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Abstract. We use semiclassical propagation of singularities to give a general method for
gluing together resolvent estimates. As an application we prove estimates for the analytic
continuation of the resolvent of a Schrödinger operator for certain asymptotically hyperbolic
manifolds in the presence of trapping which is sufficiently mild in one of several senses. As
a corollary we obtain local exponential decay for the wave propagator and local smoothing
for the Schrödinger propagator.

1. Introduction

In this paper we give a general method for gluing semiclassical resolvent estimates. As an
application we obtain the following theorem.

Theorem 1.1. Let (X, g) be a Riemannian manifold and

P = h2∆g − 1, 0 < h ≤ h0.

Suppose X is isometric to hyperbolic space outside of a compact set. Suppose that the trapped
set of X, i.e. the set of maximally extended geodesics which are precompact, is either nor-
mally hyperbolic in the sense of §5.1 or hyperbolic with negative topological pressure at 1/2
(see §5.2). Then the cutoff resolvent χ(P − λ)−1χ continues analytically from {Imλ > 0} to
[−E,E]− i[0,Γh] for every χ ∈ C∞

0 (X) and obeys

‖χ(P − λ)−1χ‖L2→L2 ≤ a(h).

Here h−1 . a(h) . h−N and Γ > 0 are both determined only by the trapped set.

In fact, it suffices to assume that X is asymptotically hyperbolic in the sense of (4.1). The
compact part of the manifold on which the trapping occurs can be replaced by a domain
with several convex obstacles. See §6 for a stronger result.

As already stated our methods work in much greater generality. Let (X, g) be a complete
Riemannian manifold, P = h2∆g+V −1 a semiclassical Schrödinger operator, V ∈ C∞(X; R)
bounded, h ∈ (0, 1). Then P is essentially self-adjoint, R(λ) = (P − λ)−1 is holomorphic
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in {λ : Imλ 6= 0}. Moreover, in this set one has uniform estimates on R(λ) : L2 → L2 as
h→ 0, namely ‖R(λ)‖ ≤ 1/| Imλ|.

On the other hand, as λ approaches the spectrum, R(λ) is necessarily not uniformly bounded
(even for a single h). However, in many settings, e.g. on asymptotically Euclidean or
hyperbolic spaces, the resolvent extends continuously to the spectrum (perhaps away from
some thresholds) as an operator on weighted L2-spaces, and indeed under more restrictive
assumptions it continues meromorphically across the continuous spectrum, typically to a
Riemann surface ramified at thresholds. It is very useful in this setting to obtain semiclassical
resolvent estimates, i.e. estimates as h→ 0, both at the spectrum of P and for the analytic
continuation of the resolvent, R(λ). By scaling, these imply high energy resolvent estimates
for non-semiclassical Schrödinger operators, which in turn can be used, for instance, to
describe wave propagation, or more precisely the decay of solutions of the wave equation.
For this purpose the most relevant estimates are those in a strip near the real axis for
the non-semiclassical problem (which gives exponential decay rates for the wave equation),
which translates to estimates in an O(h) neighborhood of the real axis for semiclassical
problems. The best estimates one can expect (on appropriate weighted spaces) are O(h−1);
this corresponds to the semiclassically microhyperbolic nature of this problem. However, if
there is trapping, i.e. some trajectories of the Hamilton flow (or, in case V = 0, geodesics)
do not escape to infinity, the estimates can be significantly worse (exponentially large) even
at the real axis. Nonetheless, if the trapping is mild, e.g. the trapped set is hyperbolic, then
one has polynomial, O(h−N), bounds in certain settings, see the work of Nonnenmacher
and Zworski [NoZw09a, NoZw09b], Petkov and Stoyanov [PeSt10], and Wunsch and Zworski
[WuZw10].

Typically, for the settings in which one can prove polynomial bounds in the presence of
trapping, one considers particularly convenient models in which one alters the problem away
from the trapped set, e.g. by adding a complex absorbing potential. The natural expectation
is that if one can prove such bounds in a thus altered setting, one should also have the
bounds if one alters the operator in a different non-trapping manner, e.g. by gluing in a
Euclidean end or another non-trapping infinity. In spite of this widespread belief, no general
prior results exist in this direction, though in some special cases this has been proved using
partially microlocal techniques, e.g. in work of Christianson [Chr07, Chr08] on resolvent
estimates where the trapping consists of a single hyperbolic orbit, and in the work of the
first author [Dat09], combining the estimates of Nonnenmacher and Zworski [NoZw09a,
NoZw09b] with the microlocal non-trapping asymptotically Euclidean estimates of the second
author and Zworski [VaZw00] as well as the more delicate non-microlocal estimates of Burq
[Bur02] and Cardoso and Vodev [CaVo02]. Another example is work of the first author
[Dat10] using an adaptation of the method of complex scaling to glue in another class of
asymptotically hyperbolic ends to the estimates of Sjöstrand and Zworski [SjZw07] and
[NoZw09a, NoZw09b]. It is important to point out, however, that we glue the resolvent
estimates directly, without the need for any information on how they were obtained, so for
instance we do not need to construct a global escape function, etc. In addition to the above
listed references, Bruneau and Petkov [BrPe00] give a general method for deducing weighted
resolvent estimates from cutoff resolvent estimates, but they require that the operators in
the cutoff estimate and the weighted estimate be the same.
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In this paper we show how one can achieve this gluing in general, in a robust manner. The key
point is the following. One cannot simply use a partition of unity to combine the trapping
model with a new ‘infinity’ because the problem is not semiclassically elliptic, as already
explained. Thus, semiclassical singularities (i.e. lack of decay as h → 0) propagate along
null bicharacteristics. However, under a convexity assumption on the gluing region, which
holds for instance when gluing in asymptotically Euclidean or hyperbolic models, following
these singularities microlocally allows us to show that an appropriate three-fold iteration
of this construction, which takes into account the bicharacteristic flow, gives a parametrix
with O(h∞) errors. This in turn allows us to show that the resolvent of the glued operator
satisfies a polynomial estimate, with order of growth given by that of the model operator for
the trapped region.

We state our general assumptions and main result precisely in the next section, and prove
the result in §3. In §4 we will show how our assumptions near infinity are satisfied for various
asymptotically Euclidean and asymptotically hyperbolic manifolds. In §5 we show how our
assumptions near the trapped set are satisfied for various types of hyperbolic trapping. In
§6 we give applications: a more precise version of Theorem 1.1, exponential decay for the
wave equation, and local smoothing for the Schrödinger propagator.

We are very grateful to Maciej Zworski for his suggestion, which started this project, that
resolvent gluing should be understood much better, and for his interest in this project.

