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Consider the wave equation

Pu = 0, Pu = D2
t u − ∆gu,

on manifolds with corners M ; here ∆g ≥ 0 the

Laplacian, Dt = 1
i ∂t, i.e. u is a distribution on

X = M × Rt.

If ∂M = ∅, Hörmander’s theorem states that

singularities of u propagate along bicharacter-

istics, in the sense that WF(u) ⊂ Char(P) and

WF(u) is a union of maximally extended bichar-

acteristics inside Char(P). Here recall that

• p = σ2(P) ∈ C∞(T ∗X \ o) is principal sym-

bol of P ,

• Char(P) = p−1({0}) ⊂ T ∗X is the charac-

teristic set of P ,

• bicharacteristics are integral curves of the

Hamilton vector field Hp inside Char(P),

and their projections to M are geodesics.



If M has a C∞ boundary, there is a very sim-

ilar result due to Melrose, Sjöstrand and Tay-

lor. The basic picture is that when a geodesic

hits the boundary kinetic energy and tangen-

tial momentum are conserved, but the normal

momentum may jump. (But its magnitude is

conserved!)

. ....................................................................................................................................................................................................................................................................................................................................... .

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..
..
..
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
.

.

....
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
..........

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.......

R
�

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
.

.

...............................................................................................................................................................................................................................................................

.

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

.

R

R

*

O



Bicharacteristics are now best thought of as

curves in (i.e. continuous maps from an inter-

val into) a compressed version Σ̇ of the char-

acteristic set Σ = Char(P) in which points in

Σ ⊂ T ∗X differing by an element of N∗∂X are

identified.

Thus, one has a projection π̂ : Σ → Σ̇; Σ̇ is

given a topology via π̂. Using Σ̇ encodes the

law of reflection. (In fact, it is best to consider

Σ̇ as a subset of the b-cotangent bundle bT ∗X.)



Generalized broken bicharacteristics are

• continuous maps γ : I → Σ̇,

• for f continuous real valued on Σ̇ such that

π̂∗f is C∞ on Σ,

lim inf
s→s0

f ◦ γ(s) − f ◦ γ(s0)

s − s0
≥ inf{Hpf(q) : q ∈ π̂−1(γ(s0))}.

In the C∞ setting one can strengthen this defi-

nition to rule out certain bicharacteristics glid-

ing along the boundary, away from corners.



The prototypical example is a broken bichar-

acteristic: if γ− : (a,0] → Σ and γ+ : [0, b) → Σ

are bicharacteristics in the usual sense, and

π̂(γ+(0)) = π̂(γ−(0)), then the curve

γ : (a, b) → Σ̇, γ|(a,0] = π̂(γ−), γ|[0,b) = π̂(γ+),

is a (generalized broken) bicharacteristic.

If q ∈ Σ̇ is ‘hyperbolic’, i.e. π̂−1({q}) consists

of more than one (in this case automatically

two) points, then every (generalized broken)

bicharacteristic through q has this form, and

indeed γ is uniquely determined by q. (Not

true in general!)



In the presence of boundaries and corners, one

needs an admissibility criterion for solutions of

the wave equation. If X is a manifolds with

corners equipped with a C∞ metric, we say

that u is admissible if there exists k ∈ R such

that

〈Dt〉
−ku ∈ L2

loc(X) and 〈Dt〉
−kdu ∈ L2

loc(X;T ∗X),

i.e. if 〈Dt〉
−ku ∈ H1

loc(X). Note that imposing

Dirichlet boundary conditions on u amounts to

requiring 〈Dt〉
−ku ∈ H1

0,loc(X), where H1
0(X) is

the completion of C∞
c (X◦) in the H1 norm.

For admissible solutions of the wave equation

on manifolds with corners, there is a wave front

set also in bT ∗X \ o, due to Melrose, denoted

by WFb(u). Away from ∂X, this is simply

WF(u), and at ∂X it measures if u is microlo-

cally conormal to ∂X relative to L2(X), i.e. it

microlocally tests whether V1 . . . Vmu ∈ L2(X)

for all vector fields V1, . . . , Vm tangent to ∂X.



The theorem of Melrose, Sjöstrand and Taylor

in this formulation is that if Pu = 0, u is ad-

missible, and u satisfies Dirichlet or Neumann

boundary condition then WFb(u) ⊂ Σ̇, and it

is a union of maximally extended generalized

broken bicharacteristics in Σ̇. (The result also

holds in the analytic category, although certain

tangential curves that are not bicharacteristics

in the C∞ setting must be allowed there.)

If M , hence X, are manifolds with corners,

and we impose Dirichlet or Neumann bound-

ary conditions on the boundary hypersurfaces,

then the analogous theorem is still true. In the

analytic setting this is due to Lebeau, in the

C∞ setting to A.V.



