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Abstract. We consider quasilinear wave equations on manifolds for which

infinity has a structure generalizing that of Kerr-de Sitter space; in particular
the trapped geodesics form a normally hyperbolic invariant manifold. We prove

the global existence and decay, to constants for the actual wave equation, of

solutions. The key new ingredient compared to earlier work by the authors in
the semilinear case [31] and by the first author in the non-trapping quasilinear

case [29] is the use of the Nash-Moser iteration in our framework.

1. Introduction

We consider quasilinear wave equations on manifolds for which infinity has a
structure generalizing that of Kerr-de Sitter space. An important feature is that,
as in perturbations of Kerr-de Sitter space, the trapped geodesics form a normally
hyperbolic invariant manifold. We prove the global existence and decay of solu-
tions; this means decay to constants for the actual wave equation. This result is
part of a new framework for solving quasilinear wave equations with normally hy-
perbolic trapping, which extends the semilinear framework developed by the two
authors [31] and the non-trapping quasilinear theory developed by the first author
[29]. The main new tool introduced here is a Nash-Moser iteration necessitated by
the loss of derivatives in the linear estimates at the normally hyperbolic trapping.
To our knowledge, this is the first global result for the forward problem for a quasi-
linear wave equation on either a Kerr or a Kerr-de Sitter background. We remark,
however, that Dafermos, Holzegel and Rodnianski [9] have constructed backward
solutions for Einstein’s equations on the Kerr background; for backward construc-
tions the trapping does not cause difficulties. For concreteness, we state our results
first in the special case of Kerr-de Sitter space, but it is important to keep in mind
that the setting is more general.

By adding an ‘ideal boundary’ at infinity in the standard description of Kerr-de
Sitter space, the region of Kerr-de Sitter space we are interested in can be consid-
ered a (non-compact) 4-dimensional manifold with boundary M . The interior M◦

is equipped with a Lorentzian metric g0, recalled below, depending on three param-
eters Λ > 0 (the cosmological constant), M• > 0 (the black hole mass) and a (the
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angular momentum), though we usually drop this in the notation.1 This Lorentzian
metric has a specific structure at ∂M , i.e. ‘infinity’, called a totally characteristic,
or b-, structure. Here recall that on any n-dimensional manifold with boundary
M , the Lie algebra of smooth vector fields tangent to the boundary is denoted by
Vb(M); in local coordinates (x, y1, . . . , yn−1), with x a boundary defining function,
these are linear combinations of x∂x and ∂yj with C∞(M) coefficients.

Just as a dual metric is a linear combination of symmetric tensor products of
coordinate vector fields, a dual metric in this totally characteristic setting, also
called a dual b-metric, is a linear combination of

x∂x ⊗ x∂x,
1

2
(x∂x ⊗ ∂yj + ∂yj ⊗ x∂x),

1

2
(∂yi ⊗ ∂yj + ∂yj ⊗ ∂yi).

One can think of this as a symmetric bilinear form; then a Lorentzian dual b-metric
is a non-degenerate bilinear form of signature (1, n − 1). The corresponding wave
operator is thus a totally characteristic, or b-, operator, � ∈ Diff2

b(M), i.e. is the
sum of products of up to two factors of elements of Vb(M), with C∞(M) coefficients.
The actual metric is then a linear combination of

dx

x
⊗ dx

x
,

1

2

(dx
x
⊗ dyj + dyj ⊗

dx

x

)
,

1

2
(dyi ⊗ dyj + dyj ⊗ dyi).

We denote linear combinations of these tensors over a point p by Sym2 bT ∗pM .
In order to set up our problem, see Figure 1 for an illustration, we consider

two functions tj , j = 1, 2, with forward, resp. backward, time-like differentials near
their respective 0-set Hj , which are linearly independent at their joint 0-set, and

let Ω = t−1
1 ([0,∞))∩ t−1

2 ([0,∞)), with Ω compact, so Ω is a compact manifold with
corners with three boundary hypersurfaces H1, H2 and X = ∂M , all intersected
with Ω. We are interested in solving the forward problem for wave-like equations
in Ω, i.e. imposing vanishing Cauchy data at H1, which we assume is disjoint from
X; initial value problems with general Cauchy data can always be converted into
an equation of this type.

In order to compress notation for elements of Vb(M) applied to a function u, it
is convenient to introduce the notation

bdu = (x∂xu)
dx

x
+
∑
j

(∂yju)dyj

in terms of local coordinates. This is a re-interpretation of the differential du of u
in terms of the 1-forms dx

x and dyj dual to the vector fields x∂x and ∂yj , thus it

is in fact invariantly defined. Note that when one writes e.g. a(u, bdu), one could
instead, at least locally, write

a(u, x∂xu, ∂y1u, . . . , ∂yn−1
u);

the bdu notation is more concise and invariant. One calls linear combinations of dxx
and dyj over a point p elements of bT ∗pM . We note that bd preserves reality.

The wave equations we consider include those of the form

�g(u,bdu)u = f + q(u, bdu),

1We will always assume that Λ, M• and a are such that the non-degeneracy condition [47,
(6.2)] holds, which in particular ensures that the cosmological horizon lies outside the black hole

event horizon.
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Figure 1. Setup for the discussion of the forward problem on
Kerr-de Sitter space. Indicated are the ideal boundary X, the
Cauchy hypersurface H1 and the hypersurface H2, which has two
connected components which lie beyond the cosmological horizon
and beyond the black hole event horizon, respectively. The hori-
zons at X themselves are the projections to the base of the (gen-
eralized) radial sets L±, discussed below, each of which has two
components, corresponding to the two horizons. The projection to
the base of the bicharacteristic flow is indicated near a point on
L+; near L−, the directions of the flowlines are reversed. Lastly,
Γ is the trapped set, and the projection of a trapped trajectory
approaching Γ within Γ− = Γ+

−∪Γ−−, discussed below, is indicated.

where g(0, 0) = g0, and for each p ∈ M , gp(v0, v) : R ⊕ bT ∗pM → Sym2 bT ∗pM ,

depending smoothly on p, and2

q(u, bdu) =

N ′∑
j=1

aju
ej

Nj∏
k=1

Xjku,

ej , Nj ∈ N0, Nj + ej ≥ 2,

with
aj ∈ C∞(M), Xjk ∈ Vb(M). (1.1)

Our central result in the form which is easiest to state, without reference to the
natural Sobolev spaces, is:

Theorem 1. On Kerr-de Sitter space with angular momentum |a| � M•, for
α > 0 sufficiently small and f ∈ C∞c (M◦) with sufficiently small H14-norm, the
wave equation �g(u,bdu)u = f + q(u, bdu), with q as above with Nj ≥ 1 for all j,

has a unique smooth (in M◦) global forward solution of the form u = u0 + ũ, x−αũ
bounded, u0 = cχ, χ ∈ C∞(M) identically 1 near ∂M .

Further, the analogous conclusion holds for the Klein-Gordon operator � −m2

with m > 0 sufficiently small, without the presence of the u0 term, i.e. for α >

2Here aj is only relevant if Nj = 0.
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0, m > 0 sufficiently small, if f ∈ C∞c (M◦) has sufficiently small H14-norm,
(�g(u,bdu) − m2)u = f + q(u, bdu) has a unique smooth global forward solution
u ∈ xαL∞(Ω). In fact, for Klein-Gordon equations one can also obtain a lead-
ing term, analogously to u0, which now has the form cxiσ1χ, σ1 the resonance of
�g(0) −m2 with the largest imaginary part; thus Imσ1 < 0, so this is a decaying
solution.

The only reason the assumption |a| �M• is made is due to the possible presence
(to the extent that we do not disprove it here) of resonances in Imσ ≥ 0, apart
from the 0-resonance with constants as the resonant state, for larger a. Below, in
Section 2, we give a general result in a form that makes it clear that this is the only
remaining item to check – indeed, this even holds in natural vector bundle settings.

In order to state the natural global regularity assumptions, we now discuss the
Sobolev spaces corresponding to our setting: We measure regularity with respect
to Vb(M), and for non-negative integer s, one lets Hs

b(M) be the set of (complex-
valued) u ∈ L2

b(M) such that V1 . . . Vju ∈ L2
b(M) for j ≤ s and V1, . . . , Vj ∈

Vb(M). Here, L2
b is the L2-space with respect to any b-metric, such as the Kerr-

de Sitter metric, which is thus in local coordinates given by a density which is
a positive smooth multiple of x−1 |dx dy1 . . . dyn−1|. Further, one introduces the
weighted Sobolev spacesHs,α

b (M) = xαHs
b(M); Hs,α

b (M ;R) denotes the real-valued
elements of these spaces. Sections of vector bundles in Hs,α

b are defined by local
trivializations; the Sobolev spaces on Ω are defined by restriction.

We then relax (1.1) to

aj ∈ C∞(M) +H∞b (M), Xjk ∈ (C∞ +H∞b )Vb(M), (1.2)

in our assumptions. Generalizing the forcing as well, and making the conclusion
more precise, the more natural version of Theorem 1 is, with further generalization
given in Theorems 3 and 4:

Theorem 2. On Kerr-de Sitter space with angular momentum |a| � M•, for

α > 0 sufficiently small and f ∈ H∞,αb with sufficiently small H14,α
b -norm, the

wave equation �g(u,bdu)u = f + q(u, bdu), with q as above with Nj ≥ 1 for all j, has

a unique, smooth in M◦, global forward solution of the form u = u0 + ũ, ũ ∈ H∞,αb ,
u0 = cχ, χ ∈ C∞(M) identically 1 near ∂M .

Further, the analogous conclusion holds for the Klein-Gordon equation � −m2

with m > 0 sufficiently small, without the presence of the u0 term, i.e. for α >
0, m > 0 sufficiently small, if f ∈ H∞,αb (Ω) has sufficiently small H14,α

b -norm,

(�g(u,bdu) − m2)u = f + q(u, bdu) has a unique, smooth in M◦, global forward

solution u ∈ H∞,αb (Ω).

For the proofs, we refer to Corollaries 5.13 and 5.16, which are special cases
of Theorems 5.10 and 5.15. For any finite amount of regularity of the solution,
our arguments only require a finite number of derivatives: Indeed, for sufficiently

large s0, C ∈ R and for s ≥ s0, it is sufficient to assume f ∈ HCs,α
b , with small

H14,α
b -norm, to ensure the existence of a unique global forward solution u with

Hs,α
b -regularity, i.e. with ũ ∈ Hs,α

b in the case of wave equations, u ∈ Hs,α
b in the

case of Klein-Gordon equations; see Remark 5.12 for details.
We now discuss previous results on Kerr-de Sitter space and its perturbations.

There seems to be little work on non-linear equations in Kerr-de Sitter type settings;
indeed the only paper the authors are aware of is the earlier paper [31] of the authors
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in which the semilinear Klein-Gordon equation was studied (with small data well-
posedness shown) with non-linearity depending on u only, so that the losses due to
the trapping could still be handled by a contraction mapping argument. In addition,
the same paper also analyzed non-linearities depending on bdu provided these had
a special structure at the trapped set. There is more work on the linear equation
on perturbations of de Sitter-Schwarzschild and Kerr-de Sitter spaces: a rather
complete analysis of the asymptotic behavior of solutions of the linear wave equation
was given in [47], upon which the linear analysis of the present paper is ultimately
based. Previously in exact Kerr-de Sitter space and for small angular momentum,
Dyatlov [21, 20] has shown exponential decay to constants, even across the event
horizon; see also the more recent work of Dyatlov [19]. Further, in de Sitter-
Schwarzschild space (non-rotating black holes) Bachelot [3] set up the functional
analytic scattering theory in the early 1990s, while later Sá Barreto and Zworski [41]
and Bony and Häfner [6] studied resonances and decay away from the event horizon,
Dafermos and Rodnianski in [14] showed polynomial decay to constants in this
setting, and Melrose, Sá Barreto and Vasy [38] improved this result to exponential
decay to constants. There is also physics literature on the subject, starting with
Carter’s discovery of this space-time [8, 7], either using explicit solutions in special
cases, or numerical calculations, see in particular [50], and references therein. We
also refer to the paper of Dyatlov and Zworski [24] connecting recent mathematical
advances with the physics literature.

While it received more attention, the linear, and thus the non-linear, equation
on Kerr space (which has vanishing cosmological constant) does not fit directly into
our setting; see the introduction of [47] for an explanation and for further references
and [15] for more background and additional references. Some of the key works in
this area include the polynomial decay on Kerr space which was shown recently
by Tataru and Tohaneanu [44, 43] and Dafermos, Rodnianski and Shlapentokh-
Rothman [10, 11, 16], after pioneering work of Kay and Wald in [34] and [48] in
the Schwarzschild setting. Andersson and Blue [1] proved a decay result for the
Maxwell system on slowly rotating Kerr spaces; see also the earlier work of Bachelot
[2] in the Schwarzschild setting. The crucial normal hyperbolicity of the trapping,
corresponding to null-geodesics that do not escape through the event horizons, in
Kerr space was realized and proved by Wunsch and Zworski [49]; later Dyatlov
extended and refined the result [22, 23]. Note that a stronger version of normal
hyperbolicity is a notion that is stable under perturbations.

On the non-linear side, Luk [35] established global existence for forward problems
for semilinear wave equations on Kerr space under a null condition, and Dafermos,
Holzegel and Rodnianski [9] constructed backward solutions for Einstein’s equations
on Kerr space. (There was also recent work by Marzuola, Metcalfe, Tataru and
Tohaneanu [37] and Tohaneanu [46] on Strichartz estimates, which are applied to the
study of semilinear wave equations with power non-linearities, and by Donninger,
Schlag and Soffer [18] on L∞ estimates on Schwarzschild black holes, following
L∞ estimates of Dafermos and Rodnianski [13, 12], of Blue and Soffer [5] on non-
rotating charged black holes giving L6 estimates, and of Finster, Kamran, Smoller
and Yau [25, 26] on Dirac waves on Kerr.)

In the next section, Section 2, we explain the ingredients of the proof of The-
orem 2, and we also state natural generalizations. At the end of that section we
provide a detailed roadmap through this paper.
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The authors are very grateful to Semyon Dyatlov for providing a preliminary
version of his manuscript [23] and for discussions about it, as well as for pointing
out the reference [32]. They are also very grateful to Maciej Zworski for comments
that improved the exposition. They are also thankful to Gunther Uhlmann, Richard
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2. Overview of the proof and the more general results

Having stated the result, we now explain why it holds. Before doing this we
recall some notation. The description of Vb(M) in the introduction in terms of
local coordinates shows that it is the space of all C∞ sections of a vector bundle,
bTM , with local basis x∂x, ∂yj . The dual bundle of bTM is denoted by bT ∗M ; it

has a local basis of dxx , dyj . A b-metric is a non-degenerate symmetric bilinear form

on the fibers of bTM smoothly depending on the base point; a Lorentzian b-metric
is one of signature (1, n−1). We point out that the b-differential bd, defined locally
by

bdu = (x∂xu)
dx

x
+
∑
j

(∂yju)dyj

maps Hs,α(M) to Hs−1,α(M ; bT ∗M).
In order to start the explanation, it is best to begin with the underlying linear

equation; after all, the non-linearity is ‘just’ a rather serious perturbation! In
general, the analysis of b-differential operators (locally finite sums of finite products
of elements of Vb(M)), such as �g ∈ Diff2

b(M), has two ingredients, corresponding
to the two orders, smoothness and decay, of the Sobolev spaces:

(1) b-regularity analysis. This provides the framework for understanding PDE
at high b-frequencies, which in non-degenerate situations involves the b-
principal symbol and perhaps a subprincipal term. This is sufficient in

order to control solutions u in Hs,r
b modulo Hs′,r

b , s′ < s, i.e. modulo a
space with higher regularity, but no additional decay. Since for the inclusion

Hs,r
b → Hs′,r′

b to be compact one needs both s > s′ and r > r′, this does
not control the problem modulo relatively compact errors.

(2) Normal operator analysis. This provides a framework for understanding
the decay properties of solutions of the PDE. The normal operator is ob-
tained by freezing coefficients of the differential operator L at ∂M to obtain
a dilation-invariant b-operator N(L). One then Mellin transforms the nor-

mal operator in the normal variable to obtain a family of operators L̂(σ),
depending on the Mellin-dual variable σ. The b-regularity analysis, in
non-degenerate situations, gives control of this family L̂(σ) in a Fredholm
sense, uniformly as |σ| → ∞ with Imσ bounded. However, in any such

strip, L̂(σ)−1 will still typically have finitely many poles σj ; these poles,
called resonances, dictate the asymptotic behavior of solutions of the PDE.

In order to have a Fredholm operator L, one needs to work in spaces such as Hs,r
b ,

where r is such that there are no resonances σj with Imσj = −r. One can also work
in slightly more general spaces, such as C⊕Hs,r

b , r > 0, identified with a space of
distributions via u = u0+ũ, ũ ∈ H∞,αb , u0 = cχ, corresponding to (c, ũ) ∈ C⊕Hs,r

b .
Now, the b-regularity analysis for our non-elliptic equation involves the (null)-

bicharacteristic flow. In view of the version of Hörmander’s theorem on propagation
of singularities in this setting, and in view of the a priori control on Cauchy data at
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H1, what one would like is that all bicharacteristics tend to T ∗H1
M in one direction.

Moreover, for the purposes of the adjoint problem, which effectively imposes Cauchy
data at H2, one would like that the bicharacteristics tend to bT ∗H2

M in the other
direction.

Unfortunately, bicharacteristics within bT ∗XM can never leave this space, and
thus will not tend to T ∗H1

M . This is mostly resolved, however, by the conormal
bundle of the horizons at X, which give rise to a bundle of saddle points for the
bicharacteristic flow. Since the flow is homogeneous, it is convenient to consider it in
bS∗M = (bT ∗M \ o)/R+. The characteristic set in bS∗M has two components Σ±,
with Σ− forward-oriented (i.e. future oriented time functions increase along null-
bicharacteristics in Σ−), Σ+ backward oriented. Then the images of the conormal
bundles of the horizons in the cosphere bundle are submanifolds L± ⊂ Σ± of bS∗XM ,
with one-dimensional stable (−)/unstable (+) manifold L± transversal to bS∗XM .
(The flow within L± need not be trivial; if it is, one has radial points, as in the
a = 0 de Sitter-Schwarzschild space. However, for simplicity we refer to the L±
estimates as radial point estimates in general.) The realistic ideal situation, called a
non-trapping one, then is if all (null-)bicharacteristics in bS∗ΩM ∩ (Σ+ \L+) tend to
bS∗H2

M ∪L+ in the backward direction, and bS∗H1
M ∪L+ in the forward direction,

with a similar statement for Σ−, with backward and forward interchanged.3 In this
non-trapping setting the only subtlety is that the propagation estimates through
L± require that the differentiability order s and the decay order r be related by
s > 1

2 + βr for a suitable β > 0 (dictated by the Hamilton dynamics at L±), i.e.
the more decay one wants, the higher the regularity needs to be.