2. Main theorem

Let X be a compact manifold with boundary, g a complete metric on X (the interior of X),
and P a self-adjoint semiclassical Schrödinger operator on X. Let x be a boundary defining
function, and let

X0
def
= {0 < x < 4}, X1

def
= {x > 1}.

Suppose that the bicharacteristics γ of P (by this we always mean bicharacteristics at energy
in some fixed range [−E,E]) in X0 satisfy the convexity assumption

ẋ(γ(t)) = 0 ⇒ ẍ(γ(t)) < 0. (2.1)

There may be more complicated behavior, including trapping, in X \X0.

Remark 2.1. If x is a boundary defining function, f is a C∞ function on [0,∞) with f ′ > 0,
and x satisfies (2.1) then so does f ◦ x. In particular the specific constants above (as well as
intermediate constants used below) are chosen only for convenience, and can be replaced by
arbitrary constants that preserve the ordering.

Let P0 and P1 be model operators on X0 and X1 respectively:

P |X0 = P0|X0 , and P |X1 = P1|X1 .

The spaces X ′
j on which the operators Pj are globally defined can differ from X away from

Xj, as the operators will always be multiplied by a smooth cutoff function to the appropriate
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Xj. Assume however that no bicharacteristic of P1 leaves X1 and then returns later, i.e. that

X1 is bicharacteristically convex in X ′
1. (2.2)

Note that we do not assume that the Pj are self-adjoint; this is useful in the applications in
§§5–6.

Let R(λ) denote the resolvent (P − λ)−1 in {Imλ > 0} or its meromorphic continuation

where this exists in {Imλ ≤ 0}, and similarly R0(λ) and R1(λ). Suppose that h̃0 ∈ (0, 1)
and the Rj(λ) are analytic for

λ ∈ D ⊂ [−E,E]− i[0,Γh], h < h̃0,

and in that region obey

‖Rj(λ)‖ ≤ aj(h, λ) . h−N , 0 < h < h̃0, (2.3)

for some aj(h) ≥ h−1, where the norms are taken in some weighted L2 spaces. The weights
may be compactly supported, but the weight for R1 must be nonvanishing on X1, and
the weight for R0 must be nonvanishing on X0 ∩ X1. (We call a resolvent satisfying (2.3)
polynomially bounded.)

We also make a microlocal assumption on these resolvents. Here and later, for a compactly
supported in a coordinate patch, ψ ∈ C∞(X) compactly supported in the patch, ψ ≡ 1
on a neighborhood of the support of a, Op(a) is a semiclassical quantization given in local
coordinates by

Op(a)u(z) =
1

(2πh)n

∫
eizζ/ha(z, ζ)(̂ψu)(ζ)dζ.

See, for example, [DiSj99, EvZw10] for more information. We also say that a family of
functions u = (uh)h∈(0,1) on X is polynomially bounded if ‖u‖L2 . h−N for some N . The
semiclassical wave front set, WFh(u), is defined for polynomially bounded u as follows: for
q ∈ T ∗X, q /∈ WFh(u) if there exists a ∈ C∞

0 (T ∗X) with a(q) 6= 0 such that Op(a)u = O(h∞)
(in L2). One can also extend the definition to q ∈ S∗X (thought of as the cosphere bundle
at fiber-infinity in T ∗X); then WFh(u) = ∅ implies u = O(h∞) (in L2).

Definition 2.1. Suppose q ∈ T ∗X ′
j is in the characteristic set of Pj, and let γ− : (−∞, 0] →

T ∗X ′
j be the backward Pj-bicharacteristic from q. We say that the resolvent Rj(λ) is semi-

classically outgoing at q if

u ∈ L2
comp(Xj) polynomially bounded, WFh(u) ∩ γ− = ∅ (2.4)

implies that

q /∈ WFh(Rj(λ)u). (2.5)

We say that the resolvent Rj(λ) is off-diagonally semiclassically outgoing at q if (2.5) holds
provided we add q /∈ T ∗ suppu to the hypotheses (2.4).

Remark 2.2. Since u is compactly supported, the definition involves only the cutoff resol-
vent.
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In this paper we only need to make the assumption that the resolvents Rj(λ) are off-diagonally
semiclassically outgoing. However, for brevity, we use the term ‘semiclassically outgoing’ in
place of ‘off-diagonally semiclassically outgoing’ throughout the paper.

A reason for making the weaker hypothesis of being off-diagonally semiclassically outgoing
is that typically the Schwartz kernel of Rj(λ) is simpler away from the diagonal than at
the diagonal (where it may be a semiclassical paired Lagrangian distribution), and the off-
diagonal outgoing property follows easily from the oscillatory nature of the Schwartz kernel
there; see the third paragraph of §4.

Our microlocal assumption is then that

(0-OG) R0(λ) is semiclassically outgoing at all q ∈ T ∗(X0 ∩X1) (in the characteristic set of
P0),

(1-OG) R1(λ) is semiclassically outgoing at all q ∈ T ∗(X0 ∩X1) (in the characteristic set of
P1) such that γ− is disjoint from T ∗(X ′

1 \ (X \X0)), thus disjoint from any trapping
in X1.

In fact, for R0(λ), it is sufficient to have the property in Definition 2.1 for u ∈ L2(X0 ∩X1)
(i.e. u supported in X0 ∩X1).

The main result of the paper is the following general theorem.

Theorem 2.1. Under the assumptions of this section, there exists h0 ∈ (0, 1) such that for
h < h0, R(λ) continues analytically to D and obeys the bound

‖R(λ)‖ ≤ Ch2a2
0a1

there, with the norm taken in the same weighted space as for R0(λ).

In particular, when a0 = C/h, we find that R(λ) obeys (up to constant factor) the same
bound as R1(λ), the model operator with infinity suppressed.

Remark 2.3. The only way we use convexity is to argue that no bicharacteristics of P go
from {x > 2 + ε} to {x < 2} and back to {x > 2 + ε} for some ε > 0. This is also fulfilled in
some settings in which the stronger condition (2.1) does not hold, for example when X has
cylindrical or asymptotically cylindrical ends. In particular, some mild concavity is allowed.

3. Proof of main theorem

Let χ1 ∈ C∞(R; [0, 1]) be such that χ1 = 1 near {x ≥ 3}, and suppχ1 ⊂ {x > 2}, and let
χ0 = 1− χ1.

