ manifolds
with corners. These are topological manifolds with boundary with a C∞ structure
with corners, which means that each point p in X has a neighborhood O = Op

diffeomorphic to an open subset U of [0,∞)k ×Rn−k; we denote the corresponding
coordinates by (x, y), so x = (x1, . . . , xk), y = (y1, . . . , yn−k), k depends on O,
with the transition maps between the coordinate charts C∞. The tangent and
cotangent bundles on X can be either defined the usual way on X , or by embedding
X in a manifold without boundary (by ‘doubling’ it locally over each boundary
hypersurface), and restricting the the resulting bundles to X . Thus, covectors have
the form

(1) α =

k
∑

i=1

ξi dxi +

n−k
∑

i=1

ζi dyi,

and (x, y, ξ, ζ) give local coordinates on T ∗X . (Actually, they are global on the
fibres of T ∗X → X .)

If X is a manifold with C∞ boundary, d, d∗,� are differential operators on X
with smooth coefficients, defined at first by the above formulae for C∞

c (X◦; ΛX),
then noting that by the smoothness of their coefficients, they act on C∞(X ; ΛX).
We assume that ∂X is time-like. This is the case for instance if X = M ×R, where
now M is a manifold with boundary. As usual, one needs boundary conditions so
that � is symmetric. For instance, one could take Dirichlet boundary conditions,
which amounts to requiring that u ∈ C∞(X ; ΛX) vanishes at ∂X , and

(2) 〈du, dv〉 + 〈d∗u, d∗v〉 = 〈f, v〉

for all v ∈ C∞
c (X ; ΛX) that vanishes at ∂X . Or, we could take Neumann boundary

conditions, which amounts to requiring u ∈ C∞(X ; ΛX) and (2) holds for all v ∈
C∞

c (X ; ΛX). However, for either of these boundary conditions, d+ d∗ itself is not
symmetric.

Natural boundary conditions for forms are ν∧u = 0 at ∂X if ν is a non-vanishing
conormal to H = ∂X , called the relative boundary condition, and its dual ινu = 0,
called the absolute boundary condition (with these conditions being independent of
the choice of ν). ν ∧ u = 0 is interpreted as u is normal to H , while ινu = 0 as u
being tangential to H . We write ΛR(H) for the subbundle of ΛX |H consisting of
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normal forms; it is thus the kernel of the endomorphism α 7→ ν ∧ α. We also write

C∞
R (X ; ΛX) = {u ∈ C∞(X ; ΛX) : u|H ∈ C∞(H ; ΛRH)}.

Note that the vanishing of ν ∧ u is well-defined, independent of the choice of h,
while the vanishing of ιν depends on h: one needs the non-degenerate h to iden-

tify ν with a vector H(ν, .) = ĥ−1(ν), and then ιν = ιĥ−1(ν), with ιV being the

evaluation of forms on a vector field V . However, these conditions are dual to
each other in that ινv = 0 if and only if ν ∧ ∗v = 0, i.e. v satisfies absolute
boundary conditions if and only if ∗v satisfies relative boundary conditions. In
local coordinates (x, y1, . . . , yn−1) near ∂X , x = x1 (recall ∂X is C∞), one can
take ν = dx. For a form u, dx ∧ u = 0 states that u is a linear combination of
dx ∧ dyj1 ∧ . . . ∧ dyjm

, explaining why u is normal. On the other hand, if ν = dx
is orthogonal to dy1, . . . , dyn−1 with respect to H, ιdxu = 0 states that u is a linear
combination of dyj1 ∧ . . . ∧ dyjm

, explaining why u is tangential. In the product
case, X = M × Rt, it is natural to keep t as one of the y variables, i.e. yn−1 = t.

If X is a manifold with corners, d, d∗,� are still differential operators with
smooth coefficients, and the boundary conditions are required for all codimen-
sion 1 boundary faces, i.e. for all boundary hypersurfaces. The local form of the
relative boundary conditions is as follows: at a codimension k corner, given by
x1 = . . . = xk = 0, the condition on u ∈ C∞(X,ΛX) is that dxj ∧ u = 0 at
Hj = {xj = 0} for all j. In order to make these compatible for our analysis, we need
a local trivialization of ΛpX for all p, i.e. a map ΛpO → O×RN , N = dimΛk being
given by the binomial coefficient, and an index set Jj ⊂ {1, . . . , N} for j = 1, . . . , k,
such that for each j and at each q ∈ O ∩Hj , for a form α to satisfy dxj ∧ u = 0
requires that αm = 0 for m ∈ Jj , where α = (α1, . . . , αN ) with repect to the
trivialization. This is straightforward, however, using

(3) dxi1 ∧ . . . ∧ dxis
∧ dyℓ1 ∧ . . . ∧ dyℓp−s

, i1 < . . . < is, ℓ1 < . . . < ℓp−s,

as the basis of Λp
qX , dxj ∧ u = 0 amounts to saying that all components of α in

which j is not one the ir’s vanish. Similarly, using the Hodge star operator, there
is such a good trivialization for the absolute boundary condition as well, namely ∗
applied to the basis of (3).

Now recall that if X is a smooth manifold with corners, Hk(X) can be defined
as the completion of C∞

c (X) in the Hk norm (here k ≥ 0 integer), or equivalently
as the space of restrictions of Hk functions from the ‘double of X ’ in which X has
been extended across all boundary hypersurfaces. In the Riemannian setting there
is a natural Hk norm given by ∇ and the metric, but over compact set all choices
of metrics give rise to equivalent norms, so in fact Hk

loc(X) and Hk
c (X) are defined

independently of such choices. This immediately extends to sections of vector
bundles: we again need a metric on the fibers of the bundle for a global definition,
but the local definition is independent of any such choices. Now, the restriction
to boundary hypersurfaces for C∞(X ;E) induces a restriction map H1(X ;E) →
H1/2(Hj ;E), as usual, and in view of the trivialization (3), C∞

R (X ; ΛX), resp.
C∞

R,c(X ; ΛX) are dense inH1
R,loc(X ; ΛX), resp.H1

R,c(X ; ΛX), whereH1
R,loc(X,ΛX)

and H1
R,c(X,ΛX) are defined analogously to C∞

R (X ; ΛX).

For products X = M × R, h = dt2 − g, one also has a functional analytic
picture. Namely, with Dirichlet, Neumann, or natural boundary conditions, ∆g is
self-adjoint on L2(M ; ΛM) (with respect to the induced inner product). Moreover,
as shown by Mitrea, Taylor and the author in [23], the quadratic form domain D =
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D1 of ∆g with respect to natural boundary conditions is the subspace H1(M,ΛM)
given ν ∧ u = 0, resp. ινu = 0, at all boundary hypersurfaces, where ν denotes a
conormal. In addition, there is an orthogonal decomposition of the form bundle,
ΛX = ΛM ⊕ (dt∧ΛM), and C∞(X ; ΛM), resp. C∞(X ; dt∧ΛM) are preserved by
∆g andD2

t , so the d’Alembertian onX gives rise to the wave equation onM×R with
values in ΛM . Thus, the solutions of the wave equation in this functional analytic
sense, i.e. the solutions of D2

tu = ∆gu with u ∈ C(R;D) ∩ C1(R, L2(M,ΛM)) are
exactly the u ∈ H1

loc(X ; ΛM) satisfying the boundary condition (say, ν ∧ u = 0 at
∂X), such that (2) holds for all v ∈ H1

c (X ; ΛM) satisfying the boundary condition,
with f = 0.

We can now explain Maxwell’s equations in units in which the speed of light is
1. In R4 = R3 × Rt, writing the coordinates on R3 as (z1, z2, z3), we can identify
the electric field E : R4 → R3 and magnetic field B : R4 → R3 with the 2-form on
R4 given by

−F =B1 dz2 ∧ dz3 +B2 dz3 ∧ dz1 +B3 dz1 ∧ dz2

+ E1 dz1 ∧ dt+ E2 dz2 ∧ dt+ E3 dz3 ∧ dt.

Maxwell’s equations in free space (without charges and currents) are then equivalent
to �F = 0; the general version is �F = f , with f given by the charges and currents.
If we impose Maxwell’s equations in z3 ≥ 0, and write x1 = z3, yj = zj , j = 1, 2, F
being normal means that B3 = 0 and E1 = E2 = 0, i.e. the electric field is normal
to the boundary while the magnetic field is tangential to it. This then generalizes
to other regions with smooth boundaries and also to other Lorentz metrics (i.e. a
background from general relativity) to fit into the framework described above, with
X a 4-manifold, and u being a 2-form. We refer to [24, Section 2.11] for a more
detailed discussion.

It is often useful to choose local coordinates with somewhat more care. First,
in the product setting, we always use local coordinates (x, ỹ) arising from an open
set U in M and t as local coordinates on X , i.e. on X we have local coordinates
w = (x, y) where y = (ỹ, t). In such local coordinates the dual metric G on M is

(4) G(x, y) =
∑

i,j

Ãij(x, ỹ) ∂xi
∂xj

+
∑

i,j

2C̃ij(x, ỹ) ∂xi
∂ỹj

+
∑

i,j

B̃ij(x, ỹ) ∂ỹi
∂ỹj

with A,B,C smooth. Moreover, the coordinates on M can be chosen (i.e. the ỹj

can be adjusted) so that C(0, ỹ) = 0. Then on U × R,

(5) H |x=0 = ∂2
t −

∑

ij

Ãij(ỹ) ∂xi
∂xj

−
∑

ij

B̃ij(ỹ) ∂ỹi
∂ỹj

,

with Ã, B̃ positive definite matrices depending smoothly on ỹ.
In the more general Lorentzian setting, the analogue of (4) on X is

(6) H(x, y) =
∑

i,j

Aij(x, y) ∂xi
∂xj

+
∑

i,j

2Cij(x, y) ∂xi
∂yj

+
∑

i,j

Bij(x, y) ∂yi
∂yj

with A,B,C smooth. In this paper we assume that every boundary face F is time-
like in the sense that the restriction of H to N∗F is negative definite, so A is
negative definite (for the conormal bundle N∗F is given by ζ = 0 at x = 0). Then
H is Lorentzian on the H-orthocomplement (N∗F )⊥ of N∗F . In fact, note that
for p0 ∈ F ,

(7) T ∗
p0
X = N∗

p0
X ⊕ (N∗

p0
X)⊥,
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for if V is in the intersection of the two summands, then H(V, V ) = 0 and V ∈
N∗

p0
F , so the definiteness of the inner product on N∗F shows that V = 0, hence

(7) follows as the dimension of the summands sums up to the dimension of T ∗
p0
X .

Choosing an orthogonal basis of (N∗F )⊥ at a given point p0 ∈ F ◦, and then
coordinates yj with differentials equal to these basis vectors, we have in the new
basis that Cij(0, 0) = 0 and

∑

Bij(0, 0)∂yi
∂yj

= ∂2
yn−k

−
∑

i<n−k

∂2
yi
,

and we write coordinates on T ∗X as

x, t = yn−k, ỹ = (y1, . . . , yn−k−1), ξ, τ = ζn−k, ζ̃ = (ζ1, . . . , ζn−k−1),

cf. (1). Thus B is non-degenerate, Lorentzian, near p0, so a simple calculation
shows that and the coordinates on X can be chosen (i.e. the yj can be adjusted)
so that C(0, y) = 0. Then

(8) H |x=0 =
∑

i,j

Aij(0, y) ∂xi
∂xj

+
∑

i,j

Bij(0, y) ∂yi
∂yj

Note that in the product setting (with t = yn−k) Aij = −Ãij , Cij = −C̃ij , j < n−k,

Ci,n−k = 0, Bij = B̃ij , i, j < n−k, Bn−k,n−k = 1, Bn−k,j = Bj,n−k = 0 if j < n−k.
It is also useful to have a positive definite inner product on ΛX . Thus, in addition

to the given Lorentzian metric h we often also consider a Riemannian metric h̃. Let
H , resp. H̃ denoting the dual metrics, as well as the induced metrics on forms; these
can be thought of as maps ΛpX → (ΛpX)∗, hence

(9) J = H−1H̃

is an isomorphism of ΛpX . Note that the form inner products then satisfy

(10) 〈u, Jv〉H = 〈u, v〉H̃ ,

and the inner product on the right hand side is positive definite.
One nice feature of the product case is that there is a natural Riemannian metric

on X as well, namely h̃ = dt2 + g. Then J commutes with ∆g and Dt. Moreover,
it preserves C∞

R (X ; ΛX) as well as C∞
A (X ; ΛX). In fact, with (x, ỹ) coordinates on

M , y = (ỹ, t), it maps α = dxi1 ∧ . . . ∧ dxis
∧ dyℓ1 ∧ . . . ∧ dyℓp−s

to Jα = (−1)pα if

ℓp−s 6= n− k, and to Jα = (−1)p−1α if ℓp−s = n− k.

In the general case we cannot pick h̃ arbitrarily because we need to preserve
boundary conditions. However, with coordinates as in (8), taking h̃ = −ξ ·Aξ+ |ζ|2

does the job, for with respect to this metric the summands in (7) are orthogonal,

J = H−1H̃ = −1 on the span of the dxj , so in particular J maps normal forms to
normal forms (it affects the dy terms in (3), but not the dx terms, up to an overall
negative sign.)