This is still not the case in Kerr-de Sitter space, though it is true for neighbor-
hoods of the static patch in de Sitter space, and its perturbations. The additional
ingredient for Kerr-de Sitter space is normally hyperbolic trapping, introduced in
this context by Wunsch and Zworski [49], given by smooth submanifolds Γ± ⊂ Σ±.
Here Γ± are invariant submanifolds for the Hamilton flow, given by the transversal
intersection of locally defined smooth, Hamilton flow invariant, Γ± = Γ±+ ∩ Γ±−,

with Γ±− ⊂ Σ transversal to bS∗XM ∩ Σ, and Γ±+ ⊂ bS∗XM ∩ Σ. Combining results
of [22, 23] (which would work directly in a dilation invariant setting) and [30] we
show that for r > 0 sufficiently small, one can propagate Hs,r

b estimates through
Γ±. This suffices to complete the b-regularity setup if the non-trapping require-
ment is replaced by: All (null-)bicharacteristics in bS∗ΩM ∩ (Σ+ \ (L+ ∪ Γ+)) tend
to either bS∗H2

M ∪ L+ ∪ Γ+ in the backward direction, and bS∗H1
M ∪ L+ ∪ Γ+ in

the forward direction, with the tending to Γ+ allowed in only one of the forward
and backward directions, with a similar statement for Σ−, with backward and for-
ward interchanged. Finally, this is satisfied in Kerr-de Sitter space, and also in its
b-perturbations (the whole setup is perturbation stable).

Next, one needs to know about the resonances of the operator. For the wave
operator, the only resonance with non-negative imaginary part is 0, with the kernel
of L̂(σ) one dimensional, consisting of constants. Since strips can only have finitely
many resonances, there is r > 0 such that in Imσ ≥ −r the only resonance is 0;
then Hs,r

b ⊕ C works for our Fredholm setup. For the Klein-Gordon equation with

3Notice that due to the assumption on the one-dimensional stable/unstable manifold being

transversal to bS∗XM , there cannot be non-trivial bicharacteristics in bS∗M tending to L+ in
both the forward and the backward direction, since a bicharacteristic is either completely in
bS∗XM , or completely outside it.
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m > 0 small, the m = 0 resonance at 0 moves to σ1 = σ1(m) inside Imσ < 0,

see [21, 31]. Thus, one can either work with Hs,r′

b where r′ is sufficiently small
(depending on m), or with Hs,r

b ⊕ C, though with C now identified with cxiσ1χ.

We now discuss the non-linear terms. Here the basic point is that Hs,0
b is an

algebra if s > n/2, and thus for such s, products of elements of Hs,r
b possess even

more decay if r > 0, but they become more growing if r < 0. Thus, one is forced
to work with r ≥ 0.

First, with the simplest semilinear equation, with no derivatives in the non-
linearity q (so Nj ≥ 2 is replaced by Nj = 0), the regularity losses due to the
normally hyperbolic trapping are in principle sufficiently small to allow for a con-
traction mapping principle (Picard iteration) based argument. However, for the
actual wave equation on Kerr-de Sitter space, the 0-resonance prohibits this, as
the iteration maps outside the space Hs,r

b ⊕ C. Thus, it is the semilinear Klein-
Gordon equation that is well-behaved from this perspective, and this was solved
by the authors in [31]. On the other hand, if derivatives are allowed, with an at
least quadratic behavior in bdu, then the non-linearity annihilates the 0-resonance.
Unfortunately, since the normally hyperbolic estimate loses 1 + ε derivatives, as
opposed to the usual real principal type/radial point loss of one derivative, the
solution operator for �g will not map q(u, bdu) back into the desired Sobolev space,
preventing a non-linear analysis based on the contraction mapping principle.

Fortunately, the Nash-Moser iteration is designed to deal with just such a situ-
ation. In this paper we adapt the iteration to our requirements, and in particular
show that semilinear equations of the kind just described are in fact solvable. In
particular, we prove that all the estimates used in the linear problems are tame.
Here we remark that Klainerman’s early work on global solvability involved the
Nash-Moser scheme [32], though this was later removed by Klainerman and Ponce
[33]. In the present situation the loss of derivatives seems much more serious, how-
ever, due to the trapping, so it seems unlikely that the solution scheme can be made
more ‘classical’.

However, we are also interested in quasilinear equations. Quasilinear versions of
the above non-trapping scenario were studied by the first author [29], who showed
the solvability of quasilinear wave equations on perturbations of de Sitter space.
The key ingredient in dealing with quasilinear equations is to allow operators with
coefficients with regularity the same kind as what one is proving for the solutions,
in this case Hs,r

b -regularity. All of the smooth linear ingredients (microlocal elliptic
regularity, propagation of singularities, radial points) have their analogue for Hs,r

b

coefficients if s is sufficiently large. Thus, in [29] a Picard-type iteration, uk+1 =
�−1
g(uk)(f + q(uk,

bduk)) was used to solve the quasilinear wave equations on de

Sitter space. Notice that �g(uk) has non-smooth coefficients; indeed, these lie in a
weighted b-Sobolev space.

In our Kerr-de Sitter situation there is normally hyperbolic trapping. However,
notice that as we work in decaying Sobolev spaces modulo constants, �g(u) differs
from a Kerr-de Sitter operator with smooth coefficients, �g(c), by one with decaying
coefficients. This means that one can combine the smooth coefficient normally
hyperbolic theory, as in the work of Dyatlov [22], with a tame estimate in Hs,r

b with
r < 0; the sign of r here is a crucial gain since for r < 0 the propagation estimates
through normally hyperbolic trapped sets behave in exactly the same way as real
principal type estimates. In combination this provides the required tame estimates
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for Kerr-de Sitter wave equations, and Nash-Moser iteration completes the proof of
the main theorem.

We emphasize that our treatment of these quasilinear equations is systematic and
general. Thus, quasilinear equations which at X = ∂M are modelled on a finite
dimensional family L = L(v0), v0 ∈ Cd small corresponding to the zero resonances
(thus the family is 0-dimensional without 0-resonances!), of smooth b-differential
operators on a vector bundle with scalar principal symbol which has the bicharac-
teristic dynamics described above (radial sets, normally hyperbolic trapping, etc.)
fits into it, provided two conditions hold for the normal operator (i.e. the dilation
invariant model associated to L at ∂M).4

(1) First, the resonances for the model L(v0) have negative imaginary part, or
if they have 0 imaginary part, the non-linearity annihilates them.

(2) Second, the normally hyperbolic trapping estimates of Dyatlov [22] hold for

L̂(σ) (as |Reσ| → ∞) in Imσ > −r0 for some r0 > 0. In the semiclassical

rescaling, with σ = h−1z, h = |σ|−1, this is a statement about L̂h,z =

hmL̂(h−1z), Im z > −r0h. By Dyatlov’s recent result5 [23] this indeed is

the case if L̂h,z satisfies that at Γ its skew-adjoint part, 1
2i (L̂h,z − L̂

∗
h,z) ∈

hDiff1
~(X), for z ∈ R has semiclassical principal symbol bounded above by

hνmin/2 for some ε > 0, where νmin is the minimal expansion rate in the
normal directions at Γ; see [23, Theorem 1] and the remark below it (which
allows the non-trivial skew-adjoint part, denoted by Q there, microlocally
at Γ).

It is important to point out that in view of the decay of the solutions either to 0
if there are no real resonance, or to the space of resonant states corresponding to
real resonances, the conditions must be checked for at most a finite dimensional
family of elements of the ‘smooth’ algebra Ψb(M), and moreover there is no need
to prove tame estimates, deal with rough coefficients, etc., for this point, and one is
in a dilation invariant setting, i.e. can simply Mellin transform the problem. Thus,
in principle, solving wave-type equations on more complicated bundles is reduced
to analyzing these two aspects of the associated linear model operator at infinity.
Concretely, we have the following two theorems:

Theorem 3. Let M be a Kerr-de Sitter space with angular momentum |a| <
√

3
2 M•

that satisfies [47, (6.13)],6 E a vector bundle over it with a positive definite metric k
on E, and let Lg(u,bdu) ∈ Diff2

b(M ;E) have principal symbol G = g−1(u, bdu) (times
the identity), and suppose that L0 = Lg(0,0) satisfies that

(1) the large parameter principal symbol of 1
2i|σ| (L0−L∗0), with the adjoint taken

relative to k |dg|, at the trapped set Γ is < νmin/2 as an endomorphism of
E,

(2) L̂0(σ) has no resonances in Imσ ≥ 0.

4The differential operator needs to be second order, with principal symbol a Lorentzian dual
metric near the Cauchy hypersurfaces if the latter are used; otherwise the order m of the operator

is irrelevant.
5This could presumably also be seen from the work of Nonnenmacher and Zworski [40] by

checking that this extension goes through without significant changes in the proof.
6This condition on Λ,M• and a ensures non-trapping classical dynamics for the null-geodesic

flow.
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Then for α > 0 sufficiently small, there exists7 d > 0 such that the following holds:
If f ∈ H∞,αb (Ω) has a sufficiently small H2d

b -norm, then the equation Lg(u,bdu)u =

f + q(u, bdu) has a unique, smooth in M◦, global forward solution u ∈ H∞,αb (Ω).

In particular, the conditions at Γ for the theorem hold if |a| �M•, E = bΛ∗M ,
Lg(u,bdu) = �g(u,bdu) the differential form d’Alembertian, or indeed if Lg(u,bdu) −
�g(u,bdu) is a 0th order operator, since hyperbolicity is shown in [47] in the full

stated range of a, while for a = 0, 1
2i (L0 − L∗0) can be computed explicitly at Γ,

with k being the Riemannian metric of the form α2 dx̃2 + h near the projection of
Γ, where g has the form α2 dx̃2 − h, x̃ an appropriate boundary defining function
on M strictly away from the horizons. Thus, in this case the only assumption in
the theorem remaining to be checked is the second one, concerning resonances.

Theorem 4. Let M be a Kerr-de Sitter space with angular momentum |a| <
√

3
2 M•

that satisfies [47, (6.13)], E a vector bundle over it with a positive definite metric k
on E, and let Lg(u,bdu) ∈ Diff2

b(M ;E) have principal symbol G = g−1(u, bdu) (times

the identity). Suppose that L0 = Lg(0,0) is such that L̂0(σ) has a simple resonance
at 0, with resonant states spanned by u0,1, . . . , u0,d, and no other resonances in

Imσ ≥ 0. Consider the family L̂g(u0,bdu0)(σ), u0 ∈ Span{u0,1, . . . , u0,d} with small
enough norm. Suppose that

(1) this family only has resonances at 0 in Imσ ≥ 0, and these are given by
Span{u0,1, . . . , u0,d},

(2) Γ is uniformly normally hyperbolic for L̂g(u0,bdu0)(σ) for u0 of small norm,

(3) the large parameter principal symbol of 1
2i|σ| (L0−L∗0), with the adjoint taken

relative to k |dg|, at the trapped set Γ is < νmin/2,
(4) q(u0,

bdu0) = 0 for u0 ∈ Span{u0,1, . . . , u0,d}.
Then for α > 0 sufficiently small, there exists8 d > 0 such that the following holds:

If f ∈ H∞,αb has a sufficiently small H2d,α
b -norm, then the equation Lg(u,bdu)u =

f + q(u, bdu) has a unique, smooth in M◦, global forward solution of the form

u = u0 + ũ, ũ ∈ H∞,αb , u0 = χ
∑d
j=1 cju0,j, χ ∈ C∞(M) identically 1 near ∂M .

Here ‘uniformly normally hyperbolic’ in the theorem means that one has a
smooth family Γ = Γu0 of trapped sets, with a smooth family of stable/unstable
manifolds, with uniform bounds (within this family) on the normal expansion rates
for the flow, which ensures that the normally hyperbolic estimates are uniform
within the family (for small u0); see the discussion around (4.27) for details.

Again, the conditions at Γ for the theorem hold if |a| � M•, E = bΛ∗M , if
Lg(u,bdu) −�g(u,bdu) is a 0th order operator, �g(u,bdu) the differential form d’Alem-
bertian, since the structurally stable r-normally hyperbolic statement is shown in
[47] (which implies the uniform normal hyperbolicity required in the theorem),
while for a = 0, 1

2i (L0 − L∗0) can be computed explicitly at Γ, as mentioned above,
and upper bounds on this are stable under perturbations.

The uniform normal hyperbolicity condition at Γ holds if |a| <
√

3
2 M•, E =

bΛ∗M , Lg(u,bdu) = �g(u,bdu) the differential form d’Alembertian, with g(u0,
bdu0)

being a Kerr-de Sitter metric for u0 ∈ Span{u0,1, . . . , u0,d} with small norm since

7See the proof of this theorem in Section 5.4, in particular (5.27), for the value of d.
8The value of d is given in (5.27) in the course of the proof of this theorem in Section 5.4.
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the hyperbolicity of Γ was shown in this generality in [47]. However, the computa-
tion of 1

2i (L0 − L∗0) is more involved.
The plan of the rest of this paper is the following. In Section 3 we show that the

non-smooth pseudodifferential operators of [29] facilitate tame estimates (operator
bounds, composition, etc.), with Section 4 establishing tame elliptic estimates in
Section 4.1, tame real principal type and radial point estimates in Section 4.2 and
tame estimates at normally hyperbolic trapping in Section 4.3 for r < 0. In Sec-
tion 4.4, we adapt Dyatlov’s analysis at normally hyperbolic trapping given in [23]
to our needs. Finally, in Section 5 we solve our quasilinear equations by first show-
ing that the microlocal results of Section 4 combine with the high energy estimates
for the relevant normal operators following from the discussion of Section 4.4 to
give tame estimates for the forward propagator in Section 5.1, and then showing in
Section 5.2 that the Nash-Moser iteration indeed allows for solving our wave equa-
tions. Section 5.3 then explains the changes required for quasilinear Klein-Gordon
equations. Finally, in Section 5.4 we show how our methods apply in the general
settings of Theorems 3 and 4.

3. Tame estimates in the non-smooth operator calculus

In this section we prove the basic tame estimates for the Hb-coefficient, or simply
non-smooth, b-pseudodifferential operators defined in [29].

3.1. Mapping properties. We start with the tame mapping estimate, Proposi-
tion 3.1, which essentially states that for non-smooth pseudodifferential operators
A, a high regularity norm of Au can be estimated by a high regularity norm of
A times a low regularity norm of u, plus a low regularity norm of A times a high
regularity norm of u. This is stronger than the a priori continuity estimate one gets
from the bilinear map (A, u) 7→ Au, which would require a product of high norms
of both. In case A is a multiplication operator, this is essentially a b-version of a
(weak) Moser estimate, see Corollary 3.2.

We work on the half space Rn+ with coordinates z = (x, y) ∈ [0,∞)× Rn−1; the
coordinates in the fiber of the b-cotangent bundle are denoted ζ = (λ, η), i.e. we
write b-covectors as λ dx

x + η dy. Recall from [29] the symbol class

Sm;0Hs
b := {a(z, ζ) : ‖〈ζ〉−ma(z, ζ)‖Hsb ∈ L

∞
ζ }

with the norm

‖a‖Sm;0Hsb
=

∥∥∥∥ 〈ξ〉sâ(ξ, ζ)

〈ζ〉m

∥∥∥∥
L∞ζ L

2
ξ

,

where â denotes the Mellin transform in x and Fourier transform in y of a. Left
quantizations of such symbols, denoted Op(a) ∈ Ψm;0Hs

b, act on u ∈ Ċ∞c (Rn+) by

Op(a)u(z) =

∫
eizζa(z, ζ)û(ζ) dζ.

Also recall

Sm;kHs
b = {a ∈ Sm;0Hs

b : ∂αζ a ∈ Sm−|α|;0Hs
b, |α| ≤ k}.

and Ψm;kHs
b = OpSm;kHs

b. For brevity, we will use the following notation for
Sobolev, symbol class and operator class norms, with the distinction between sym-
bolic and b-Sobolev norms being clear from the context:

‖u‖s := ‖u‖Hsb , ‖u‖s,r := ‖u‖Hs,rb
,
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‖a‖m,s := ‖a‖Sm;0Hsb
, ‖a‖(m;k),s := ‖a‖Sm;kHsb

,

‖A‖m,s := ‖A‖Ψm;0Hsb
, ‖A‖(m;k),s := ‖A‖Ψm;kHsb

.

If A is a b-operator acting on an element of a weighted b-Sobolev space with weight
r (which will be apparent from the context), then ‖A‖m,s is to be understood as
‖x−rAxr‖m,s, similarly for ‖A‖(m;k),s. Lastly, for A ∈ Hs

bΨm
b , we write ‖A‖HsbΨmb

,
by an abuse of notation, for an unspecified Hs

bΨm
b -seminorm of A.

Recall the notation x+ = max(x, 0) for x ∈ R.

Proposition 3.1. (Extension of [29, Proposition 3.9].) Let s ∈ R, A = Op(a) ∈
Ψm;0Hs

b, and suppose s′ ∈ R is such that s ≥ s′ −m, s > n/2 + (m − s′)+. Then

A defines a bounded map Hs′

b → Hs′−m
b , and for all fixed µ, ν with

µ > n/2 + (m− s′)+, ν > n/2 + (m− s′)+ + s′ − s,

there is a constant C > 0 such that

‖Au‖s′−m ≤ C(‖A‖m,µ‖u‖s′ + ‖A‖m,s‖u‖ν). (3.1)

Observe that by the assumptions on s and s′, the intervals of allowed µ, ν are
always non-empty (since they contain µ = s and ν = s′). Estimates of the form
(3.1), called ‘tame estimates’ e.g. in [28, 42], are crucial for applications in a Nash-
Moser iteration scheme.

Proof of Proposition 3.1. We compute

‖Au‖2s′−m =

∫
〈ζ〉2(s′−m)|Âu(ζ)|2 dζ

≤
∫
〈ζ〉2(s′−m)

(∫
|â(ζ − ξ, ξ)û(ξ)| dξ

)2

dζ.

We split the inner integral into two pieces, corresponding to the domains of inte-
gration |ζ − ξ| ≤ |ξ| and |ξ| ≤ |ζ − ξ|, which can be thought of as splitting up the
action of A on u into a low-high and a high-low frequency interaction. We estimate∫

〈ζ〉2(s′−m)

(∫
|ζ−ξ|≤|ξ|

|â(ζ − ξ, ξ)û(ξ)| dξ

)2

dζ

≤
∫ (∫

|ζ−ξ|≤|ξ|

〈ζ〉2(s′−m)〈ξ〉2m

〈ζ − ξ〉2µ〈ξ〉2s′
dξ

)

×
(∫

〈ζ − ξ〉2µ|â(ζ − ξ, ξ)|2

〈ξ〉2m
〈ξ〉2s

′
|û(ξ)|2 dξ

)
dζ,

(3.2)

and we claim that the integral which is the first factor on the right hand side is
uniformly bounded in ζ: Indeed, if s′−m ≥ 0, then we use |ζ| ≤ 2|ξ| on the domain
of integration, thus∫

|ζ−ξ|≤|ξ|

〈ζ〉2(s′−m)

〈ζ − ξ〉2µ〈ξ〉2(s′−m)
dξ .

