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According to geometric optics, light propagates in straight lines (in
homogeneous media), reflects/refracts from surfaces according to
Snell’s law: energy and tangential momentum are conserved.
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A better description is that light satisfies the wave equation,
Pu=0, Pu= D,_?u — Acu,

A is the Laplacian, so it is ¢? > ij in R”, where c is the
speed of light, Dy, = %ai, with suitable boundary conditions, e.g.
%

u = 0 on the boundary (Dirichlet BC).
One way of discussing the relationship between these is that
singularities (lack of smoothness) of solutions of Pu = 0 follow

geometric optics rays.

In order to orient ourselves, we start with a simple first order PDE.
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Let V be a real C*° vector field on a manifold without boundary,
M. The PDE Vu = 0 states that v is constant along integral
curves of V. In other words, values of u propagate along the
integral curves. For instance, the following propagate:

@ being 0 in a neighborhood of a point,
@ being C¥ or C* in a neighborhood of a point,

@ being L?, or lying in a Sobolev space HS.

If s is a positive integer, H® is the space of functions whose
derivatives up to sth order are in L2, i.e. square integrable.
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Definition

@ Let supp u to be the closure of the set where u is nonzero, i.e.
x ¢ supp u if x has a neighborhood on which u is 0.

@ Let sing supp u to be the set of points which have no
neighborhood on which u is C*°.

Then:
o if Vu=0 and x € supp u, then y € supp u for every y which
is on the integral curve of V through x.

o if Vu= 0 and x € sing supp u, then y € sing supp u for every
y which is on the integral curve of V through x.
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A similar result remains true if we instead have a PDE Pu =0,
where P =V + a, and a is C*°. Note that a does not influence
how the support or singular support propagate.

But what happens if P is replaced by a higher order differential
operator? For instance, consider the wave equation on the line:

D?u — c?D2u = 0.

Factoring the operator as (D; — ¢Dy)(D; + cDy) shows that the
general solution is

u="f(x+ct)+g(x — ct),

i.e. the sum of two propagating waves. Note that the two waves do
not interact with each other at all. But one goes to the left, the
other to the right, so how do we know which one we are to follow?
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Associate a direction as well to the singularities of functions!

We want to say not only whether u is singular at a point, but also
in which direction it is singular. Introduced by Hormander, the set
describing this information is a refinement of sing supp u, and is
called the wave front set of u.

@ On manifolds without boundary X, this is naturally a subset of
the cotangent bundle with the zero section removed, T*X '\ o.

o If X =R7, then T*X =R x R}, so WF(u) consists of
points (z,(), ¢ #0, and it measures whether u is C* at z in
the direction of (.

Could also measure singularities with respect to other spaces:
(X): WF*(u),
@ real analytic functions: WF 4(u).

S
@ Sobolev spaces H} .
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Examples:

® WF(6) ={(0,¢) : ¢ # 0} = N*{0} \ o;

@ if Q has a C* boundary, say Q = {z: f(z) >0}, fis C*,
df # 0 when f =0, and xq is the characteristic function of
Q, then

WF(xq) ={(z,{): z€ 09, ( = Adf(z), A€ R\ {0}}
= N*9Q\ o.

N.B. If Y is a submanifold of X, g € Y, NgY is spanned by
differentials of functions vanishing on Y.
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Basic properties of WF(u) include:
@ WF(u) is a closed conic subset of T*X \ o, i.e.
(z,¢) € WF(u) implies (z, () € WF(u) for A > 0;
@ uis C™ if and only if WF(u) = 0;

e for zg € X, zy ¢ sing supp u (i.e. zy has a neigborhood in X
on which v is C*°) if and only if WF(u) N (T2 X\ o) = 0.
Once one knows WF(u), one may want to know precisely how u is
singular. For solutions of the wave equation this is

@ possible in the boundaryless case,

@ impossible in general when boundaries are present.
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One way to define WF(u), i.e. to microlocalize:

@ consider a class of functions, called symbols. Symbols are
functions a on T*X which are well-behaved as { — o0; e.g.
they are asymptotically homogeneous, say of degree m.

@ quantize. associate pseudodifferential operators
A = Op(a) € V(X) to a. Not canonical.

@ A:C®(X) — C™(X),
o A: H3(X) — H"m(X).
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@ one choice: a(z,¢) = 3" ,j<m 3a(2)¢" = Op(a) = a(z, D;) =
Z|a\§m aa(z)Dza'

e if A€ W™(X), there is a canonical principal symbol o, (A)
associated to it.

® 0m,(A) is a homogeneous degree m function on T*X \ o.

@ if a is a symbol which near infinity is homogeneous of degree
m, then Op(a) € V™(X), and 0,(Op(a)) = a.