In this paper we will be concerned with the general Lorentzian setting, assuming
that every boundary face F of X is time-like in the sense that H restricts to be
negative definite on N∗F . We will fully treat the scalar equation, as well as the
equation on forms, with Dirichlet or Neumann boundary conditions. However, for
natural boundary conditions we only deal with the elliptic regions due to some
issues that are explained in the penultimate section. The propagation results will
be taken up elsewhere.
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3. Microlocal analysis on manifolds without boundary

Suppose X is a manifold without boundary of dimension n. As outlined in
the introduction, we want to connect analytic objects (such as the wave operator)
with geometric objects (such as certain curves related to the light rays). This is
accomplished by the so-called microlocal, or phase space, analysis. The standard
setting for microlocal analysis is the cotangent bundle – T ∗X is the phase space.
If zj are local coordinates on X , and we write one-forms as

∑

ζj dzj , then (zj , ζj),
j = 1, . . . , n, are local coordinates on T ∗X .

For our purposes there are two important structures on T ∗X . First, being a
vector bundle, T ∗X is equipped with an R

+-action (dilation in the fibers): R
+
s ×

T ∗X ∋ (s, z, ζ) 7→ (z, sζ). In particular, homogeneous degree m functions with
respect to the R+-action, also called positively homogeneous functions on T ∗X \ o
(o denoting the zero section) are those functions p for which p(z, sζ) = smp(z, ζ)
for s > 0. (There are no smooth functions p which are homogeneous of order
m ∈ R \ N, with the problem being smoothness at the zero section, which explains
why we disregard the latter.) T ∗X is also a symplectic manifold, equipped with a
canonical symplectic form ω, ω =

∑

dζj ∧ dzj in local coordinates.
If F is a vector bundle over X , π : T ∗X → X the bundle projection, then π∗F

is a vector bundle over T ∗X whose fiber over (z, ζ) is Fz , the fiber of F over z. If p
is a section of π∗F , then for fixed z, but different ζ’s, p(z, ζ) lies in the same vector
space, Fz, so one can talk about positively homogeneous sections of degree m of
π∗F , namely the ones for which p(z, sζ) = smp(z, ζ) for s > 0.

We can now turn to differential operators. It is useful to recall the multiindex
notation: if α = (α1, . . . , αn) ∈ Nn, |α| = α1 + . . . + αn, then Dα

z = Dα1
z1
. . .Dαn

zn
,

with Dj = Dzj
= 1

i ∂zj
(and N is the set of non-negative integers). (The appearance

of the factor of 1
i is explained by the intertwining relation given by the Fourier

transform.)
If P is a scalar differential operator on X , say P =

∑

|α|≤m aα(z)Dα
z in some

local coordinates, one can associate a principal symbol

p(z, ζ) = σm(P )(z, ζ) =
∑

|α|=m

aα(z)ζα

to P ; this is a positively homogeneous degree m function on T ∗X \ o.
If P is an mth order differential operator acting on sections of a rank ℓ vector

bundle E overX (the set of which is denoted by Diff(X,E)), then in local coordinate
charts in which E is trivial, P is given by a ℓ-by-ℓ matrix P = (Pjk), where each
Pjk =

∑

|α|≤m ajk,α(z)Dα
z is a scalar differential operator, hence has its principal

symbol pjk =
∑

|α|=m ajk,α(z)ζα as above, and the principal symbol of P itself is

the ℓ-by-ℓ matrix of the pjk. Invariantly, σm(P ) is a positively homogeneus degree
m function on T ∗X \ o valued in endomorphisms of π∗E (which is π∗Hom(E,E),
i.e. the pull back of a bundle from X itself). We say that P has a scalar principal
symbol if for all (z, ζ), σm(P ) is a multiple of the identity operator on Ez .

As an example, d ∈ Diff1(X,ΛX) has principal symbol iζ∧, i.e. at (z, ζ) ∈ T ∗X ,
σ1(d)(z, ζ)u = iζ∧u, u ∈ π∗

(z,ζ)ΛX , while σ1(d
∗) = −iιζ, where ιζu is the evaluation

of the form u on the tangent vector at z associated to ζ by the dual metric H , i.e.
H(ζ) – see [24, Section 2.10] for details. As

(11) ιζ(ζ ∧ .) + ζ ∧ ιζ . = H(ζ, ζ).,
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it follows that

σ2(�h) = σ2(d
∗d+ dd∗) = H Id,

where H on the right hand side is understood as the metric function (i.e. H(z, ζ) =
Hz(ζ, ζ) is the squared length of a covector ζ ∈ TzX). In particular, �h has scalar
principal symbol.

In fact, the same works for a more general class of operators, called pseudodiffer-
ential operators, or ps.d.o.’s for short. I will give a concrete description of what these
are, but one may learn more by listing their properties first. For P ∈ Ψm

cl (X,E),
i.e. P is a classical pseudodifferential operator of order m acting on sections of E,
p = σm(P ) is homogeneous degree m function with values in endomorphisms of
π∗E on T ∗X \ o, o denoting the zero section. There is also a slightly larger class
consisting of all pseudodifferential operators, Ψm(X,E), whose principal symbols
are merely (equivalence classes of) symbols in the sense discussed below, see (12).
We will always work with properly supported ps.d.o’s, i.e. such that either projec-
tion X×X → X is proper (compact sets have compact pre-image) when restricted
to the support of the Schwartz kernel of the operators – this ensures that the op-
erators can be composed, etc., and as the Schwartz kernels of these operators are
non-smooth only at the diagonal, this is not a serious restriction.

From an algebraic point of view, some of the most important properties are that
Ψ∞(X,E) = ∪mΨm(X,E) is an order-filtered ring, the space Ψm(X,E) increasing
with m, so

A ∈ Ψm(X,E), B ∈ Ψm′

(X,E) ⇒ AB ∈ Ψm+m′

(X,E),

that the principal symbol is a ring homomorphism, that Ψ0(X,E) is bounded on
L2(X), Ψm(X,E) (m arbitrary) maps C∞(X,E) (and distributional sections of E,
D′(X,E)) to itself, and that there is a short exact sequence

0 → Ψm−1
cl (X,E) → Ψm

cl (X,E) → Sm
hom(T ∗X \ o, π∗Hom(E,E)) → 0;

where Sm
hom stands for C∞ homogeneous functions of degree m.

On the other hand, for X = Rn, there are explicit maps, called quantizations,
sending appropriate classes of functions on T ∗X to pseudodifferential operators on
X . The standard class of such functions to consider is that of symbols: a symbol
of order m on T ∗X (X = Rn) is a C∞ function with specified behavior as ξ → ∞
(and uniform control as x → ∞, although this is much less relevant here): for all
α, β ∈ Nn there is Cα,β > 0 such that for all (x, ξ) ∈ T ∗X ,

(12) |Dα
xD

β
ξ a(x, ξ)| ≤ Cα,β(1 + |ξ|)m−|β|.

The set of these symbols is denoted by Sm(T ∗X) or Sm(Rn
x ; Rn

ξ ) if one wants

emphasize explicit coordinates (hence product structure on T ∗X). This generalizes
polynomials in ξ (recall that symbols of differential operators are polynomials): the
order of a polynomial decreases each time one differentiates it. Note that a smooth
homogeneous function of degree m on T ∗X \ o is in fact a symbol of order m in
|ξ| > 1 over bounded regions in x, i.e. it satisfies the symbol estimates (12) there –
we need to work away from the zero section, ξ = 0, for any smooth homogeneous
function on all of T ∗X is in fact a polynomial. A one-step polyhomogeneous symbol
a of order m is a symbol of order m for which there exist smooth homogeneous

degree m− j functions aj (j ∈ N) on T ∗X \ o such that, for all k, a−
∑k−1

j=0 aj is a
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symbol of order m− k in |ξ| > 1. For quantization, for instance, one can take the
‘left quantization’

(13) (qL(a)u)(x) = (2π)−n

∫

R2n

ei(x−y)·ξa(x, ξ)u(y) dy dξ,

qL(a) is (by definition) a ps.d.o. of order m if a is a symbol of order m. Note that
if a is a polynomial in ξ depending smoothly on x, i.e. a(x, ξ) =

∑

|α|≤m aα(x)ξα,

then qL(a) =
∑

|α|≤m aα(x)Dα, explaining the connection to differential operators.

Vector bundles E (of rank ℓ) over R
n are trivial, and one can use a given trivializa-

tion to quantize a ∈ Sm
cl (T

∗X ;π∗Hom(E,E)) by identifying a with an ℓ-by-ℓmatrix
of functions ajk, and letting qL(a) = (qL(ajk)) be the matrix of the quantizations.
For general manifolds one can transfer this definition by localization. These quan-
tizations q have the property that σm(q(a)) − a is a symbol of order m− 1 – so to
leading order q(a) is independent of the choice of q, but there are still many choices.

It should be emphasized that, in the present setting, the relevant region for
microlocal analysis is the asymptotic regime as ξ → ∞. Making various objects
homogeneous, or conic, is a way of ‘bringing infinity to a finite region’. Another
way of accomplishing this is to compactifying the fibers of the cotangent bundle –
this is the approach taken by Melrose, e.g. in [11].

The symplectic form ω turns scalar valued functions p, or rather the differen-
tial dp, into a vector field Hp (called the Hamilton vector field of p) on T ∗X via
demanding that ω(V,Hp) = V p for all vector fields V . Thus,

Hp =
∑

j

∂p

∂ζj

∂

∂zj
−

∂p

∂zj

∂

∂ζj
.

Note that Hp is homogeneous of degree m− 1. If p ∈ Sm
hom(T ∗X \ o;π∗Hom(E,E))

is a scalar multiple of identity, p = p̃ Id, then we write Hp = Hp̃. Note that we
only define Hp is p is scalar valued. As mentioned above, an example with p = h, a
Riemannian or Lorentzian metric, with E being either scalars or differential forms,
is P = ∆h, the Laplace-Beltrami operator (in the Riemannian case) and P = �h,
the d’Alembertian or wave operator (in the Lorentzian case).

Definition 1. Suppose that p is homogeneous degree m on T ∗X \ o and scalar
valued. The characteristic set of p is Σ = p−1({0}). Bicharacteristics are integral
curves of Hp inside Σ.

The role that Hp plays in analysis becomes apparent upon noticing that if P ∈

Ψm
cl (X), Q ∈ Ψm′

cl (X) then [P,Q] = PQ−QP ∈ Ψm+m′−1
cl (X), and

(14) σm+m′−1(i[P,Q]) = Hpq.

If instead P ∈ Ψm
cl (X,E), Q ∈ Ψm′

cl (X,E) and P has scalar principal symbol, then

[P,Q] ∈ Ψm+m′−1
cl (X,E) still since

σm+m′(PQ) = σm(P )σm′(Q) = σm′(Q)σm(P ) = σm+m′(QP ),

so σm+m′([P,Q]) = 0, but the principal symbol is given by a more complicated
expression, for it depends on P modulo Ψm−2

cl (X,E). However, if both P and Q
have scalar principal symbols, then (14) holds as can be seen by locally trivializing
E and computing the commutator.

To do analysis, we also need a notion of singularity of a function or distribution
u. The roughest notion is that of the wave front set WF(u), which locates at
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which points and in which direction a function u is not smooth, here meaning
C∞. Immediately from the definition, given below, this is a closed conic subset of
T ∗X \ o; u is C∞ if and only if WF(u) = ∅. In fact, for any point z0 ∈ X , z0 has a
neighborhood in X on which u is C∞ if and only if WF(u) ∩ (T ∗

z0
X \ o) = ∅.

One way of defining WF(u) for distibutions u is the following:

Definition 2. Suppose that u ∈ D′(X,E). We say that q ∈ T ∗X \ o is not in
WF(u) if there exists A ∈ Ψ0(X,E) such that σ0(A)(q) invertible (i.e. A is elliptic
at q; in the scalar case this just means σ0(A)(q) 6= 0) and Au ∈ C∞(X,E).

To get a feeling for this, one should think of A as the quantization of a scalar
symbol a which is supported in a cone around q, identically 1 on the R+-orbit
through q (at least outside some compact subset of T ∗X).

For example, if δ0 is the delta distribution at the origin, then

WF(δ0) = {(0, ζ) : ζ 6= 0} = N∗{0} \ o,

i.e. δ0 is singular only at the origin, and it is singular there in every direction – which
is quite reasonable. As an aside, conormal bundles are Lagrangian submanifolds of
T ∗X , i.e. the symplectic form vanishes when restricted to their tangent space, and
are maximal dimensional (i.e. n-dimensional) with this property. Conic Lagrangian
submanifolds of T ∗X\o play an important role in many parts of microlocal analysis.

A more interesting example is that of a domain Ω with a C∞ boundary, and χΩ

the characteristic function of Ω. If locally ∂Ω is defined by f , i.e. over some open
set O ⊂ X , ∂Ω ∩O = {z ∈ O : f(z) = 0} and df never vanishes on ∂Ω ∩ O, then,
over O, the space of sections of N∗∂Ω is spanned by df , so any covector in N∗∂Ω
has the form αdf , α ∈ C∞(∂Ω). In this case,

WF(χΩ) = N∗∂Ω \ o.