∫
1

〈ζ − ξ〉2µ
dξ ∈ L∞ζ ,

since µ > n/2; if, on the other hand, s′ −m ≤ 0, then |ξ| ≤ |ζ − ξ|+ |ζ| gives∫
|ζ−ξ|≤|ξ|

〈ξ〉2(m−s′)

〈ζ − ξ〉2µ〈ζ〉2(m−s′) dξ .
∫

1

〈ζ − ξ〉2(µ−(m−s′)) +
1

〈ζ − ξ〉2µ
dξ ∈ L∞ζ ,
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since µ > n/2 + (m − s′); hence, from (3.2), the Hs′−m
b norm of the low-high

frequency interaction in Au is bounded by Cµ‖a‖m,µ‖u‖s′ .
We estimate the norm of high-low interaction in a similar way: We have∫
〈ζ〉2(s′−m)

(∫
|ξ|≤|ζ−ξ|

|â(ζ − ξ, ξ)û(ξ)| dξ

)2

dζ

≤
∫ (∫

|ξ|≤|ζ−ξ|

〈ζ〉2(s′−m)〈ξ〉2m

〈ζ − ξ〉2s〈ξ〉2ν
dξ

)

×
(∫

〈ζ − ξ〉2s|â(ζ − ξ, ξ)|2

〈ξ〉2m
〈ξ〉2ν |û(ξ)|2 dξ

)
dζ.

(3.3)

If s′ −m ≥ 0, the first inner integral on the right hand side is bounded by∫
|ξ|≤|ζ−ξ|

1

〈ζ − ξ〉2(s−s′+m)〈ξ〉2(ν−m)
dξ ≤

∫
1

〈ξ〉2(s−s′+ν)
dξ,

where we use s ≥ s′ −m, and this integral is finite in view of ν > n/2 + s′ − s; if
s′ −m ≤ 0, then∫

|ξ|≤|ζ−ξ|

1

〈ζ〉2(m−s′)〈ζ − ξ〉2s〈ξ〉2(ν−m)
dξ ≤

∫
1

〈ξ〉2(ν−m+s)
dξ,

which is finite in view of ν > n/2 + m − s. In summary, we need ν > n/2 +

max(m, s′)− s = n/2 + (m− s′)+ + s′ − s and can then bound the Hs′−m
b norm of

the high-low interaction by Cν‖a‖m,s‖u‖ν . The proof is complete. �

Using Hs
b ⊂ S0;0Hs

b, we obtain the following weak version of the Moser estimate
for the product of two b-Sobolev functions:

Corollary 3.2. Let s > n/2, |s′| ≤ s. If u ∈ Hs
b, v ∈ Hs′

b , then uv ∈ Hs′

b , and one
has an estimate

‖uv‖s′ ≤ C(‖u‖µ‖v‖s′ + ‖u‖s‖v‖ν)

for fixed µ > n/2 + (−s′)+, ν > n/2 + s′+ − s. In particular, for u, v ∈ Hs
b,

‖uv‖s ≤ C(‖u‖µ‖v‖s + ‖u‖s‖v‖µ)

for fixed µ > n/2.

3.2. Operator compositions. We give a tame estimate for the norms of expan-
sion and remainder terms arising in the composition of two non-smooth operators:

Proposition 3.3. Suppose s,m,m′ ∈ R, k, k′ ∈ N0 are such that s > n/2, s ≤ s′−k
and k ≥ m+ k′. Suppose P = p(z, bD) ∈ Ψm;kHs

b, Q = q(z, bD) ∈ Ψm′;0Hs′

b . Put

Ej :=
∑
|β|=j

1

β!
(∂βζ p

bDβ
z q)(z,

bD),

R := P ◦Q−
∑

0≤j<k

Ej .

Then Ej ∈ Ψm+m′−j;0Hs
b and R ∈ Ψm′−k′;0Hs

b, and for µ > n/2 fixed,

‖Ej‖Ψm+m′−j;0Hsb
≤ C(‖P‖Ψm;jHµb

‖Q‖Ψm′;0Hs+jb
+ ‖P‖Ψm;jHsb

‖Q‖Ψm′;0Hµ+jb
),

‖R‖Ψm′−k′;0Hsb ≤ C(‖P‖Ψm;kHµb
‖Q‖Ψm′;0Hs+kb

+ ‖P‖Ψm;kHsb
‖Q‖Ψm′;0Hµ+kb

).
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Proof. The statements about the Ej follow from Corollary 3.2. For the purpose of
proving the estimate for R, we define

p0 = ∂kζ p ∈ Sm−k;0Hs
b,

bDk
z q ∈ Sm

′;0Hs′−k
b ,

where we write ∂kζ = (∂βζ )|β|=k, similarly for bDk
z . Notice that in particular p0 ∈

S0;0Hs
b. Then R = r(z, bD) with

|r̂(η; ζ)| .
∫ (∫ 1

0

p0(η − ξ; ζ + tξ) dt

)
q0(ξ; ζ) dξ

by Taylor’s formula, hence∫
〈η〉2s|r̂(η; ζ)|2

〈ζ〉2m′
dη

.
∫ (∫

|η−ξ|≤|ξ|

〈η〉2s

〈η − ξ〉2µ〈ξ〉2s
dξ

)

×
(∫ (∫ 1

0

〈η − ξ〉2µ|p0(η − ξ, ζ + tξ)|2 dt
)
〈ξ〉2s|q0(ξ; ζ)|2

〈ζ〉2m′
dξ

)
dη

+

∫ (∫
|ξ|≤|η−ξ|

〈η〉2s

〈η − ξ〉2s〈ξ〉2µ
dξ

)

×
(∫ (∫ 1

0

〈η − ξ〉2s|p0(η − ξ, ζ + tξ)|2 dt
)
〈ξ〉2µ|q0(ξ; ζ)|2

〈ζ〉2m′
dξ

)
dη,

which implies the claimed estimate for k′ = 0. For k′ > 0, we use a trick of Beals
and Reed [4] as in the proof of Theorem 3.12 in [29] to reduce the statement to the
case k′ = 0: Recall that the idea is to split up q(z, ζ) into a ‘trivial’ part q0 with
compact support in ζ and n parts qi, where qi has support in |ζi| ≥ 1, and then
writing

P ◦Qi =

k′∑
j=0

cjk′P
bDk′−j

zi ◦ (bDj
ziqi)(z,

bD)bD−k
′

zi

for some constants cjk′ ∈ R using the Leibniz rule; then what we have proved above
for k′ = 0 can be applied to the j-th summand on the right hand side, which we
expand to order k − j, giving the result. �

3.3. Reciprocals of and compositions with Hs
b functions. We also need sharp-

er bounds for reciprocals and compositions of b-Sobolev functions on a compact
n-dimensional manifold with boundary. Localizing using a partition of unity, we
can simply work on Rn+.

Proposition 3.4. (Extension of [29, Lemma 4.1].) Let s > n/2 + 1, u,w ∈ Hs
b,

a ∈ C∞, and suppose that |a+u| ≥ c0 near suppw. Then w/(a+u) ∈ Hs
b, and one

has an estimate∥∥∥∥ w

a+ u

∥∥∥∥
s

≤ C(‖u‖µ, ‖a‖CN )c−1
0 max(c

−dse
0 , 1)

(
‖w‖s + ‖w‖µ(1 + ‖u‖s)

)
. (3.4)

for any fixed µ > n/2 + 1 and some s-dependent N ∈ N.
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Proof. Choose ψ0, ψ ∈ C∞ such that ψ0 ≡ 1 on suppw, ψ ≡ 1 on suppψ0, and such
that moreover |a+ u| ≥ c0 > 0 on suppψ. Then we have ‖w/(a+ u)‖0 ≤ c−1

0 ‖w‖0.
We now iteratively prove higher regularity of w/(a + u) and an accompanying

‘tame’ estimate: Let us assume w/(a + u) ∈ Hs′−1
b for some 1 ≤ s′ ≤ s. Let

Λs′ = λs′(
bD) ∈ Ψs′

b be an operator with principal symbol 〈ζ〉s′ . Then∥∥∥Λs′
w

a+ u

∥∥∥
0
≤
∥∥∥(1− ψ)Λs′

ψ0w

a+ u

∥∥∥
0

+
∥∥∥ψΛs′

ψ0w

a+ u

∥∥∥
0

.
∥∥∥ w

a+ u

∥∥∥
0

+ c−1
0

∥∥∥ψ(a+ u)Λs′
w

a+ u

∥∥∥
0

≤ c−1
0 ‖w‖0 + c−1

0

(
‖ψΛs′w‖0 +

∥∥∥ψ[Λs′ , a+ u]
w

a+ u

∥∥∥
0

)
. c−1

0

(
‖w‖s′ +

∥∥∥ w

a+ u

∥∥∥
s′−1

+
∥∥∥ψ[Λs′ , u]

w

a+ u

∥∥∥
0

)
,

(3.5)

where we used that the support assumptions on ψ0 and ψ imply (1 − ψ)Λs′ψ0 ∈
Ψ−∞b , and ψ[Λs′ , a] ∈ Ψs′−1

b . Hence, in order to prove that w/(a + u) ∈ Hs′

b , it

suffices to show that [Λs′ , u] : Hs′−1
b → H0

b . Let v ∈ Hs′−1
b . Since

(Λs′uv)̂(ζ) =

∫
λs′(ζ)û(ζ − ξ)v̂(ξ) dξ

(uΛs′v)̂(ζ) =

∫
û(ζ − ξ)λs′(ξ)v̂(ξ) dξ,

we have, by taking a first order Taylor expansion of λs′(ζ) = λs′(ξ+(ζ−ξ)) around
ζ = ξ,

([Λs′ , u]v)̂(ζ) =
∑
|β|=1

∫ (∫ 1

0

∂βζ λs′(ξ + t(ζ − ξ)) dt
)

(bDβ
z u)̂(ζ − ξ)v̂(ξ) dξ,

thus, writing u′ = bDzu ∈ Hs−1
b ,

|([Λs′ , u]v)̂(ζ)| .
∫ (∫ 1

0

〈ξ + t(ζ − ξ)〉s
′−1 dt

) ∣∣û′(ζ − ξ)∣∣|v̂(ξ)| dξ.

To obtain a tame estimate for the L2
ζ norm of this expression, we again use the

method of decomposing the integral into low-high and high-low components: The
low-high component is bounded by∫ (∫

|ζ−ξ|≤|ξ|

sup0≤t≤1〈ξ + t(ζ − ξ)〉2(s′−1)

〈ζ − ξ〉2(µ−1)〈ξ〉2(s′−1)
dξ

)

×
(∫
〈ζ − ξ〉2(µ−1)

∣∣û′(ζ − ξ)∣∣2〈ξ〉2(s′−1)|v̂(ξ)|2 dξ
)
dζ;

the first inner integral, in view of s′ ≥ 1, so the sup is bounded by 〈ξ〉2(s′−1), which
cancels the corresponding term in the denominator, is finite for µ > n/2 + 1. For
the high-low component, we likewise estimate∫ (∫

|ξ|≤|ζ−ξ|

sup0≤t≤1〈ξ + t(ζ − ξ)〉2(s′−1)

〈ζ − ξ〉2(s−1)〈ξ〉2ν
dξ

)

×
(∫
〈ζ − ξ〉2s

∣∣û′(ζ − ξ)∣∣2〈ξ〉2ν |v̂(ξ)|2 dξ
)
dζ,
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and the first inner integral on the right hand side is bounded by∫
|ξ|≤|ζ−ξ|

1

〈ζ − ξ〉2(s−s′)〈ξ〉2ν
dξ ≤

∫
1

〈ξ〉2(s−s′+ν)
dξ

because of s ≥ s′, which is finite for ν > n/2 + s′ − s. We conclude that

‖[Λs′ , u]v‖0 ≤ Cµν(‖u‖µ‖v‖s′−1 + ‖u‖s′‖v‖ν),

for µ > n/2 + 1, ν > n/2 + s′ − s. Plugging this into (3.5) yields∥∥∥∥ w

a+ u

∥∥∥∥
s′
. c−1

0

(
‖w‖s′ + (1 + ‖u‖µ)

∥∥∥∥ w

a+ u

∥∥∥∥
s′−1

+ ‖u‖s′
∥∥∥∥ w

a+ u

∥∥∥∥
ν

)
,

where the implicit constant in the inequality is independent of c0, w and u. Using
the abbreviations qσ := ‖w/(a+u)‖σ, uσ = ‖u‖σ, wσ = ‖w‖σ and fixing µ > n/2+1,
this means

qs′ . c
−1
0 (ws′ + (1 + uµ)qs′−1 + us′qν), ν > n/2 + s′ − s,

with the implicit constant being independent of c0, w, a, u, µ. We will use this for
s′ ≤ γ := bn/2c + 1 with ν = s′ − 1, and for s′ > γ, we will take ν = γ, thus
obtaining a tame estimate for qs. In more detail, for 1 ≤ s′ ≤ γ, we have

qs′ . c
−1
0 (ws′ + (1 + us′)qs′−1),

which gives, with C0 = max(1, c−1
0 ),

qγ . c
−1
0 wγ

γ−1∑
j=0

(c−1
0 (1 + uγ))j + (c−1

0 (1 + uγ))γq0 . c
−1
0 Cγ0wγ(1 + uγ)γ

using the bound q0 ≤ c−1
0 w0 ≤ c−1

0 wγ . For γ < s′ ≤ s, we have

qs′ . c
−1
0 (ws + usqγ + (1 + uµ)qs′−1),

thus for integer k ≥ 1 with γ + k ≤ s,

qγ+k ≤ c−1
0 (ws + usqγ)

k−1∑
j=0

(c−1
0 (1 + uµ))j + (c−1

0 (1 + uµ))kqγ

. c−1
0 Ck−1

0 (1 + uµ)k(ws + (1 + us)qγ)

. c−1
0 Cγ+k

0 (1 + uµ)γ+k(ws + (1 + us)wγ),

where we used µ > γ in the last inequality, thus proving the estimate (3.4) in case
s is an integer; in the general case, we just use qγ′ ≤ qγ for γ′ < γ, in particular for
γ′ = s− ds− γe, and use the above with qγ+k replaced by qγ′+k. �

As in [29], one thus obtains regularity results for compositions, but now with
sharper estimates. To illustrate how to obtain these, let us prove an extension of
[29, Proposition 4.5]. Let M be a compact n-dimensional manifold with boundary,
s > n/2 + 1, α ≥ 0.

Proposition 3.5. Let u ∈ Hs,α
b (M). If F : Ω→ C, F (0) = 0, is holomorphic in a

simply connected neighborhood Ω of the range of u, then F (u) ∈ Hs,α
b (M), and

‖F (u)‖s,α ≤ C(‖u‖µ,α)(1 + ‖u‖s,α) (3.6)

for fixed µ > n/2 + 1. Moreover, there exists ε > 0 such that F (v) ∈ Hs,α
b (M)

depends continuously on v ∈ Hs,α
b (M), ‖u− v‖s,α < ε.
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Proof. Observe that u(M) is compact. Let γ ⊂ C denote a smooth contour which
is disjoint from u(M), has winding number 1 around every point in u(M), and lies
within the region of holomorphicity of F . Then, writing F (z) = zF1(z) with F1

holomorphic in Ω, we have

F (u) =
1

2πi

∮
γ

F1(ζ)
u

ζ − u
dζ,

Since γ 3 ζ 7→ u/(ζ − u) ∈ Hs,α
b (M) is continuous by Proposition 3.4, we obtain,

using the estimate (3.4),

‖F (u)‖s,α ≤ C(‖u‖µ)
(
‖u‖s,α + ‖u‖µ,α(1 + ‖u‖s)

)
,

which implies (3.6) in view of α ≥ 0. The continuous (in fact, Lipschitz) dependence
of F (v) on v is a consequence of Proposition 3.4 and Corollary 3.2. �

We also study compositions F (u) for F ∈ C∞(R;C) and real-valued u.

Proposition 3.6. (Extension of [29, Proposition 4.7].) Let F ∈ C∞(R;C), F (0) =
0. Then for u ∈ Hs,α

b (M ;R), we have F (u) ∈ Hs,α
b (M), and one has an estimate

‖F (u)‖s,α ≤ C(‖u‖µ,α)(1 + ‖u‖s,α) (3.7)

for fixed µ > n/2 + 1. In fact, F (u) depends continuously on u.

Proof. The proof is the same as in [29], using almost analytic extensions, only we
now use the sharper estimate (3.4) to obtain (3.7). �

Proposition 3.7. (Extension of [29, Proposition 4.8].) Let F ∈ C∞(R;C), and
u′ ∈ C∞(M ;R), u′′ ∈ Hs,α

b (M ;R); put u = u′ + u′′. Then F (u) ∈ C∞(M) +
Hs,α

b (M), and one has an estimate

‖F (u)− F (u′)‖s,α ≤ C(‖u′‖CN , ‖u′′‖µ,α)(1 + ‖u′′‖s,α)

for fixed µ > n/2 + 1 and some N ∈ N. In fact, F (u) depends continuously on u.

Proof. The proof is the same as in [29], but now uses the sharper estimate (3.4). �

4. Microlocal regularity: tame estimates

When stating microlocal regularity estimates (like elliptic regularity, real princi-
pal type propagation, etc.) for operators with coefficients in Hs

b(Rn+), we will give
two quantitative statements, one for ‘low’ regularities σ / n/2, in which we will not
make use of any tame estimates established earlier, and one for ‘high’ regularities
n/2 / σ / s, in which the tame estimates will be used.

To concisely write down tame estimates, we use the following notation: The
right hand side of a tame estimate will be a real-valued function, denoted by L, of
the form

L(p`1, . . . , p
`
a; ph1 , . . . , p

h
b ;u`1, . . . , u

`
c;u

h
1 , . . . , u

h
d)

=

d∑
j=1

cj(p
`
1, . . . , p

`
a)uhj +

b∑
j=1

c∑
k=1

cjk(p`1, . . . , p
`
a)phj u

`
k

(4.1)

here, the cj and cjk are continuous functions. In applications, p
`/h
j will be a

low/high regularity norm of the coefficients of a non-smooth operator, and u
`/h
j

will be a low/high regularity norm of a function that an operator is applied to. The
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important feature of such functions L is that they are linear in the u
`/h
j , and all

phj , u
h
j , corresponding to high regularity norms, only appear in the first power.

4.1. Elliptic regularity. Concretely, we have the following quantitative elliptic
estimate:

Proposition 4.1. (Cf. [29, Theorem 5.1].) Let m, s, r ∈ R and ζ0 ∈ bT ∗Rn+ \ o.

Suppose P ′ = p′(z, bD) ∈ Hs
bΨm

b (Rn+) has a homogeneous principal symbol p′m.

Moreover, let R ∈ Ψm−1;0
b Hs−1

b (Rn+). Let P = P ′ + R, and suppose pm ≡ p′m is
elliptic at ζ0. Let s̃ ∈ R be such that s̃ ≤ s − 1 and s > n/2 + 1 + (−s̃)+, and

suppose that u ∈ H s̃+m−1,r
b (Rn+) satisfies

Pu = f ∈ H s̃,r
b (Rn+).

Then there exists B ∈ Ψ0
b(Rn+) elliptic at ζ0 such that Bu ∈ H s̃+m

b , and for s̃ ≤
n/2 + t, t > 0, the estimate

‖Bu‖s̃+m,r ≤ C(‖P ′‖(m;1),n/2+1+(−s̃)++t, ‖R‖m−1,n/2+(−s̃)++t)

× (‖u‖s̃+m−1,r + ‖f‖s̃,r)
(4.2)

holds. For s̃ > n/2, ε > 0, there is a tame estimate

‖Bu‖s̃+m,r ≤ L(‖P ′‖(m;1),n/2+1+ε, ‖R‖m−1,n/2+ε; ‖P ′‖(m;1),s, ‖R‖m−1,s−1;

‖u‖n/2+m−1+ε,r, ‖f‖n/2−1+ε,r; ‖u‖s̃+m−1,r, ‖f‖s̃,r).
(4.3)

Let us point out that in our application of such an estimate to the study of
nonlinear equations it will be irrelevant what exactly the low regularity norms in
(4.3) are; in fact, it will be sufficient to know that there is some tame estimate of the
general form (4.3), and this in turn is in fact clear without any computation, namely
it follows directly from the fact that we have tame estimates for all ‘non-smooth’
operations involved in the proof of this proposition. The same remark applies to all
further tame microlocal regularity results below. The only point where the precise
numerology does matter is when one wants to find an explicit bound on the number
of required derivatives for the forcing term in Theorems 2, 3 and 4, as we will do.