The definition of Σ̇ in this setting is that if F ◦

is the interior of a boundary face F of X, then

over F ◦, points in Σ differing by a covector

in N∗F are identified. This again is the law of

reflection: kinetic energy as well as momentum

tangential to F are conserved, but the normal

momentum may change.
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Bicharacteristic segments γ± as above again

give rise to generalized broken bicharacteris-

tics, but now even for normally incidence these

are not the only ones as the incoming/outgoing

ones can be tangent to another boundary face.

Notice also that the continuation of an incom-

ing ray is not unique: one gets a whole cone

of reflected rays.

Theorem 1 If u is an admissible solution of

the wave equation, satisfying Dirichlet or Neu-

mann boundary conditions at codimension one

hypersurfaces, then WFb(u) ⊂ Σ̇ is a union of

maximally extended generalized broken bichar-

acteristics.



This result is optimal for normally incident bichar-

acteristics γ− in the sense that in general a

solution will have wave front set on all gener-

alized broken bicharacteristics extending γ−.

The result also holds for Sobolev wave front

sets WFm
b (u), which measure in X◦ whether u

is microlocally in Hm
loc(X

◦). The proof relies

on positive commutator estimates (microlocal

energy estimates) relative to H1(X) using Mel-

rose’s Ψb(X) (totally characteristic operators)

as microlocalizers and commutants.











One can then ask whether the Sobolev result is

optimal for normally incident bicharacteristics.

Indeed it is, but there is a special and rather

large class of solutions of the wave equation,

namely those ‘not focusing’ on the corner, for

which it can be improved.

To see how, remark that not all generalized

broken bicharacteristics are ‘geometric’ in the

sense that they are limits of bicharacteristics

that just miss the corner under consideration.

One expects that, unless one is dealing with

a solution that focuses on the corner, on the

‘non-geometric’ broken bicharacteristics the re-

flected wave should be less singular than the

incident one.



This is most easily illustrated by spherical waves

emanating from a source near the boundary

or corner. Then most of the spherical wave

misses the corner (i.e. only a lower dimensional

part hits it), unlike in the case of a spherical

wave hitting a smooth boundary. Thus, one

expects that part of the solution comprising

the reflected rays from the corner, but away

from the reflected rays from the boundary hy-

persurfaces, is less singular than the spherical

wave.

With the current state of technology the geo-

metric improvement at corners is too hard to

obtain, although the machinery used in obtain-

ing the ‘model’ result below can be adapted

to get certain partial results on manifolds with

corners (with corners of arbitrary codimension).

In the codimension 2 corner setting, in the an-

alytic category, there is a corresponding result



due to Gérard and Lebeau for conormal inci-

dent waves. There is also a long history of

the subject in applied mathematics, especially

in the work of Keller.



So we consider a model which is a manifold

(M̃, g) with boundary equipped with a singular

Riemannian metric of ‘edge-type’:

• ∂M̃ has a fibration φ0 : ∂M̃ → Y , with com-

pact fiber Z,

• M̃ has a boundary defining function x,

• near ∂M̃,

g = dx2 + φ∗h + x2k

with h ∈ C∞([0, ε)× Y ; Sym2T ∗([0, ε)× Y ))

and k ∈ C∞(U ; Sym2T ∗M̃); we further as-

sume that h|x=0 is a nondegenerate metric

on Y and k|x=0 is a nondegenerate fiber

metric.

Here we extended the fibration φ0 to a fibration

φ : U → [0, ε)× Y on a neighborhood U of ∂M̃.





A typical example is if we blow-up a subman-

ifold Y of Rn (or any Riemannian manifold)

and lift the metric to the blown-up space M̃ =

[Rn;Y ]. In other words, we introduce ‘geodesic

polar coordinates’ around Y , although in this

case the propagation of singularities result is

trivial, for the metric on Rn is not singular at

Y . The fibers Z in this case are spheres, of

dimension equal to codimY −1, while the base

is Y . A more interesting example is obtained

in this case if the metric is altered, provided it

still has the same form.

The truly relevant setting for us arises by tak-

ing a domain with corners M in Rn, or taking

a manifold with corners M as before, and blow

up all corners, in order of increasing dimension

(or inclusions) to obtain the total boundary

blow-up M̃ of M . In this case, however, M̃

itself is a manifold with corners, and the fibers

Z are manifolds with boundary or corners.



As we study the wave equation, we work with

X̃ = M̃ × Rt, which still has a fibration, with

base Y × R and fiber Z.