Define a right parametrix for P by

F
def
= χ0(x− 1)R0(λ)χ0(x) + χ1(x+ 1)R1(λ)χ1(x).
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supp dχ = supp dχ 
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Figure 1. The concentric circles indicate integer level sets of x: the outermost
one is x = 1 and the innermost x = 4. The supports of the various cutoffs
are indicated (note that the supports are contained in the interiors of their
respective annuli). The trajectory γN is ruled out by the convexity assumption
(2.1), and this is exploited by Lemma 3.1. The trajectory γY is possible, and
this is the reason a third iteration is needed in the parametrix construction.

We then put

PF = Id +[P, χ0(x− 1)]R0(λ)χ0(x) + [P, χ1(x+ 1)]R1(λ)χ1(x)
def
= Id +A0 + A1.

This error is large in h due to semiclassical propagation of singularities, but using an iteration
argument we can replace it by a small error. Observe that by disjointness of supports of
dχ0(.− 1) and χ0, resp. dχ1(.+ 1) and χ1, we have

A2
0 = A2

1 = 0, (3.1)

while Lemma 3.1 below implies that

‖A0A1‖L2→L2 = O(h∞). (3.2)

This is the step in which we exploit the semiclassical propagation of singularities (see Figure
1).

Lemma 3.1. Suppose that ϕ1, ϕ2, ϕ3 are compactly supported semiclassical differential op-
erators with

suppϕ1 ⊂ {2 < x}, suppϕ2 ⊂ {1 < x < 2}, suppϕ3 ⊂ {3 < x < 4}.
Then

‖ϕ3R0(λ)ϕ2R1(λ)ϕ1‖L2→L2 = O(h∞).

Before proving this lemma we show how (3.2) implies Theorem 2.1. We solve away the first
error by writing, using (3.1)

P (F − FA0) = Id +A1 − A0A0 − A1A0 = Id +A1 − A1A0.
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Similarly we have
P (F − FA0 − FA1) = Id−A1A0 − A0A1.

The last term is already O(h∞) by (3.2), but A1A0 is not yet small. We thus repeat this
process for A1A0 to obtain

P (F − FA0 − FA1 + FA1A0) = Id−A0A1 + A0A1A0 + A1A1A0

= Id−A0A1 + A0A1A0.

We now observe that both remaining error terms are of size O(h∞) thanks to (3.2). Cor-
respondingly, Id−A0A1 + A0A1A0 is invertible for sufficiently small h, and the inverse is of
the form Id +E, with E = O(h∞). To estimate the resolvent we write out

F − FA0 − FA1 + FA1A0 = F − χ1(x+ 1)R1(λ)χ1A0 + χ0(x− 1)R0(λ)χ0(−A1 + A1A0).

We then find that

‖R(λ)‖ ≤ C(a0 + a1 + 2ha0a1 + h2a2
0a1) ≤ Ch2a2

0a1.

This completes the proof that Lemma 3.1 implies Theorem 2.1.

Lemma 3.1 follows from the following two lemmas, for the hypotheses (1)-(3) of Lemma 3.2
are satisfied by ϕj as in Lemma 3.1, and (4) follows from the support properties of ϕj and
Lemma 3.3.

Lemma 3.2. Suppose that ϕ1, ϕ2, ϕ3 are semiclassical differential operators with the prop-
erties that

(1) ϕ1 is supported in X1,
(2) ϕ2, ϕ3 are supported in X0 ∩X1,
(3) suppϕ3 ∩ suppϕ2 = ∅, and suppϕ2 ∩ suppϕ1 = ∅,
(4) there is no bicharacteristic of P1 from a point q1 ∈ T ∗(suppϕ1∪ (X1 \X0)) to a point

q2 ∈ T ∗ suppϕ2 followed by a bicharacteristic of P0 from q2 to a point q3 ∈ T ∗ suppϕ3.

Then
‖ϕ3R0(λ)ϕ2R1(λ)ϕ1‖L2→L2 = O(h∞),

Lemma 3.3. There is no bicharacteristic of P1 from a point q1 ∈ T ∗{x > 2} to a point
q2 ∈ T ∗{x < 2} followed by a bicharacteristic of P0 from q2 to a point q3 ∈ T ∗{x > 2}.

Proof of Lemma 3.3. We prove this first in the case where the two curves constitute a
bicharacteristic of P . If there were such a bicharacteristic, say γ : [t0, t1] → T ∗X, with
x(γ(t0)), x(γ(t1)) > 2, and x(γ(τ)) < min(x(γ(t0)), x(γ(t1))) for some τ ∈ (t0, t1), then the
function x ◦ γ would attain its minimum in the interior of (t0, t1) at some point (and would
be < 2 there), and the second derivative would be nonnegative there, contradicting our
convexity assumption (2.1).

We now reduce to this case. Assume that there are curves, γ0 : [t2, t3] → T ∗X ′
0 a bichar-

acteristic of P0 from q2 to q3 and γ1 : [t1, t2] → T ∗X ′
1 a bicharacteristic of P1 from q1 to
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q2. Now, by the bicharacteristic convexity of X1 in X ′
1, γ1 is completely in X1 (since its

endpoints are there), so it is a P bicharacteristic. On the other hand, γ0 need not be a P
bicharacteristic since it might intersect T ∗(X1\X0). However, taking infimum t′3 of times t at
which x(γ(t)) ≥ x(q3), γ0|[t2,t′3] is a P bicharacteristic since it is disjoint from T ∗{x > x(q3)}
in view of x(q2) < 2 and the intermediate value theorem. Thus, γ : [t1, t

′
3] → T ∗X given

by γ1 on [t1, t2] and γ0 on [t2, t
′
3] is a P bicharacteristic, with x(γ(t1)) > 2, x(γ(t2)) < 2,

x(γ(t′3)) > 2, completing the reduction to the case in the previous paragraph. �

Proof of Lemma 3.2. First suppose that u ∈ L2(X) is polynomially bounded; we claim that

‖ϕ3R0(λ)ϕ2R1(λ)ϕ1u‖L2 = O(h∞). (3.3)

For this, it suffices to show that WFh(ϕ3R0(λ)ϕ2R1(λ)ϕ1u) = ∅. Note that by the polynomial
boundedness assumption on the resolvent, ϕ3R0(λ)ϕ2R1(λ)ϕ1u, as well as ϕ2R1(λ)ϕ1u, are
polynomially bounded.

So suppose q3 ∈ WFh(ϕ3R0(λ)ϕ2R1(λ)ϕ1u), so in particular q3 ∈ T ∗ suppϕ3 ∪ S∗ suppϕ3

and, as ϕ3 is microlocal, q3 ∈ WFh(R0(λ)ϕ2R1(λ)ϕ1u). Now, if q3 is not in the characteristic
set of P0, then by microlocal ellipticity of P0, q3 ∈ WFh(ϕ2R1(λ)ϕ1u), thus in T ∗ suppϕ2 ∪
S∗ suppϕ2. This contradicts (3).