That is, χΩ is smooth both in Ω and in the complement of its closure (after all, it
is constant there!), and it is singular at ∂Ω, but it is only singular in the conormal
directions: it is smooth when one moves along ∂Ω. (This can be seen directly from
the definition of WF: consider differentiating χΩ along a vector field tangential to
the boundary, and note that the principal symbol of such a vector field vanishes on
the conormal bundle!)

One can measure singularities with respect to other spaces: e.g. the Sobolev
spaces Hs

loc(X,E), where we would write WFs(u), or with respect to real analytic
functions, where we would write WFA(u). Indeed, WFs(u) plays a role in the
proofs of various results stated below; one often proves in an inductive manner that
u is microlocally in Hs for every s (hence is C∞ microlocally), rather than proving
directly that u is C∞ microlocally. We can define WFs(u) for u ∈ D′(X,E) by
saying that q ∈ T ∗X \ o is not in WFs(u) if there exists A ∈ Ψ0(X,E) such that
σ0(A)(q) 6= 0 and Au ∈ Hs

loc(X,E). Equivalently, one can shift the weight to the
ps.d.o. from the function space:

Definition 3. Suppose that u ∈ D′(X,E). We say that q ∈ T ∗X \ o is not in
WFs(u) if there exists A ∈ Ψs(X,E) with σ0(A)(q) 6= 0 and Au ∈ L2

loc(X,E).

The main facts about the analysis of P , which in this generality are due to
Hörmander and Duistermaat-Hörmander [6, 3, 8] are:

(1) Microlocal elliptic regularity. Let Σ(P ) be the characteristic set of P , i.e.
the set of points in T ∗X \ o at which σ(P ) is not invertible. (Thus, if
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σ(P ) = p Id is scalar, this is just p−1({0}).) If u ∈ D′(X,E) then WF(u) ⊂
WF(Pu) ∪ Σ(P ). In particular, if Pu ∈ C∞(X,E) then WF(u) ⊂ Σ(P ).

(2) Propagation of singularities. Suppose that σ(P ) = p Id is scalar, p is real,
Pu ∈ C∞(X,E). Then WF(u) is a union of maximally extended bichar-
acteristics in Σ(P ). That is, if q ∈ WF(u) (hence in Σ(P )) then so is the
whole bicharacteristic through q.

For analogy with the manifolds with corners setting, we restate part of these
conclusions in a special case:

Theorem 4. (See Hörmander and Duistermaat-Hörmander [6, 3, 8].) Suppose
P ∈ Ψm(X,E), σm(P ) = p Id is scalar, real, Pu = 0, u ∈ D′(X,E). Then
WF(u) ⊂ Σ = Σ(P ), and it is a union of maximally extended bicharacteristics of
P .

Note that (2) may be vacuous; indeed, if Hp is radial, i.e. tangent to the orbits
of the R+-action, then it does not give any information on WF(u), as the latter
is already known to be conic. Such points are called radial points, and in recent
work with Hassell and Melrose [5], they have been extensively analyzed under non-
degeneracy assumptions. If P is the wave operator, there are no radial points in
Σ = Σ(P ), but such points are very important in scattering theory (where the
R+-action, or its remnants, are in the base variables z).

As an example, consider the wave operator P = D2
t − ∆g, X = M × R, M

a manifold without boundary. Then p = σ2(P ) = τ2 − |ξ|2g, where (x, t, ξ, τ) are
coordinates on T ∗X (so ξ is dual to x, and τ is dual to t), and the projection of
bicharacteristics to M are geodesics. If M ⊂ Rn and g is the Euclidean metric, then
Hp = 2τ∂t − 2ξ · ∂x, and bicharacteristics inside p = 0, i.e. |τ | = |ξ|, are straight
lines

s 7→ (x0 − 2sξ0, t0 + 2τ0s, ξ0, τ0),

which explains geometric optics in the absence of boundaries.

4. Propagation of singularities on manifolds with corners: the phase

space

On manifolds with corners, roughly, the results have the same form as in the
boundaryless case, but the definitions of wave front set and the bicharacteristics
change significantly. In particular, the relevant wave front set is WFb(u), introduced
by Melrose (see [17], [7, Section 18.2] for the setting of smooth boundaries, [19] for
manifolds with corners). Both WFb(u) and the image of the (generalized broken)
bicharacteristics are subsets of a new phase space, the b-cotangent bundle bT ∗X .

The reason for this is that one cannot microlocalize in T ∗X : naively defined
ps.d.o’s do not act on functions on X in general, and even when they do, they do
not preserve boundary conditions. This causes technical complications, for we are
interested in the wave operator, P = D2

t − ∆, whose principal symbol is a C∞

function on T ∗X , not on bT ∗X where we microlocalize. In fact, from a PDE point
of view, this discrepancy is what causes the diffractive phenomena.

Rather than defining bT ∗X directly, I describe its main properties: these can
be easily made into a definition as we shortly see. Being a vector bundle, locally
in X it is trivial, and in the local coordinate product decomposition above, it will
take the form Ux,y ×Rk

σ ×R
n−k
ζ , with U ⊂ [0,∞)k

x ×Rn−k
y , where σ is the ‘b-dual’

variable of x and ζ is the b-dual variable of y.
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There is a natural map π : T ∗X → bT ∗X , which in these local coordinates takes
the form

π(x, y, ξ, ζ) = (x, y, xξ, ζ),

with xξ = (x1ξ1, . . . , xkξk).
(15)

(That is, σj = xjξj .) Thus, π is a C∞ map, but at ∂X , it is not a diffeomorphism.
Over the interior X◦ of X , bT ∗X and T ∗X are naturally identified via π, and

WFb(u) ∩
bT ∗

X◦X = π(WF(u) ∩ T ∗
X◦X).

Note that if q is a linear function on each fiber of bT ∗X , then it has the form

q =
∑

aj(x, y)σj +
∑

bj(x, y)ζj ,

so

π∗q =
∑

aj(x, y)xjξj +
∑

bj(x, y)ζj ,

which is the principal symbol of

(16) Q =
∑

aj(x, y)xjDxj
+

∑

bj(x, y)Dyj
.

Vector fields of this form are exactly the vector fields tangent to all boundary faces
of X ; we denote their space by Vb(X).

In fact, this indicates how bTX can be defined intrinsically: the set of all smooth
vector fields tangent to all boundary faces is the set of all smooth sections of a vector
bundle; indeed, x, y, aj , bj above give local coordinates on bTX . Then bT ∗X can be
defined as the dual vector bundle. However, as long as all considerations are local,
and they are mostly such here, it is safe to consider bT ∗X a space arising from a
singular change of variables on T ∗X (given by (15)) – it is for this reason that it is
sometimes called the compressed cotangent bundle.

There are two closely related pseudodifferential algebras microlocalizing Vb(X)
and the induced algebra of differential operators Diffb(X), corresponding to Ψcl(X)
and Ψ(X) in the boundaryless case. These are denoted by Ψb(X) and Ψbc(X),
respectively. There is also a principal symbol on Ψm

b (X); this is now a homogeneous
degree m function on bT ∗X \ o. Ψb(X) has the algebraic properties analogous to
Ψ(X) on manifolds without boundary. Ψb(X) can be described quite explicitly;
this was done for instance in [19, 27] in the corners setting, and in [7, Section 18.3]
for smooth boundaries. In particular, a subset of Ψb(X) (which would morally
suffice for our purposes here) consists of operators with Schwartz kernels supported
in U ×U , U ⊂ X a coordinate chart with coordinates x, y as above, with Schwartz
kernels of the form

q(a)u(x, y)

= (2π)−n

∫

ei((x−x′)·ξ+(y−y′)·ζ)φ(
x − x′

x
)a(x, y, xξ, ζ)u(x′, y′) dx′ dy′ dξ dζ,

(17)

understood as an oscillatory integral, where a ∈ Sm(Rn
x,y; Rn

σ,ζ) (with σ = xξ, cf.

(15)), φ ∈ C∞
c ((−1/2, 1/2)k) is identically 1 near 0, x−x′

x = (
x1−x′

1

x1
, . . . ,

xk−x′

k

xk
),

and the integral in x′ is over [0,∞)k. This formula is similar to (13), but ξ is
replaced by xξ here. Thus, if a is a polynomial in its third and fourth slots, i.e. in
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xξ and ζ, depending smoothly on x, y, i.e.

a(x, y, ξ, ζ) =
∑

|α|+|β|≤m

aαβ(x, y)(xξ)αζβ ,

then
q(a) =

∑

|α|+|β|≤m

aαβ(x, y)(xDx)αDβ
y ,

thus connecting Vb(X) and Diffb(X) to Ψb(X) in view of (16). One can also
construct Ψb(X ;E,F ) – acting between distributional sections of vector bundles E
and F over X . Elements of Ψm

bc(X) have the important property that they map
C∞(X) → C∞(X), and more generally they map xjC

∞(X) → xjC
∞(X), so if

A ∈ Ψm
bc(X), then (Au)|Hj

depends only on u|Hj
for u ∈ C∞(X). In particular,

Dirichlet boundary conditions are automatically preserved by such A, which makes
Ψb(X) easy to use in the analysis of the Dirichlet problem in [27]. We will need
more care for natural boundary conditions, which is a point we address in the next
section.

Now WFb(u) can be defined analogously to WF(u). For simplicity we state
this here for u ∈ L2

loc(X ;E) where E is a vector bundle; this is how the main
theorem is stated below, but see [27, Section 3] for the more general setting. (Here
we put an arbitrary Riemannian metric on X and an arbitrary fiber metric on E;
the resulting L2-norms are equivalent over compact sets.) The space of ‘very nice’
functions corresponding to Vb(X) and Diffb(X), replacing C∞(X), is the space of
L2 conormal functions to the boundary, i.e. functions v ∈ L2

loc(X ;E) such that
Qv ∈ L2

loc(X ;E) for every Q ∈ Diffb(X ;E) (of any order). Then q ∈ bT ∗X \ o is
not in WFb(u) if there is an A ∈ Ψ0(X ;E) such that σb,0(A)(q) is invertible and
Au is L2-conormal to the boundary. Spelling out the latter explicitly:

Definition 5. (See [27, Section 3] for the more general setting.) Suppose u ∈
L2

loc(X ;E). Then q ∈ bT ∗X \ o is not in WFb(u) if there is an A ∈ Ψ0(X ;E) such
that σb,0(A)(q) is invertible and QAu ∈ L2

loc(X ;E) for all Q ∈ Diffb(X ;E).

Note that the definition of WF could be stated in a completely parallel manner:
we would require (for X without boundary) QAu ∈ L2(X) for all Q ∈ Diff(X) –
this is equivalent to Au ∈ C∞(X) by the Sobolev embedding theorem.

Moreover, the wave front set is microlocal, i.e. WFb(Bu) ⊂ WF′
b(B) ∩ WFb(u),

so the standard characterization applies: q /∈ WFb(u) if there is an open set O
containing q such that for every B ∈ Ψ0(X ;E) with WF′

b(B) ⊂ O, Bu is L2-
conormal to the boundary.

In fact, technically it is useful to work with the space of functions conormal
relative to H1

loc(X ;E), as the latter is almost the quadratic form domain when
E = ΛX . Moreover, we also need spaces of distributions possessing finite regularity.

Definition 6. Suppose u ∈ H1
loc(X ;E). Then q ∈ bT ∗X \ o is not in WF1,∞

b (u) if
there is an A ∈ Ψ0(X ;E) such that σb,0(A)(q) is invertible and QAu ∈ H1

loc(X ;E)
for all Q ∈ Diffb(X ;E).

Moreover, q ∈ bT ∗X \ o is not in WF1,m
b (u) if there is an A ∈ Ψm(X ;E) such

that σb,0(A)(q) is invertible and Au ∈ H1
loc(X ;E).

The key observation in making the definition useful is that any A ∈ Ψ0
bc(X ;E)

with compact support defines a continuous linear maps A : H1(X ;E) → H1(X ;E)
with norms bounded by a seminorm of A in Ψ0

bc(X ;E). This follows from the
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analogous statement for scalar operators, proved in [27, Lemma 3.2], by using local
trivializations. However, we recall the essence of the argument as it involves some
important concepts.