Much like before, there are two phase spaces

and characteristic sets (analogues of Σ and Σ̇):

• the identification giving Σ̇ is not only in the

momenta, but also in the base space X̃,

• the compressed (or collapsed) version of

X̃ is Ẋ = X◦ ∪ (Y × Rt) (disjoint union),

with the projection over ∂X̃ given by the

fibration φ0 × idt,

• if X̃ is the blow-up of a space X, then Ẋ =

X,

• over the interior X̃◦ of X̃, the characteristic

sets are p−1({0}) ∩ T ∗X̃◦,



• at ∂X, Σ̇ is obtained from Σ by identifying

covectors with differing dx and x dz com-

ponents and dropping the fiber coordinate

z.



Generalized broken bicharacteristics are defined

as curves in Σ̇, using a Hamilton vector field

condition on Σ. Their projection to Ẋ is con-

tinuous – they usually do not lift to continuous

curves on X̃.

The theorem on the propagation of singulari-

ties for solutions u of the wave equation holds

as before. It is again proved by positive com-

mutator estimates, using Ψb(X̃) as microlocal-

izers.



Suppose now that γ0 : (0, t0) → T ∗X̃◦ is a

bicharacteristic segment, approaching the bound-

ary normally as t → 0. Then the projection of

γ0 to M̃ is a geodesic; this geodesic extends to

a smooth curve c defined on [0, t0). In partic-

ular c(0) ∈ ∂X̃ is well-defined; we say that γ0

is outgoing from c(0).

Let Γ denote the set of all generalized broken

bicharacteristics extending γ0 (extending back-

wards is the interesting part here).

The theorem on the propagation of singulari-

ties states that if

Γ−ε =
⋃
{γ((−ε,0)) : γ ∈ Γ}

is disjoint from WFb(u), then so is the image

of γ0; similarly for WFm
b (u).



Among bicharacteristics hitting the edge nor-

mally, the geometric bicharacteristics are those

which are limits of bicharacteristics in T ∗X̃◦. It

is straightforward to make this concrete: this

means that the incident and outgoing points

for the corresponding geodesic lie in the same

fiber, distance π away from each other with

respect to the fiber metric k.

If M̃ arises from a blow-up [M ;Y ], the front

face of [M ;Y ] is isomorphic to the spherical

normal bundle of Y , i.e. points in the same

fiber correspond to approaching Y from dif-

ferent (normal) directions, so, if the metric is

just a metric on M lifted by the blow-down

map, distance π corresponds exactly to going

‘straight’ in M , without breaking at Y .



The non-focusing assumption can be stated

via the ‘backward flow-out’ F− of the edge mi-

crolocally near Γ−ε. Here F− consists of bichar-

acteristics hitting the edge. Away from the

edge, F− is a smooth coisotropic submanifold

of T ∗X̃◦, and indeed it extends to a smooth

submanifold of the edge cotangent bundle, eT ∗X̃,

which we discuss later.

Let M be the set of first order ps.d.o’s with

symbol vanishing along F−, and let Mj be the

set of finite sums of products of at most j

factors, each of which is in M.

The non-focusing condition of order r′ for γ0

is that, for some ε > 0, microlocally near Γ−ε,

and for some N ,

u =
∑

Ajvj, Aj ∈ MN , vj ∈ Hr′.



We still need the analogue of boundary condi-

tions, which in this case are obtained by taking

the self-adjoint realization of the Laplacian to

be the Friedrichs extension of the Laplacian on

C∞
c (M̃◦):

• the quadratic form domain D is defined as

the completion of C∞
c (M̃◦) with respect to

the norm ‖u‖2
L2

g
+ ‖du‖2

L2
g
,

• the domain of ∆ is D2 = {u ∈ D : ∆u ∈

L2
g}.

In general, Ds will denote the domain of ∆s/2.

An admissible solution of the wave equation

Pu = 0, P = D2
t − ∆, is then one satisfying

u ∈ L2(R;Ds), Dtu ∈ L2(R;Ds−1),

for some s ∈ R. For s = 1, this states that

u ∈ L2(R;D), Dtu ∈ L2(R;L2
g).



Theorem 2 Suppose that (M̃, g) is a manifold

with an edge metric, X̃ = M̃ × R, and u is an

admissible solution of Pu = 0, P = D2
t − ∆.

Let γ0 be a bicharacteristic segment as above,

and suppose that u satisfies the non-focusing

assumption of order r′ for γ0.

Then for R < r′, γ0 ∩ WFR(u) = ∅ provided

that, for some ε > 0, all geometric general-

ized broken bicharacteristics γ ∈ Γ extending

γ0 satisfy γ((−ε,0)) ∩ WFR(u) = ∅.

That is, singularities of order R < r′ can only

propagate into γ0 from geometric generalized

broken bicharacteristics extending it.



The proof of this theorem relies on

• the propagation of singularities, in the sense

of a compressed phase space, and

• the microlocal propagation of coisotropy.