® 0m(Xjaj<m 3a(2)DZ) = 22 |0j=m 3a(2)C™.
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Definition

We say (z,¢) € WF(u) if for some asymptotically homogeneous
degree 0 symbol a, with a identically 1 near infinity on the half-line
through (z,¢), Op(a)u € C*(X).

The idea is that Op(a) microlocalizes at supp(a), so Op(a) is a
phase space cutoff.
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X

suppa

Compare with singular support: z ¢ sing supp u if there is
f € C°°(X) identically 1 near z such that fu € C*°(X).
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Definition

If pis a function on T*X, the Hamilton vector field of p is defined
as

o if p is homogeneous degree m with respect to the R™ action,
then H, is homogeneous of degree m — 1.

® H, is invariantly defined, using the symplectic structure of
T X.
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The geometry associated to an mth order (pseudo)differential
operator P arises from p = o,(P) and the structure of T*X

Definition

@ Char(P) = p~1({0}) € T*X\ o is the characteristic set of P;
it is conic (invariant under the R*-action),

@ assuming p is real valued, bicharacteristics vy are integral
curves of the Hamilton vector field H, inside Char(P).

Thus, bicharacteristics v(s) = (z(s), ((s)) satisfy

p(z(s);¢(s)) =0, and

dzj _Op d¢G;  Op
R ACORIOE e ICORIO)

the equations of Hamiltonian mechanics.
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If (M, g) Riemannian manifold, Az > 0 the Laplacian,
P = D,_? — A4 is the wave operator on X = M, x R, then

p(z,t.¢, 1) = o(P) =7 — [z,

the projection to M of the bicharacteristics are geodesics.

Theorem (Hoérmander; 90X = ().)

If P e V™(X), om(P) real, Pu= 0 then WF(u) C Char(P) and
WEF (u) is a union of maximally extended bicharacteristics inside
Char(P).

In other words, singularities of u propagate along bicharacteristics.
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Proofs:

@ Construct an approximation, or parametrix, for the solution
operator. This was the original approach (Hadamard, Lax and
others). It was perfected by Duistermaat and Hormander.

@ Prove microlocal energy estimates, i.e. estimate the L?-norm
of Op(a)u in terms of the L2-norm of Op(b)u, here a, b are
phase space cutoffs.

Roughly, this says that energy on supp a is controlled by
energy in supp b, i.e. energy could only get to supp a from
supp b.
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supp a

DINE
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@ construct an operator, say Op(q), whose commutator with P
has form —i(Op(b)? — Op(a)?), modulo negligible terms,

@ if Pu=0 then
|Op(b)ul®> - |Op(a)ull* ~ (i[P, Op(g)]u, u)

= (i(POp(q) — Op(q)P)u, u)
= <iOp(q)U, ’Du> - <iOp(q)PU, U> =0,
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@ H, enters the picture because the principal symbol of
[P,Op(q)] is +Hpq,
@ so we want
Hpq = b? — &2,

which can be achieved by taking g to be a bump function
along integral curves of H,.
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Below we consider the wave equation
Pu=0, Pu= Dfu —Agu,

on manifolds with corners M with a C* Riemannian metric g;
here Ag > 0 the Laplacian, D; = %8,5, and u is a function (or
distribution, i.e. generalized function) on X = M x R;.
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Manifolds with corners X are locally diffeomorphic to quadrants in
Euclidean spaces, i.e. each point of X has a neighborhood U with
local coordinates (xi,...,Xk, ¥1,---,Yn—k) such that locally X is
given by x3 > 0,...,xx > 0.

The boundary faces of X intersecting U are thus locally of the
form {x; =0, j € J} where J is a subset of {1,...,k}, and have
codimension |J|.

~—4¥2 Wt T3
\

€

Y1 T2 T2
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For a manifold with C* boundary, k < 1 in all local coordinates.

If M has a C* boundary, there is a result very similar to
Theorem 1 due to Melrose, Sjostrand and Taylor. The basic
picture is that when a geodesic hits the boundary kinetic energy
and tangential momentum are conserved, but the normal
momentum may jump. (But its magnitude is conserved!)

Theorem (Melrose-Sjostrand-Taylor, 9M smooth)

If u is an admissible solution of the wave equation, satisfying
Dirichlet or Neumann boundary conditions, then WF,(u) C X is a
union of maximally extended generalized broken bicharacteristics.
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Generalized broken bicharacteristics are now best thought of as
curves in (i.e. continuous maps from an interval into) a compressed
version Y of the characteristic set ¥ = Char(P) in which points in
Y C T*X differing by an element of N*0X are identified.
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Special case — broken bicharacteristic:
e #:¥ — ¥ projection,
@ v_:(a,0] — X and 74 : [0, b) — X are bicharacteristics in
the usual sense,

o #(v+(0)) = #(v-(0)),
@ then the curve
v:(a,b) = X, Y@ = (1), Yp.p) = #(7+),

is a generalized broken bicharacteristic.