The indicial operators N̂j(A)(σj), introduced by Melrose, see [27, Section 2] for
a discussion in the present context, play an important role below. These capture
the behavior of A at a boundary hypersurface Hj . For a differential operator,

A =
∑

|α|+|β|≤m

aαβ(x, y)(xDx)αDβ
y ⇒

N̂j(A) =
∑

|α|+|β|≤m

aαβ((x̂, 0), y)σ
αj

j (x̂Dx̂)α̂Dβ
y

where we write x̂ for x with the coordinate xj dropped, similarly for α̂, and (x̂, 0)

is x with the jth coordinate replaced by 0. Thus, N̂j(A) captures A fully at Hj ,
i.e. not merely its principal symbol (which only captures the highest derivatives),

in the sense that N̂j(A)(σj) = 0 for all σj ∈ R implies A ∈ xjDiffm
b (X) (this also

holds for ps.d.o’s). More invariantly, also for A ∈ Ψm
bc(X),

N̂j(A)(σ)ũ(x̂, y) = (x
−iσj

j Ax
iσj

j u)|Hj
, u|Hj

= ũ,

which follows from x
−iσj

j Ax
iσj

j ∈ Ψm
bc(X), which hence maps C∞(X) → C∞(X)

and xjC
∞(X) → xjC

∞(X) (so the left hand side is independent of the particular
choice of u). One application of indicial operators is to note that

A ∈ Ψm
bc(X) ⇒ [xjDxj

, A] ∈ xjΨ
m
bc(X)

(rather than merely in Ψm
bc(X)), since its indicial operator is [N̂(xjDxj

), N̂(A)] = 0,

for N̂j(xjDxj
) = σj is a constant (rather than a general differential operator). This

implies that for A ∈ Ψ0
bc(X), A : H1(X) → H1(X), for A is bounded on L2(X),

and

(18) Dxj
A = x−1

j (xjDxj
)A = x−1

j [xjDxj
, A] + (x−1

j Axj)Dxj
,

with the first term on the right hand side in Ψ0
bc(X), hence bounded on L2(X),

and x−1
j Axj ∈ Ψ0

bc(X), hence bounded on L2(X) as well. In view of x−1
j Axj =

A+ x−1
j [A, xj ], an immediate consequence of (18) is the following

Lemma 7. (Lemma 2.8 of [27]) Let ∂xj
, ∂σj

denote local coordinate vector fields

on bT ∗X in the coordinates (x, y, σ, ζ). For A ∈ Ψm
b (X) with Schwartz kernel

supported in the coordinate patch, a = σb,m(A) ∈ C∞(bT ∗X\o), we have [Dxj
, A] =

A1Dxj
+A0 ∈ Diff1Ψm−1

b (X) with A0 ∈ Ψm
b (X), A1 ∈ Ψm−1

b (X) and

(19) σb,m−1(A1) =
1

i
∂σj

a, σb,m(A0) =
1

i
∂xj

a.

This result also holds with Ψb(X) replaced by Ψbc(X) everywhere.

Here we introduced some notation for operators of the form

(20)
∑

j

QjAj , Qj ∈ Diffk(X), Aj ∈ Ψm
b (X),
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where the sum is locally finite; we write DiffkΨm
b (X) for their set, and analogously

for DiffkΨm
bc(X). A calculation analogous to (18), see [27, Lemma 2.5] shows that

Bj ∈ Diffkj Ψ
mj

b (X) (j = 1, 2) ⇒

B1B2 ∈ Diffk1+k2Ψm1+m2

b (X), [B1, B2] ∈ Diffk1+k2Ψm1+m2−1
b (X),

i.e. the b-ps.d.o order of the commutator is one order lower than that of the prod-
ucts.

Again, one has microlocality, see [27, Lemma 3.9]: for B ∈ Ψk
b (X ;E), u ∈

H1
loc(X ;E),

WF1,m−k
b (Bu) ⊂ WF′

b(B) ∩ WF1,m
b (u).

One can also work relative to the dual space, Ḣ−1(X), of H1(X), and define

WF−1,∗
b (f) for f ∈ Ḣ−1(X); we simply refer to [27, Section 3] here.

5. Elliptic estimates

If P ∈ Diffm(X), with σ(P ) = p Id scalar, the characteristic set Σ(P ) = p−1({0})
is a subset of T ∗X . Let Σ̇ = π(Σ(P )) ⊂ bT ∗X be the compressed characteristic set.

If P is elliptic, then Σ̇ is empty, but even if P is not elliptic, Σ̇ is often a proper
subset of bT ∗X , outside which P behaves as if it were elliptic. In particular, as we
prove below, if P is the wave operator on forms, Pu = 0 with Dirichlet, Neumann or
natural boundary conditions, then WF1,∞

b (u) ⊂ Σ̇. If P = ∆− λ, ∆ the Laplacian
on forms, then Pu = 0 with Dirichlet, Neumann or natural boundary conditions
implies that u is H1-conormal, which is the statement of elliptic regularity.

We make this more concrete for the wave operator P = D2
t −∆g on X = M ×R.

Using coordinates from Section 2, namely such that (5) holds, on T ∗
U×R

X \ o,

(21) p|x=0 = τ2 − ξ · Ã(ỹ)ξ − ζ̃ · B̃(ỹ)ζ̃ ,

with Ã, B̃ positive definite matrices depending smoothly on ỹ. Thus, with U =
{x = 0} ∩ bT ∗

U×R
X \ o, writing local coordinates on bT ∗X as (x, ỹ, t, σ, ζ̃, τ),

Σ̇ ∩ U = {(0, ỹ, t, 0, ζ̃, τ) : τ2 ≥ ζ̃ · B̃(ỹ)ζ̃ , (ζ̃, τ) 6= 0}.(22)

Note that Σ̇ = π(Σ(P )) is disjoint from all points (x, ỹ, t, σ, ζ, τ) with x = 0 at

which either σ 6= 0 (for σj = xjξj = 0 for all j) or τ2 < ζ · B̃(ỹ)ζ.
In the more general Lorentzian setting, by Section 2 we have coordinates, namely

such that (8) holds, in which

(23) p|x=0 = ξ ·A(y)ξ + ζ · B(y)ζ.

This gives that

Σ̇ ∩ U = {(0, y, 0, ζ) : 0 ≤ ζ ·B(y)ζ, ζ 6= 0}.(24)

We have already seen that any A ∈ Ψ0
bc(X) preserves Dirichlet boundary con-

ditions. For natural boundary conditions we need to be more careful, which is a
topic we now address.

The basic idea of proving microlocal estimates for solutions of the wave equation,
i.e. for u ∈ H1

R,loc(X ; ΛX) (so ν ∧ u = 0 at ∂X) satisfying

(25) 〈du, dv〉 + 〈d∗u, d∗v〉 = 〈f, v〉

for all v ∈ H1
R,c(X ; ΛX), is to use the equation with v replaced by an operator

applied to u, and then rewrite it to obtain an estimate for ‖Bu‖2
H1 for some B.
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More concretely, we would like to use A ∈ Ψm
bc(X ; ΛX) with v = A∗Au. In order

to do this, we need that A∗Au ∈ H1(X ; ΛX) which is automatically true if A ∈
Ψ0

bc(X ; ΛX), and ν ∧ A∗Au = 0. This latter part is what requires particular care,
in fact does not work in general, but we have the following result:

Lemma 8. Suppose that a ∈ Sm(bT ∗X). Then there exists an A = q(a) ∈
Ψm

bc(X,ΛX) such that σb,m(A)(w, η) = a(w, η)I(w,η) (I being the identity opera-

tor on π∗ΛX) and N̂j(A) : C∞(Hj ; ΛR(Hj)) → C∞(Hj ; ΛR(Hj)) for each bound-
ary hypersurface Hj. Thus, for m = 0, A : H1

R,c(X ; ΛX) → H1
R,c(X ; ΛX), and

similarly for the local spaces..

Proof. Using a partition of unity {φk} on X , it suffices to prove the result with
a replaced by φka, for if Ak denotes the associated operator, A =

∑

Ak satisfies
the requirements of the theorem. Thus, we may assume that a is supported in
a coordinate chart O, in which the trivialization u = (um), as in (3), of ΛX can
be used (with the notation of Section 2), so ν ∧ u|Hj

= 0 means exactly that
um|Hj

= 0 for m ∈ Jj . Then let A0 ∈ Ψm
bc(X) be a scalar operator with principal

symbol a and Schwartz kernel supported in O × O, and let A ∈ Ψm
bc(X ; ΛX) be

given, using the trivialization, by the diagonal matrix of operators on ΛX with all
diagonal entries equal to A0. Then N̂j(A) is diagonal with respect to the induced

trivialization of ΛX |Hj
with diagonal entries N̂j(A0). If u ∈ C∞(X ; ΛX) then

(Au)|Hj
= N̂j(A)(u|Hj

), so if u|Hj
∈ C∞(X ; ΛR(Hj)) then (N̂j(A)(u|Hj

))m =

N̂j(A0)(um|Hj
) = 0 for m ∈ Jj proving the claim.

Due to the density of C∞
R,c(X ; ΛX) inH1

R,c(X ; ΛX), for a ∈ S0(bT ∗X) we deduce

that the A given by the lemma maps H1
R,c(X ; ΛX) → H1

R,c(X ; ΛX). �

If A is as in the Lemma, A∗ does not map H1
R,c(X ; ΛX) → H1

R,c(X ; ΛX) in

general, for that would correspond to N̂j(A) mapping sections of (ΛRHj)
⊥ to itself.

However, we can use as replacement the operator A† with A† = q(ā), writing A†
0

be A0 of the lemma constructed with ā in place of a, and then σb,m(A∗) = ā I =
σb,m(A†).

We also want to rewrite 〈du, dv〉+ 〈d∗u, d∗v〉, u ∈ C∞(X,ΛX), v ∈ C∞
c (X,ΛX).

Here recall that 〈., .〉 is the inner product given by h, so is not positive definite
if h is Lorentzian, only if h is Riemannian. The following calculation follows [23,
Section 4], which in turn was based on the work of Mitrea [21] and Mitrea, Mitrea
and Taylor [20]. Let ∇ be any first order differential operator with the same symbol
of the Levi-Civita connection, so

σ1(∇)(w, ξ̃)u = iξ̃ ⊗ u, u ∈ π∗
(w,ξ̃)

ΛX.

Writing δ = d∗, σ2(δd + dδ) = σ2(∇∗∇) (as both are given by the dual metric
function, H), and

δd+ dδ −∇∗∇ = R ∈ Diff1(X ; ΛX)

is formally self-adjoint. We remark that the Levi-Civita connection itself is special
because if ∇ is the Levi-Civita connection then R ∈ Diff0(X ; ΛX), i.e. is a bundle
isomorphism, due to the Weitzenböck formulae (see [24, Chapter 10, Section 4]),
but this does not play a role here. Since for any first order differential operator



20 ANDRÁS VASY

P ∈ Diff(X ;E,F ) one has (see [24, Chapter 2, Proposition 9.1])

〈Pu, v〉L2(X;F ) =〈u, P ∗v〉L2(X;E) +
1

i
〈σ1(P )(νw)u, v〉L2(∂X;F ),

〈σ1(P )(νw)u, v〉L2(∂X;F ) =

∫

∂X

(σ1(P )(νw)u, v)Fw
dS(w),

where P ∗ is the formal adjoint of P , and in the last term one takes the inner
product on the fiber Fw of F over w ∈ ∂X and integrates with respect to the
surface measure induced by the restriction of h to ∂X (which is non-degenerate by
the time-like assumption), one deduces that for u ∈ C∞(X ; ΛX), v ∈ C∞

c (X ; ΛX),

〈(dδ + δd−∇∗∇)u, v〉

= 〈du, dv〉 + 〈δu, δv〉 − 〈∇u,∇v〉 +

∫

∂X

((ν ∧ δu, v) − (ν ∨ du, v) + (∇νu, v)) dS

= 〈du, dv〉 + 〈δu, δv〉 − 〈∇u,∇v〉 +

∫

∂X

((ν ∧ δu, v) − (du, ν ∧ v) + (∇νu, v)) dS.

If ν ∧ v = 0 (i.e. v is normal), the penultimate term on the right can be dropped.
Writing the integral over ∂X as a sum of integrals over the boundary hypersurfaces
Hj , and extending the conormal νj to Hj to a smooth 1-form on X for each j,
note that if u is normal, so νj ∧ u = 0 at Hj , then νj ∧ u = xj ũ for some smooth
form ũ, so δ(νj ∧ u) = δ(xj ũ) = xjδũ − dxj ∨ ũ is equal to −dxj ∨ ũ at Hj , so
(δ(νj ∧ u), v) = −(dxj ∨ ũ, v) = (ũ, dxj ∧ v) = 0 at Hj if v is normal. Thus, the
integral over Hj can be rewritten as

∫

Hj

(δ(νj ∧ u) + νj ∧ δu+ ∇νj
u, v) dS =

∫

Hj

(Pνj
u, v) dS,

where Pνj
u = δ(νj ∧u)+νj ∧δu+∇νj

u is a priori a first order differential operator.

However, the principal symbol of iPνj
is ξ̃ ∨ (νj ∧ .) + νj ∧ (ξ̃ ∨ .)− (νj , ξ̃). = 0 (this

is just the polarized version of (11)), so Pνj
is in fact zeroth order, i.e. a bundle

endomorphism. We thus have for u ∈ C∞
R (X ; ΛX), v ∈ C∞

R,c(X ; ΛX):

〈du, dv〉 + 〈δu, δv〉 = 〈∇u,∇v〉 + 〈Ru, v〉 +

∫

∂X

(R̃u, v) dS

for some smooth bundle endomorphism R̃ and a first order differential operator R;
by continuity and density this holds for all u ∈ H1

R,loc(X ; ΛX), v ∈ H1
R,c(X ; ΛX).

