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Abstract. We consider the wave equation on asymptotically Minkowski spacetimes
and the Klein-Gordon equation on even asymptotically de Sitter spaces. In both
cases we show that the extreme difference of propagators (i.e. retarded propagator
minus advanced, or Feynman minus anti-Feynman), defined as Fredholm inverses,
induces a symplectic form on the space of solutions with wave front set confined to
the radial sets. Furthermore, we construct isomorphisms between the solution spaces
and symplectic spaces of asymptotic data. As an application of this result we obtain
distinguished Hadamard two-point functions from asymptotic data. Ultimately, we
prove that the corresponding Quantum Field Theory on asymptotically de Sitter
spacetimes induces canonically a QFT beyond the future and past conformal horizon,
i.e. on two even asymptotically hyperbolic spaces. Specifically, we show this to be
true both at the level of symplectic spaces of solutions and at the level of Hadamard
two-point functions.

1. Introduction and summary of results

1.1. Introduction. As understood nowadays, the rigorous construction of a non-
interacting Quantum Field Theory associated to a hyperbolic differential operator P
on a given spacetime (M◦, g) is crucially based on two ingredients. The first one is the
existence of advanced and retarded (also called backward and forward) propagators
P−1
± , i.e. inverses of P that solve the inhomogeneous problem Pu = f for f vanishing

at respectively future or past infinity1. The relevant properties of the propagators that
one seeks to prove crucially rely on decay estimates (or support properties) of P−1

± f
given decay (or compact support) of f . Specifically, one needs for instance to show
that the formal adjoint of P−1

+ is P−1
− , so that P−1

+ − P−1
− is anti-hermitian (or, by

abuse of terminology, symplectic) when identified with a sesquilinear form using the
volume density. Then by acting with P−1

+ − P−1
− on say, test functions, one gets a

space of solutions equipped with the induced symplectic form. One obtains this way a
symplectic space2 of solutions of P that physically represents the classical field theory.

The second ingredient one needs is a way to specify a quantum state. Without going
into details (cf. Appendix A), this can be conveniently reformulated as the problem
of constructing two-point functions (here more specifically bosonic ones), which in the

Key words and phrases. Quantum Field Theory on curved spacetimes, asymptotically Minkowski
spaces, asymptotically de Sitter spaces, asymptotically hyperbolic spaces, Hadamard condition.
1The convention for the signs in P−1

± is taken to be different from the one used typically in the QFT
literature, for the sake of consistency with e.g. [52].
2By abuse of terminology we consider symplectic forms to be sesquilinear.
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present setup will be pairs of operators Λ± acting, say, on test functions, such that

(1.1) PΛ± = Λ±P = 0, Λ+ − Λ− = i(P−1
+ − P−1

− ), Λ± ≥ 0,

where positivity refers to the canonical sesquilinear pairing obtained from the volume
form. In the case of globally hyperbolic spacetimes (cf. recent reviews [31, 39]), the
present consensus is that physically reasonable two-point functions should in addition
satisfy the Hadamard condition

(1.2) WF′(Λ±) =
⋃
t∈R Φt(diagT ∗M◦) ∩ π−1Σ±,

where
⋃
t∈R Φt(diagT ∗M◦) is the flowout of the diagonal in (T ∗M◦ × T ∗M◦) \o by the

bicharacteristic flow of the wave operator 2g (Φt acts on the left component), Σ± are the
two connected components of its characteristic set and π projects to the left component.
Such operators do exist indeed in the case of the Klein-Gordon and wave equation
[20, 22] and are unique modulo smooth terms (i.e. modulo operators with smooth
kernel) [46]. This key result is fundamentally based on Duistermaat and Hörmander’s
real principal type propagation of singularities theorem [16]. Since one is however
interested in setting up QFTs on more general manifolds [37, 58], potentially with
boundary [38, 59], one is naturally led to revisit propagation of singularities theorems
and their connections to inverses of P .