If 0X is smooth

@ every normally incident generalized broken bicharacteristic is a
broken bicharacteristic,

@ not true for tangentially incident ones.
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Admissibility: If X is a manifolds with corners equipped with a C*
metric, admissible solutions include all u € L2 _(X) with

due L2 (X; T*X), i.e. all u € HL_(X). More generally, time
derivatives of such u are admissible.

Dirichlet boundary conditions: require u € H3 . .(X), where H3(X)
is the completion of C2°(X°) in the H! norm
V2 = IvlZ. + [ldv]]2,. (Again, can take time derivatives.)

If ue H&lOC(X), u solving the wave equation Pu = 0 means that
/ (DeuDev — (du, dv)g) dgdt =0
X

for all v € H}..(X). There is a similar formulation for Neumann
boundary conditions.
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For admissible solutions of the wave equation on manifolds with
corners, there is also a wave front set (in bT*X\ o;
> C PT*X\ o), due to Melrose, denoted by WF,(u):

@ away from 90X, this is WF(u),

@ at 0X it measures if u is microlocally conormal to 90X relative
to L2(X), i.e. it microlocally tests whether V; ... Vpu € L2(X)
for all vector fields Vi, ..., V,, tangent to 0X.

In local coordinates, this means that we test whether

loc

(x105)™ - . (X Os ) Ot ... 00 Au € L7, (X)

for all @ = (a1,...,an) € N7, where A= Op(a) € Vp(X) is a
microlocalizer.
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Even for elliptic equations, such as Au = 0, on a manifold with
corners, one cannot expect that u is C*, as is shown by the
example of circular sectors of angle (3, in which solutions vanishing
on the sides of the angle have the form

u ~ r"™/B sin(nm /)

in polar coordinates (r,6), in which the sector is 0 < 6 < (3.
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If X has corners:
o to define X, for each face F of X, over F°, identify points in
Y. = Char(P) differing by a covector in N*F.
@ encodes law of reflection: kinetic energy and momentum

tangential to F are conserved, but the normal momentum
may change.
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@ Matching bicharacteristic segments v+ again give rise to
generalized broken bicharacteristics,

@ even for normal incidence these are not the only ones as the
incoming/outgoing rays can be tangent to another boundary
face,

@ the continuation of an incoming ray is not unique: one gets a
whole cone of reflected rays.
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Theorem (Lebeau in the analytic category, A.V.)

If u is an admissible solution of the wave equation, satisfying
Dirichlet or Neumann boundary conditions at codimension one
hypersurfaces, then WF ,(u) C Y is a union of maximally extended
generalized broken bicharacteristics.

This result is optimal for normally incident bicharacteristics y_ in
the sense that in general a solution will have wave front set on all
generalized broken bicharacteristics extending y_.

The result also holds for Sobolev wave front sets WF}'(u), which
measure in X° whether u is microlocally in H_(X°). The proof
relies on positive commutator estimates (microlocal energy
estimates) relative to H'(X) using Melrose's W,,(X) (totally

characteristic operators) as microlocalizers and commutants.
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Is the Sobolev result optimal for normally incident bicharacteristics?

@ ltis,

@ but for a rather large class of solutions of the wave equation,
namely those ‘not focusing' on the corner, it can be improved.

[llustration: spherical waves emanating from a source near the
boundary or corner:

@ most of the spherical wave misses the corner, i.e. only a lower
dimensional part hits it,

@ full dimensional part of the spherical wave hits the boundary
hypersurfaces (or smooth boundary).
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Definition

Suppose F is a corner. Among generalized broken bicharacteristics
hitting the edge F°, the geometric bicharacteristics are those
which are limits of bicharacteristics in Z\ TF.

F
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Expectation: unless one is dealing with a solution that focuses on
the corner, on the ‘non-geometric’ broken bicharacteristics the
reflected wave should be less singular than the incident one.

@ Full result is too hard with the current state of technology.
@ partial results on manifolds with corners (with corners of
arbitrary codimension),

@ the full result in a model setting (manifolds with so-called
edge metrics).
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So we consider an edge (or corner) F, of codimension k, on a
manifold with corners. Near an interior point of F, one has local
coordinates (x1,...,Xk, Y1,---,Yn—k) such that locally X is given
by x; > 0,...,xk >0, and F is given by x =0 (i.e.
X1:...:Xk:0).