So we may assume that q3 in the characteristic set of P0. By (0-OG), noting that ϕ2 and
ϕ3 have disjoint supports, there is a point q2 ∈ WFh(ϕ2R1(λ)ϕ1u) on the backward P0-
bicharacteristic from q3. Thus q2 ∈ T ∗ suppϕ2 and q2 ∈ WFh(R1(λ)ϕ1u). By (1-OG),
noting that ϕ1 and ϕ2 have disjoint supports, either the backward P1 bicharacteristic from
q2 intersects T ∗(X1 \X0), in which case we can take any q1 on it in this region, or there is a
point q1 on this backward bicharacteristic in WFh(ϕ1u), which is thus in T ∗ suppϕ1. Since
this contradicts (4), it completes the proof of (3.3).

To complete the proof of the lemma, we just note that for any N , the family of operators

h−Nϕ3R0(λ)ϕ2R1(λ)ϕ1,

dependent on h and λ, is continuous on L2, and for each u, h−Nϕ3R0(λ)ϕ2R1(λ)ϕ1u is uni-
formly bounded in L2. Thus, by the theorem of Banach-Steinhaus, h−Nϕ3R0(λ)ϕ2R1(λ)ϕ1

is uniformly bounded (in h and λ) on L2, completing the proof of the lemma. �

Remark 3.1. The application of Banach-Steinhaus is only needed because we merely made
wavefront set assumptions in Definition 2.1. In practice, the wave front set statement is
proved by means of a uniform estimate, and thus Banach-Steinhaus is superfluous.

Remark 3.2. Lemma 3.1 holds with the same proof if ϕj are instead semiclassical pseudo-
differential operators with WFh ϕj in the cotangent bundle of the corresponding set. This
could be useful for applications where P is not differential, as in [SjZw07].
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4. Model operators near infinity

In this section we describe some examples in which the assumptions on the model at infinity,
P0, are satisfied. Recall that the assumptions on P0 are of three kinds:

(1) bicharacteristic convexity of level sets of x for 0 < x < 4,
(2) polynomial bounds for the cutoff resolvent,
(3) semiclassically outgoing resolvent.

We start with some general remarks.

First, in the setting where X ′
0 is diffeomorphic to Rn, has nonpositive sectional curvature

and, for fixed z0 the function x(z) = F (d(z, z0)) with F ′ < 0, (2.1) follows from the Hessian
comparison theorem [ScYa94, VaWu05].

Next, the semiclassically outgoing assumption is satisfied for R0(λ) if the restriction of its
Schwartz kernel to (X1∩X0)

2\Diag is a semiclassical Fourier integral operator with canonical
relation Λ′ corresponding to forward propagation along bicharacteristics, i.e. (y, z, η, ζ) ∈ Λ′

implies (y, η) is on the forward bicharacteristic segment from (z, ζ). Here Diag is the diagonal
in (X1 ∩X0)

2. Note that this is where restricting the semiclassical outgoing condition to its
off-diagonal version is useful, in that usually the structure of the resolvent at the diagonal
is slightly more complicated (though the condition would still hold); see also Remark 2.2.

4.1. Asymptotically Euclidean manifolds. If X is isometric outside of a compact set to
Euclidean space we may take X0 = Rn with the Euclidean metric g0, and x−1 the distance
function from a point in Rn. Thus, the convexity hypotheses (2.1) holds in view of geodesic
convexity of the spheres. Moreover, for Γ1 > Γ > 0, λ0 > 0, the resolvent continues
analytically to {λ : Imλ < Γh, Reλ > λ0} as an operator

R(λ) : e−Γ1|z|L2 → eΓ1|z|L2

with uniform estimates ‖R(λ)‖ ≤ Ch−1. Finally, R(λ) is a semiclassical FIO associated to
the forward flow; indeed, with

√
the square root on C\ (−∞, 0] which is positive for positive

λ, its Schwartz kernel is

R(λ, y, z) = (h−1
√
λ)n−2ei

√
λ|y−z|/ha(

√
λ|y − z|/h),

where a is a symbol (away from the origin).

4.2. Asymptotically hyperbolic manifolds. The convexity assumption (2.1) is satisfied
for the geodesic flow on a general asymptotically hyperbolic metric. In the following lemma
this is proved in a region {x < ε}, but a rescaling of the boundary defining function gives
it in the region {x < 4}. The computation is standard, but we include it for the reader’s
convenience.
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Lemma 4.1. Let x be a boundary defining function on X, a compact manifold with boundary,
and let g be a metric on the interior of the form

g =
dx2 + g̃

x2
,

where g̃ is a smooth symmetric 2-cotensor on X with g̃|∂X a metric. Then for x sufficiently
small we have

ẋ(t) = 0 ⇒ ẍ(t) < 0

along geodesic bicharacteristics.

Proof. If (x, y) are coordinates on X near ∂X, and ξ is dual to x and η to y, then the geodesic
Hamiltonian is given by

|ζ|2 = τ 2 + g̃(µ, µ),

where τ = xξ and µ = xη. Its Hamiltonian vector field is

H|ζ|2 = ∂ξ|ζ|2∂x − ∂x|ζ|2∂ξ + (∂η|ζ|2) · ∂y − (∂y|ζ|2) · ∂η.

We use ∂ξ = x∂τ , ∂η = x∂µ and “∂x = ∂x + x−1µ · ∂µ + x−1τ∂τ”, where in the last formula
the left hand side refers to (x, y, ξ, η) coordinates, and the right hand side to (x, y, τ, µ)
coordinates. This gives

H|ζ|2 = x∂τ |ζ|2(∂x + x−1µ · ∂µ + x−1τ∂τ )

−
[
(x∂x + µ · ∂µ + τ∂τ ) |ζ|2

]
∂τ + x(∂µ|ζ|2) · ∂y − x(∂y|ζ|2) · ∂µ.

We cancel the ∂τ (|ζ|2)τ∂τ terms, write Hg̃ = (∂µ|ζ|2) · ∂y − (∂y|ζ|2) · ∂µ, substitute |ζ|2 =
τ 2 + g̃(µ, µ), and use µ · ∂µg̃(µ, µ) = 2g̃(µ, µ). Now

H|ζ|2 = 2τx∂x + 2τµ · ∂µ − (2g̃(µ, µ) + x∂xg̃(µ, µ))∂τ + xHg̃.

We now observe from this that, along flowlines of H|ζ|2 , we have ẋ = 2τx and τ̇ = −2g̃(µ, µ)−
x∂xg̃(µ, µ). Hence

ẋ(t) = 0 ⇒ τ = 0,

in which case

ẍ = −4xg̃ − 2x2∂xg̃.