Incidentally, all these ingredients are reassembled in a recent approach to propa-
gation estimates that uses microlocal analysis in a global setup [53, 30, 29, 25]. The
main technical feature are propagation of singularities theorems that (in contrast to
Hörmander’s work) are also valid near radial sets, where the bicharacteristic flow degen-
erates. These are expressed as estimates microlocalized along the bicharacteristic flow,
which then can be combined to yield a global estimate at least if one can get around
potential issues induced by trapping. Ultimately, if this is the case, the estimate in
question translates to the Fredholm property of P acting between several choices of
Hilbert spaces XI , YI , whose precise definition depends on the details of the setup
and refers in particular to the bicharacteristic flow. One obtains this way generalized
inverses P−1

I , whose wave front set can be deduced from their mapping properties.
Before discussing this in a more specific setup, let us point out the main difficulty in

adapting this strategy to the construction of two-point functions. Although one could
fairly easily define a pair of operators Λ± satisfying the Hadamard condition (1.2) by
taking the difference of two adequately chosen inverses of P , one would not expect the
positivity condition Λ± ≥ 0 to hold apart from exceptional cases (even though under
quite general assumptions it is actually possible to get this way Λ+ + Λ− ≥ 0, cf. [52]).
One possible alternative is to define Λ± by specifying its asymptotic data, in terms of
which positivity can be hoped to be realized explicitly. In fact, this strategy has already
been successfully applied indeed in the case of the conformal wave equation on a class
of asymptotically flat spacetimes [44, 45, 21] (see also [10, 13, 14] for other classes of
spacetimes), where one can consider as data at future null infinity the characteristic
Cauchy data for a conformally rescaled metric. Recent advances show also that one
can define Hadamard states for some asymptotically flat spacetimes using tools from
scattering theory [24]. An additional motivation for this point of view is that in QFT
one is interested in constructing two-point functions with specific global or asymptotic
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properties (including symmetries): this has been a very active field of study recently
[10, 12, 13, 44, 48] and is still the subject of many conjectures.

In the present paper we consider the (rescaled, see below) wave operator P on

asymptotically Minkowski spacetimes and the Klein-Gordon operator P̂X on a class
of asymptotically de Sitter spacetimes. Asymptotic data of solutions will be realized
by regarding solutions as conormal distributions of a certain type, and then global in-
verses of P and P̂X (also called propagators) will serve us to construct the associated
Poisson operators, i.e. the maps that assign to given asymptotic data the corresponding
solution.

QFT on asymptotically Minkowski spacetimes. As an illustration of our setup,
we start with the special case of the radial compactification of Minkowski space.

Namely, if M◦ = R1+d is Minkowski space with its metric g = dz2
0 − (dz2

1 + · · · +
dz2
d), we replace it by a compact manifold with boundary M by making the change

of coordinates zi = ρϑi (with ϑi coordinates on the sphere Sd) away from the origin,
and then gluing a sphere at infinity, i.e. the boundary of M is ∂M = {ρ = 0} with

ρ = (z2
0 + z2

1 + · · · + z2
d)−1/2. In the setup of Melrose’s b-analysis [41], which lies at

the heart of our approach, regularity and decay are measured relatively to weighted b-

Sobolev spaces Hm,l
b (M) = ρlHm

b (M), where (away from the origin, and in a particular
spherical coordinate chart Ui, say ϑj , j = 0, . . . , n, j 6= i) the b-Sobolev space Hm

b (M)

is essentially the Sobolev space Hm(R1+d) in coordinates (− log ρ, {ϑj : j 6= i}) ∈
R × U ⊂ R × Rd. The space of smooth functions vanishing to arbitrary order at the

boundary can be conveniently characterized as Ċ∞(M) =
⋂
m,l∈RH

m,l
b (M) and its dual

provides a useful space of distributions denoted C−∞(M).