Thus, the inhomogeneous wave equation becomes

(26) 〈f, v〉 = 〈∇u,∇v〉 + 〈Ru, v〉 +

∫

∂X

(R̃u, v) dS

for all v ∈ H1
R,c(X ; ΛX). We can think of the last two terms on the right hand side

as error terms, for

(27) |〈Ru, v〉|, |

∫

∂X

(R̃u, v) dS| ≤ C(‖u‖H1‖v‖L2 + ‖u‖L2‖v‖H1),

can be estimated using one derivative on u and v altogether, while 〈∇u,∇v〉 in-
volves two derivatives altogether. This formula is valid both for Lorentzian and
Riemannian metrics g; the difference is that for Lorentz metrics the quadratic form
given by ∇ is not positive. However, it is microlocally positive in the elliptic region
for scalar operators, and in general can be adjusted in this region by use of a twist
J discussed below, giving rise to the elliptic estimates.
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If a ∈ Sm(bT ∗X) and A ∈ Ψm
bc(X ; ΛX) is given by Lemma 8, then we may take

v = A†JAu, where J is the bundle isomorphism given by (9). As our formula is

valid for any ∇ with principal symbol iξ̃⊗, we may choose to ∇ to be the gradient
corresponding to the flat metric in the coordinate chart O (where v is supported),
and then (keeping in mind that the inner products still correspond to the actual
metric h!)

〈∇u,∇A†JAu〉 =
∑

ij

∑

α,β

〈HαβHijDwi
uα, Dwj

A†
0JA0uβ〉L2(X),

where the remaining pairing is the L2-pairing on functions, i.e. is the integral of

the product (with a complex conjugation). Thus, commuting A†
0 through Dwj

,
taking the adjoint, commuting through the metric factors and then Dwi

, and also
commuting J through Dwj

, with each commutator giving an operator of one lower
b-differential order,

〈∇u,∇A†JAu〉 =
∑

ij

∑

α,β

〈HαβHijDwi
(A†

0)
∗uα, JDwj

A0uβ〉

+
∑

ij

∑

α,β

(〈B̃αβ,iuα, Dwj
A0uβ〉 + 〈Dwi

uα, C̃αβ,jA0uβ〉)

with

B̃αβ,i, C̃αβ,j ∈ Diff1Ψm−1
bc (X ; ΛX), WF′

b(B̃αβ,i),WF′
b(C̃αβ,j) ⊂ WF′

b(A);

see (20) for the definition of DiffΨb(X). As (A†
0)

∗−A0 ∈ Ψm−1
bc (X), the contribution

of this difference can be absorbed into B̃αβ,i, so one obtains in view of (10),

〈∇u,∇A†JAu〉 =
∑

ij

∑

α,β

〈H̃αβHijDwi
A0uα, Dwj

A0uβ〉

+
∑

ij

∑

α,β

(〈Bαβ,iuα, Dwj
A0uβ〉 + 〈Dwi

uα, Cαβ,jA0uβ〉,

with Bαβ,i and Cαβ,j having similar properties to B̃αβ,i and C̃αβ,j . The first term
on the right hand side is just the twisted Dirichlet form,

(28) Q(Au,Au) = 〈∇Au,∇Au〉L2(X,ΛX⊗T∗X,H̃⊗H),

with the inner product on ΛX ⊗ T ∗X induced by H̃ (which is positive definite) on
ΛX , and H on T ∗X (which is not positive definite). Rewriting

〈Ru,A†Au〉 = 〈(A†)∗Ru,Au〉 = 〈RAu,Au〉 + 〈((A†)∗ −A)Ru,Au〉 + 〈[A,R]u,Au〉,

((A†)∗ − A)R, [A,R] ∈ Diff1Ψm−1
b (X ; ΛX), so the commutator in 〈Ru,A∗Au〉 can

be treated as the Bαβ,i terms. Moreover,

〈R̃u,A†Au〉 = 〈R̃u, N̂(A†)N̂(A)u〉

= 〈R̃N̂(A)u, N̂(A)u〉∂X + 〈(N̂((A†)∗) − N̂(A))R̃u, N̂(A)u〉∂X

+ 〈[N̂(A), R̃]u, N̂(A)u〉∂X ,

and similar estimates apply again.
Now suppose that

P = δd+ dδ + P1 = � + P1, P1 ∈ Diff1(X),
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with natural boundary conditions, that is u solves Pu = f , f ∈ Ḣ−1(X,ΛX) in
the sense that u ∈ H1

loc(X ; ΛX) with ν ∧ u = 0 and

(29) 〈du, dv〉 + 〈δu, δv〉 + 〈P1u, v〉 = 〈f, v〉

for all v ∈ H1
c (X ; ΛX) with ν ∧ v = 0. Then in the argument above P1 can simply

be incorporated into R, so the same arguments work.
If a ∈ Sm(bT ∗X) is supported near a point q ∈ bT ∗X\(WF−1,m

b (f)∪Σ̇), a(q) 6= 0,

so that WF′
b(A) ∩ (WF−1,m

b (f) ∪ Σ̇) = ∅, and WF
1,m−1/2
b (u) ∩ WF′

b(A) = ∅ then
〈Bαβ,iuα, Dwj

A0uβ〉 and 〈Dwi
uα, Cαβ,jA0uβ〉 are finite, and similarly all the terms

arising from R and R′, while 〈f,A†JAu〉 can be handled by Cauchy-Schwartz. If
the calculation we performed were directly valid, this would give that the twisted
Dirichlet form Q(Au,Au) is finite, i.e. q /∈ WF1,m

b (u). As the calculation actually
requires more regularity, we need to run an approximation argument, replacing A
by a family Ar ∈ Ψ−∞

bc (X), r ∈ (0, 1], such that Ar is uniformly bounded in Ψm
bc(X),

and Ar → A as r → 0 in Ψm+ǫ
bc (X) for all ǫ > 0 (we cannot do the approximation

without losing ǫ). The calculation with A replaced by Ar applies directly, and
now gives that the twisted Dirichlet form Q(Aru,Aru) is uniformly bounded. If
the metric is Riemannian, the (twisted) Dirichlet form is positive definite (there
is of course no need for twisting in this case, but on the other hand it does not
hurt either), so this (together with the metrizability and weak-* compactness of
the unit ball in H1(X,ΛX)) gives directly that for any sequence of r’s converging
to 0 there is a weak-* convergent subsequence, Arj

u, in H1(X,ΛX); as Arj
u→ Au

in distributions, we deduce that Au ∈ H1(X,ΛX), so that u /∈ WF1,m
b (q).

In general, if the metric is not Riemannian, we need to note that away from Σ̇,
the twisted Dirichlet form Q(u, u) is microlocally positive, u /∈ WF1,m

b (q) still holds.
As given the uniform estimate for Aru this part of the argument is essentially the
same as in the scalar product case (except that one specifies the localization in
y as well, so that A is supported sufficiently close to y = 0), we refer the reader
to [27, Section 4] for details, and we simply state the result on microlocal elliptic
regularity:

Theorem 9 (Microlocal elliptic regularity for Riemannian and Lorentz metrics.).

Suppose that u ∈ H1
R,loc(X ; ΛX), Pu = f ∈ Ḣ−1

loc (X ; ΛX) in the sense of (29).
Then

WF1,m
b (u) \ Σ̇ ⊂ WF−1,m

b (f).

In particular, if f = 0, then WF1,∞
b (u) ⊂ Σ̇, while if h is Riemannian (but f 6= 0

necessarily) then WF1,m
b (u) ⊂ WF−1,m

b (f).

In fact, we can switch to the L2 (rather than H1) based b-wave front set: as
shown in [27, Lemma 6.1], for solutions of the scalar wave equation �u = 0,

WF1,m
b (u) = WFm+1

b (u), and given the elliptic estimates we just sketched, the
proof goes through unchanged for the form-valued wave equation. In fact, the
stronger statement holds (again, as in [27, Lemma 6.1]):

(30) WF1,m
b (u) \ WF−1,m

b (Pu) = WFm+1
b (u) \ WF−1,m

b (Pu).
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6. Propagation of singularities on manifolds with corners: the

bicharacteristic geometry

After the elliptic discussion, we turn to propagation and bicharacteristics. So we
let

(31) P ∈ Diff2(X,E), σ2(P ) = p Id, p = h,

where h is Lorentzian. Recall that Σ̇ = π(Σ(P )) ⊂ bT ∗X is the compressed char-

acteristic set. Generalized broken bicharacteristics are curves inside Σ̇, satisfying a
Hamilton vector field condition, plus an additional requirement where the boundary
is smooth. More precisely:

Definition 10. Generalized broken bicharacteristics are continuous maps γ : I →
Σ̇, where I is an interval, satisfying

(1) for all f ∈ C∞(bT ∗X) real valued,

lim inf
s→s0

(f ◦ γ)(s) − (f ◦ γ)(s0)

s− s0

≥ inf{Hp(π
∗f)(q) : q ∈ π−1(γ(s0)) ∩ Σ(P )},

(2) and if q0 = γ(s0) ∈ bT ∗
p0
X , and p0 lies in the interior of a boundary hyper-

surface (i.e. a boundary face which has codimension 1, so near p0, ∂X is
smooth), then in a neighborhood of s0, γ is a generalized broken bicharac-
teristic in the sense of Melrose-Sjöstrand [12], see also [7, Definition 24.3.7].

(1) is a very natural requirement. In the interior of X , we have defined bicharac-
teristics as integral curves of the Hamilton vector field of p in the characteristic set.
Thus, if γ is an bicharacteristic segment over X◦, then for all f ∈ C∞(T ∗X), the

derivative of f along γ at s0, i.e. lims→s0

(f◦γ)(s)−(f◦γ)(s0)
s−s0

, is equal to (Hpf)(γ(s0)).
When we go back to the manifold with corners X , Hp is a vector field on T ∗X ,
while the image of γ lies in bT ∗X . Moreover, π is not one-to-one, even when re-
stricted to Σ(P ). Thus, the preimage of γ(s0) under π often contains many points
(although it is still compact). Hence we cannot expect that f is differentiable
along γ, although we can still expect bounds for the lim inf (and lim sup) of the
difference quotients by taking the worst case scenario as we evaluate Hp(π

∗f)(q)
over q ∈ π−1(γ(s0)) ∩ Σ(P ), which explains the infimum. Note that replacing f
by −f , the lim inf estimate for −f gives a lim sup estimate for f , so (1) really
gives a two-sided estimate. Thus, it is very natural to demand the estimate in the
definition above – and conversely, this gives a useful notion of generalized broken
bicharacteristics.

Without (2) the propagation theorem below would still hold, but would be
weaker. In fact, our definition, without the strengthening given by (2), is equivalent
to Lebeau’s [10], see Lemma 11 below. While it is nice to have a stronger result,
it is important to note what (2) actually achieves: it rules out certain rays tangent
to the boundary hypersurface (where the boundary is smooth): it prevents rays
gliding along the boundary to enter the shadow of an obstacle. We remark that
this strengthening, which is a result of Melrose and Sjöstrand [12], is special to C∞

singularities; if we were discussing the analytic wave front set, we could not do so.
Now, if P is a ‘perturbed wave operator’, as in (31), then Snell’s law is encoded in

the statement that γ is continuous. Indeed, any (locally defined) smooth functions

on bT ∗X , such as x, ỹ, t, σ, ζ̃, τ , are continuous along γ, i.e. their composition with
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γ is continuous (since γ is a continuous map into bT ∗X). However, ξj = x−1
j σj is

not continuous, so the normal momentum may jump.
In order to better understand the generalized broken bicharacteristics for P as

in (31), we divide Σ̇ into two subsets. We thus define the glancing set G as the set

of points in Σ̇ whose preimage under π̂ = π|Σ consists of a single point, and define

the hyperbolic set H as its complement in Σ̇. Thus, q ∈ Σ̇ lies in G if and only if on
π̂−1({q}), ξj = 0 for all j. More explicitly, with the notation of (24),

G ∩ U = {(0, y, 0, ζ) : ζ ·B(y)ζ = 0, ζ 6= 0},

H ∩ U = {(0, y, 0, ζ) : ζ · B(y)ζ > 0, ζ 6= 0}.
(32)

In particular, for product metrics on X = M × R,

G ∩ U = {(0, ỹ, t, 0, ζ̃, τ) : τ2 = ζ̃ · B̃(ỹ)ζ̃ , (ζ̃, τ) 6= 0},

H ∩ U = {(0, ỹ, t, 0, ζ̃, τ) : τ2 > ζ̃ · B̃(ỹ)ζ̃ , (ζ̃ , τ) 6= 0}.
(33)

We can then describe broken bicharacteristics more concretely:

Lemma 11. (Stated and proved in [28] in the product setting, but the same proof
works in general.) Suppose γ is a generalized broken bicharacteristic. Then

(1) If γ(s0) ∈ G, let q0 be the unique point in the preimage of γ(s0) under
π̂ = π|Σ. Then for all f ∈ C∞(bT ∗X) real valued, f ◦ γ is differentiable at
s0, and

d(f ◦ γ)

ds
|s=s0 = Hpπ

∗f(q0).

(2) If γ(s0) ∈ H, lying over a corner given in local coordinates by x = 0, then
exists ǫ > 0 such that x(γ(s)) = 0 for s ∈ (s0 − ǫ, s0 + ǫ) if and only
if s = s0. That is, γ does not meet the corner {x = 0} in a punctured
neighborhood of s0. (Here, as usual, x is considered as a vector valued
function, x = (x1, . . . , xk).)

Part (2) of this lemma indicates the possibility of an iterative description of the
bicharacteristics: at H, where we do not know in which direction they will travel, we
still know that they will be in a less singular stratum (a lower codimensional corner)
in a punctured neighborhood of s0. Thus, if we already understand bicharacteristics
in less singular strata, we can also understand their behavior at the corner under
consideration.

In fact, we have an even stronger description of generalized broken bicharacter-
istics at H, as in Lebeau’s paper.