Since g̃|x=0 is positive definite, for sufficiently small x this is always negative. �

In particular, this is satisfied when X ′
0 = Bn with an asymptotically hyperbolic metric in the

following sense:

g0 = gHn + χδ(x)g̃, P0 = h2

(
∆g0 + x2V0 −

(n− 1)2

4

)
− λ0, λ0 > 0, (4.1)

where gHn is the hyperbolic metric on Bn and g̃ is a smooth symmetric 2-cotensor on Bn,
V0 ∈ C∞(Bn), x is a boundary defining function, χδ(t) = χ(t/δ), χ ∈ C∞(R) supported
in [0, 1), identically 1 near 0, and δ > 0 sufficiently small; this is the setting considered
by Melrose, Sá Barreto and the second author [MSV10]. Note that the factor χδ does not
change g0 near infinity. Thus, after possibly scaling x, i.e. replacing it by x/ε, in the region
x < 4 the cutoff χδ ≡ 1.
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It is shown in [MSV10] that the Schwartz kernel of (P0 − z)−1 is a semiclassical paired
Lagrangian distribution, which is just a Lagrangian distribution away from the diagonal
associated to the flow-out of the diagonal by the Hamilton vector field of the metric function,
hence, as remarked at the beginning of the section, (P0 − z)−1 is semiclassically outgoing.
This also gives that (P0 − z)−1 satisfies the bound in (2.3) with D = [−E,E] − i[0,Γh]
and with a0 = C/h for arbitrary Γ > 0, E ∈ (−1, 1) with compactly supported cutoffs as
a consequence of a semiclassical version of [GrUh90, Theorem 3.3]. Moreover, it is also
shown in [MSV10] that the resolvent satisfies weaker polynomial bounds in weighted spaces,
namely Rj(λ) : xaL2 → x−bL2, a, b > C, with a0(h) = C ′h−1−(n−1)/2. It is highly likely that
the better bound a0 = C/h holds for the weighted spaces as well; this could be proved by
extending the approach of [GrUh90] in a manner that is uniform up to the boundary (i.e.
infinity); this is expected to be relatively straightforward.

The same results hold without modification in the case where X ′
0 is a disjoint union of balls

with g0 and P0 of the form (4.1) in each ball.

5. Model operators for the trapped set

In this section we will apply Theorem 2.1 in the setting where the model operator near the
trapped set is either of the form

P1 = P − iW, (5.1)

where W ∈ C∞(X ′
1; [0, 1]) has W = 0 on X1 and W = 1 off a compact set, or else P1 =

h2∆g − 1 off of a compact set and (X ′
1, g) is isometric to Euclidean space there.

The function W in (5.1) is called a complex absorbing barrier and serves to suppress the
effects of infinity. In Lemma 5.1 we prove the needed semiclassical propagation of singularities
in this setting, that is to say that R1(λ) is semiclassically outgoing in the sense of §2. After
this, provided that X ′

1 is Euclidean near the support of W , all that is needed to be in the
setting of §2 is the resolvent estimate (2.3). In §5.1 we describe a setting in which results of
Wunsch and Zworski [WuZw10] give the needed bound (2.3).

In the case where P1 = h2∆g − 1 off of a compact set and (X ′
1, g) is Euclidean there,

we will instead have the estimate (2.3) for the cutoff resolvent with compactly supported
cutoffs. Then, similarly to §4.1, the semiclassically outgoing condition, which is only needed
in the Euclidean region (i.e. with backward bicharacteristic disjoint from the aforementioned
compact set), follows once we show the (off-diagonal) semiclassical FIO nature of (P1−z)−1 in
this region, with Lagrangian given by the flow-out of the diagonal. But this follows from the
usual parametrix identity, taking some χ ∈ C∞

0 (X ′
1) identically 1 on the compact set, using

G = (1−χ)R̃0(λ)(1−χ) as the parametrix, with R̃0(λ) the Euclidean resolvent. Indeed, first
for Imλ > 0, (P1 − λ)G = Id +ER, G(P1 − λ) = Id +EL, with ER and EL having Schwartz
kernels with support in the left, resp. right factor in suppχ (e.g. ER = −χ − [P1, χ]R̃0(λ)),
so

(P1 − λ)−1 = G−GER + EL(P1 − λ)−1ER;
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this identity thus also holds for the analytic continuation. Now, even for the analytic con-
tinuation, G, EL and ER are semiclassical Lagrangian distributions away from the diagonal
as follows from the explicit formula (where Imλ is O(h)), and if a point is in the image of
the wave front relation of Gχ0 or EL (with χ0 compactly supported, identically 1 on suppχ)
then it is on the forward bicharacteristic emanating from a point in T ∗ suppχ0, proving the
semiclassically outgoing property of the second and third term of the parametrix identity.

For the following lemma we use a positive commutator argument based on an escape function
as in [VaZw00], which is the semiclassical adaptation of the proof of [Hör71, Proposition
3.5.1]. The only slight subtlety comes from the interaction of the escape function with
the complex absorbing barrier W and from the possibly unfavorable sign of Imλ, but the
positive commutator with the self adjoint part of the operator overcomes these effects. See
also [NoZw09a, Lemma A.2] for a similar result.

Lemma 5.1. Suppose that P1 is as in (5.1), and suppose that under backward evolution
all bicharacteristics of P at energies in [−E,E] enter the interior of either T ∗(X \ X0) or
T ∗W−1(1) in finite time. If u ∈ L2(X0 ∩X1) has ‖u‖L2 = 1 and

‖Op(a)(P1 − λ)u‖L2 = O(h∞) (5.2)

for all a ∈ C∞
0 (T ∗X ′

1) with support in some set U ⊂ T ∗(X ′
1 \ (X \X0)) which is preserved by

the backward bicharacteristic flow, then for every a ∈ C∞
0 (T ∗X ′

1) with support in U we have
also

‖Op(a)u‖L2 = O(h∞). (5.3)

The implicit constants in O are uniform for λ ∈ [−E,E]− i[0,Γh].

Proof. In this proof all norms are L2 norms. In the first step we use ellipticity to reduce
to a neighborhood of the energy surface, and then a covering argument to reduce to a
neighborhood of a single bicharacteristic segment. In the second step we construct an escape
function (a monotonic function) along this segment. In the third step we implement the
positive commutator method.