The definition of Hm,l
b (M) can be modified to allow for orders m that vary on M

and in the dual variables [55]. Specifically, we will need here m to be monotone along
the (suitably reinterpreted, cf. Subsect. 2.3) bicharacteristic flow and for each of the
two connected components Σ±, m needs to be larger than the threshold value 1

2− l near

one of the ends and smaller than 1
2 − l near the other. This gives in total four distinct

choices that we label by a subset I ⊂ {+,−} that indicates the components of Σ+∪Σ−

along which m is taken to be increasing. For any such (m, l), the choice of m is actually
immaterial in terms of the Fredholm/invertibility properties discussed below, as long as
the properties described above, including the ends at which the particular inequalities
hold, are kept unchanged. The main outcome of the recent work of Gell-Redman,
Haber and Vasy [25] that we use here is that the rescaled wave operator

P ··= ρ−(d−1)/2ρ−22gρ
(d−1)/2 : XI → YI

is Fredholm as an operator acting on the Hilbert spaces

XI ··=
{
u ∈ Hm,l

b (M) : Pu ∈ Hm−1,l
b (M)

}
, Ym,l ··= Hm,l

b (M),

for any m, l consistent with the choice of I ⊂ {+,−}, apart from a discrete set of
values of l; P is actually invertible for |l| small; and the same holds true if M is a small
perturbation of (radially compactified) Minkowski spacetime. With the conventions
used in the present paper, the operators P−1

{±}, denoted also P−1
± , are precisely the

retarded/advanced propagators. On the other hand, the remaining two, P−1
∅ and



Quantum fields from global propagators on asymptotically Minkowski and de Sitter spacetimes 4

P−1
{+,−} are named Feynman and anti-Feynman propagator [25] and we show that they

have indeed the same wave front set as the Feynman/anti-Feynman parametrices of
Duistermaat and Hörmander [16].

Our first result directly relevant for QFT on perturbations of Minkowski space is
that, for l not in the discrete set above, the extreme propagator difference defines a
bijection

(1.3) P−1
I − P−1

Ic :
H∞,lb (M)

PH∞,lb (M)
−→ Sol(P ),

whereH∞,lb (M) =
⋂
m∈RH

m,l
b (M) and Sol(P ) consists of solutions of P that are smooth

in the interior M◦ of M (more precisely, with b-wave front set only at the radials
sets). Furthermore, P−1

I − P−1
Ic is formally anti self-adjoint [52], therefore by (1.3),

for l = 0 this induces a symplectic form on Sol(P ). In the advanced/retarded case
I = {±} the resulting symplectic space of solutions represents the classical (bosonic)
field theory (in fact, in our setup it plays the same role as the space of smooth space-
compact solutions in standard formulations, cf. [3]). On the other hand, the validity
of (1.3) in the Feynman/anti-Feynman case (I = ∅/{+,−}) is far more puzzling as
it seems to have no direct analogue in well-known QFT constructions. Let us point
out, however, that by a recent result [52], i−1(P−1

I − P−1
Ic ) is positive for I = ∅ (when

appropriately identified with a sesquilinear form, cf. Subsect. 4.1), therefore in that
case the spaces (1.3) meet all the formal requirements for a fermionic classical field
theory (indeed from the mathematical point of view one needs a pre-Hilbert space,
as opposed to bosonic field theory where a symplectic space suffices, cf. for instance
[15]). While we restrain ourselves from interpreting this observation too literally, the
use of fermionic terminology will turn out to be helpful in our discussion of two-point
functions constructed from asymptotic data.

Before discussing the latter in more detail, let us point out that after suitable modifi-
cations our result (1.3) also applies to the class of asymptotically Minkowski spacetimes
considered by Baskin, Vasy and Wunsch [6] and Hintz and Vasy [29], which includes
(globally hyperbolic) small perturbations of Minkowski space, but is also believed to
include some non globally hyperbolic examples3, cf. Section 2 for the precise assump-
tions. In this greater generality, the work of Gell-Redman, Haber and Vasy gives the
Fredholm property of PI ··= P : XI → YI rather than its invertibility (unless for in-
stance I = {±} and M◦ is globally hyperbolic) for all l ∈ R except for a discrete subset
corresponding to resonances. Consequently P−1