Lemma 12. (Lebeau, [10, Proposition 1]) If γ is a generalized broken bicharacteris-
tic, s0 ∈ I, q0 = γ(s0), then there exist unique q̃+, q̃− ∈ Σ(P ) satisfying π(q̃±) = q0
and having the property that if f ∈ C∞(bT ∗X) then f ◦γ is differentiable both from
the left and from the right at s0 and

(

d

ds

)

(f ◦ γ)|s0± = Hpπ
∗f(q̃±).

Thus, one can associate an incoming and an outgoing point in T ∗X , rather than
merely in bT ∗X , into which the curve γ maps – the point being that even incoming
and outgoing normal momenta are defined, although they can certainly differ. This
indicates that, at least away from rays hitting the boundary tangentially, Figure 1
gives an accurate indication of the bicharacteristic geometry.
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7. Propagation of singularities on manifolds with corners: the main

theorem

We are now ready to state the main propagation theorem for the perturbed
wave equation with Dirichlet boundary condition on Lorentzian manifolds – the
Neumann case is completely analogous. Thus, consider u ∈ H1

0,loc(X) satisfying

(34) 〈Pu, v〉 = 〈∇u,∇v〉L2(X;T∗X) + 〈Ru, v〉L2(X) = 〈f, v〉, v ∈ H1
0,c(X),

R ∈ Diff1(X), where the first equality defines 〈Pu, v〉. In fact, we may consider
systems, i.e. allow u to be Cr-valued, with an inner product (.)k(p) on Cr depending
smoothly on p ∈ X , and write

〈φ, ψ〉L2(X;Cr) =

∫

X

(φ, ψ)k dvolh.

and demand that u ∈ H1
0,loc(X ; Cr) satisfies

(35) 〈Pu, v〉 = 〈∇u,∇v〉L2(X;Cr⊗T∗X) + 〈Ru, v〉L2(X;Cr) = 0, v ∈ H1
0,c(X ; Cr),

R ∈ Diff1(X ; Cr). As propagation results are local, the (globally) more general
case of u being a section of a vector bundle with an inner product is an immedi-
ate consequence; in particular, we obtain propagation of singularities for the wave
equation on differential forms, which is of this form, with Dirichlet or Neumann
(but not natural) boundary conditions.

Theorem 13 (See [27] for the scalar equation if X = M × R with a product
metric.). Suppose u ∈ H1

0,loc(X ; Cr) and Pu = f in the sense of (35) holding for

all v ∈ H1
0,c(X ; Cr). Then (WF1,m

b (u)∩Σ̇)\WF−1,m+1
b (f), is a union of maximally

extended generalized broken bicharacteristics of P in Σ̇ \ WF−1,m+1
b (f).

In particular, if Pu = 0 then WF1,∞
b (u) ⊂ Σ̇ is a union of maximally extended

generalized broken bicharacteristics of P .

The scalar version of this theorem for X = M × R with product metrics was
proved in the real analytic setting by Lebeau [10], and in the C∞ Lorentzian setting
with C∞ boundaries (and no corners) by Melrose, Sjöstrand and Taylor [12, 13, 22].
This result is thus the C∞ version of Lebeau’s theorem: the geometry is similar in
the real analytic vs. C∞ settings, but the analysis is quite different, though the C∞

proof can be considered as an infinitesimal version of the real analytic argument.
The general technique in proving the theorem is to prove positive commutator

estimates. We start by discussing the scalar case. In view of (30), it suffices to
prove an L2-based wave front estimate, i.e. to show that Bu ∈ L2 for certain
B ∈ Ψm+1

b (X), with invertible principal symbol at a point q in question. In fact,
B will have scalar principal symbol b, and will arise as a commutator. Namely,
from Section 5 we deduce that for u ∈ C∞(X) vanishing at ∂X , A ∈ Ψm

bc(X) with
principal symbol σb,m(A) = a,

〈f,A∗Au〉−〈A∗Au, f〉 = 〈∇u,∇A∗Au〉+〈Ru,A∗Au〉−〈∇A∗Au,∇u〉−〈A∗Au,Ru〉

The leading terms are the ones involving ∇, as they have the highest differential
order, and expanding ∇ in local coordinates over a coordinate chart U , assuming



26 ANDRÁS VASY

A is supported in U × U ,

〈∇u,∇A∗Au〉L2(X;T∗X) − 〈∇A∗Au,∇u〉L2(X;T∗X)

=
∑

ij

〈HijDwi
u,Dwj

A∗Au〉L2(X) − 〈HijDwi
A∗Au,Dwj

u〉L2(X)

=
∑

ij

〈A∗AHijDwi
u,Dwj

u〉 +
∑

ij

〈HijDwi
u, [Dwj

, A∗A]u〉

− 〈[HijDwi
, A∗A]u,Dwj

u〉 − 〈A∗AHijDwi
u,Dwj

u〉,

(36)

and the first and last terms on the right cancel. As

[Dxj
, A∗A] = A1Dxj

+A0, with A1 ∈ Ψ2m−1
bc (X), A0 ∈ Ψ2m

bc (X)

σ(A1) = i−1∂σj
a2, σ(A0) = i−1∂xj

a2

and

[Dyj
, A∗A] ∈ Ψ2m

bc (X), with σ(i[Dyj
, A∗A]) = ∂yj

a2,

[Hij , A
∗A] ∈ Ψ2m−1

bc (X),

with σ(i[Hij , A
∗A]) = −

∑

k

(xk∂xk
Hij)∂σk

a2 −
∑

k

(∂yk
Hij)∂ζk

a2.

Here we use that if B ∈ Ψk
bc(X) then B∗ ∈ Ψk

bc(X) with principal symbol that of
the adjoint of B, i.e. if the principal symbol of B is scalar, b, then that of B∗ is b̄.
We deduce that

〈∇u,∇A∗Au〉L2(X;T∗X) − 〈∇A∗Au,∇u〉L2(X;T∗X)

=
∑

ij

〈QijDxi
u,Dxj

u〉L2(X)

+
∑

i

(〈QiDxi
u, u〉L2(X) + 〈Q′

iu,Dxi
u〉L2(X)) + 〈Q0u, u〉L2(X)

(37)

where (with H =
∑

Aijξiξj + 2
∑

Cijξiζj +
∑

Bijζiζj)

Qij ∈ Ψ2m−1
bc (X), Qi, Q

′
i ∈ Ψ2m

bc (X), Q0 ∈ Ψ2m+1
bc (X),

with

iσ(Qij) = (∂σi
a2 + ∂σj

a2)Aij −
∑

k

(xk∂xk
Aij)∂σk

a2 −
∑

k

(∂yk
Aij)∂ζk

a2,

iσ(Qi) = iσ(Q′
i) =

∑

j

Cij∂yj
a2ζj +

∑

j

Aij∂xj
a2

− (
∑

k

(xk∂xk
Cij)∂σk

a2 +
∑

k

(∂yk
Cij)∂ζk

a2)ζj

and finally

iσ(Q0) =
∑

j

Cij(∂xi
a2)ζj +

∑

ij

Bij(∂yi
a2 + ∂yj

a2)ζiζj

−
∑

ij

(
∑

k

(xk∂xk
Bij)∂σk

a2 +
∑

k

(∂yk
Bij)∂ζk

a2)ζiζj .

All but the first term in iσ(Q0)|x=0 arise from considering the commutator of A∗A
with �B, the d’Alembertian on F given by B|x=0. Also, at x = 0 all terms with C
vanish. For the proof of the theorem we choose a appropriately, based on different
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ideas at G and H. The basic (rough!) idea is that at G, Dxi
u can be estimated

by a small multiple of Dtu modulo lower order terms, so all terms but 〈Q0u, u〉
in (37) are negligible. Hence, one can proceed essentially as if one was studying
propagation of singularities on the boundaryless manifold F , which explains why
at q0 ∈ G singularities move in the direction of Hp(π̂

−1(q0)), cf. Definition 10. At
H more terms matter, but fortunately we need a weaker estimate – essentially that
singularities leave F immediately, for which the basic idea is explained below.

As

〈R,A∗Au〉 − 〈A∗Au,Ru〉 = 〈[A∗A,R]u, u〉 + 〈(R −R∗)A∗Au, u〉,

and [A∗A,R] ∈ Diff1Ψ2m−1
b (X), this commutator can be absorbed into the Qi and

Q0 terms above without affecting the principal symbols, thus can be neglected. If
R = R∗, i.e. P = ∇∗∇+R is formally self-adjoint, the last term vanishes, thus can
be dropped. In general this is not the case, but

R−R∗ ∈ Diff1(X), R− R∗ =
∑

RiDxi
+R0, R0 ∈ Diff1

b(X), Ri ∈ C∞(X),

so 〈(R − R∗)A∗Au, u〉 has the same form as the Qi and Q0 terms in (37), with
principal symbol a multiple of a2 (rather than a multiple of a derivative of a2).
Making the derivative of a2 large compared to the size of a2 (which is what one
usually does in any case to deal with regularization, see the discussion following
[27, Equation (6.19)]), this term also becomes negligible as well. Thus, R does not
affect the propagation estimates hence can be neglected.

Allowing u to be Cr-valued barely affects the calculations. A key point though
is that if A ∈ Ψm

b (X ; Cr) with scalar principal symbol a, then A∗ ∈ Ψm
b (X ; Cr)

with scalar principal symbol ā, and A∗A preserves Dirichlet or Neumann boundary
conditions. Thus, the above calculation goes through unchanged (except that all
〈., .〉 now are replaced by 〈., .〉L2(X;Cr)), thus the proof can be finishes exactly as in
the scalar case [27].

This also shows the difficulty with natural boundary conditions on differential
forms. In order to preserve the boundary conditions, we need to replace A∗A by
A†A, with A,A† as in Lemma 8. (We remark that there is an additional boundary

term, the R̃ term in (26), but as R̃ is zeroth order, one can handle it just as
the R term is handled above, using (27).) Then in (36) we have an extra term,
〈((A†A)∗ − A†A)HijDwi

u,Dwj
u〉, and (A†A)∗ − A†A ∈ Ψ2m−1

b (X ; ΛX). Now,
modulo commutator terms we can control (because they are lower order), we can
shift this to one of the u’s, i.e. we need to deal with 〈HijDwi

u,Dwj
((A†A)∗ −

A†A)u〉. If (A†A)∗ − A†A preserves the natural boundary condition, this vanishes
modulo the lower order R term in (34), so the previous argument goes through
unchanged. If (A†A)∗−A†A = E+F , where E preserves boundary conditions and
F ∈ Ψ2m−2

b (X ; ΛX), the argument still goes through, and indeed it goes through

even if F ∈ Ψ2m−1
b (X ; ΛX) but σ(F )|x=0 vanishes. However, this is not necessarily

the case, and in general it seems that one needs to blow up the corner x = 0 (see
the next section for a discussion of blow-ups) to construct a well-behaved A.

To be more precise, the proof of the theorem is thus based on two propositions
giving propagation estimates at hyperbolic, resp. glancing points. Given these
propositions, an argument of Melrose and Sjöstrand [12, 13], see also [7, Chap-
ter XXIV] and [10], implies the theorem immediately – in particular, the proof
from [27, Section 8] applies unchanged.
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We only state the following propagation results for propagation in the forward
direction along the generalized broken bicharacteristics. A similar result holds in
the backward direction. The propagation results are local, so we can work in local
coordinates (x, ỹ, t) on some open set U , and are very rough in the sense that they do
not localize sharply along generalized broken bicharacteristics. It is the argument
of Melrose and Sjöstrand that gives the precise bicharacteristic propagation then.

For instance, the tangential result states that in order to ensure that a point
q0 in G is not in the wave front set of u, we only need to ensure that for some
sufficiently small δ > 0, an O(δ2)-sized ball at distance δ backwards along the
Hp(π̂

−1(q0)) direction from π̂−1(q0) is disjoint from the wave front set of u. (Here
recall that π̂ = π|Σ. There is also a uniformity statement in the proposition for
compact subsets that is used in turning the result into the theorem, i.e. in the
Melrose-Sjöstrand argument.) Because of the O(δ2)-sized requirement, which is
necessary as we are not following a bicharacteristic precisely (we are simply fixing
Hp at the point in question and extending it as a constant vector field using the
local coordinates), we could use integral curves of any vector field W on T ∗X with
W (π̂−1(q0)) = Hp(π̂

−1(q0)), at the cost of changing the constant in O(δ2).
To motivate the normal result, consider the function η = −

∑

σj/|τ | (in the

local coordinates) on bT ∗X \ o, so η vanishes on Σ̇ ∩ bT ∗
FX , F = {x = 0}. Then

π∗η = −
P

xjξj

|τ | , and if

p0 = −
∑

Ãij(y)ξiξj +
∑

Bij(y)ζiζj ,

with t = yn−k, τ = ζn−k, then

|τ |

2
Hp0π

∗η =
∑

ij

Ãij(y)ξiξj − (
1

2

∑

ij

∂tBij(y))η =
∑

Bij(y)ζiζj − p0 − rη,

so in particular, it is positive on π̂−1(H) ∩ bT ∗
FX , for p0 and η vanish there, and

∑

Bij(y)ζiζj > 0 by (32). Thus, η is an increasing function along generalized
broken bicharacteristics in view of Definition 10. Thus, the normal propagation
result states that in order to conclude that q0 is not in the wave front set in u it
suffices to know that q0 has a neighborhood such that WFb(u) is absent from the
half of the neighborhood where η is negative – note that η is certainly negative along
backward generalized broken bicharacteristic segments from q0 as we just remarked,
and η(q) < 0 implies q /∈ F .