Definition

A generalized broken bicharacteristic segment 7o, defined on (0, so)
or (—sp,0), is said to approach F normally as s — 0 if for all j

o x0(6)
s—0+ S

£ 0.

In particular, the projection of vy to M is a geodesic for small

s # 0.
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Definition

Suppose Yo : (—s0,0) — Y is a bicharacteristic approaching F°
normally.

The regular part of the diffracted front emanating from g consists
of non-geometric generalized broken bicharacteristics ~y : (—sp, 1)
extending ~p, such that 7|(0,51) approaches F normally.

Example: fundamental solution of wave equation with pole o near
the edge.
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Theorem (Melrose-V.-Wunsch)

Let F be a codimension k corner of X. Let s be such that the
fundamental solution of the wave equation with pole in X° lies in
HE (X°) for all s' < s.

loc

Suppose also that the pole, o, is on a bicharacteristic ~y normally
incident to F°, sufficiently close to F°.

Then microlocally near the regular part of the diffractive front
emanating from g, and the fundamental solution is in
H; +(k_1)/2(X°) for all s’ < s.

loc

In 2 dimensions, in the analytic category, there is a corresponding
result due to Gérard and Lebeau for conormal incident waves.
There is also a long history of the subject in applied mathematics,
especially in the work of Keller.
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Model: manifolds with edge metrics — manifolds with boundary M,
whose boundary has a fibration, g : OM — Y with compact fibers
Z (without boundary), and a Riemannian metric g compatible
with this fibration.

More precisely, we assume that on a neighborhood U of oM, gis
of the form

g = dx® + 1 h+ x*k
with
@ the boundary defined by x =0,
o he C®([0,€) x Y;Sym? T*([0,¢) x Y)),
@ and k € C>*(U; Sym? T*M);
we further assume that h|,—g is a nondegenerate metric on Y and
k|x=o is a nondegenerate fiber metric.
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Here we extended the fibration 7 to a fibration m: U — [0,€) x Y
on a neighborhood U of oM.

Examples: let M be the real blow up of a C®° submanifold Y of a
manifold without boundary M: M = [M; Y], i.e. introduce ‘polar
coordinates’ around Y in M.

@ the fibers Z are spheres,

@ a smooth metric on M would give rise to an edge metric on
M.

@ e.g. z axis in R3 blown up: cylindrical coordinates
(z,r,0) € R x [0,00) x St. The boundary is r =0 (so x = r),
the fiber is S.

@ Euclidean metric becomes dz2 + dr? + r? d62.
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More interesting case:

M manifold with corners,

(]

M ‘total boundary blow up’ (blow up all corners)
fibers Z have boundary: does not quite fit previous framework,
e.g. 0 € [0, ] rather than 6 € S1,

as long as one stays away from bicharacteristics hitting the
face F° in question tangentially to the other faces, the model
methods still work.

e & ¢ ¢



Precise definitions

Back to generalized broken bicharacteristics:

Definition
If 0X is smooth:

T*X = T*9X U T*X° (disjoint union),

with the natural projection 7w : T*X — T*X. In local coordinates
(X, ¥1,---,Yn—2,t) (where t plays the role of one of the y
coordinates), and dual coordinates (&, 71, ... ,Mn—2,7),

X)y)t)g) »T)s X>0’
7T(X7.y7t7§77777—):{ EO y t ’I’] Z) ) X:O.

If plxmo =72 — &2 =X hymim; = 72 — €2 — n|?,

YN T*OX ={(0,y,t,n,7): |n|*> <73 7 #0}

Similar definition for corners.
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The projection 7 : ¥ — Y gives the topology of ¥. (It is best to
consider ¥ as a subset of the b-cotangent bundle ® T*X, which is a
C° vector bundle over X introduced by Melrose.)

Definition

On manifolds with corners, generalized broken bicharacteristics are
@ continuous maps v : | — i,
o for f continuous real valued on ¥ such that #*f is C*° on ¥,

lim inf foy(s) = for(s)
5—50 sS— 9

> inf{H,#*f(q) : q €2 (v(s0))}-

In the C* setting one can strengthen this definition to rule out
certain bicharacteristics gliding along the boundary, away from
corners.
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For each f as in the definition, the one-sided limits

o Forls) — For(s)
s—spt S—95

exist, and are equal to H,7*f(q+) for some g1 € 771 (7(s0)).

Possibilities for p € ¥ N T*F:
o glancing: #71({p}) consists of one point: 72 = |n|? — rays
through p are tangent to F,

@ hyperbolic: #71({p}) consists of more than one point:
72 > |n|? - rays through p are normal to F,

@ if F has codimension 1, hyperbolic points have exactly two

preimages, £ = ++/72 — |n|?, corresponding to broken
bicharacteristics.
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