I makes sense merely as a generalized
inverse, mapping from the range of PI to a predefined complement of the kernel of PI .
Nevertheless, the spaces in (1.3) can be modified by removing some finite dimensional
subspaces in such way that one still gets an isomorphism of symplectic spaces and thus
a reasonable field theory. Furthermore, we show that the generalized inverses P−1

I are
distinguished parametrices in the sense of Duistermaat and Hörmander [16] (i.e. have
the correct wave front set) provided one has a smooth kernel, specifically

(1.4) KerPI ⊂ H∞,lb (M),

3The problem of constructing examples of such non globally hyperbolic spacetimes is the subject of
ongoing work.
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where strictly speaking KerPI is the intersection of the kernel of PI over all choices
of the orders m compatible with I. Although this assumption still needs to be bet-
ter understood in the advanced/retarded case (unless M◦ is globally hyperbolic, in
which case (1.4) is trivial), we prove that (1.4) is actually automatically satisfied in the
Feynman/anti-Feynman case at least for l = 0.

Four types of asymptotic data. Our construction of distinguished Hadamard two-
point functions (as well as the proof of (1.4) in the (anti-)Feynman case) is based on
making explicit an isomorphism between the space of solutions Sol(P ) and the sym-
plectic space of their asymptotic data, to a large extent basing on the work of Baskin,
Vasy and Wunsch on asymptotics of the radiation field [6]. If M◦ is actual Minkowski
space, we thus introduce the coordinate v = ρ2(z2

0 − (z2
1 + · · · + z2

d)) and then the
submanifold {ρ = 0, v = 0} is the union of two connected components denoted S±
and representing the lightcone at future/past null infinity. More generally, on asymp-
totically Minkowski spacetimes there is a coordinate v with similar features, with two
components of {ρ = 0, v = 0} also denoted S±.

S+

S−

ρ∂ρ

v > 0

v > 0

v < 0

Figure 1. Radially compactified Minkowski space M .

Completing the coordinates ρ,v with some y and denoting γ the dual variable of
v, one has as a direct consequence of [6] that near S+ (and similarly near S−), any
solution u ∈ Sol(P ) can be written as the sum of two integrals of the formˆ

ρiσeivγ |γ|iσ−1a±+(σ, y)χ±(γ)dγdσ

modulo terms with above-threshold regularity (i.e. in Hm,l(M) for some m > 1
2 − l),

with χ± smooth and supported in ±[0,∞). Here a±+(σ, y) are holomorphic functions
of σ in a half plane with values in C∞(S+), rapidly decaying in Reσ, and they define
a pair of asymptotic data of u that we denote %+u. Similarly one can define data at
past null infinity %−u = (a+

−, a
−
−), or consider one piece of data at future infinity and

the other at past infinity: we call this Feynman %∅u ··= (a+
+, a

+
−) and anti-Feynman

data %{+,−}u ··= (a−+, a
−
−). Note that in all cases γ > 0 corresponds to sinks, γ < 0 to

sources, of the bicharacteristic flow, so in the Feynman case the data are at the sinks,
while in the anti-Feynman case at the sources. The corresponding propagators P−1

I
are then used to construct Poisson operators PI , i.e. inverses of %I . Most importantly,
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for any choice of I, if any of the two pieces of %I -data of a solution u ∈ Sol(P ) vanishes
then u has wave front set only in one of the two connected components Σ± of the
characteristic set of P (in the sense of the usual wave front set in the interior M◦).
(This is related to (a+

+, a
−
−) not being appropriate data: they are at the sink and source

in the same component of Σ.) As a consequence, denoting π± the projections to the
respective piece of data, by letting

(1.5) Λ±I ··= (P−1
I − P−1

Ic )∗%∗Iπ
±%I(P

−1
I − P−1

Ic )

we eventually obtain pairs of operators that satisfy Λ±I ≥ 0, PΛ±I = Λ±I P = 0 and the
Hadamard condition (1.2). Moreover, by means of a pairing formula we show that they
satisfy the relation

(1.6) Λ+
I − Λ−I = i(P−1

+ − P−1
− )

exactly if I = {±}, and modulo possible terms smooth in M◦ if I = ∅ or I = {+,−},
and thus we conclude:

Theorem 1.1. The operators Λ±I with I = {+} and I = {−} are Hadamard two-point
functions, i.e. they satisfy (1.1) and (1.2).