Thus, along bicharacteristics which are not ge-

ometrically related to incoming bicharacteris-

tics carrying singularities, one shows that u

is coisotropic of an order given by the back-

ground regularity of u – this does not require

the non-focusing hypothesis. (The ‘background

regularity’ is the regularity along all related in-

coming bicharacteristics, not only the geomet-

ric ones.)

The combination of non-focusing (which is dual

to coisotropy) and coisotropy gives the im-

proved result of the theorem via interpolation.



This statement is quite natural: the non-focusing

condition, in this form, states that while u ∈

Hr′−N only, it is in a better space, Hr′, ‘to

finite order along Γ’ (rather than in any neigh-

borhood of Γ), as reflected by the presence

of MN in the condition. (This ‘finite order’

corresponds to saying that an operator in M,

while first order, is in fact zeroth order to ‘first

order along F−’.) Thus, modulo Hr′, one can

expect singularities to follow limits of integral

curves of Hp, i.e. geometrically related broken

bicharacteristics.

In the conic setting, where Y is a point, the

metric can be brought to the form g = dx2 +

x2k near x = 0, ∆Z ∈ M2. Thus, the non-

focusing assumption is equivalent to the non-

focusing assumption used in previous work of

Melrose and Wunsch for conic points: u =

(∆Z + 1)Nv, with v microlocally in Hr′.



Lagrangian distributions, such as the funda-

mental solution with initial condition a delta

distribution near, but not at, the edge, of-

ten satisfy the non-focusing condition simply

by virtue of the Lagrangian Λ intersecting the

coisotropic manifold F− transversally inside the

characteristic set.

Inside Λ, the codimension of this intersection

is the dimension f of the fibers (i.e. in the

corner setting this would be the codimension

of the corner before the blow up, minus 1),

which implies that u satisfies the non-focusing

condition with an improvement of f/2.

Roughly speaking, a Lagrangian distribution u

associated to Λ is smooth along Λ, so one can

divide u by some first order factors vanishing at

F− ∩Λ (symbols of ps.d.o.’s) and still improve

Sobolev regularity.



One can associate to a boundary fibration φ0×

idt an edge tangent bundle, eTX̃, whose smooth

sections are the vector fields on X̃ which are

tangent to φ0 × idt.

In local coordinates (x, y, z) as above, so zj are

the fiber variables, yj are coordinates on Y ×Rt,

these vector fields have the form

ax∂x +
∑

bjx∂yj +
∑

cj∂zj ,

with a, bj, cj ∈ C∞(X̃) arbitrary. Correspond-

ingly, eTX̃ is locally spanned by x∂x, x∂yj , ∂zj.

The dual bundle is the edge cotangent bundle,
eT ∗X̃; it is spanned by dx

x ,
dyj
x , dzj, with corre-

sponding dual coordinates ξ, ηj, ζj.

The analogue of the phase space T ∗X from

beforehand (M a manifold with corners with a

non-degenerate Riemannian metric) is xeT ∗X̃:

this consists of covectors of finite length.



• The principal symbol p = σ2(P) has the

property that x2p ∈ C∞(eT ∗X̃ \ o),

• the characteristic set Σ = p−1({0}) is a C∞

submanifold of eT ∗X̃ \ o,

• the Hamilton vector field Hp is such that

W = x2Hp is a C∞ vector field on eT ∗X̃ \o,

tangent to its boundary and to Σ,

• in Σ, W is radial only at ∂X̃, and there pre-

cisely at the set R of points (0, y, z, ξ, η, ζ)

with ζ = 0,

• working on eS∗X̃ = (eT ∗X̃\o)/R+, the non-

tangential flow-out F of the edge is the

stable/unstable submanifold of R′ = R/R+

outside x = 0 (depending on the sign of ξ;

ξ 6= 0),



• maximally extended integral curves of W

over ∂X̃ conserve the ‘slow variables’ (y, η),

the projections to ∂X̃ are (reparameter-

ized) geodesics in Z of length π; they tend

to the radial set R′ as s → ±∞.

The result on the propagation of coisotropy

is thus a result on propagation through radial

points, and is thus related to earlier work of

Hassell-Melrose-V. It roughly states that if a

solution of the wave equation is coisotropic

along bicharacteristics flowing towards a radial

point, then it has no edge wave front set on

bicharacteristics flowing out of this radial point

inside the boundary, and conversely. (This

statement needs to be made a little more pre-

cise.)

The propagation of singularities theorem on

the compressed phase space only keeps track

of the ‘slow variables’ at the edge.



One can also describe Ds rather explicitly. For

0 ≤ s < f+1
2 , where f = dimZ,

Ds = xsHs
e(M̃),

where Hs
e(M̃) is the Sobolev space associated

to Ve(M̃), consisting of smooth sections of
eTM̃ , relative to L2

g(M̃). For general s, a sim-

ilar description is possible, and one can also

describe the admissibility criterion for solutions

of the wave equation similarly.