Proof of Proposition 4.1. We can assume that r = 0 by conjugating P by x−r.
Choose a0 ∈ S0 elliptic at ζ0 such that pm is elliptic9 on supp a0. Let Λm ∈ Ψm

b

be a b-ps.d.o with full symbol λm(ζ) independent of z, whose principal symbol is
〈ζ〉m, and define

q(z, ζ) := a0(z, ζ)λm(ζ)/pm(z, ζ) ∈ S0;∞Hs
b, Q = q(z, bD),

then by Proposition 3.4 and Corollary 3.2, we have

‖Q‖(0;k),σ ≤ C(‖P ′‖(m;k),n/2+1+ε)(1 + ‖P ′‖(m;k),σ), σ > n/2 + 1, ε > 0. (4.4)

Put B = a0(z, bD)Λm, then

Q ◦ P ′ = B +R′

with R′ ∈ Ψm−1;0Hs−1
b ; by Proposition 3.3, we have for n/2 < σ ≤ s− 1

‖R′‖m−1,σ . ‖Q‖(0;1),µ‖P ′‖(m;1),σ+1 + ‖Q‖(0;1),σ‖P ′‖(m;1),µ+1, µ > n/2. (4.5)

9And non-vanishing, which only matters near the zero section.
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Now, since Bu = QP ′u−R′u = Qf−QRu−R′u, we need to estimate the H s̃
b-norms

of Qf , QRu and R′u, which we will do using Proposition 3.1. In the low regularity
regime, we have, for t > 0 and s̃ ≤ n/2 + t, using (4.4) and (4.5):

‖Qf‖s̃ . ‖Q‖0,n/2+(−s̃)++t‖f‖s̃ ≤ C(‖P ′‖m,n/2+1+(−s̃)++t)‖f‖s̃,
‖R′u‖s̃ . ‖R′‖m−1,n/2+(−s̃)++t‖u‖s̃+m−1

≤ C(‖P ′‖(m;1),n/2+1+(−s̃)++t)‖u‖s̃+m−1,

‖QRu‖s̃ ≤ C(‖P ′‖m,n/2+1+(−s̃)++t)‖R‖m−1,n/2+(−s̃)++t‖u‖s̃+m−1,

giving (4.2). In the high regularity regime, in fact for 0 ≤ s̃ ≤ s − 1, we have, for
ε > 0,

‖Qf‖s̃ . ‖Q‖0,n/2+ε‖f‖s̃ + ‖Q‖0,s‖f‖n/2−1+ε

≤ C(‖P ′‖m,n/2+1+ε)(‖f‖s̃ + (1 + ‖P ′‖m,s)‖f‖n/2−1+ε),

‖R′u‖s̃ . ‖R′‖m−1,n/2+ε‖u‖s̃+m−1 + ‖R′‖m−1,s−1‖u‖n/2+m−1+ε

≤ C(‖P ′‖(m;1),n/2+1+ε)(‖u‖s̃+m−1 + (1 + ‖P ′‖(m;1),s)‖u‖n/2+m−1+ε),

‖QRu‖s̃ ≤ L(‖P ′‖m,n/2+1+ε, ‖R‖m−1,n/2+ε; ‖P ′‖m,s, ‖R‖m−1,s−1;

‖u‖n/2+m−1+ε; ‖u‖s̃+m−1),

giving (4.3). The proof is complete. �

There is a similar tame microlocal elliptic estimate for operators of the form
P = P ′ + P ′′ + R with P ′, R as above and P ′′ ∈ Ψm

b , as in part (2) of [29,
Theorem 5.1], where the tame estimate now also involves the CN -norm of the
‘smooth part’ P ′′ of the operator for some (s-dependent) N .10

4.2. Real principal type propagation; radial points. Tame estimates for real
principal type propagation and propagation near radial points can be deduced from
a careful analysis of the proofs of the corresponding results in [29]. The main ob-
servation is that the regularity requirements, given in the footnotes to the proofs of
these results in [29], indicate what regularity is needed to estimate the correspond-

ing terms: For example, an operator in A ∈ Ψm;0Hs
b with m ≥ 0 maps H

m/2
b to

H
−m/2
b under the condition s > n/2 +m/2, which is to say that one has a bound

‖Aũ‖−m/2 . ‖A‖m−1,n/2+m/2+ε‖ũ‖m/2, ε > 0.

This means that the only places where one needs to use tame operator bounds for
operators with coefficients of regularity s are those where the condition for mapping
properties etc. to hold reads s ' σ where σ is the regularity of the target space, i.e.
where σ is comparable to the regularity s of the coefficients.

We again only prove the tame real principal type estimate in the interior; the
estimate near the boundary is proved in the same way, see also the discussion at
the end of Section 4.1.

Proposition 4.2. (Cf. [29, Theorem 6.6].) Let m, r, s, s̃ ∈ R. Suppose Pm ∈
Hs

bΨm
b (Rn+) has a real, scalar, homogeneous principal symbol pm, and let Pm−1 ∈

10Since in our application P ′′ will only depend on finitely many complex parameters, there is
no need to prove an estimate which is also tame with respect to the CN -norm of P ′′; however,

this could easily be done in principle.
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Hs−1
b Ψm−1

b (Rn+), R ∈ Ψm−2;0
b Hs−1

b (Rn+). Let P = Pm + Pm−1 +R. Suppose s and
s̃ are such that

s̃ ≤ s− 1, s > n/2 + 7/2 + (2− s̃)+,

and suppose u ∈ H
s̃+m−3/2,r
b (Rn+) satisfies Pu = f ∈ H s̃,r

b (Rn+). Suppose ζ0 /∈
WFs̃+m−1,r

b (u), and let γ : [0, T ]→ bT ∗Rn+\o be a segment of a null-bicharacteristic

of pm with γ(0) = ζ0, then γ(t) /∈ WFs̃+m−1,r
b (u) for all t ∈ [0, T ]. Moreover, for

all A ∈ Ψ0
b elliptic at ζ0 there exist B ∈ Ψ0

b elliptic at γ(T ) and G ∈ Ψ0
b elliptic on

γ([0, T ]) such that for s̃ ≤ n/2 + 1, ε > 0,

‖Bu‖s̃+m−1,r

≤ C(‖Pm‖
H
n/2+7/2+(2−s̃)++ε

b Ψmb
, ‖Pm−1‖

H
n/2+1+(3/2−s̃)++ε

b Ψm−1
b

, ‖R‖n/2+1+(−s̃)+)

× (‖u‖s̃+m−3/2,r + ‖Au‖s̃+m−1,r + ‖Gf‖s̃,r).
(4.6)

Moreover, for s̃ > n/2 + 1, ε > 0, there is a tame estimate

‖Bu‖s̃+m−1,r ≤ L(‖Pm‖Hn/2+7/2+ε
b Ψmb

, ‖Pm−1‖Hn/2+1+ε
b Ψm−1

b

, ‖R‖n/2+ε;

‖Pm‖HsbΨmb
, ‖Pm−1‖Hs−1

b Ψm−1
b

, ‖R‖m−2,s−1;

‖u‖n/2−1/2+m+ε; ‖u‖s̃+m−3/2,r, ‖Au‖s̃+m−1,r, ‖Gf‖s̃,r).
(4.7)

Proof. We follow the proof of the regularity result in [29] and state the estimates
needed to establish (4.6) and (4.7) along the way. Using the notation of the proof of
[29, Theorem 6.6], but now calling the regularization parameter δ, in particular Ǎδ ∈
Ψ
s̃+(m−1)/2
b is the regularized commutant, which depends on a positive constant M

chosen below, and putting f̃ = f−Ru, we have, assuming m ≥ 1 and s̃ ≥ (5−m)/2
for now,

Re〈iǍ∗δ [Pm, Ǎδ]u, u〉

=
1

2
〈i(Pm − P ∗m)Ǎδu, Ǎδu〉 − Re〈iǍδ f̃ , Ǎδu〉+ Re〈iǍδPm−1u, Ǎδu〉

≡ I + II + III.

For ε > 0, we can bound the first term by

|I| . ‖Pm‖Hn/2+1+(m−1)/2+ε
b Ψmb

‖Ǎδu‖2(m−1)/2,

the second one by

|II| . ‖Ǎδf‖2−(m−1)/2 + ‖Ru‖2s̃ + ‖Ǎδu‖2(m−1)/2,

where in turn

‖Ru‖s̃ .

{
‖R‖m−2;n/2+(−s̃)++t‖u‖s̃+m−2, s̃ ≤ n/2 + t,

‖R‖m−2;n/2+ε‖u‖s̃+m−2 + ‖R‖m−2;s−1‖u‖n/2+m−2+ε, s̃ ≥ 0

for t > 0 by Proposition 3.1. We estimate the third term by

|III| . ‖Pm−1‖Hmax(n/2+ε,(m−1)/2)
b Ψm−1

b

‖Ǎδu‖2(m−1)/2 + |〈[Ǎδ, Pm−1]u, Ǎδu〉|

and further, withR2 ∈ Ψ
s̃+(m−1)/2−1
b ◦Ψm−1;0Hs−2

b denoting a part of the expansion

of [Ǎδ, Pm−1] as defined after [29, Footnote 28],

|〈[Ǎδ, Pm−1]u, Ǎδu〉| ≤ C(M)‖Pm−1‖
H
n/2+1+(m/2−1)++ε

b Ψm−1
b

‖u‖2s̃+m−3/2
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+ ‖R2u‖2−(m−1)/2 + ‖Ǎδu‖2(m−1)/2,

where

‖R2u‖−(m−1)/2

≤ C(M)


‖Pm−1‖

H
n/2+1+(1−s̃)++ε

b Ψm−1
b

‖u‖s̃+m−2, s̃ ≤ n/2 + 1 + ε,

‖Pm−1‖Hn/2+1+ε
b Ψm−1

b

‖u‖s̃+m−2

+‖Pm−1‖Hs−1
b Ψm−1

b
‖u‖n/2+m−1+ε, s̃ ≥ 1.

Therefore, we obtain, see [29, Equation (6.24)],

Re
〈(
iǍ∗δ [Pm, Ǎδ] +B∗δBδ +M2(ΛǍδ)

∗(ΛǍδ)− Eδ
)
u, u

〉
≥ −|〈Eδu, u〉| − ‖Ǎδf‖2−(m−1)/2 − L

2 + ‖Bδu‖2L2
b
,

(4.8)

where

M = M(‖Pm‖Hn/2+1+(m−1)/2+ε
b Ψmb

, ‖Pm−1‖Hmax(n/2+ε,(m−1)/2)
b Ψm−1

b

),

and L is ‘tame’; more precisely, for s̃ ≤ n/2 + t, t > 0,

L ≤ C(M, ‖Pm−1‖
H
n/2+1+max(m/2−1,1−s̃)++ε

b Ψm−1
b

, ‖R‖m−2;n/2+(−s̃)++t)‖u‖s̃+m−3/2,

and for s̃ ≥ 1,

L = L(M, ‖Pm−1‖
H
n/2+1+(m/2−1)++ε

b Ψm−1
b

, ‖R‖m−2,n/2+ε;

‖Pm−1‖Hs−1
b Ψm−1

b
, ‖R‖m−2;s−1; ‖u‖n/2+m−1+ε; ‖u‖s̃+m−3/2).

Next, in order to exploit the positive commutator of the principal symbols of Pm
and Ǎδ in the estimate (4.8), we introduce operators J± ∈ Ψ

±(s̃+(m−1)/2−1)
b with

principal symbols j± such that J+J− − I ∈ Ψ−∞b ; then

iJ−Ǎ∗δ [Pm, Ǎδ] = Op(j−ǎδHpm ǎδ) +R1 +R2 +R3 +R4,

see [29, Equation (6.27)], where

|〈Rju, (J+)∗u〉| ≤ C(M)‖Pm‖Hn/2+2+m/2+ε
b Ψmb

‖u‖2s̃+m−3/2, j = 1, 3, 4,

and R2 ∈ Ψ
s̃+(m−1)/2−1
b ◦Ψm;0Hs−2

b , hence

|〈R2u, (J
+)∗u〉|

≤ C(M)


(1 + ‖Pm‖2

H
n/2+2+(3/2−s̃)++ε

b Ψmb

)‖u‖2s̃+m−3/2 ∀ s̃,

(1 + ‖Pm‖2
H
n/2+2+ε
b Ψmb

)‖u‖2s̃+m−3/2

+‖Pm‖2HsbΨmb
‖u‖2n/2−1/2+m+ε s̃ ≥ 3/2.

Thus, further following the proof in [29] to equation (6.28) and beyond, it remains
to bound

Re〈Op(j−fδ/j
+)(J+)∗u, (J+)∗u〉+ Re〈R′u, (J+)∗u〉, R′ ∈ Ψs̃+3(m−1)/2;0Hs−1

b ,

from below, which is accomplished by

|〈R′u, (J+)∗u〉| ≤ C(M)‖Pm‖Hn/2+1+m/2+ε
b Ψmb

‖u‖2s̃+m−3/2,

Re〈Op(j−fδ/j
+)(J+)∗u, (J+)∗u〉 ≥ −C(M)‖Pm‖Hn/2+3+m/2+ε

b Ψmb
‖u‖2s̃+m−3/2.
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Lastly, for general m ∈ R, we rewrite the equation Pu = f as PΛ+(Λ−u) = f+PRu

with Λ± ∈ Ψ
∓(m−m0)
b , R ∈ Ψ−∞b , where m0 ≥ 1; hence, replacing P by PΛ+, u by

Λ−u and m by m0 in the above estimates is equivalent to just replacing m by m0

in the b-Sobolev norms of the coefficients of P . Choosing m0 = 1 + 2(2− s̃)+ as in
[29] then implies the estimates (4.6) and (4.7) with B = B0, G an elliptic multiple
of Ǎ0, and A elliptic on the microsupport of E0. �

In a similar manner, we can analyze the proof of the radial point estimate,
obtaining, in the notation of [29, §6.4]:

Proposition 4.3. Let m, r, s, s̃ ∈ R, α > 0. Let P = Pm + Pm−1 + R, where
Pj = P ′j + P ′′j , j = m,m − 1, with P ′m ∈ H

s,α
b Ψm

b (Rn+) and P ′′m ∈ Ψm
b (Rn+) hav-

ing real, scalar, homogeneous principal symbols p′m and p′′m, respectively; more-

over P ′m−1 ∈ Hs−1,α
b Ψm−1

b (Rn+), P ′′m−1 ∈ Ψm−1
b (Rn+) and R = R′ + R′′ with

R′ ∈ Ψm−2;0
b Hs−1,α

b (Rn+) and R′′ ∈ Ψm−2
b (Rn+). Suppose that the conditions (1)-(4)

in [29, §6.4] hold for p = p′′m, and

σb,m−1

(
1

2i

(
(P ′′m + P ′′m−1)− (P ′′m + P ′′m−1)∗

))
= ±β̂β0ρ

m−1 at L±, (4.9)

where β̂ ∈ C∞(L±) is self-adjoint at every point. Finally, assume that s and s̃
satisfy

s̃ ≤ s− 1, s > n/2 + 7/2 + (2− s̃)+. (4.10)

Suppose u ∈ H s̃+m−3/2,r
b (Rn+) is such that Pu = f ∈ H s̃,r

b (Rn+).

(1) If s̃+(m−1)/2−1+infL±(β̂−rβ̃) > 0, let us assume that in a neighborhood

of L±, L± ∩ {x > 0} is disjoint from WFs̃+m−1,r
b (u).

(2) If s̃ + (m − 1)/2 + supL±(β̂ − rβ̃) < 0, let us assume that a punctured

neighborhood of L±, with L± removed, in Σ ∩ bS∗
∂Rn+

Rn+ is disjoint from

WFs̃+m−1,r
b (u).

Then in both cases, L± is disjoint from WFs̃+m−1,r
b (u).

Quantitatively, for every neighborhood U of L±, there exist B0, B1 ∈ Ψ0
b elliptic

at L±, A ∈ Ψ0
b with microsupport in the respective a priori control region in the

two cases above, with WF′b(A),WF′b(Bj) ⊂ U , j = 1, 2, and χ ∈ C∞c (U), such for
s̃ ≤ n/2 + 1, ε > 0, we have, with implicit dependence of the appearing constants
on seminorms of the smooth operators P ′′m, P

′′
m−1 and R′′:

‖B0u‖s̃+m−1,r ≤ C(‖P ′m‖Hn/2+7/2+(2−s̃)++ε,α

b Ψmb
,

‖P ′m−1‖Hn/2+1+(3/2−s̃)++ε,α

b Ψm−1
b

, ‖R′‖m−2,n/2+1+(−s̃)+)

× (‖u‖s̃+m−3/2,r + ‖Au‖s̃+m−1,r + ‖B1f‖s̃,r + ‖χf‖s̃−1,r).

(4.11)

Moreover, for s̃ > n/2 + 1, ε > 0, there is a tame estimate

‖B0u‖s̃+m−1,r ≤ L(‖P ′m‖Hn/2+7/2+ε,α
b Ψmb

, ‖P ′m−1‖Hn/2+1+ε,α
b Ψm−1

b

, ‖R′‖m−2,n/2+ε;

‖P ′m‖Hs,αb Ψmb
, ‖P ′m−1‖Hs−1,α

b Ψm−1
b

, ‖R′‖m−2,s−1; ‖u‖n/2−1/2+m+ε, ‖f‖n/2−1+ε;

‖u‖s̃+m−3/2,r, ‖Au‖s̃+m−1,r, ‖B1f‖s̃,r, ‖χf‖s̃−1,r).

(4.12)
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Proof. One detail changes as compared to the previous proof: While it still suffices
to only assume microlocal regularity B2f ∈ H s̃,r

b at L±, we now in addition need to

assume local regularity χf ∈ H s̃−1,r
b , which is due to the use of elliptic regularity

in the proof given in [29]. �

4.3. Non-trapping estimates at normally hyperbolic trapping. We now ex-
tend the proof of non-trapping estimates on weighted b-Sobolev spaces at normally
hyperbolically trapped sets given in [30, Theorem 3.2] to the non-smooth setting.