Step 1. Observe first that for any δ > 0, we can find Rδ(λ), a semiclassical elliptic inverse
for P1 on the set {|p1| > δ}, such that

‖Op(a)u‖ = ‖Op(a)Rδ(λ)(P1 − λ)u‖+O(h∞)

as long as supp a ⊂ {|p1| > δ}. Since by the semiclassical composition formula the operator
Op(a)Rδ(λ) is the quantization of a compactly supported symbol with support contained in
supp a, plus an error of size O(h∞), we have the lemma for a with supp a ⊂ {|p1| > δ}. It
remains to study a with supp a ⊂ {|p1| < 2δ}.

Now fix a0 ∈ C∞
0 (T ∗X1) for which we wish to prove (5.3). Take U0 with U0 ⊂ U such that

U0 is preserved by the backward flow and supp a0 ⊂ U0. For each ζ ∈ U0 ∩ p−1
1 (0) put

Tζ
def
= sup{t; t < 0,Φ(t)ζ ∈ T ∗W−1([2ε, 1])},

where Φ(t) is the flow at time t, and ε > 0 will be specified later. The supremum is taken
over a nonempty set, since otherwise we would have Φ(t0)ζ ∈ T ∗(X\X0) for some t0 < 0, and
consequently Φ(t0)ζ /∈ U0, contradicting the assumption that U0 is preserved by the backward
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flow. We will prove the lemma for a which are supported in a sufficiently small neighborhood
Vζ of {Φ(t)ζ;Tζ ≤ t ≤ 0}. This gives the full lemma because the set U0 ∩ p−1

1 (0) is compact,
and so we may choose δ small enough these neighborhoods together with {|p1| > δ} cover
all of supp a0.

Step 2. To do this we take a neighborhood Uζ ⊂ U0 of {Φ(t)ζ;Tζ ≤ t ≤ 0} of the form

Uζ =
⋃

−εζ+Tζ<t<εζ

Φ(t)(Σζ ∩ Uζ), (5.4)

where Σζ ⊂ T ∗X is a hypersurface transversal to the bicharacteristic through ζ, and Uζ and
εζ are small enough that ⋃

−εζ+Tζ<t<Tζ

Φ(t)(Σζ ∩ Uζ) ⊂ T ∗W−1([ε, 1]),

and also small enough that the map Uζ → (−εζ + Tζ , εζ) × (Σζ ∩ Uζ) defined by (5.4) is
a diffeomorphism. We now use these ‘product coordinates’ to define an escape function as
follows. Take

• ϕζ ∈ C∞
0 (Σζ ∩ Uζ ; [0, 1]) with ϕζ = 1 near ζ, and

• χζ ∈ C∞
0 ((−εζ + Tζ , εζ); ([0,∞)) with χ′ζ ≤ −1 near [Tζ , 0] and χ′ζ ≤ −2Γχζ on

[Tζ , εζ ].

The constant Γ above is the same as the one in the statement of the lemma. Put

qζ
def
= ϕζχζ ∈ C∞

0 (T ∗X ′
1), {p, qζ} = ϕζχ

′
ζ ,

and let Vζ be a neighborhood of {Φ(t)ζ;Tζ ≤ t ≤ 0} in which χ′ζ ≤ −1 and χ′ζ ≤ −2Γχζ .
Take b ≥ 0 such that

b2 = −{p, q2
ζ}+ r, r ∈ C∞

0 (T ∗W−1([ε,∞))),

if necessary redefining χζ so that b is smooth. By taking r large, we may ensure that

b2 ≥ 4Γq2
ζ (5.5)

everywhere. Note that (5.5) follows from

−{p, q2
ζ} = −2ϕ2

ζχζχ
′
ζ ≥ 4Γϕ2

ζχ
2
ζ = 4Γq2

ζ

on Vζ .

Step 3. Put Q = Op(q), B = Op(b), R = Op(r). Now

B∗B =
i

h
[Q∗Q,P ] +R + hE,

where the error E = Op(e) has supp e ⊂ supp q. We have

‖Bu‖2 =
i

h
〈u, [Q∗Q,P ]u〉+ 〈u,Ru〉+ h〈u,Eu〉 ≤ i

h
〈u, [Q∗Q,P ]u〉+ h‖Eu‖+O(h∞),
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where we used ‖u‖ = 1 and ‖Ru‖ = O(h∞), which follows from Step 1 above. Next

i

h
〈u, [Q∗Q,P ]u〉 = −2

h
Im〈u,Q∗Q(P − λ− iW )u〉 − 2

h
Re〈u,Q∗QWu〉 − 2

h
〈u,Q∗Q Imλu〉

≤ −1

h
Re〈u,Q∗[Q,W ]u〉 − 2

h
〈u,Q∗Q Imλu〉+O(h∞)

,

where we used 〈u,Q∗WQu〉 ≥ 0 and ‖Q(P − λ− iW )u‖ = O(h∞) (see (5.2)). We will now
show

−Re〈u,Q∗([Q,W ] +Q Imλ)u〉 ≤ h

4
‖Bu‖2 +O(h2)‖E ′u‖+O(h∞), (5.6)

with E ′ = Op(e′) with supp e′ ⊂ supp q. Then we will have

‖Bu‖2 ≤ O(h)(‖Eu‖+ ‖E ′u‖) +O(h∞),

after which an iteration argument, for example as in [Dat09, Lemma 2], shows that ‖Bu‖ =
O(h∞) allowing us to conclude.

The estimate (5.6) is the slight subtlety discussed in the paragraph preceding the statement
of the lemma. Because Q∗ has real principal symbol of order 1, and [Q,W ] has imaginary
principal symbol of order h, we have

|Re〈u,Q∗[Q,W ]u〉| = O(h2)‖E ′u‖+O(h∞),

with E ′ as in (5.6). Meanwhile

〈u, (B∗B + 4h−1 ImλQ∗Q)u〉 ≥ 〈u, (B∗B − 4ΓQ∗Q)u〉+O(h∞)

≥ −C ′h‖E ′u‖2 +O(h∞).

For the second inequality we used the sharp G̊arding inequality. Indeed, the semiclassical
principal symbol of B∗B − 4CQ∗Q is b2 − 4Γq2

ζ , and we may apply (5.5). �

5.1. Normally hyperbolic trapped sets. We take these conditions from [WuZw10]. Let
(X ′

1, g) be a manifold which is Euclidean outside of a compact set, let V ∈ C∞
0 (X1,R), and

let
P1 = h2∆g + V − 1− iW,

with W as in (5.1) and suppV ∩ suppW = ∅.

Define the backward/forward trapped sets by

Γ± = {ζ ∈ T ∗X1 : ∓ t ≥ 0 ⇒ exp(tHp)(ζ) /∈ suppW}.
The trapped set is

K
def
= Γ+ ∩ Γ−

and
Kλ = K ∩ p−1(λ).