It is remarkable that the argument of Melrose and Sjöstrand allows one to com-
bine these rather rough results rather simply to get the full precise Theorem; here
we merely point out that as η(q) < 0 implies q /∈ F in the normal case, there is
a possibility for an induction on the dimension of boundary faces, cf. the remarks
following Lemma 11. Below we simply state the results; as we already mentioned,
the proofs require only simple modification of the proofs given for the Dirichlet (and
Neumann) problems given in [27] and the positive commutator calculation above
to compute the principal symbol of the commutator.

Proposition 14. (Normal propagation.) Let q0 = (0, ỹ0, t0, 0, ζ̃0, τ0) ∈ H ∩ bT ∗
FX,

F ∩ U = U ∩ {x = 0}, and let η = −
P

j σj

|τ | be the function defined in the local

coordinates discussed above, and suppose that u ∈ H1
0,loc(X ; Cr), q0 /∈ WF−1,∞

b (f),

f = Pu in the sense of (35). If there exists a conic neighborhood U of q0 in bT ∗X
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such that

q ∈ U and η(q) < 0 ⇒ q /∈ WF1,∞
b (u)(38)

then q0 /∈ WF1,∞
b (u).

In fact, if the wave front set assumptions are relaxed to q0 /∈ WF−1,s+1
b (f) (f =

Pu) and the existence of a conic neighborhood U of q0 in bT ∗X such that

q ∈ U and η(q) < 0 ⇒ q /∈ WF1,s
b (u),(39)

then we can still conclude that q0 /∈ WF1,s
b (u).

Proposition 15. (Tangential propagation.) Let u ∈ H1
0,loc(X ; Cr), and let π̃ :

T ∗X → T ∗F be the coordinate projection π̃ : (x, ỹ, t, ξ, ζ̃, τ) 7→ (ỹ, t, ζ̃ , τ). Given
K ⊂ bS∗

UX compact with

(40) K ⊂ (G ∩ T ∗
FX) \ WF−1,∞

b (f), f = Pu,

in the sense of (34), there exist constants C0 > 0, δ0 > 0 such that the following

holds. If q0 = (ỹ0, t0, ζ̃0, τ0) ∈ K, α0 = π̂−1(q0), W0 = Hp(α0) considered as a
constant vector field in local coordinates, and for some 0 < δ < δ0, C0δ ≤ ǫ < 1
and for all α = (x, y, t, ξ, ζ, τ) ∈ Σ(P )

α ∈ T ∗X and |π̃(α− α0 − δW0)| ≤ ǫδ and |x(α)| ≤ ǫδ

⇒ π(α) /∈ WF1,∞
b (u),

(41)

then q0 /∈ WF1,∞
b (u).

8. Geometric improvement

We now discuss a geometric improvement to the propagation theorem for the
scalar wave equation; this is joint work with Richard Melrose and Jared Wunsch.

Definition 16. Suppose F is a boundary face (boundary hypersurface or edge) of

X , and let q ∈ H∩ bT ∗
F◦X . The b-flow-out of q, ḞO,q, is the union of the images of

generalized broken bicharacteristics γ : [0,∞) → Σ̇ with γ(0) = q. The b-flowout of

a set S ⊂ H∩ bT ∗
F◦ is ḞO,S = ∪q∈SḞO,q. Also let the time T flow-outs ḞO,q(T ) and

ḞO,S(T ) defined similarly, replacing [0,∞) by [0, T ). The b-flow-in ḞI,q is defined
similarly, with the domain of definition of γ replaced by (−∞, 0].

Requiring q ∈ H makes the flow-out better behaved; indeed if F = ∂X is smooth,
then the flowout is a smooth manifold; indeed, as long S is an open subset of
H ∩ bT ∗

F◦X with compact closure, the flowout is smooth for short times, i.e. for

sufficiently small T (depending on S), ḞO,S(T ) is smooth.
IfX has corners, even if a bicharacteristic is normal to a corner F (of codimension

k ≥ 2), it may be tangential to one of the boundary hypersurfaces through F ,
hence all the complications in bicharacteristic geometry that may take place on
manifolds with smooth boundaries for bicharacteristics tangent to the boundary
are still present, even for small times. We are thus led to distinguish between
different kinds of rays in ḞO,q.

Near an interior point p of F , one has local coordinates (x1, . . . , xk, y1, . . . , yn−k)
centered at p such that locally X is given by x1 ≥ 0, . . . , xk ≥ 0, and F is given
by x = 0 (i.e. x1 = . . . = xk = 0). Write Hj for the boundary hypersurface given
by xj = 0. Below we also need the (real) blow-up of X at F , [X ;F ], in which
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F is replaced by a new boundary hypersurface, ff. Thus, [X ;F ] is a manifold
with corners with a smooth blow-down map β : [X ;F ] → X that restricts to a
diffeomorphism [X ;F ] \ff → X \F away from a boundary hypersurface, called the
front face and denoted by ff, that is mapped onto F .

In order to describe this, first consider the blow-up [Rk; {0}] of the origin in
Rk; this amounts to introducing spherical coordinates around 0, i.e. [Rk; {0}] =
[0,∞)r ×Sk−1

ω , and the blow-down map βk maps βk(r, ω) = rω ∈ Rk, which is thus
a diffeomorphism away from the boundary hypersurface r = 0, but is degenerate
(though smooth) at r = 0. We can intersect this with the positive quadrant [0,∞)k;

thus [[0,∞)k; {0}] = [0,∞)r × (Sk−1
+ )ω , where S

k−1
+ is the positive sector in Sk−1,

i.e. writing ω = (ω1, . . . , ωk), is given by ωj ≥ 0 for all j. Note that, away from

r = 0, r =
√

∑

x2
j and ωj =

xj

r – this is slightly cumbersome as one has to use k−1

of the ωj’s as local coordinates, and there are no k − 1 of them that work globally.
One can use projective coordinates instead, which can be made global: then with
r =

∑

xj , θj = xj/r, r together with any k−1 of the θj ’s gives global coordinates –
taking say θ1, . . . , θk−1, the cross section (which in this point of view is the standard

k − 1-simplex), S
k−1
+ , is given by θj ≥ 0, j = 1, . . . , k − 1,

∑k−1
j=1 θj ≤ 1.

Now, on a neighborhood of a point p ∈ F ◦ in X , one can use local coordinates
(x, y) as above, so in particularX is locally a product U×V , U ⊂ [0,∞)k, V ⊂ Rn−k

open and then β−1(U × V ) is a product Ũ × V , where Ũ = [U ; {0}] is an open

subset of [0,∞)× S
k−1
+ . It is not hard to check to check that the smooth structure

of [X ;F ] is independent of the choice of local coordinates, etc., so it is a manifold
with corners. We refer to [18], the appendix of [11], and [25, Section 2] for more
detailed discussions of blow-ups.

Definition 17. A generalized broken bicharacteristic segment γ, defined on [0, s0)
or (−s0, 0], γ(0) = q ∈ H ∩ bT ∗

F◦X is said to approach F normally as s → 0 if for
all j

lim
s→0±

xj(γ(s))

s
6= 0;

this limit always exists by Lemma 12.

This definition is independent of the particular choices of the xj ’s. Indeed,
equivalently, by Lemma 12, γ approaches F normally if q̃+ (or q̃−), given by the
Lemma, satisfies

q̃+ ∈ T ∗X \ ∪k
j=1T

∗Hj ,

where T ∗Hj is the cotangent space given by the metric (i.e. the image of the tangent
space under the Riemannian isomorphism), for by the Lemma, the limit above is

−2
∑

i Ãij(ỹ((q̃+)))ξi(q̃+), i.e. is the xj -component of the image of the covector q̃+
under the inverse Riemannian isomorphism up to a constant factor.

The limits in Definition 17 are either all nonnegative or nonpositive, depending
on the sign of s, and cannot vanish for all j simultaneously as γ(0) = q ∈ H∩bT ∗

F◦X ,

so
∑

Ãij(ỹ((q̃+)))ξi(q̃+)ξj(q̃+) > 0. Thus, using r =
∑

xj or r = (
∑

x2
j )

1/2 as

the defining function of ff in [X ;F ], and considering the positive time case for
definiteness, we see from Lebeau’s result (using that r(γ(s)) is comparable to s,
so dividing by s in Definition 17 is analogous to dividing by r in constructing
coordinates on the blown-up space) that the projection of γ|(0,s0) to X extends to
a continuous map c+ : [0, s0) → [X ;F ], and γ being normally incident means that
c+(0) ∈ ff does not lie on the lift of any of the boundary hypersurfaces Hj .
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Note also that if γ approaches F normally then for s1 > 0 sufficiently small,
γ|(0,s1) (or γ|(−s1,0)) lies in bT ∗

X◦X = T ∗X◦, i.e. the restriction of γ0 to a smaller
open interval is actually a null-bicharacteristic, and its projection is a geodesic. In
particular, as bicharacteristics through a point q′ ∈ T ∗X◦ are unique until they
hit ∂X , we deduce that for s ∈ (0, s1) (resp. s ∈ (−s1, 0)), the only generalized
broken bicharacteristics through γ(s) are reparameterizations of extensions of γ.
Correspondingly, we make the definition:

Definition 18. For q ∈ H ∩ bT ∗
F◦X , the regular part FO,q,reg of the flow-out of

q is the union of images γ((0, s0)) of normally approaching generalized broken

bicharacteristics γ : [0, s0) → Σ̇ with γ(0) = q and γ(s) ∈ T ∗X◦ for s ∈ (0, s0).
The regular part of the flow-out of a set S ⊂ H ∩ bT ∗

F◦X is

FO,S,reg = ∪q∈SFO,q,reg.

In fact, one can easily see that FO,q,reg is a smooth embedded submanifold of
T ∗X◦ (by using the standard bicharacteristic flow to parameterize it), and if U is an
open subset of [X ;F ], with Ū disjoint from the lifts of the boundary hypersurfaces
(but intersecting the front face ff, i.e. the lift of F ), then for sufficiently small T
(depending on U)

ḞO,q(T ) ∩ bT ∗
U\ffX ⊂ FO,q,reg,

i.e. the small-time flow-out over U is smooth. Moreover, if S is a conic open subset
of H ∩ bT ∗

F◦X with S̄ ⊂ H ∩ bT ∗
F◦X , then ḞO,q(T ) ∩ bT ∗

U\ffX is a smooth conic

coisotropic submanifold of T ∗X◦ \ o, i.e. its tangent space contains its symplectic
orthocomplement.

Definition 19. We say that a generalized broken bicharacteristic γ : (−s0, s0) → Σ̇
with γ(0) ∈ H ∩ bT ∗

F◦X is limiting at F if it is the limit of generalized broken

bicharacteristics in Σ̇\ bT ∗
FX , i.e. if there exist γn : I → Σ̇\ bT ∗

FX such that γn → γ
uniformly.

Thus, limiting generalized broken bicharacteristics are limits of bicharacteristics
γn that just miss the edge F . As the γn hit only lower codimensional boundary
faces, e.g. if F has codimension 2, only boundary hypersurfaces are hit, one has a
better picture of propagation along the γn – e.g. if γn only hits boundary hypersur-
faces, and only does so normally, singularities of solutions u of the wave equation
necessarily propagate along γn as generalized broken bicharacteristics are unique
through a given point in this region, so if u has a singularity along γn for some
negative time, say γ(−s1) ∈ WF1,r

b (u), then it also has a singularity along γn for

positive times, i.e. γ(s) ∈ WF1,r
b (u) for all s. Thus, the limiting process indicates

that one can expect that singularities along γ for positive times are as strong as
those along γ for negative times.

In order to understand the limiting process better, it is useful to blow up F as
above. The front face ff of [X ;F ] has a fibration arising from β : [X ;F ] → X ,
namely it is φ0 = β|ff . As explained above, the fibers Zp = φ−1

0 (p), p ∈ F , of

φ0 are diffeomorphic to S
k−1
+ , or equivalently the standard simplex. Moreover,

the Riemannian metric on X induces a metric on the fibers. Indeed, it is best to
consider for each p ∈ F , coordinates (x, y) as in (4) with C(0, y) = 0, then on
[0,∞)k

x,
∑

ij aij(y) dxi dxj gives a translation-invariant Riemannian metric (where

aij is the inverse of Aij) which in terms of spherical coordinates corresponding to
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Figure 3. Geometric optic rays hitting a corner F , emanating
from a point o. The rays labelled G are geometric at F , while those
labelled NG are non-geometric at F . The leftmost geometric ray is
a limit of rays like the unlabelled one shown on the figure that just
miss F . The blown up version of the picture is shown on the right,
with the reflecting line indicating the broken geodesic of length π
induced on the front face ff (which is one fiber in this case). Thus,
the total length of the three segments shown on ff is π; this can be
thought of as the sum of three angles on the picture on the left:
namely the angles between the incident ray and the right boundary
(corresponding to the first segment), the right and left boundaries,
finally the left boundary and the emanating reflected ray.

this metric, i.e. letting S
k−1
+ be given by

∑

aijωiωj = 1, has the form dr2 + r2k,

h =
∑

aij dωi dωj a Riemannian metric on Zy = S
k−1
+ . Thus, Zy is a manifold

with corners with a Riemannian metric, and correspondingly one can talk about
generalized broken geodesics (projections of unit speed generalized broken bichar-
acteristics on Zy × Rt to Zy, i.e. dt

ds = ±1 along these) on Zy. It turns out that
families γn → γ can be rescaled to give rise to such generalized broken geodesics
c̃ : [−π/2, π/2] → Zy of length π (this length π corresponds to the antipodal map
if there are no breaks), with c̃(±π/2) = lims→0± c±(s), with c± the continuous
extensions of the projection of γ to X lifted to [X ;F ], as discussed above. We thus
make the following definition:

Definition 20. We say that a generalized broken bicharacteristic γ : (−s0, s0) → Σ̇
with q = γ(0) ∈ H∩bT ∗

FX is geometric at F if there is a generalized broken geodesic
c̃ : [−π/2, π/2] → Zπ(q) of length π, where c̃(±π/2) = lims→0± c±(s), with c± the
continuous extensions of the projection of γ to X lifted to [X ;F ], as discussed
above.