To set this up, let P0 ∈ Ψm
b (Rn+) with

1

2i
(P0 − P ∗0 ) = E1 ∈ Ψm−1

b (Rn+), (4.13)

where the adjoint is taken with respect to a fixed smooth b-density; an example
to keep in mind here and in what follows is P0 = �g for a smooth Lorentzian

b-metric g on Rn+, considered a coordinate patch of Kerr-de Sitter space, in which
case E1 = 0, and the threshold weight in Theorem 4.4 below is r = 0. Let p0 be the
principal symbol of P0. Let us use the coordinates (z; ζ) = (x, y;λ, η) on bT ∗Rn+
and write M = Rn+, X = ∂Rn+. With Σ ⊂ bS∗M denoting the characteristic set of
P0, we make the following assumptions:

(1) Γ ⊂ Σ∩bS∗XM is a smooth submanifold disjoint from the image of T ∗X \o,
so xDx is elliptic near Γ,

(2) Γ+ is a smooth submanifold of Σ ∩ bS∗XM in a neighborhood U1 of Γ,
(3) Γ− is a smooth submanifold of Σ transversal to Σ ∩ bS∗XM in U1,
(4) Γ+ has codimension 2 in Σ, Γ− has codimension 1,
(5) Γ+ and Γ− intersect transversally in Σ with Γ+ ∩ Γ− = Γ,
(6) the vector field V is tangent to both Γ+ and Γ−, and thus to Γ,
(7) Γ+ is backward trapped for the Hamilton flow, Γ− is forward trapped; in

particular, Γ is a trapped set.

In view of condition (1), we can take

ρ = 〈λ〉 near Γ,

appropriately extended to bT
∗
M , as the inverse of a boundary defining function of

fiber infinity bS∗M in bT
∗
M . Then, let

V = ρ−m+1Hp0 ,

be the rescaled Hamilton vector field of p0. We make quantitative assumptions
related to condition (7): Let φ+ ∈ C∞(bS∗M) be a defining function of Γ+ in
bS∗XM , and let φ− ∈ C∞(bS∗M) be a defining function of Γ−. Thus, Γ+ is defined
within bS∗M by x = 0, φ+ = 0. Let

p̂0 = ρ−mp0.

We then assume that

(8) φ+ and φ− satisfy

V φ+ = −c2+φ+ + µ+x+ ν+p̂0, V φ− = c2−φ− + ν−p̂0, (4.14)

with c± > 0 smooth near Γ and µ+, ν± smooth near Γ. This is consistent
with the (in)stability of Γ− (Γ+),
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(9) x satisfies

V x = −c∂x, c∂ > 0, (4.15)

which is consistent with the stability of Γ−,
(10) near Γ,

ρ−1V ρ = cfx (4.16)

for some smooth cf , which holds in view of our choice of ρ.

Here we recall from [22, Lemma 5.1], see also [23, Lemma 2.4], that in the closely
related semiclassical setting11 one can arrange for any (small) ε > 0 that

0 < νmin − ε < c2± < νmax + ε, (4.17)

where νmin and νmax are the minimal and maximal normal expansion rates; see
[22, Equations (5.1) and (5.2)] for the definition of the latter, with νmin also given
in (4.27) below. Note that in these works of Dyatlov our c2± is denoted by c±.
In particular, if M is replaced by [0,∞) ×X, and if P0 is dilation invariant, then
the semiclassical and the b-settings are equivalent via the Mellin transform and
a rescaling, see e.g. [47, Section 3.1]; since in our general case c±|bS∗XM is what

matters, we can replace P0 by N(P0), and in particular (4.17) applies, with the
expansion rate calculated using p0|bT∗XM .

We now perturb P0 by a non-smooth operator P̃ , that is, we consider the operator

P = P0 + P̃ , P̃ = P̃m + P̃m−1 + R̃, (4.18)

where for some fixed α > 0, we have P̃m−j ∈ Hs−j,α
b Ψm−j

b , j = 0, 1, and R̃ ∈
Ψm−2;0

b Hs−1,α
b .

We then have the following tame non-trapping estimate at Γ:

Theorem 4.4. Using the above notation and making the above assumptions, let
s, s̃ ∈ R be such that

s̃ ≤ s− 1, s > n/2 + 7/2 + (2− s̃)+. (4.19)

Suppose u ∈ H s̃+m−3/2,r
b (Rn+) is such that Pu = f ∈ H s̃,r

b (Rn+).
Then for r < − supΓ ρ

−m+1σb,m−1(E1)/c∂ and for any neighborhood U of Γ,
there exist B0 ∈ Ψ0

b(M) elliptic at Γ and B1, B2 ∈ Ψ0
b(M) with WF′b(Bj) ⊂ U ,

j = 0, 1, 2, WF′b(B2) ∩ Γ+ = ∅, and χ ∈ C∞c (U), such that the following estimate
holds for s̃ ≤ n/2 + 1, ε > 0:

‖B0u‖s̃+m−1,r ≤ C(‖P̃m‖
H
n/2+7/2+(2−s̃)++ε,α

b Ψmb
,

‖P̃m−1‖
H
n/2+1+(3/2−s̃)++ε,α

b Ψm−1
b

, ‖R̃‖m−2,n/2+1+(−s̃)+)

× (‖u‖s̃+m−3/2,r + ‖B2u‖s̃+m−1,r + ‖B1f‖s̃,r + ‖χf‖s̃−1,r).

(4.20)

Moreover, for s̃ > n/2 + 1, ε > 0, there is a tame estimate

‖B0u‖s̃+m−1,r ≤ L(‖P̃m‖Hn/2+7/2+ε,α
b Ψmb

, ‖P̃m−1‖Hn/2+1+ε,α
b Ψm−1

b

, ‖R̃‖m−2,n/2+ε;

‖P̃m‖Hs,αb Ψmb
, ‖P̃m−1‖Hs−1,α

b Ψm−1
b

, ‖R̃‖m−2,s−1; ‖u‖n/2−1/2+m+ε, ‖f‖n/2−1+ε;

‖u‖s̃+m−3/2,r, ‖B2u‖s̃+m−1,r, ‖B1f‖s̃,r, ‖χf‖s̃−1,r).

(4.21)

11See the discussion prior to Theorem 5.5.
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On the other hand, for r > − infΓ ρ
−m+1σb,m−1(E1)/c∂ and for appropriate B2

with WF′b(B2) ∩ Γ− = ∅, the estimates (4.20) and (4.21) hold as well. These
estimates are understood in the sense that if all quantities on the right hand side
are finite, then so is the left hand side, and the inequality holds.

Proof. The main part of the argument, in particular the choice of the commutant, is
a slight modification of the positive commutator argument of [30, Theorem 3.2]; the
handling of the non-smooth terms is a modification of the proof of the radial point
estimate, [29, Theorem 6.10]. In particular, the positivity comes from differentiating
the weight x−r in the commutant. To avoid working in weighted b-Sobolev spaces
for the non-smooth problem, we will conjugate P by x−r, giving an advantageous
(here meaning negative) contribution to the imaginary part of the subprincipal
symbol of the conjugated operator near Γ.

Throughout this proof, we denote operators and their symbols by the correspond-
ing capital and lower case letters, respectively.

Concretely, put σ = s̃+m− 1, and define

ur := x−ru ∈ Hσ−1/2
b , fr := x−rf ∈ Hσ−m+1

b ,

Pr := x−rPxr = P0,r + P̃r, P0,r = x−rP0x
r, P̃r = x−rP̃ xr,

where

P̃r = P̃m,r + P̃m−1,r + R̃r, P̃m−j,r ∈ Hs−j,α
b Ψm−j

b , R̃r ∈ Ψm−2;0
b Hs−1,α

b ;

then Prur = fr, and we must show a non-trapping estimate for ur on unweighted
b-Sobolev spaces. A simple computation shows that

1

2i
(P0,r − P ∗0,r)−

(
1

2i
(P0 − P ∗0 )−Op(rx−1Hp0x)

)
∈ Ψm−2

b ;

but x−1Hp0x = −ρm−1c∂ with c∂ > 0 near Γ by (4.15), hence, using (4.13),

1

2i
(P0,r − P ∗0,r) = E1 + E′1 +B (4.22)

with B,E′1 ∈ Ψm−1
b , where B has principal symbol b = rc∂ρ

m−1 near Γ, and
WF′b(E′1) ∩ Γ = ∅. Notice that by assumption on r, B + E1 is elliptic on Γ.

We now turn to the positive commutator argument: Fix 0 < β < min(1, α) and
define

ρ+ = φ2
+ + xβ .

Let χ0(t) = e−1/t for t > 0 and χ0(t) = 0 for t < 0, further χ ∈ C∞c ([0, R)) for
R > 0 to be chosen below, χ ≡ 1 near 0, χ′ ≤ 0, and finally ψ ∈ C∞c ((−R,R)),
ψ ≡ 1 near 0. Define for κ > 0, specified later,

a = ρσ−(m−1)/2χ0(ρ+ − φ2
− + κ)χ(ρ+)ψ(p̂0).

On supp a, we have ρ+ ≤ R, thus the argument of χ0 is bounded above by R +
κ. Moreover, φ2

− ≤ R + κ and x ≤ R1/β , therefore a is supported in any given
neighborhood of Γ if one chooses R and κ small. Notice that a is merely a conormal
symbol which does not grow at the boundary. However, b-analysis for operators
with conormal coefficients can easily be seen to work without much additional work,
in fact, a logarithmic change of variables essentially reduces such a b-analysis on Rn+
to the analysis of operators corresponding to uniform symbols on Rn. Moreover,
the proofs of composition results of smooth and non-smooth b-ps.d.o’s presented in
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[29] go through without changes if one uses b-ps.d.o’s with non-growing conormal,
instead of smooth, symbols.12

Define the regularizer ϕδ(ζ) = (1 + δρ)−1 near Γ, and put aδ = ϕδa. Put

Ṽ = ρ−m+1Hp̃m,r and define c̃∂ , c̃f ∈ Hs−1,α
b near Γ by Ṽ x = −c̃∂x, ρ−1Ṽ ρ = c̃fx.

Then, with pm,r = p0,r + p̃m,r, we obtain, using (4.14)-(4.16):

aδHpm,raδ = ϕ2
δρ

2σχ2
0χ

2ψ2(σ − (m− 1)/2− δρϕδ)(cf + c̃f )x

− ϕ2
δρ

2σχ0χ
′
0χ

2ψ2(2c2+φ
2
+ + βc∂x

β − 2µ+φ+x− 2ν+φ+p̂0

+ 2c2−φ
2
− + 2ν−φ−p̂0 − Ṽ φ2

+ + βc̃∂x
β + Ṽ φ2

−)

+ ϕ2
δρ

2σχ2
0χχ

′ψ2(V ρ+ + Ṽ ρ+) + ϕ2
δρ

2σχ2
0χ

2ψψ′(V p̂0 + Ṽ p̂0)

= −c2+a2
+,δ − c2−a2

−,δ + a+,δh+,δpm,r + a−,δh−,δpm,r + eδ + gδ − fδ, (4.23)

where, writing p̂0 = ρ−mpm,r − ρ−mp̃m,r in the second and third line,

a±,δ = ϕδρ
σ
√

2χ0χ′0χψφ±,

h±,δ = ±ϕδρσ−m
√

2χ0χ′0χψν±,

eδ = ϕ2
δρ

2σχ2
0χχ

′ψ2(V ρ+ + Ṽ ρ+),

gδ = ϕ2
δρ

2σχ2
0χ

2ψψ′(V p̂0 + Ṽ p̂0),

fδ = ϕ2
δρ

2σχ0χ
2ψ2

[(
β(c∂ + c̃∂)xβ − 2µ+φ+x− Ṽ φ2

+ + Ṽ φ2
−

+ 2(ν+φ+ − ν−φ−)ρ−mp̃m,r
)
χ′0

− (σ − (m− 1)/2− δρϕδ)(cf + c̃f )xχ0

]
Note that in the definition of fδ, by the choice of β and using the fact that χ0 is
bounded by a constant multiple of χ′0 on its support, the constant being uniform
for R + κ < 1, the term c∂x

β dominates all other terms on the support of fδ ∈
S2σ;∞Hs−1

b for R and κ small enough, hence fδ ≥ 0, and its contribution will be
controlled by virtue of the sharp G̊arding inequality. The term arising from eδ
will be controlled using the a priori regularity assumption of ur on Γ−, and gδ,
which is supported away from the characteristic set, will be controlled using elliptic
regularity.

Proceeding with the argument, we first make the simplification R̃r = 0 by re-
placing f by f − R̃rur, and we assume m ≥ 1 and s̃ ≥ (5−m)/2 for now. Then we
have, as in the proof of [29, Theorem 6.10],

Re〈iA∗δ [P0,r + P̃m,r, Aδ]ur, ur〉+

〈
1

2i
(P0,r − P ∗0,r)Aδur, Aδur

〉
12A somewhat more direct way of dealing with this issue goes as follows: Assume, as one

may, that ` := β−1 ∈ N. Then even though a is not a smooth symbol of Rn+ with the standard

smooth structure, it becomes smooth if one changes the smooth structure of Rn+ by blowing up the

boundary to the `-th order, i.e. by taking x′ = xβ as a boundary defining function, thus obtaining
a manifold M`, which is Rn+ as a topological manifold, but with a different smooth structure; in

particular, the function x = (x′)` is smooth on M` in view of ` ∈ N. Moreover, the blow-down

map M` → Rn+ induces isomorphisms (see e.g. [36, §4.18])

Hs′,γ
b (Rn+) ∼= Hs′,`γ

b (M`), s′, γ ∈ R.

Therefore, one can continue to work on Rn+, tacitly assuming that all functions and operators live

on, and all computations are carried out on, M`.



QUASILINEAR WAVE EQUATIONS ON KERR-DE SITTER 27

= −
〈

1

2i
(P̃m,r − P̃ ∗m,r)Aδur, Aδur

〉
− Re〈iAδf,Aδur〉+ Re〈iAδP̃m−1,rur, Aδur〉.

Estimating each term on the right hand side as in the proof of [29, Theorem 6.10]
and using (4.22), we obtain for any µ > 0:

Re
〈(
A∗δ(i[P0,r + P̃m,r, Aδ] + E1 + E′1 +B)Aδ

)
ur, ur

〉
≥ −Cµ − µ‖Aδur‖2(m−1)/2.

(4.24)
Here and in what follows, we in particular absorb all terms involving ‖ur‖σ−1/2 into
the constant Cµ. On the left hand side, the E′1-term can be dropped because of
WF′b(E′1)∩WF′b(A) = ∅ for sufficiently localized a. Moreover, the principal symbol
of E1 +B near Γ is e1 + b = −q2 with q an elliptic symbol of order (m−1)/2, since,
by assumption on r, we have e1 + rc∂ρ

m−1 < 0 near Γ. Therefore, we can write
E1 + B = −Q∗Q + E′′1 + E2, where E′′1 ∈ Ψm−1

b , E2 ∈ Ψm−2
b , WF′b(E′′1 ) ∩ Γ = ∅.

Again, the resulting term in the pairing (4.24) involving E′′1 can be dropped; also,
the term involving E2 can be dropped at the cost of changing the constant Cµ,

since ur ∈ Hσ−1/2
b .

Hence, introducing J± ∈ Ψ
±(σ−(m−1)/2−1)
b , with real principal symbols, satisfy-

ing I − J+J− ∈ Ψ−∞b , we get

Re
〈
Op(j−aδHpm,raδ)ur, (J

+)∗ur
〉
−‖QAδur‖20 ≥ −Cµ−µ‖Aδur‖2(m−1)/2. (4.25)

We now plug the commutator relation (4.23) into this estimate. We obtain several

terms, which we bound as follows: First, since j−eδ ∈ (C∞+Hs−1,α
b )Sσ+(m−1)/2+1

uniformly, Op(j−eδ) is a uniformly bounded family of maps Hσ
b → H

−(m+1)/2
b ;

thus, choosing Ẽ ∈ Ψ0
b with WF′b(Ẽ) ⊂ U and with WF′b(I − Ẽ) disjoint from

supp eδ, we conclude

|〈Op(j−eδ)ur, (J
+)∗ur〉| ≤ C + |〈Op(j−eδ)ur, (J

+)∗Ẽur〉| ≤ C + ‖B2ur‖2σ
for some B2 ∈ Ψ0

b with WF′b(B2) ∩ Γ+ = ∅.
Next, the term 〈Op(j−gδ)ur, (J

+)∗ur〉 is uniformly bounded, as detailed in the
proof of [29, Theorem 6.10]. Moreover, by the sharp G̊arding inequality, see the
argument in the proof of [29, Theorem 6.6],

Re〈Op(−j−fδ)ur, (J+)∗ur〉 ≤ C.

Further, we obtain two terms involving h±,δ; introducing B3 ∈ Ψ0
b elliptic on

WF′b(A), these can be bounded for µ > 0 by

|〈Op(j−a±,δh±,δpm,r)ur, (J
+)∗ur〉|

≤ C + |〈Op(j−a±,δh±,δ)(P0,r + P̃m,r)ur, (J
+)∗ur〉|

≤ C + |〈H±,δfr, A±,δur〉|+ |〈Op(j−a±,δh±,δ)P̃m−1,rur, (J
+)∗ur〉|

≤ C + µ‖A±,δur‖20 + Cµ‖B3fr‖2σ−m.

Here, for the first estimate, we employ [29, Theorem 3.12 (3)] to obtain

Op(j−a±,δh±,δ)P̃m,r −Op(j−a±,δh±,δp̃m,r)

=: Υδ ∈ Ψ
σ+(m−1)/2;0
b Hs−1

b + Ψ
σ−(m−1)/2−1
b ◦Ψm;0

b Hs−1
b ,
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and Υδ is easily seen to be uniformly bounded from H
σ−1/2
b to H

−m/2
b , whereas

(J+)∗ur ∈ Hm/2
b , thus |〈Υδur, (J

+)∗ur〉| ≤ C. For the second estimate, we simply

use (P0,r + P̃m,r)ur = fr − P̃m−1,rur, and for the third estimate, we apply the
Peter–Paul inequality to the first pairing; to bound the second pairing, we use the

boundedness of P̃m−1,r : H
σ−1/2
b → H

σ−m+1/2
b .

Finally, including the terms c2±a
2
±,δ into the estimate obtained from (4.25) by

making use of the above estimates, we obtain

‖C+A+,δur‖20 + ‖C−A−,δur‖20 + ‖QAδur‖20
≤ Cµ + µ‖A+,δur‖20 + µ‖A−,δur‖20 + µ‖Aδur‖2(m−1)/2

+ ‖B2ur‖2σ + ‖B1fr‖2σ−m+1 + Cµ‖χfr‖2σ−m,

where B1 ∈ Ψ0
b is elliptic on WF′b(A) with WF′b(B1) ⊂ U , and χ ∈ C∞c (M) is

identically 1 near the projection of Γ ⊂ bS∗M to the base M . Since c+ and c−
have positive lower bounds near Γ, we can absorb the terms on the right involving
A±,δ into the left hand side by choosing µ sufficiently small, at the cost of changing

the constant Cµ; likewise, ρ−(m−1)/2q has a positive lower bound near supp a, hence
the term on the right involving Aδ can be absorbed into the left hand side for small
µ. Dropping the first two terms on the left hand side, we obtain the Hσ

b -regularity of
ur at Γ, hence WFσ,rb (u)∩Γ = ∅, and a corresponding tame estimate, which follows
from a careful analysis of the above argument as in the proof of Proposition 4.2.

Next, we remove the restriction m ≥ 1: Let m0 ≥ 1. The idea, as before, is

to rewrite Pu = f as PΛ+(Λ−u) = f + PRu, where Λ± ∈ Ψ
±(m0−m)
b , with real

principal symbols, satisfy Λ+Λ− = I+R. We now have to be a bit careful though to
not change the imaginary part of the subprincipal symbol of PΛ+ at Γ. Concretely,
we choose Λ+ self-adjoint with principal symbol λ+ = ρm0−m near Γ; then

P0Λ+ − (P0Λ+)∗ = Λ+(P0 − P ∗0 ) + [P0,Λ
+].