Assume

(1) There exists δ > 0 such that dp 6= 0 on p−1((−δ, δ)).
(2) Γ± are codimension one smooth manifolds intersecting transversely at K.
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(3) The flow is hyperbolic in the normal directions to K in p−1((−δ, δ)): there exist
subbundles E±

λ of TKλ
(Γλ

±) such that

TKλ
Γλ
± = TKλ ⊕ E±λ ,

where

dΦt : E
±
λ → E±

λ ,

and there exists θ > 0 such that for all |λ| < δ,

‖dΦt(v)‖ ≤ Ce−θ|t|‖v‖ for all v ∈ E∓
λ ,±t ≥ 0.

Here Φt is the Hamiltonian flow of p.

This is the normal hyperbolicity assumption which we take from [WuZw10, §1.2]. This
type of trapping appears in the setting of a slowly rotating Kerr black hole. Under these
assumptions we have, from [WuZw10, (1.1)],

‖(P1 − λ)−1‖L2→L2 ≤ Ch−N

for λ ∈ [−E,E] − i[0,Γh], for some E,Γ, N > 0. In particular, all the assumptions on P1

and X ′
1 in §2 are satisfied.

5.2. Trapped sets with negative topological pressure at 1/2. We take these conditions
from [NoZw09a]. Let (X ′

1, g) be a manifold which is Euclidean outside of a compact set, let
V ∈ C∞

0 (X1,R), and let

P1 = h2∆g + V − 1.

Let K denote the set of maximally extended null-bicharacteristics of P1 which are precom-
pact. We assume that K is hyperbolic in the sense that for any ζ ∈ K, the tangent space
to p−1(0) (the energy surface) at ζ splits into flow, unstable, and stable subspaces [KaHa95,
Definition 17.4.1]:

(1) Tζ(p
−1(0)) = RHp(ζ)⊕ E+

ζ ⊕ E−
ζ , dimE±

ζ = dimX − 1.

(2) dΦt
ζ(E

±
ζ ) = E±

Φt
ζ
, ∀t ∈ R.

(3) ∃λ > 0, ‖dΦt
ζ(v)‖ ≤ Ce−λ|t|‖v‖, ∀v ∈ E∓

ζ ,±t ≥ 0.

Here Φt
ζ

def
= exp(tHp)(ζ). This condition is satisfied in the case where X is negatively curved

near K.

The unstable Jacobian Ju
t (ζ) for the flow at ζ is given by

Ju
t (ζ) = det

(
dΦ−t(Φt(ζ))|E+

Φt
ζ

)
,

where the volume form used to define the determinant is that induced by the Sasaki metric.

We now define the topological pressure P (s) of the flow on the trapped set, following
[NoZw09a, §3.3] (see also [KaHa95, Definition 20.2.1]). We say that a set S ⊂ K is (ε, t)
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separated if, given any ζ1, ζ2 ∈ S, there exists t′ ∈ [0, t] such that the distance between
exp(t′Hp)ζ1 and exp(t′Hp)ζ2 is at least ε. For any s ∈ R define

Zt(ε, s)
def
= sup

S

∑
ζ∈S

(Ju
t (ζ))s,

where the supremum is taken over all sets S ⊂ K ∩ p−1(0) which are (ε, t) separated. The
pressure is then defined as

P(s) = lim
ε→0

lim sup
t→∞

1

t
logZt(ε, s).

The crucial assumption is that
P(1/2) < 0.

Then from [NoZw09a, Theorem 3] and [NoZw09b, (1.5)] we have for any Γ < |P (1/2)| and
χ ∈ C∞

0 (X ′
1), there exist C,E,N > 0 such that

‖χ(P1 − λ)−1χ‖L2→L2 ≤ Ch−1−N | Im λ|/h log(1/h),

for λ ∈ [−E,E]− i[0,Γh]. In particular, all the assumptions on P1 and X ′
1 in §2 are satisfied.

5.3. Convex obstacles with negative abscissa of absolute convergence. We take
these conditions from [PeSt10]. Let (X ′

1, g) = Rn \ O, where O = O1 ∪ · · · ∪ Ok0 is a union
of disjoint convex bounded open sets with smooth boundary, and let

P1 = h2∆g − 1

with Dirichlet boundary conditions and. Assume that the Oj satisfy the no-eclipse condition:
namely that for each pair Oi 6= Oj the convex hull of Oi and Oj does not intersect any other
Ok.

In this setting analog of having negative topological pressure at 1/2 is having negative
abscissa of convergence. To define it, for γ a periodic reflecting ray with mγ reflections, let
Tγ be the length of γ and Pγ the associated linear Poincaré map. Let λi,γ for i = 1, . . . , n−1
be the eigenvalues of Pγ with |λi,γ| > 0. Let P be the set of primitive periodic rays. Set

δγ = −1

2
log(λ1,γ · · ·λn−1,γ), γ ∈ P .

Let rγ = 0 if mγ is even and rγ = 1 if mγ is odd. The dynamical zeta function is given by

Z(s) =
∞∑

m=1

1

m

∑
γ∈P

(−1)mrγem(−sTγ+δγ),

and the abscissa of convergence is the minimal s0 ∈ R such that the series is absolutely
convergent for Re s > s0. Assume that

s0 < 0.

For simplicity, assume in addition that n = 2. This assumption can be replaced by a weaker
but more complicated one: see [PeSt10, Theorem 2] for a better statement. Then from
[PeSt10, Theorem 2] we have for any χ ∈ C∞

0 (X ′
1)

‖χ(P1 − λ)−1χ‖L2→L2 ≤ Ch−N
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for λ ∈ [−E,E] − i[0,Γh], for some N,E,m,C > 0 and Γ > |s0|. In particular, all the
assumptions on P1 and X ′

1 in §2 are satisfied.

6. Applications

We now give an improved version of Theorem 1.1. Let (X, g) be a compact manifold with
boundary ∂X given by finitely many disjoint spheres, and let X be the interior of X. Let x
be a boundary defining function, and let Xδ = {x < δ}. Then if δ is sufficiently small, Xδ is
a disjoint union of balls with compact sets removed. Suppose that on these sets the metric
g is of the form

g = gHn + g̃,

where gHn is the standard hyperbolic metric on the ball and g̃ is a symmetric cotensor smooth
up to ∂X. Examples of such (X, g) include metric perturbations of hyperbolic space and
metric perturbations of convex cocompact surfaces, provided the perturbation is short range
in the sense of being smooth up to the boundary of the compactification. Let

P = h2

(
∆g + x2V0 −

(n− 1)2

4

)
+ V − 1, V ∈ C∞

0 (X), V0 ∈ C∞(X) h ∈ (0, 1),

and let R(λ) = (P − λ)−1 for Imλ > 0, or its holomorphic continuation for Imλ ≤ 0 where
this exists.