Definition 21. Suppose q ∈ H∩ bT ∗
F◦X , γ0 : (−s0, 0] → Σ̇ is a generalized broken

bicharacteristic with γ0(0) = q. The non-geometric diffracted front ḞO,NG,γ0(T )
emanating from γ0 is the union of the images γ|[0,T ) of non-geometric generalized

broken bicharacteristics γ : (−s0, T ] → Σ̇ with γ|(−s0,0) = γ0,
The regular part of the non-geometric diffracted front emanating from γ0 is

FO,NG,γ0,reg(T ) = ḞO,NG,γ0(T ) ∩ FO,γ0(0),reg,

i.e. the union of the images γ|[0,T ) of non-geometric generalized broken bicharac-

teristics γ : (−s0, T ) → Σ̇ with γ|(−s0,0) = γ0, such that γ|(0,T ) approaches F
normally.
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We expect that unless one is dealing with a solution that focuses on the corner,
on the non-geometric broken bicharacteristics the reflected wave should be less
singular than the incident wave. Although the full result (which would also include
results along non-normally approaching bicharacteristics emananting from F ) is
too hard with the current state of technology, we have partial results on manifolds
with corners (with corners of arbitrary codimension), and the full result in a model
setting (manifolds with so-called edge metrics).

An example is the fundamental solution of wave equation with pole o near the
edge, and we state the first version of the theorem in this case in order to make
it more concrete. The general version is stated below in Theorem 28. Let s =
−n/2 + 1, n = dimM = dimX − 1, so that the fundamental solution of the wave

equation with pole o ∈ X◦ lies in Hs′

loc(X
◦) for all s′ < s for non-zero times.

Theorem 22 (Melrose, Vasy and Wunsch, [14]). Let F be a codimension k corner
of X.

Suppose that Ũ is an open subset of the front face ff of [X ;F ], with Ũ ⊂ ff◦, and

S ⊂ H∩ bT ∗
F◦X is compact. Then there is an open set U in [X ;F ] with Ũ ⊂ U and

T > 0 such that the following holds.
Let o ∈ U ∩ X◦, and let γ0 : [−s0, 0] → Σ̇, 0 < s0 < T , be a bicharacteristic

normally approaching F with γ0(0) ∈ S, γ0(−s0) ∈ T ∗
oX. Let u be the forward

fundamental solution of the wave equation with pole at o.
Then microlocally near the regular part of the non-geometric diffractive front

emanating from γ0, u is in H
s′+(k−1)/2
loc (X◦) for all s′ < −n/2+1, n = dimM , i.e.

(42) WFs′+(k−1)/2(u) ∩ FO,NG,γ0,reg = ∅.

Remark 23. The role of U , S and T is to ensure that there are no generalized
broken bicharacteristics that go through both γ0(0) and N∗o, apart from γ0(0). In
particular, there are no non-normally approaching generalized broken bicharacter-
istics through N∗o and q.

A different way of stating the result would be not to specify S, T , but say that if
γ0 hits F in a sufficiently small time (depending on o), and does so normally, then
(42) holds, with the point being that the first rays emanating from o to hit F do
so at hyperbolic points. This is how the analogue of this result for edge metrics is
stated below in Theorem 24.

In order to explain the more general version, we start by considering a geometri-
cally simpler case. Our model is manifolds with edge metrics. These are manifolds
with boundary M̃ , whose boundary has a fibration, φ0 : ∂M̃ → Y with compact
fibers Z (without boundary), and a Riemannian metric g compatible with this
fibration.

More precisely, we assume that on a neighborhood U of ∂M̃, in which x is a
boundary defining function, g is of the form

g = dx2 + φ̃∗0h+ x2k, where

h ∈ C∞([0, ǫ) × Y ; Sym2 T ∗([0, ǫ) × Y )), k ∈ C∞(U ; Sym2 T ∗M̃);

we further assume that h|x=0 is a nondegenerate metric on Y and k|x=0 is a
nondegenerate fiber metric. Here we extended the fibration φ0 to a fibration
φ̃0 : U → [0, ǫ) × Y on a neighborhood U of ∂M̃ , and Sym2 stands for symmetric
2-cotensors.
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As an example, let M̃ be the real blow up of a C∞ submanifold Y of a manifold
without boundary M : M̃ = [M ;Y ]. As explained above this means that we intro-
duce ‘spherical coordinates’ around Y in M . Then the fibers Z are spheres, and a
smooth metric on M would give rise to an edge metric on M̃ . A particular example
is the z axis in R3 blown up. This amounts to replacing the z-axis by its spherical
normal bundle, Rz × S1

θ. Thus, one replaces R3 by Rz × [0,∞)r × S1
θ, with the two

identified away from the z axis, resp. the ‘front face’ r = 0 (i.e. Rz × {0} × S1)
by the diffeomorphism Φ(z, r, θ) = (r cos θ, r sin θ, z), i.e. by introducing cylindrical
coordinates. The boundary is then r = 0 (so x = r), the fiber Z is S

1, and the
Euclidean metric becomes dz2 + dr2 + r2 dθ2.

A more interesting case is if M is a manifold with corners, and M̃ ‘total boundary
blow up’ (blow up all corners in the manner sketcked above for a single submanifold,
starting with the corner of lowest dimension). In this case the fibers Z have a
boundary, so this does not quite fit previous framework, e.g. one has θ ∈ [0, β] rather
than θ ∈ S1 when one blows up the corner of a wedge domain in R2. However,
as long as one stays away from bicharacteristics hitting the face F ◦ in question
tangentially to the other faces, the methods used in the analysis of edge metrics
still work.

For edge manifolds the compressed characteristic sets, generalized broken bichar-
acteristics, geometric broken bicharacteristics (where now the induced curve c̃ is an
unbroken geodesic of length π on Z) and the non-geometric diffracted front are
defined analogously to manifolds with corners (its regular part is now all of it), and
the analogue of Theorem 22 holds:

Theorem 24 (Melrose, Vasy and Wunsch, Corollary 1.4 of [15]). Suppose (M, g)
is an edge manifold, X = M ×Rt. Suppose that o ∈ X◦ is sufficiently close to ∂X,
and let u be the forward fundamental solution of the wave equation with pole at o.

Then microlocally near the non-geometric part ḞO,NG,Λ of the diffractive front

emanating from the flow-out Λ of N∗o, u is in H
s′+(k−1)/2
loc (X◦) for all s′ < −n/2+

1, n = dimM , i.e. WFs′+(k−1)/2(u) ∩ FO,NG,Λ = ∅.

In the setting of edge metrics, resp. manifolds with corners with smooth metrics,
let γ0 be a bicharacteristic segment on [0, s0), s0 > 0, γ0(0) ∈ bT ∗

∂XX , resp. γ0(0) ∈
bT ∗

F◦X . Let Γ denote the set of all generalized broken bicharacteristics extending γ0

(extending backwards is the interesting part here). The theorem on the propagation
of singularities states that if

(43) Γ−ǫ =
⋃

{γ((−ǫ, 0)) : γ ∈ Γ}

is disjoint from WFb(u), then so is the image of γ0; similarly for WFm
b (u).

In the edge manifold setting, let ḞI be the b-flow-in of ∂X , defined analogously
to Definition 16. Thus, ḞI \ bT ∗

∂XX is a smooth conic coisotropic submanifold of
T ∗X◦ \ o, analogously to the manifolds with corners case. Note that as the fibers
in the boundary have no boundaries themselves, there is no analogue of the normal
incidence considerations required in the manifolds with corners setting.

We now recall the definition of coisotropic distributions. Let S be a conic
coisotropic submanifold of T ∗X◦. Let M be the set of first order ps.d.o’s with
symbol vanishing along S, and let Mj be the set of finite sums of products of at
most j factors, each of which is in M.
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Definition 25. We say that a distribution u is Hℓ-coisotropic associated to S if
for all N , and all Aj ∈ M, j = 1, . . . , N , A1 . . . ANu ∈ Hℓ.

This definition is applicable to all coisotropic submanifolds S (with M defined
as the set of first order ps.d.o’s with symbols vanishing on S), in particular when
S = Λ is a conic Lagrangian; then one calls Hℓ-coisotropic distributions associated
to Λ Lagrangian. An example of a Lagrangian distribution is the fundamental
solution of the wave equation for small non-zero times and pole o in X◦; this is
associated to the flowout of N∗o in Σ under Hp.

Non-focusing is the dual condition to coisotropy. For edge manifolds, it takes
the following form:

Definition 26. Suppose (M, g) is an edge manifold, M the module corresponding

to ḞI ∩ T ∗X◦. We say that a distribution u satisfies the non-focusing condition of
order ℓ for q ∈ H if for some ǫ > 0, microlocally near ḞI,q(ǫ), and for some N ,

(44) u =
∑

Ajvj , Aj ∈ MN , vj ∈ Hℓ.

For manifolds with corners, the non-focusing statement does not make sense for
non-normally incident bicharacteristics, so we need to add an assumption.

Definition 27. Suppose (M, g) is a manifold with corners with a smooth metric,
F a codimension k ≥ 2 corner, M the module corresponding to FI,reg. We say that
a distibution u saisfies the non-focusing condition of order ℓ for q ∈ H ∩ bT ∗

F◦X if
for some ǫ > 0,

(1) if γ : (−ǫ, 0] → Σ̇ satisfies γ(0) = q and γ is not normally approaching F ,

then WFℓ
b(u) ∩ γ|(−ǫ,0) = ∅, and

(2) microlocally near FI,q,reg(ǫ), and for some N ,

(45) u =
∑

Ajvj , Aj ∈ MN , vj ∈ Hℓ.

Thus, u ∈ Hℓ−N only, but along FI,reg it is ‘better’ in the sense of (45): ‘better’
refers to the Aj being products of operators with vanishing principal symbols at
FI,reg, hence are lower order than their order indicates ‘at’ (rather than ‘near’)
FI,reg. If u ∈ Hs but u is Hℓ-non-focusing for ℓ > s, we call ℓ− s the non-focusing
improvement.

A Lagrangian distribution satisfies a non-focusing condition if the Lagrangian Λ
intersects the coisotropic manifold ḞI transversally inside Σ(P ), see [15, Section 14].
In fact, inside Λ, the codimension of this intersection is the codimension k of the
corner, minus 1, which implies that u satisfies the non-focusing condition with an
improvement of (k− 1)/2− δ for all δ > 0. Very roughly speaking, one can think of
a Lagrangian distribution u associated to Λ is smooth along Λ, so one can divide
u by some first order factors vanishing at ḞI ∩ Λ (symbols of ps.d.o.’s) and still
improve Sobolev regularity – for the precise argument see [15, Proposition 14.2].

Theorem 28. [Melrose-Vasy-Wunsch, [14], analogue of [15, Theorem 1.3] for man-
ifolds with edge metrics] Suppose that (M, g) is a manifold with a smooth metric,
X = M × R, and u is an admissible solution of Pu = 0, P = D2

t − ∆. Let F be

a corner of X, let γ0 : [0, s0) → Σ̇ be a normally incident bicharacteristic segment
(with s0 small), and suppose that u satisfies the non-focusing assumption of order
ℓ for γ0(0).
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Then for R < ℓ, γ0|(0,s0) ∩ WFR(u) = ∅ provided that, for some ǫ > 0, all geo-
metric generalized broken bicharacteristics γ ∈ Γ extending γ0 satisfy γ((−ǫ, 0)) ∩
WFR(u) = ∅.

That is, singularities of order R < ℓ can only propagate into γ0 from geometric
generalized broken bicharacteristics extending it; note the contrast with the prop-
agation of singularities result: in (43) all extension of γ are needed. Theorems 22
and 24 are immediate consequences of this theorem, together with the non-focusing
property of the flowout of N∗o, as well as the fact that over T ∗

U\ffX , the flow-

in of γ0(0) is regular, ḞI,γ0(0)(T ) ∩ bT ∗
U\ffX ⊂ FI,γ0(0),reg, so generalized broken

bicharacteristics other than γ0 cannot go through q and N∗o.
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