Clearly, Λ+(P0 − P ∗0 ) ∈ xΨm0−1
b + Ψm0−2

b , and the principal symbol of the second
term is

σb,m0−1([P0,Λ
+]) = −iHp0λ

+ = −ix(m0 −m)ρm0−1cf

near Γ by (4.16), hence, using (4.13),

P0Λ+ − (P0Λ+)∗ = Λ+E1 + xE′1 + E′′1 + E2

with E′1, E
′′
1 ∈ Ψm0−1

b , E2 ∈ Ψm0−2
b and WF′b(E′′1 ) ∩ Γ = ∅; therefore, the first part

of the proof with P and u replaced by PΛ+ and Λ−u, respectively, applies. The
proof of the theorem in the case r < − supΓ ρ

−m+1e1/c∂ is complete.
When the role of Γ+ and Γ− is reversed, there is an overall sign change, and we

thus get a advantageous (now meaning positive) contribution to the subprincipal
part of the conjugated operator Pr for r > − infΓ ρ

−m+1e1/c∂ ; the rest of the
argument is unchanged. �

4.4. Trapping estimates at normally hyperbolic trapping. Complementing
the results above on negatively weighted spaces, we recall results of Dyatlov from
[22, 23] on semiclassical estimates for smooth operators at normally hyperbolic
trapping, which via the Mellin transform correspond to estimates on non-negatively
weighted spaces. Here we present the results in the semiclassical setting, then
in Section 5.1 we relate this to the solvability of linear equations with Sobolev
coefficients in Theorem 5.5 and Theorem 5.6. We recall that prior to Dyatlov’s work,
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Wunsch and Zworski [49] and Nonnenmacher and Zworski [39] studied semiclassical
estimates at normally hyperbolic trapping; this was in turn much preceded by the
work of Gérard and Sjöstrand [27] in the analytic category. The advantage of
Dyatlov’s framework for us, especially as espoused in [23], is the explicit size of
the ‘spectral gap’ (discussed below), which was also shown by Nonnenmacher and
Zworski [39], the explicit inclusion of a subprincipal term of the correct sign, and
the relative ease with which the parameter dependence can be analyzed.

We first recall Dyatlov’s semiclassical setting for

P̃0 = P̃0(h), Q̃0 = Q̃0(h) ∈ Ψm
~ (X),

both formally self-adjoint, with Q̃0 having non-negative principal symbol, P̃0− iQ̃0

elliptic in the standard sense. In fact, Dyatlov states the results in the special case
m = 0, but by ellipticity of P̃0 − iQ̃0 in the standard sense, it is straightforward to
allow general m; see also the remark [23, Bottom of p. 2]. The main assumption,

see [23, p. 3], then is that P̃0 has normally hyperbolic trapping semiclassically at

Γ̃ ⊂ T ∗X compact,13 with all bicharacteristics of P̃0, except those in the stable (−)

and unstable (+) submanifolds Γ̃±, entering the elliptic set of Q̃0 in the forward (the
exception being for only the − sign), resp. backward (+) direction, and γ < νmin/2,

where νmin > 0 is the minimal normal expansion rate of the flow at Γ̃, discussed
above and in (4.27). If Q̃0 is microlocally in hΨ~(X) near Γ̃, with h−1Q̃0 having a
non-negative principal symbol there, Dyatlov shows that there is h0 > 0 such that
for Im z > −γ,

‖v‖Hs~ . h
−2‖(P̃0 − iQ̃0 − hz)v‖Hs−m~

, h < h0. (4.26)

In view of Γ̃ lying in a compact subset of T ∗X, the order s is irrelevant in the sense
that the estimate for one value of s implies that for all other via elliptic estimates;
thus, one may just take s = 0, and even replace s −m by 0, in which case this is
an L2-estimate, as stated by Dyatlov.

Suppose now that one has a family of operators P̃0(ω) depending on another

parameter, ω, in a compact space S, with P̃0, Q̃0 depending continuously on ω,
with values in Ψm

~ (X), satisfying all of the assumptions listed above. Suppose

moreover that this family satisfies the normally hyperbolic assumptions with Γ̃, Γ̃±
continuously depending on ω in the C∞ topology, and uniform bounds for the
normal expansion rates in the sense that both ν and the constant C ′ in

sup
ρ∈Γ
‖de∓tHp(ρ)|V±‖ ≤ C ′e−νt, t ≥ 0, (4.27)

with V± the unstable and stable normal tangent bundles at Γ, can be chosen uni-
formly (cf. [22, Equation (5.1)]); νmin is then the sup of these possible choices of ν.
(Note that since the trapped set dynamics involves arbitrarily large times, it is not
automatically stable, unlike the dynamics away from the trapped set.) In this case
the implied constant C in (4.28), as well as h0, is uniform in ω. Note that r-normal
hyperbolicity for every r implies the local (hence global, in view of compactness)
uniformity of the normal dynamics by structural stability; see [49, Section 1] and
[22, Section 5.2].

To see this uniformity in C, we first point out that in [22, Lemma 5.1] the con-
struction of φ± can be done continuously with values in C∞ in this case. Then in

13Our Γ̃ is the intersection of Dyatlov’s K with the semiclassical characteristic set of P , and
similarly our Γ̃± are the intersection of Dyatlov’s Γ± with the characteristic set of P .
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the proof of (4.28) given in [23], we only need to observe that the direct estimates

provided are certainly uniform in this case for families P̃0, Q̃0, and furthermore
for the main argument, using semiclassical defect measures, one can pass to an
L2-bounded subsequence uj such that (P̃0(ωj) − iQ̃0(ωj) − λj)uj = O(h2), with

ωj → ω for some ω ∈ S in addition to h−1λj converging to some λ̃. Concretely,
all of Dyatlov’s results in [23, Section 2] are based on elliptic or (positive) commu-
tator identities or estimates which are uniform in this setting. In particular, [23,
Lemma 2.3] is valid with Pj = P (ωj) → P , Wj = W (ωj) → W with convergence
in Ψ~(X). (This uses that one can take Aj(hj) in Definition 2.1, with Aj → A,
since the difference between Aj(hj) and A(hj) is bounded by a constant times the
squared L2-norm of uj times the operator norm bound of Aj(hj)−A(hj), with the
latter going to 0.) Then with Θ+,j in place of Θ+, one still gets Lemma 3.1, which
means that Lemma 3.2 still holds with φ+ (the limiting φ+,j) using Lemma 2.3.
Then the displayed equation above [23, Equation (3.9)] still holds with the limit-

ing P̃0 = P̃0(ω), again by Lemma 2.3, and then one can finish the argument as
Dyatlov did. With this modification, one obtains the desired uniformity. This in
particular allows one to apply (4.28) even if P̃0 and Q̃0 depend on z (in a manner
consistent with the other requirements), which can also be dealt with more directly
using Dyatlov’s model form [22, Lemma 4.3]. It also allows for uniform estimates
for families depending on a small parameter in C, denoted by v0 below, needed in
Section 5.

Allowing P̃0 and Q̃0 depending on z means, in particular, that we can replace the
requirement on h−1Q̃0 by the principal symbol of h−1Q̃0 being > −β, β < νmin/2,
and drop z, so one has

‖v‖Hs~ . h
−2‖(P̃0 − iQ̃0)v‖Hs−m~

, h < h0. (4.28)

At this point it is convenient to rewrite this estimate, removing Q̃0 from the
right hand side at the cost (or benefit!) of making it microlocal.14 From here on

it is convenient to change the conventions and not require that P̃0 is formally self-
adjoint (though it is at the principal symbol level, namely it has a real principal

symbol); translating back into the previous notation, one would replace P̃0 by its

(formally) self-adjoint part, and absorb its skew-adjoint part into Q̃0. Namely, we
have

Theorem 4.5. Suppose P̃0 satisfies the above assumptions, in particular the semi-
classical principal symbol of 1

2ih (P̃0 − P̃ ∗0 ) being < β < νmin/2 at Γ̃.15 With B̃j
analogous to Theorem 4.4, with wave front set sufficiently close to Γ̃, we have, for
sufficiently small h > 0 and for all N and s0,

‖B̃0u‖Hs~ . h
−2‖B̃1P̃0u‖Hs−m+1

~
+ h−1‖B̃2u‖Hs~ + hN‖u‖Hs0~

. (4.29)

Note that the differential orders are actually irrelevant here due to wave front
set conditions.

14An alternative would be using the gluing result of Datchev and Vasy [17], which is closely
related in approach.

15The apparent sign change here as compared to before comes from the fact that for formally
self-adjoint P̃0, Q̃0, one has 1

2ih

(
(P̃0 − iQ̃0)− (P̃0 − iQ̃0)∗

)
= −h−1Q̃0; notice the minus sign on

the right hand side.
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Proof. Take Q̃0 ∈ Ψ0
~(X) with non-negative principal symbol such that WF′~(Q̃0)

is disjoint from WF′~(B̃0), and so that all backward bicharacteristics from points

not in Γ̃+, as well as forward bicharacteristics from points not in Γ̃−, reach the

elliptic set of Q̃0, and with B̃1 elliptic on the complement of the elliptic set of
Q̃0. Let B̃3 ∈ Ψ0

~(X) to be such that WF′~(I − B̃3) is disjoint from WF′~(B̃0) but

WF′~(Q̃0) ∩WF′~(B̃3) = ∅. Let Ã+ ∈ Ψ0
~(X) have wave front set near Γ̃+, with

WF′~(I − Ã+) ∩WF′~(B̃3) ∩ Γ̃+ = ∅

and with

WF′~(Ã+) ∩WF′~(I − B̃3) ∩ Γ̃− = ∅,
and with no backward bicharacteristic from WF′~(B̃0) reaching

WF′~(Ã+) ∩WF′~(I − B̃3) ∩ Γ̃+.

Take Q̃1 elliptic on Γ̃, with WF′~(Q̃1)∩WF′~(I − B̃3) = ∅, again with non-negative

principal symbol, with no backward bicharacteristic from WF′~(Q̃1) reaching

WF′~(Ã+) ∩WF′~(I − B̃3).

Thus, all backward and forward bicharacteristics of P̃0 reach the elliptic set of Q̃1

or Q̃0. See Figure 2 for the setup.

Figure 2. Setup for the proof of the microlocalized normally hy-
perbolic trapping estimate (4.29): Indicated are the backward and
forward trapped sets Γ+ and Γ−, respectively, which intersect at

Γ (large dot). We use complex absorbing potentials Q̃0 (with

WF′~(Q̃0) outside the large dashed circle) and Q̃1 (with WF′~(Q̃1)

inside the small dashed circle). We obtain an estimate for B̃0u by
combining (4.28) with microlocal propagation from the elliptic set

of B̃2.

Then

(P̃0 − iQ̃0)B̃3u = B̃3P̃0u+ Ã+[P̃0, B̃3]u+ (I − Ã+)[P̃0, B̃3]u− iQ̃0B̃3u,
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so
B̃0u = B̃0B̃3u+ B̃0(I − B̃3)u

= B̃0(P̃0 − iQ̃0)−1B̃3P̃0u+ B̃0(P̃0 − iQ̃0)−1Ã+[P̃0, B̃3]u

+ B̃0(P̃0 − iQ̃0)−1(I − Ã+)[P̃0, B̃3]u

− iB̃0(P̃0 − iQ̃0)−1Q̃0B̃3u+ B̃0(I − B̃3)u,

(4.30)

and by (4.28), for h < h0,

‖(P̃0 − iQ̃0)−1B̃3P̃0u‖Hs~ . h
−2‖B̃3P̃0u‖Hs−m~

.

Now, Q̃0B̃3, B̃0(I − B̃3) ∈ h∞Ψ−∞~ (X), so the corresponding terms in (4.30) can

be absorbed into hN‖u‖Hs0~
. On the other hand, since WF′~((I − Ã+)[P̃0, B̃3]) is

disjoint from Γ̃+, the backward bicharacteristics from it reach the elliptic set of B̃2,
and so we have the microlocal real principal type estimate for u:

‖(I − Ã+)[P̃0, B̃3]u‖Hs−m~
. h‖B̃2u‖Hs−1

~
+ ‖B̃1P̃0u‖Hs−m~

as (I − Ã+)[P̃0, B̃3] ∈ hΨm−1
~ (X), so by (4.28),

‖(P̃0 − iQ̃0)−1(I − Ã+)[P̃0, B̃3]u‖Hs~ . h
−1‖B̃2u‖Hs−1

~
+ h−2‖B̃1P̃0u‖Hs−m~

.

Thus, (4.29) follows if we can estimate ‖B̃0(P̃0 − iQ̃0)−1Ã+[P̃0, B̃3]u‖Hs~ . Now,

WF′~(Ã+[P̃0, B̃3]) ∩ Γ̃− = ∅ by arrangement. In order to microlocalize, we now

introduce a nontrapping model, P̃0 − i(Q̃0 + Q̃1). We claim that

v =
(
P̃0 − i(Q̃0 + Q̃1)

)−1
Ã+[P̃0, B̃3]u− (P̃0 − iQ̃0)−1Ã+[P̃0, B̃3]u

satisfies

‖v‖Hs′~ . h
N‖u‖Hs0~

(4.31)

for all s′, N . Notice that for any s′′ one certainly has

‖v‖Hs′′~
. h−1‖u‖

Hs
′′−1

~

by (4.28) plus its non-trapping analogue. To see (4.31), notice that

(P̃0 − iQ̃0)v = iQ̃1

(
P̃0 − i(Q̃0 + Q̃1)

)−1
Ã+[P̃0, B̃3]u,

so by (4.28), with s0 replaced by any s′0 (since s0 was arbitrary), and for any N ,

‖v‖Hs′~ . h
−2‖Q̃1

(
P̃0 − i(Q̃0 + Q̃1)

)−1
Ã+[P̃0, B̃3]u‖

Hs
′−m

~
. hN‖u‖Hs0~

,

since P̃0− i(Q̃0 + Q̃1) is non-trapping, hence
(
P̃0− i(Q̃0 + Q̃1)

)−1
propagates semi-

classical wave front sets along forward bicharacteristics, and no backward bichar-
acteristic from WF′~(Q̃1) can reach WF′~(Ã+[P̃0, B̃3]) ⊂WF′~(Ã+)∩WF′~(I − B̃3),

proving the claim. Then, since backward bicharacteristics from WF′~(B̃0) do not

encounter WF′~(Ã+[P̃0, B̃3]) ∩ Γ̃+ before reaching the elliptic set of Q̃0 or Q̃1, we
conclude that

‖B̃0(P̃0 − iQ̃0)−1Ã+[P̃0, B̃3]u‖Hs~
≤ ‖B̃0(P̃0 − iQ̃0 − iQ̃1)−1Ã+[P̃0, B̃3]u‖Hs~ + ‖B̃0v‖Hs~
. h‖B̃2u‖Hs~ + ‖B̃1P̃0u‖Hs−m+1

~
+ hN‖u‖Hs0~

.

This proves (4.29), and thus the theorem. �
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5. Quasilinear wave and Klein-Gordon equations

5.1. Forward solution operators. We now generalize the setting considered in
[29, §7.2] for the study of quasilinear equations on static asymptotically de Sit-
ter spaces to allow for normally hyperbolic trapping, as discussed in the previous
section.

Thus, working on a compact manifold M with boundary X, we assume that the
operator P is of the form P = P0 +P̃ , continuously depending on a small parameter
v = v0 + ṽ ∈ X s̃,α, where

P0 = P0(v0) = �g(v0) + L(v0) ∈ Diff2
b(M), (5.1)

L(v0) ∈ Diff1
b(M), L(0)− L(0)∗ ∈ Diff0

b(M),

P̃ = P̃ (v) ∈ H s̃,α
b Diff2

b(M)

for a smooth b-metric g on M that continuously depends on one real parameter;
here, α > 0.16 We assume:

(1) The characteristic set Σ ⊂ bS∗XM of P0 has the form Σ = Σ+ ∪ Σ− with
Σ± a union of connected components of Σ,

(2) P0 has normally hyperbolic trapping at Γ± ⊂ Σ± for small v0, as detailed
in assumptions (1)-(10) in Section 4.2,

(3) P0 has radial sets L± ⊂ bS∗XM , which, in appropriate directions trans-
verse to L±, are sources (−)/sinks (+) for the null-bicharacteristic flow
within bS∗XM , with a one-dimensional stable/unstable manifold intersect-
ing bS∗XM transversally; for details, see [29, §6.4]. In particular, there

are β0, β̃ ∈ C∞(L±), β0, β̃ > 0, such that for a homogeneous degree −1

boundary defining function ρ of fiber infinity in bT
∗
M and with V = ρHp0 ,

ρ−1V ρ|L± = ∓β0, −x−1V x|L± = ∓β̃β0. (5.2)

We will set up initial value problems by introducing artificial boundaries as in
[29, 31]: We denote by t1 and t2 two smooth functions on M and put

Ω = t−1
1 ([0,∞)) ∩ t−1

2 ([0,∞)),

where we assume that:

(4) Ω is compact,
(5) putting Hj := t−1

j (0), the Hj intersect the boundary ∂M transversally, and
H1 and H2 intersect only in the interior of M , and they do so transversally,

(6) the differentials of t1 and t2 have opposite timelike characters near their
respective zero sets within Ω; more specifically, t1 is future timelike, t2 past
timelike,

(7) there is a boundary defining function x of M such that dx/x is timelike on
Ω ∩ ∂M with timelike character opposite to the one of t1, i.e. dx/x is past
oriented,

(8) the metric g is non-trapping in the following sense: All bicharacteristics in
ΣΩ := Σ ∩ bS∗ΩM from any point in ΣΩ ∩ (Σ+ \ (L+ ∪ Γ+)) flow (within
ΣΩ) to bS∗H1

M ∪L+ ∪Γ+ in the forward direction (i.e. either enter bS∗H1
M

in finite time or tend to the radial set L+ or the trapped set Γ+) and

16An example to keep in mind for the remainder of the section is the wave operator on a
perturbed (asymptotically) Kerr-de Sitter space, where the metric of the (asymptotically) Kerr-

de Sitter space is perturbed in H s̃+1,α
b .
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to bS∗H2
M ∪ L+ ∪ Γ+ in the backward direction, and from any point in

ΣΩ∩ (Σ− \ (L−∪Γ−)) to bS∗H2
M ∪L−∪Γ− in the forward direction and to

bS∗H1
M ∪ L− ∪ Γ− in the backward direction, with tending to Γ± allowed

in only one of the two directions.

Recall the space Hs,r
b (Ω)•,− of distributions which are supported (•) at the

‘artificial’ boundary hypersurface H1 and extendible (−) at H2, and the other way
around for Hs,r

b (Ω)−,•. Then we have the following global energy estimates:

Lemma 5.1. (Cf. [29, Lemma 7.3].) Suppose s̃ > n/2 + 2. There exists r0 < 0

such that for r ≤ r0, −r̃ ≤ r0, there is C > 0 such that for u ∈ H2,r
b (Ω)•,−,

v ∈ H2,r̃
b (Ω)−,•, one has

‖u‖H1,r
b (Ω)•,− ≤ C‖Pu‖H0,r

b (Ω)•,− ,

‖v‖H1,r̃
b (Ω)−,• ≤ C‖P

∗v‖H0,r̃
b (Ω)−,• .