Theorem 6.1. Let (X, g) and P be as above.

(1) Suppose P has a normally hyperbolic trapped set in the sense of §5.1. Then there
exist h0, N,E,Γ, a, b, C > 0 such that

‖xaR(λ)xb‖L2→L2 ≤ Ch−N

for λ ∈ [−E,E]− i[0,Γh] and 0 < h ≤ h0.
(2) Suppose P has a hyperbolic trapped set with P(1/2) < 0 as in §5.2. Then there exist

a, b > 0 such that for any Γ < |P(1/2)| there exist E, h0, N, C > 0 such that

‖xaR(λ)xb‖L2→L2 ≤ Ch−N

for λ ∈ [−E,E]− i[0,Γh] and 0 < h ≤ h0.
(3) Suppose V ≡ V0 ≡ 0,

(X̃, g) = (R2, dr2 + f(r)dθ2)

with f ∈ C∞((0,∞); (0,∞)) has f(r) = r2 for r sufficiently small, f(r) = sinh2(r)
for r sufficiently large, and f ′(r) > 0 for all r. Let X = X̃\O where O is a union
of disjoint convex open sets all contained in the region where f(r) = r2 , satisfying
the no-eclipse condition, with abscissa of convergence s0 < 0 as in §5.3, and with
Dirichlet boundary conditions imposed for P . Then there exist a, b, E, h0, N > 0 and
Γ > |s0| such that

‖xaR(λ)xb‖L2→L2 ≤ Ch−N

for λ ∈ [−E,E]− i[0,Γh] and 0 < h ≤ h0.
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The theorem follows immediately from the main theorem, Theorem 2.1, together with §4.2
(which shows that the assumptions on P0 are satisfied), and §5.1, resp. §5.2, resp. §5.3 in
the cases (1), resp. (2), resp. (3) (which show that the assumptions on P1 are satisfied.

Remark 6.1. The same results also hold when (X, g) has Euclidean ends in the sense of
§4.1; one merely needs to use the results of §4.1 instead of those of §4.2. In this case the
difference with previous authors is that we obtain the analytic continuation and the resolvent
estimates for the resolvent with exponential weights rather than with compactly supported
cutoff functions.

If V ≡ 0 and

H = ∆g + x2V0 −
(n− 1)2

4
we have the resolvent estimate

‖xaR(z)xb‖L2→L2 ≤ |z|−N+2, |Re z| > z0, Im z > −|Γ|/2,
where R(z) is now (H − z2)−1 for Im z > 0 or its meromorphic continuation for Im z < 0.
This follows from the substitution

h2z2 = 1 + λ, Re z = h−1.

On the other hand, work of Mazzeo and Melrose [MaMe87] and Guillarmou [Gui05] shows
that the resolvent continues meromorphically to

Im z > −|Γ|/2.
provided a and b are sufficiently large. From this the following resonant wave expansion
follows.

Corollary 6.1. Suppose u solves

(∂2
t +H)u = 0, u|t=0 = f, ∂tu|t=0 = g

for f, g ∈ C∞
0 (X), with support disjoint from the convex obstacles in the case (3) above.

Then

u(t) =
∑

Im zj>−Γ/2

M(zj)∑
m=0

e−itzj tmwz,j,m + E(t, x).

The sum is taken over poles of R(z), M(zj) is the algebraic multiplicity of the pole at zj, and
the wz,j,m ∈ C∞(X) are eigenstates or resonant states. The error term obeys the estimate

|∂αE(t, x)| ≤ Cα,εe
−t(Γ/2−ε)

for every ε > 0 and multiindex α, uniformly over compact subsets of X.

This is a standard consequence of the resolvent estimate and the meromorphic continuation,
by taking a Fourier transform in time and then performing a contour deformation. See
for example [Dat10, §6.3] for a similar result, and [MSV08, §4] for a similar result with an
asymptotic extending to infinity in space.

In many settings better resolvent estimates are available in the physical half plane Imλ > 0.
More specifically, we obtain the following theorem (see [WuZw10, (1.1)] and [NoZw09a,
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(1.17)] for the corresponding resolvent estimates for the trapping model operators) which we
state using compactly supported cutoff functions rather than weights, because currently it
is only in this case that we have ∼ h−1 estimates for the nontrapping model resolvent (see
the remark in the penultimate paragraph of §4.2).

Theorem 6.2. Let (X, g) and P be as above. Suppose P has a normally hyperbolic trapped
set in the sense of §5.1 or a hyperbolic trapped set with P(1/2) < 0 as in §5.2. Then for any
χ ∈ C∞

0 (X) there exist E, h0, C > 0 such that

‖χR(λ)χ‖L2→L2 ≤ C log(1/h)h−1

for λ ∈ [−E,E] + i(0,∞), 0 < h ≤ h0.

From this it follows by a standard TT ∗ argument as in [Dat09, §6] that the Schrödinger
propagator exhibits local smoothing with loss:∫ T

0

‖χe−itHu‖2
H1/2−εdt ≤ CT,ε‖u‖2

L2 ,

for any T, ε > 0. In fact, the main resolvent estimate of [Dat09] follows from Theorem
2.1 above, because the model operator near infinity, P0 can be taken to be a nontrapping
scattering Schrödinger operator, for which the necessary resolvent and propagation estimates
were proved in [VaZw00]. Moreover, Burq, Guillarmou and Hassell [BGH10] show that when
P(1/2) < 0 semiclassical resolvent estimates with logarithmic loss can be used to deduce
Strichartz estimates with no loss on a scattering manifold, and the same result probably
holds on the asymptotically hyperbolic spaces considered here. See also [BGH10] for more
references and a discussion of the history and of recent developments in local smoothing and
Strichartz estimates.

Another possible application of the method is to give alternate proofs of cutoff resolvent
estimates in the presence of trapping, where the support of the cutoff is disjoint from the
trapping. As mentioned in the introduction, estimates of this type were proved by Burq
[Bur02] and Cardoso and Vodev [CaVo02] and take the form

‖χR(λ)χ‖L2→L2 ≤ Ch−1,

for Imλ > 0, where χ ∈ C∞(X) vanishes on the convex hull of the trapped set and is either
compactly supported or suitably decaying near infinity. For this one would need an estimate
for any model space in which the effects of infinity are suppressed, i.e. the model P1, after
which one could glue on a variety of infinite ends where there is suitable information about
a nontrapping model resolvent.
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