Proof. This result does not rely on the dynamical structure of P at the boundary,
but only on the timelike nature of dx/x and of dt1 and dt2 near H1 and H2,
respectively, see also [29, Remark 7.4]. �

Let us stress that we assume the parameter v to be small so that in particular the
skew-adjoint part of P0(v0) is small and does not affect the radial point and normally
hyperbolic trapping estimates which are used in what follows; the general case
without symmetry assumptions on P0(0) will be discussed in Section 5.4. Using a
duality argument and the tame estimates for elliptic regularity and the propagation
of singularities (real principal type, radial points, normally hyperbolic trapping)
given in Propositions 4.1, 4.2 and 4.3 and Theorem 4.4, we thus obtain solvability
and higher regularity:

Lemma 5.2. (Cf. [29, Lemma 7.5].) Let 0 ≤ s ≤ s̃ and assume s̃ > n/2 + 6,
s0 > n/2 + 1/2. There exists r0 < 0 such that for r ≤ r0, there is C > 0 with the

following property: If f ∈ Hs−1,r
b (Ω)•,−, then there exists a unique u ∈ Hs,r

b (Ω)•,−

such that Pu = f , and u moreover satisfies

‖u‖Hs,rb (Ω)•,− . ‖f‖Hs−1,r
b (Ω)•,− + ‖f‖Hs0,rb (Ω)•,−‖v‖X s̃,α . (5.3)

Here, the implicit constant depends only on s and ‖v‖Xn/2+6+ε,α for ε > 0.

Proof. The proof proceeds as the proof given in the reference. The tame estimate
(5.3) in particular is obtained by iterative use of the aforementioned microlocal
regularity estimates; the given bound for s0 comes from an inspection of the norms
in these estimates which correspond to the terms called u`∗ in (4.1). �

We deduce analogues of [29, Corollaries 7.6-7.7]:

Corollary 5.3. Let 0 ≤ s ≤ s̃ and assume s̃ > n/2 + 6, s0 > n/2 + 1/2. There
exists r0 < 0 such that for r ≤ r0, there is C > 0 with the following property: If
u ∈ Hs,r

b (Ω)•,− is such that Pu ∈ Hs−1,r
b (Ω)•,−, then the estimate (5.3) holds.

Corollary 5.4. Let s0 > n/2 + 1/2, s0 ≤ s′ ≤ s ≤ s̃, and assume s̃ > n/2 + 6;
moreover, let r < 0. Then there is C > 0 such that the following holds: Any

u ∈ Hs′,r
b (Ω)•,− with Pu ∈ Hs−1,r

b (Ω)•,− in fact satisfies u ∈ Hs,r
b (Ω)•,−, and

obeys the estimate

‖u‖Hs,rb (Ω)•,− . ‖Pu‖Hs−1,r
b (Ω)•,− + ‖u‖

Hs
′,r

b (Ω)•,−
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+ (‖Pu‖Hs0,rb (Ω)•,− + ‖u‖
H
s0+1,r

b (Ω)•,−
)‖v‖X s̃,α .

Proof. The proof of the two corollaries is as in the cited reference. For the radial
point estimate involved in the proof of Corollary 5.4, we need the additional as-
sumption s′ − 1 + supL±(rβ̃) > 0, which however is automatically satisfied since

s′ ≥ 1 and the sup is negative for r < 0. �

We now note that the Mellin transformed normal operator N̂(P )(σ) satisfies
global large parameter estimates corresponding to the semiclassical microlocal es-
timates of Theorem 4.5. In order to state this precisely we recall the connection
between the b-structure, the normal operator (and the large parameter algebra)
and the Mellin transform of the latter.

The weighted b-Sobolev spaces Hs,γ
b ([0,∞) ×X) are isometric to the large pa-

rameter Sobolev spaces on X on the line Imσ = −γ in C via the Mellin transform
M; see [47, Equation (3.8)]. Further, the latter can be described in terms of semi-
classical Sobolev spaces, namely the restriction r−γ ◦M to Imσ = −γ of the Mellin
transform identifies Hs,γ

b ([0,∞)×X) with

〈|σ|〉−sL2(R;Hs
〈|σ|〉−1(X));

see [47, Equation (3.9)]. Now, in order to relate b-microlocal analysis with semi-
classical analysis, we first identify $ + σ dxx ∈

bT ∗([0,∞) × X), $ ∈ T ∗X, with

(σ,$) ∈ R × T ∗X. Under the semiclassical rescaling, say by |σ|−1, one identifies
the latter with h = |σ|−1, $̃ = |σ|−1$. In particular, if a conic set is disjoint
from T ∗X in bT ∗([0,∞) × X), then its image under the semiclassical identifica-
tion lies in a compact subset of T ∗X. Thus, for B ∈ Ψ0

b([0,∞) × X) dilation
invariant, the large parameter principal symbol and wave front set of the Mellin
conjugateMBM−1 = B̂ of B are exactly those of B under the above identification
of $ + σ dxx ∈

bT ∗([0,∞) × X), $ ∈ T ∗X, with (σ,$) ∈ R × T ∗X, and then the

analogous statement also holds for B̂ considered as an element B̃ of Ψ~(X) under
the semiclassical identification. In particular, one has, for B ∈ Ψ0

b([0,∞)×X) di-

lation invariant, with WF′b(B) ∩ T ∗X = ∅, that B̃ ∈ Ψ−∞|σ|−1(X), with semiclassical

wave front set in a compact subset of T ∗X. Correspondingly, for any s0,

‖Bu‖2Hs,γb
.
∫
σ∈R, |σ|>h−1

0

|σ|2s‖B̂Mu(.− iγ)‖2L2 dσ + ‖u‖2
H
s0,γ

b
.

Now if P0 = P0(v0) ∈ Ψm
b (M), thenN(P0) is dilation invariant on [0,∞)×X, and

its conjugate by the Mellin transform is P̂0 = N̂(P0), whose rescaling P̃0 = |σ|−mP̂0

is an element of Ψm
~ (X). Further, with P0 b-normally hyperbolic in the sense

discussed above (with the convention changed regarding formal self-adjointness, as

stated before Theorem 4.5), P̃0 is normally hyperbolic in the sense of Dyatlov. Fix
a smooth b-density on M near X, identified with [0, ε0) ×X as above; we require

this to be of the product form |dx|
x ν, ν a smooth density on X; we compute adjoints

with respect to this density. Then for any B ∈ Ψm
b (M), B̂∗(σ) = (B̂(σ))∗, see [47,

Section 3.3] for differential operators, and by a straightforward calculation using

the Mellin transform in general. In particular, if B = B∗, then B̂(σ) = (B̂(σ))∗ for
σ ∈ R. Relaxing (5.1) momentarily, we then assume that

1

2i
(P0 − P ∗0 ) ∈ Ψm−1

b (M), σb,m−1

( 1

2i
(P0 − P ∗0 )

)∣∣∣
Γ
< |σ|m−1νmin/2, (5.4)
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with νmin the minimal normal expansion rate for the Hamilton flow of the principal
symbol of P0 at Γ ⊂ bT ∗XM , as above; note that σ is elliptic on Γ. This gives that

for σ ∈ R, P̂0(σ)− P̂0(σ)∗ is order m− 1 in the large parameter pseudodifferential
algebra, so, defining z = σ/|σ|, the semiclassical version gives

P̃0 − P̃ ∗0 ∈ hΨm−1
~ (X), z ∈ R,

with

σ~,m−1

( 1

2ih
(P̃0 − P̃ ∗0 )

)∣∣∣
Γ̃
< νmin/2, z ∈ R,

where Γ̃ is the image of Γ under the semiclassical identification. In particular, there
is γΓ > 0 and βΓ < νmin/2 such that if | Im z| < hγΓ then

σ~,m−1

( 1

2ih
(P̃0 − P̃ ∗0 )

)∣∣∣
Γ̃
< βΓ. (5.5)

With this background, under our assumptions on the dynamics, propagating esti-
mates from the radial points towards H2, in particular through Γ̃, and using the
uniformity in parameters described above Theorem 4.5, we have:

Theorem 5.5. Let C0 > 0. Suppose P0 = P0(v0) satisfies (5.4) at Γ, P̃0 is the

semiclassical rescaling of P̂0 = N̂(P0), s > 1/2 + sup(β̃)γ, s > 1, γ < γΓ, γΓ > 0
as in (5.5). Then there is h0 > 0 such that for h < h0, | Im z| < hγ,

‖u‖Hs~ . h
−2‖P̃0u‖Hs−m+1

~
, (5.6)

with the implied constant and h0 uniform in v0 with |v0| ≤ C0.

Proof. This is immediate from piecing together the semiclassical propagation esti-
mates from radial points (which is where s > 1/2 + sup(β̃)γ is used, see the cor-
responding statement in the b-setting given in [31, Proposition 2.1, Footnote 20])

through Γ̃, using Theorem 4.5, which is where γ < γΓ is used and where h−2, rather
than h−1, is obtained for the right hand side, to H2 ∩X, which is where s > 1 is
used.

An alternative proof would be using Dyatlov’s setting [23] directly, together with
the gluing of Datchev and Vasy [17], exactly as described in [47, Theorem 2.17]. �

Going back to the operator P0(v0) satisfying the conditions stated at the be-
ginning of this section, and under the additional assumption of uniform normal
hyperbolicity as explained above, we can now obtain partial expansions of solu-
tions to Pu = f at infinity, i.e. at X:

Theorem 5.6. (Cf. [29, Theorem 7.9].) Let 0 < α < min(1, γΓ). Suppose P has
a simple rank 1 resonance at 0 with resonant state 1, and that all other resonances
have imaginary part less than −α. Let s̃ > n/2 + 6, s0 > max(n/2 + 1/2, 1 +

sup(β̃)α),17 and assume s0 ≤ s ≤ s̃ − 4. Let 0 6= r ≤ α. Then any solution

u ∈ Hs+4,r0
b (Ω)•,− of Pu = f with f ∈ Hs+3,r

b (Ω)•,− satisfies u ∈ X s′,r with
s′ = s+ 4 for r < 0 and s′ = s for r > 0, and the following tame estimate holds:

‖u‖X s′,r . ‖f‖Hs+3,r
b (Ω)•,− + ‖u‖

H
s+4,r0
b (Ω)•,−

+ (‖f‖Hs0,rb (Ω)•,− + ‖u‖
H
s0+1,r0
b (Ω)•,−

)‖v‖X s̃,α .

17In particular, if we merely assume s0 > n/2 + 1/2, then the full condition on s0 holds if we
choose α > 0 sufficiently small.
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Proof. The proof works in the same way as in the reference by an iterative argument
that consists of rewriting Pu = f as N(P )u = f − (P −N(P ))u and employing a
contour deformation argument, see [47, Lemma 3.1] (which uses high-energy esti-

mates for the inverse normal operator family P̂ (σ)−1 and the location of resonances,
i.e. of the poles of this family), to improve on the decay of u by α in each step, but
losing an order of differentiability as we are treating P − N(P ) as an error term;
using tame microlocal regularity for the equation Pu = f , Corollary 5.4, one can
regain this loss. We obtain u ∈ Hs+1,r

b after a finite number of iterations in case

r < 0,18 and u ∈ Hs+4,r0
b for all r0 < 0 in case r > 0.

Assuming we are in the latter case, the next step of the iteration gives a partial
expansion u = c+u′ with c ∈ C (identified, as before, with cχ, where χ is a smooth

cutoff near the boundary) and u′ ∈ Hs+2,r′

b for any r′ satisfying r′ ≤ r and r′ < α;
here, we need 0 < α < γΓ so that the normally hyperbolic trapping estimate (5.6)
holds with γ > α, with loss of two derivatives. If r = α, we can use this information
to deduce

N(P )u = f − (P −N(P ))u = f − f̃ , f̃ ∈ H s̃,α
b +Hs,r′+α

b ⊂ Hs,r
b ,

which implies that the expansion u = c + u′ in fact holds with the membership
u′ ∈ Hs,r

b ; notice the improvement in the weight. Therefore, u ∈ X s,r, finishing the
proof. �

Pipelining this result with the existence of solutions, Lemma 5.2, we therefore
obtain:

Theorem 5.7. Under the assumptions of Theorem 5.6 with r > 0 and s > n/2+2,
define the space

Ys,r = {u ∈ X s,r : Pu ∈ Hs+3,r
b (Ω)•,−}.

Then the operator P : Ys,r → Hs+3,r
b (Ω)•,− has a continuous inverse S that satisfies

the tame estimate

‖Sf‖X s,r ≤ C(s, ‖v‖X s0,α)(‖f‖Hs+3,r
b (Ω)•,− + ‖f‖Hs0,rb (Ω)•,−‖v‖X s+4,α). (5.7)

5.2. Solving quasilinear wave equations. We continue to work in the setting
of the previous section. With the tame forward solution operator constructed in
Theorem 5.7 in our hands, we are now in a position to use a Nash-Moser implicit
function theorem to solve quasilinear wave equations. We use the following simple
form of Nash-Moser, given in [42]:

Theorem 5.8. Let (Bs, | · |s) and (Bs, ‖ ·‖s) be Banach spaces for s ≥ 0 with Bs ⊂
Bt and indeed |v|t ≤ |v|s for s ≥ t, likewise for B∗ and ‖ · ‖∗; put B∞ =

⋂
sB

s and
similarly B∞ =

⋂
sB

s. Assume there are smoothing operators (Sθ)θ>1 : B∞ → B∞

satisfying for every v ∈ B∞, θ > 1 and s, t ≥ 0:

|Sθv|s ≤ Cs,tθs−t|v|t if s ≥ t,
|v − Sθv|s ≤ Cs,tθs−t|v|t if s ≤ t.

(5.8)

18In particular, this holds under the weaker conditions s+ 1 ≤ s̃, α ≤ 1.
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Let φ : B∞ → B∞ be a C2 map, and assume that there exist u0 ∈ B∞, d ∈ N,
δ > 0 and constants C1, C2 and (Cs)s≥d such that for any u, v, w ∈ B∞,

|u− u0|3d < δ ⇒


∀s ≥ d, ‖φ(u)‖s ≤ Cs(1 + |u|s+d),
‖φ′(u)v‖2d ≤ C1|v|3d,
‖φ′′(u)(v, w)‖2d ≤ C2|v|3d|w|3d.

(5.9)

Moreover, assume that for every u ∈ B∞ with |u−u0|3d < δ there exists an operator
ψ(u) : B∞ → B∞ satisfying

φ′(u)ψ(u)h = h

and the tame estimate

|ψ(u)h|s ≤ Cs(‖h‖s+d + |u|s+d‖h‖2d), s ≥ d, (5.10)

for all h ∈ B∞. Then if ‖φ(u0)‖2d is sufficiently small depending on δ, |u0|D and
(Cs)s≤D, where D = 16d2 + 43d+ 24, there exists u ∈ B∞ such that φ(u) = 0.

To apply this in our setting, we let Bs = X s,α(Ω) = C⊕Hs,α
b (Ω)•,− and Bs =

Hs,α
b (Ω)•,− with the corresponding norms; φ(u) will be the quasilinear equation,

with implicit dependence on the forcing term. We now construct the smoothing
operators Sθ; we may assume, using a partition of unity, that Ω is the closure of an
open subset of Rn+, say Ω = Ω(1), where we let Ω(x0) = {x ≤ x0, |y| ≤ 1}. Then
there are bounded extension and restriction operators

E : Hs,α
b (Ω)•,− → Hs,α

b (Rn+), R : Hs,α
b (Rn+)→ Hs,α

b (Ω)−,−,

for s ≥ 0; the operator E can be constructed such that suppEv ⊂ {x ≤ 1} for
v ∈ Hs,α

b (Ω)•,−. If we then define for θ > 1 and v = (c, u) ∈ X s,α:

S1
θv = (c,RS′θEv),

where S′θ is a smoothing operator on Rn+ with properties as in (5.8), then S1
θ satisfies

(5.8) in view of RE being the identity on Hs,α
b (Ω)•,− if the norms on the left hand

side are understood to be Hs,α
b (Rn+)-norms. However, note that S1

θ does not map
X∞,α into itself, since smoothing operators such as S′θ enlarge supports; we will
thus need to modify S1

θ below to obtain the operators Sθ. In order to construct
S′θ on weighted b-Sobolev spaces Hs,α

b , it suffices by conjugation by the weight
to construct it on the unweighted spaces Hs

b; then, by a logarithmic change of

coordinates, we only need to construct the smoothing operator S̃θ on the standard
Sobolev spaces Hs(Rn), which we will do in Lemma 5.9 below. In order to deal

with the issue of S1
θ enlarging supports, we will define S̃θ such that

v ∈ C∞c (Rnx′,y′), supp v ⊂ {x′ ≤ 0} ⇒ supp S̃θv ⊂ {x′ ≤ θ−1/2}.
In particular, when one undoes the logarithmic change of coordinates, this implies

S1
θ : X s,α(Ω(1))→ X s,α

(
Ω
(
exp(θ−1/2)

))
;

more generally, with Dλ denoting dilations Dλ(x, y) = (λx, y) on Rn+, we have

Sλθ := (D−1
λ )∗S1

θ (Dλ)∗ : X s,α(Ω(λ))→ X s,α
(

Ω
(
λ exp(θ−1/2)

))
, λ > 0, (5.11)

with the operator norm independent of λ near 1. Now, in our application of Theo-
rem 5.8, we will have

φ : X∞,α(Ω(x0))→ H∞,αb (Ω(x0))•,− for all x0 near 1,
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and correspondingly we will have forward solution operators ψ going in the reverse
direction, with all relevant constants being uniform in x0. Looking at the proof of

Theorem 5.8 in [42], one only uses the smoothing operator Sθk with θk = θ
(5/4)k

0

in the k-th step of the iteration, with θ0 chosen sufficiently large; in our situation,
where we have (5.11), we can therefore use the smoothing operator

Sθk := Sλkθk , λk = exp

k−1∑
j=0

θ
−1/2
j


in the k-th iteration step. Note that, for θ0 large, we have

1 = λ0 ≤ λ1 ≤ · · · ≤ λ∞ = exp

 ∞∑
j=0

θ
−1/2
j

 ≤ 1 + 2θ
−1/2
0 .

The solution u to φ(u) = 0, obtained as a limit of an iterative scheme (see [42,
Lemma 1]), therefore is an element of X s,α(Ω(λ∞)). Taking the hyperbolic nature
of the PDE φ(u) = 0 into account once more, it will then, in our concrete setting,
be easy to conclude that in fact u ∈ X s,α(Ω).

We now construct the smoothing operators on Rn; the first step of the argument
follows the Appendix of [42].

Lemma 5.9. There is a family (S̃θ)θ>1 of operators on H∞(Rn) satisfying

‖S̃θv‖s ≤ Cs,tθs−t‖v‖t if s ≥ t ≥ 0, (5.12)

‖v − S̃θv‖s ≤ Cs,tθs−t‖v‖t if 0 ≤ s ≤ t, (5.13)

supp S̃θv ⊆ {x1 ≤ θ−1/2} (5.14)

for all v ∈ H∞(Rn) with supp v ⊆ H := {x1 ≤ 0}. Here ‖ · ‖s denotes the Hs(Rn)-
norm, and we write x = (x1, x

′) ∈ Rn.

Proof. Choose χ = χ1(x1)χ2(x′) ∈ S(Rn) with χ1 ∈ S(R), χ2 ∈ S(Rn−1) so that
the Fourier transform χ̂ is identically 1 near 0; put χθ(z) = θnχ(θz) and define the
operator Cθv = χθ ∗ v. Then (Cθv)̂ = χ̂θv̂ with χ̂θ(ξ) = χ̂(ξ/θ), therefore (5.12)

holds for Cθ in place of S̃θ with constants C ′s,t since χ̂ decays super-polynomially,

and (5.13) holds for Cθ in place of S̃θ with constants C ′s,t since 1 − χ̂(ξ) vanishes
at ξ = 0 with all derivatives.

Next, let ψ ∈ C∞(Rn) be a smooth function depending only on x1, i.e. ψ = ψ(x1),
so that ψ(x1) ≡ 1 for x1 ∈ (−∞, 1/2], ψ(x1) ≡ 0 for x1 ∈ [1,∞), and 0 ≤ ψ ≤ 1.
Put ψθ(x1, x

′) = ψ(θx1, x
′), and define

S̃θv := ψθ1/2Cθv.

Condition (5.14) is satisfied by the support assumption on ψ. Let ϕ = 1 − ψ and
ϕθ = 1− ψθ. To prove the other two conditions, we use the estimate

‖ϕθ1/2Cθv‖s ≤ C ′′s,Nθ−N‖v‖L2 , supp v ⊂ H, s,N ≥ 0, (5.15)

which we will establish below. Taking this for granted, we obtain for v with supp v ⊂
H:

‖S̃θv‖s ≤ ‖Cθv‖s + ‖ϕθ1/2Cθv‖s ≤ C ′s,tθs−t‖v‖t + C ′′s,0‖v‖0
for s ≥ t ≥ 0, which is the estimate (5.12); and (5.13) follows from

‖v − S̃θv‖s ≤ ‖v − Cθv‖s + ‖ϕθ1/2Cθv‖s ≤ C ′s,tθs−t‖v‖t + C ′′s,t−sθ
s−t‖v‖0
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for 0 ≤ s ≤ t.
We now prove (5.15) for s ∈ N0. For multiindices α = (α1, α

′) with |α| ≤ s, we
have for v with supp v ⊂ H and for (x1, x

′) ∈ suppϕθ1/2Cθv, which in particular
implies x1 ≥ 1/(2θ1/2):

∂α(ϕθ1/2Cθv)(x1, x
′) =

α1∑
j=0

(
α1

j

)
θ(α1−j)/2ϕ(α1−j)(θ1/2x1)

×
∫∫

y1≥1/(2θ1/2)

θn+j+|α′|χ
(j)
1 (θy1)χ

(α′)
2 (θy′)v(x1 − y1, x

′ − y′) dy1 dy
′,

thus

‖∂α(ϕθ1/2Cθv)‖L2 ≤ Csθn+s‖χ̌θ‖L1‖v‖L2 ,

where

χ̌θ(x1, x
′) =

{
0, x1 < 1/(2θ1/2),∑α1

j=0 |χ
(j)
1 (θx1)χ

(α′)
2 (θx′)| otherwise.

But ‖χ̌θ‖L1 ≤ CN,sθ−N for all N : Indeed, this reduces to the statement that for a
fixed χ0 ∈ S(R), one has∫ ∞

1/(2θ1/2)

|χ0(θx)| dx ≤ CN
∫ ∞
θ−1/2

(θx)−2N+1 dx = C ′Nθ
−N .

Hence, we obtain (5.15), and the proof is complete. �

We now combine Theorem 5.7, giving the existence of tame forward solution
operators, with Theorem 5.8, in the extended form described above, to solve quasi-
linear wave equations. We use the space X s,αR of real-valued elements of X s,α.

Theorem 5.10. Let N ∈ N and ck ∈ C∞(R;R), gk ∈ (C∞ +H∞b )(M ; Sym2 bTM)

for 1 ≤ k ≤ N ; define the map g : X s,α → (C∞ +Hs,α
b )(M ; Sym2 bTM) by g(u) =∑N

k=1 ck(u)gk and assume that �g(0) satisfies the assumptions of Section 5.1 and
of Theorem 5.7. Moreover, let N ′ ∈ N and define

q(u, bdu) =

N ′∑
j=1

uej
Nj∏
k=1

Xjku, (5.16)

where

ej , Nj ∈ N0, Nj ≥ 1, Nj + ej ≥ 2, Xjk ∈ (C∞ +H∞b )Vb.

Then there exists Cf > 0 such that for all forcing terms f ∈ H∞,αb (Ω;R)•,− satis-
fying ‖f‖

H
max(12,n+5),α
b (Ω)•,−

≤ Cf , the equation

�g(u)u = f + q(u, bdu) (5.17)

has a unique solution u ∈ X∞,αR .

If more generally g(u, bdu) =
∑N
k=1 ck(u,X1u, . . . ,XLu), where X1, . . . , XL ∈

Vb(M) and ck ∈ C∞(R1+L;R), then there exists Cf > 0 such that for all forcing
terms f ∈ H∞,αb (Ω;R)•,− satisfying ‖f‖

H
max(14,n+5),α
b (Ω)•,−

≤ Cf , the equation

�g(u,bdu)u = f + q(u, bdu) (5.18)

has a unique solution u ∈ X∞,αR .
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Proof. We write | · |s for the X s,α-norm and ‖ · ‖s for the Hs,α
b -norm.19 We define

the map
φ(u; f) = �g(u)u− q(u, bdu)− f

and check that it satisfies the conditions of Theorem 5.8 with u0 = 0. From the def-
inition of �g(u) and the tame estimates for products, reciprocals and compositions,
Corollary 3.2 and Propositions 3.4 and 3.7, we obtain

‖φ(u; f)‖s ≤ ‖f‖s + C(|u|s0+2)(1 + |u|s+2), s ≥ s0 > n/2 + 1,

thus the first estimate of (5.9) for 3d ≥ s0 + 2, d ≥ s0, d ≥ 2. Next, we have
φ′(u; f)v =

(
�g(u) + L(u, bdu)

)
v, where the first order b-differential operator L is

of the form

L =
∑
|β|≤1

( ∑
1≤|α|≤2

aαβ(u, bdu)bDαu

)
bDβv +

∑
|β|=1

aβ(u, bdu)ubDβv, (5.19)

with the second sum capturing one term of the linearization of terms uejXj1u in q
(i.e. terms for which Nj = 1). In particular,

φ′(u; f) = P0(u0) + P̃ (u, bDu, bD2u), (5.20)

where P0 ∈ Diff2
b and P̃ ∈ Hs−2,α

b Diff2
b for u ∈ X s,α. Therefore,

‖φ′(u; f)v‖s ≤ C(|u|s+2)|v|s+2, s > n/2 + 1,

which gives the second estimate of (5.9) for 2d > n/2 + 1 and 3d ≥ 2d + 2. Next,
we observe that φ′′(u; f)(v, w) is bilinear in v, w, involves up to two b-derivatives
of each v and w, and the coefficients depend on up to two b-derivatives of u, thus

‖φ′′(u; f)(v, w)‖s ≤ C(|u|s+2)|v|s+2|w|s+2, s > n/2 + 1,

which gives the third estimate of (5.9) for 3d > n/2 + 3, 3d ≥ 2d+ 2. In summary,
we obtain (5.9) for integer d > n/2 + 1.

Finally, we determine d so that we have the tame estimate (5.10): Given u ∈
X s+6,α, we can write φ′(u; f) as in (5.20), with P0 ∈ Diff2

b and P̃ ∈ Hs+4,α
b Diff2

b;
hence, by Theorem 5.7, we obtain a solution operator

ψ(u; f) : Hs+3,α
b → X s,α,

|ψ(u; f)v|s ≤ C(s, |u|s0)(‖v‖s+3 + ‖v‖s0 |u|s+6),
(5.21)

where s, s0 > n/2 + 2, provided |u|s0 is small enough so that all dynamical and
geometric hypotheses hold for φ′(u; f). Notice that the subprincipal term of φ′(u; f)
can differ from that of �g(0) by terms of the form a(u0)u0

bDβ , a ∈ C∞, |β| = 1, see
(5.19); however, since such terms eliminate constants, the simple rank 1 resonance
at 0 with resonant state 1 does not change; and moreover such terms are small
because of the factor u0, hence high energy estimates still hold in a (possibly slightly
smaller) strip in the analytic continuation, see the remark below [23, Theorem 1].
Since s0 is independent of s, we have (5.21) for all s > n/2 + 2, in particular
ψ(u; f) : H∞,αb → X∞,α. Now, (5.21) implies that (5.10) holds for d > n/2 + 2,
d ≥ 6, so we need to control max(12, n+ 5) derivatives of f .

Thus, we can apply Nash-Moser iteration, Theorem 5.8, to obtain a solution
u ∈ X s,α of the PDE (5.17), with the caveat that u is a priori supported on a
space slightly larger than Ω. However, local uniqueness for quasilinear hyperbolic

19For brevity, we do not specify the underlying set, which, in the notation of Section 5.1, is

t−1
1 ([−λ,∞)) ∩ t−1

2 ([0,∞)) for varying λ ≥ 0.
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equations, see e.g. [45, §16.3], implies that u in fact is supported in Ω, and that u
is the unique solution of (5.17), finishing the proof of the first part.

The proof of the second part proceeds in the same way, only we need that d ≥ 7,

which makes the control of the stronger H
max(14,n+5)
b -norm of f necessary. �

Remark 5.11. In the asymptotically de Sitter setting considered in [29], the above
Theorem extends [29, Theorem 8.8], at the cost of requiring the control of more
derivatives, since we allow the dependence of the metric g(u, bdu) on bdu as well.

Remark 5.12. An inspection of the proof of the abstract Nash-Moser theorem 5.8
in [42] shows that there are constants C and s0, depending only on the ‘loss of
derivatives’ d, such that the following holds: In order to obtain a solution u ∈ X s,α
for some finite s ≥ s0, it is sufficient to take f ∈ HCs,α

b , still assuming the norm of
f in the space indicated in the statement of Theorem 5.10 to be small.

Theorem 5.10 immediately implies the following result on Kerr-de Sitter space:

Corollary 5.13. Under the assumptions of Theorem 5.10, the quasilinear wave
equation (5.17), resp. (5.18), on a 4-dimensional asymptotically Kerr-de Sitter space
with |a| � M• has a unique global smooth (i.e. conormal, in the space X∞,α)

solution if the H12,α
b (Ω)•,−-norm, resp. H14,α

b (Ω)•,−-norm, of the forcing term f ∈
H∞,αb (Ω)•,− is sufficiently small.

Proof. For a verification of the dynamical assumptions for asymptotically Kerr-de
Sitter spaces, we refer the reader to [47, §6]; the resonances on the other hand were
computed by Dyatlov [21]. �

5.3. Solving quasilinear Klein-Gordon equations. The only difference be-
tween wave and Klein-Gordon equations with mass m (which is to be distinguished
from the black hole mass M•) is that the resonance of the Klein-Gordon operator
�−m2 with largest imaginary part, which gives the leading order asymptotics, is
no longer at 0 for m 6= 0. Thus, if we sort the resonances σ1, σ2, . . . of �−m2 with
multiplicity by decreasing imaginary part, assume

0 < − Imσ1 < r < − Imσ2,

and moreover that the high energy estimates for the normal operator family of
� −m2 hold in Imσ ≥ −r, the only change in the statement of Theorem 5.6 for
Klein-Gordon operators is that the conclusion now is u ∈ X s−3,r

σ1
, where X s−3,r

σ1
=

C⊕Hs−3,r
b (Ω)•,−, with (c, u′) identified with cxiσ1χ+u′ for a smooth cutoff χ near

the boundary.20 We thus obtain the following adapted version of Theorem 5.7:

Theorem 5.14. In the notation of Section 5.2, under the above assumptions and
for s > n/2 + 2, define the space

Ys,rσ1
= {u ∈ X s,rσ1

: Pu ∈ Hs+3,r
b (Ω)•,−}.

Then the operator P : Ys,r → Hs+3,r
b (Ω)•,− has a continuous inverse S that satisfies

the tame estimate

‖Sf‖X s,rσ1 ≤ C(s, ‖v‖X s0,ασ1
)(‖f‖Hs+3,r

b (Ω)•,− + ‖f‖Hs0,rb (Ω)•,−‖v‖X s+4,α
σ1

). (5.22)

20There are more cases of potential interest: If r < − Imσ1, we obtain u ∈ Hs−3,r
b (Ω)•,−;

if r < 0, the statement of Theorem 5.6 is unchanged; and if Imσ1 and Imσ2 are close enough
together (including the case that σ1 is a double resonance), one gets two terms in the expansion

of u. For brevity, we only explain one scenario here. See also the related discussion in [29, §8.4].
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This immediately gives:

Theorem 5.15. Under the above assumptions and the assumption α < −2 Imσ1,
let N,N ′ ∈ N and ck ∈ C∞(R;R), gk ∈ (C∞+H∞b )(M ; Sym2 bTM) for 1 ≤ k ≤ N ;

define the map g : X s,ασ1
→ (C∞ + Hs,α

b )(M ; Sym2 bTM) by g(u) =
∑N
k=1 ck(u)gk

and assume that �g(0) satisfies the assumptions of Section 5.1 and of Theorem 5.14.
Moreover, define

q(u, bdu) =

N ′∑
j=1

aju
ej

Nj∏
k=1

Xjku,

where

ej , Nj ∈ N0, ej +Nj ≥ 2, aj ∈ C∞, Xjk ∈ (C∞ +H∞b )Vb.

Then there exists Cf > 0 such that for all forcing terms f ∈ H∞,αb (Ω;R)•,− satis-
fying ‖f‖

H
max(12,n+5),α
b (Ω)•,−

≤ Cf , the equation

(�g(u) −m2)u = f + q(u, bdu) (5.23)

has a unique solution u ∈ X∞,ασ1,R .

If more generally g(u, bdu) =
∑N
k=1 ck(u,X1u, . . . ,XLu), where X1, . . . , XL ∈

Vb(M) and ck ∈ C∞(R1+L;R), then there exists Cf > 0 such that for all forcing
terms f ∈ H∞,αb (Ω;R)•,− satisfying ‖f‖

H
max(14,n+5),α
b (Ω)•,−

≤ Cf , the equation

(�g(u,bdu) −m2)u = f + q(u, bdu) (5.24)

has a unique solution u ∈ X∞,αR .

Together with Theorem 5.10, this proves Theorem 2.

Proof of Theorem 5.15. The proof proceeds as the proof of Theorem 5.10. Notice
that we allow the nonlinear term q to be more general, the point being that firstly,
any at least quadratic expression in (u, bdu) with u ∈ X s,ασ1

gives an element of
Hs,α

b , and secondly, every element in X s,ασ1
vanishes at the boundary, thus the

normal operator family of the linearization of �g(u) − m2 − q(u, bdu) − f at any

u ∈ X s,ασ1
is equal to the normal operator family of �g(0) −m2, for which one has

high energy estimates by assumption. �

By [31, Lemma 3.5], the assumptions of Theorem 5.15 are satisfied on asymp-
totically Kerr-de Sitter spaces as long as the mass parameter m is small:

Corollary 5.16. Under the assumptions of Theorem 5.15 and for a and m > 0
sufficiently small, the quasilinear Klein-Gordon equation (5.23), resp. (5.24), on a
4-dimensional asymptotically Kerr-de Sitter space with angular momentum a has a
unique global smooth (i.e. conormal, in the space X∞,ασ1,R ) solution if the H12,α

b (Ω)•,−-

norm, resp. H14,α
b (Ω)•,−-norm, of the forcing term f ∈ H∞,αb (Ω)•,− is sufficiently

small.

5.4. Proofs of Theorems 3 and 4. Finally, following the same arguments as used
in the previous section, we indicate how to prove the general theorems stated in
the introduction. We continue to use, but need to generalize the setting considered
in Section 5.1: Namely, generalizing (5.1), we now allow L to be any first order
b-differential operator, and correspondingly need information on the skew-adjoint
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part of P0; concretely, we define β̂ at the (generalized) radial sets L±, using the
same notation as in (5.2), by

σb,1

( 1

2i
(P0 − P ∗0 )

)∣∣∣
L±

= ±β̂β0ρ. (5.25)

Moreover, at the trapped set Γ = Γ− ∪ Γ+, we assume that

e1|Γ < νmin/2, e1 = |σ|−1σb,1

( 1

2i
(P0 − P ∗0 )

)
, (5.26)

with νmin the minimal normal expansion rate for the Hamilton flow of the principal
symbol of P0, and σ the Mellin dual variable of x after an identification of a collar
neighborhood of X in M with [0, ε′)x ×X; note that σ is elliptic on Γ. Let rth be
the threshold weight for the first part of Theorem 4.4, i.e. rth = − sup e1/c∂ with
c∂ as defined in (4.15).

Then Corollary 5.4 holds in the current, more general setting, provided we as-

sume r < rth and s′ > 1 + supL±(rβ̃ − β̂). Likewise, we obtain the high energy

estimates of Theorem 4.5 under the assumption s > 1/2 + supL±(γβ̃ − β̂).
In order to generalize Theorem 5.6, we first choose 0 < r+ < 1 such that

(e1 + r+c∂)|Γ < νmin/2,

which holds for sufficiently small r+ in view of (5.26) by the compactness of Γ in
bS∗M . We moreover assume that there are no (nonzero) resonances in Imσ > −r+

in the case of Theorem 3 (Theorem 4), and we assume further that 0 < α < r+.
Then in the proof of Theorem 5.6, ignoring the issue of threshold regularities at
radial sets momentarily, we can use the contour shifting argument without loss of
derivatives up to, but excluding, the weight rth, corresponding to the contour of
integration Imσ = −rth. Shifting the contour further down, we cannot use the
non-smooth real principal type estimate at Γ anymore and thus lose 2 derivatives
at each step; the total number of additional steps needed to shift the contour down
to Imσ = −α is easily seen to be at most

N = max

(
0,

⌈
α− rth

α

⌉
+ 1

)
,

hence in order to have the final conclusion that u has an expansion with remainder

in Hs,α
b , we need to assume that u initially is known to have regularity Hs+2N,r0

b

for any r0 ∈ R, which in turn requires s̃ ≥ s + 2N and f ∈ Hs+2N−1,r0
b for the

first, lossless, part of the argument to work. Taking the regularity requirements at
the radial sets into account, we further need to assume s ≥ s0 > max(n+ 1/2, 1 +

sup(rβ̃ − β̂)). Under these assumptions, the proof of Theorem 5.6 applies, mutatis
mutandis, to our current situation, and we obtain a tame solution operator as in
Theorem 5.7, which now loses 2N − 1 derivatives.

Thus, we can prove Theorems 3 and 4 using the same arguments which we used
in the proof of Theorem 5.10; the ‘loss of derivatives’ parameter d now needs to
satisfy the conditions

d ≥ 2N + 3, d > n/2 + 6, d > 1 + sup(rβ̃ − β̂), (5.27)

with the first condition being the actual loss of derivatives, the second one coming
from s > n/2 + 6 certainly being a high enough regularity for s̃ = s + 2N to
be > n/2 + 6, which is required for the application of the non-smooth microlocal
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regularity results, and the last condition being the threshold regularity (for the
non-smooth estimates) at the radial sets.
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