These should be interpreted as the analogues of two-point functions constructed in
[44, 45, 21] from data at future or past infinity in the case of the conformal wave equa-
tion, and in [24] from scattering data in the case of the massive Klein-Gordon equation,
even though the methods are very different. On the other hand, the interpretation of
Λ±I in the Feynman/anti-Feynman case is less obvious. One possibility is to view Λ±I
as fermionic two-point functions: we show indeed that Λ+

I + Λ−I = i−1(P−1
I − P−1

Ic ),
which is, as already discussed, positive. A perhaps more conventional alternative is
to regard Λ±I as (bosonic) two-point functions for a non-standard field theory, where

P−1
+ −P−1

− is modified by a smooth term. On exact Minkowski space this smooth term
actually vanishes, so although in general the non-standard theory would be ‘non-causal’
(meaning that the integral kernel of the operator that replaces P−1

+ −P−1
− could fail to

vanish at causally separated points), the departure would be presumably small (and at
very low frequencies), and it would be thus interesting to study these non-local effects
on a separate basis.

QFT on extended asymptotically de Sitter spacetimes. Our results for asymp-
totically de Sitter spacetimes are to some extent analogous to the case of asymptotically
Minkowski ones, thanks to the duality between the Klein-Gordon equation on the for-
mer and the wave equation on the latter, made explicit in [56] by means of a Mellin
transform in ρ. Considering for simplicity the case of exact (radially compactified)
Minkowski space M , recall that de Sitter spacetime (X0, gX0) is by definition the hy-
perboloid z2

0 − (z2
1 + · · · + z2

d) = −1 in M equipped with the induced metric. In the
compactified picture it can be conveniently identified with the subregion {ρ = 0, v < 0}
of the sphere at infinity (i.e. of the boundary ∂M = {ρ = 0} = Sd−1). In a similar vein,
the hyperboloids z2

0 − (z2
1 + · · · + z2

d) = 1 with either z0 > 0 or z0 < 0 are two copies
of hyperbolic space (X±, gX±) (also called ‘Euclidean AdS’ in the physics literature)
and are identified with the two connected components of the region {ρ = 0, v > 0}.
Here we consider (X0, gX0), resp. (X±, gX±) as compact manifolds with boundary, i.e.
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∂X0 = S+∪S− and ∂X± = S±. The boundary of de Sitter, ∂X0, is called traditionally
the conformal horizon, thus the whole boundary of M ,

(1.7) ∂M = X+ ∪X0 ∪X−,
represents de Sitter spacetime extended across the conformal horizon (which we simply
call extended de Sitter spacetime).

S+

S−

ρ∂ρ

v > 0

v > 0

v < 0

S+

S−

ρ∂ρ

v > 0

v > 0

v < 0

X0

X0

X−

X+

Figure 2. The de Sitter hyperboloid X0 before and after identification
with the ‘equatorial belt’ region of the boundary {ρ = 0} of radially
compactified Minkowski space. The two other regions are two copies
X± of hyperbolic space.

Following [56], we consider the differential operator on X

P̂X(σ) ··=MρPM−1
ρ =Mρρ

−(d−1)/2ρ−22gρ
(d−1)/2M−1

ρ ,

obtained from P by conjugating it with the Mellin transform4 Mρ in ρ and thus
depending on a complex variable σ. The crucial ingredient in our analysis are the two
identities

(1.8)
P̂X�X0 = x

−iσ−(d−1)/2−2
X0

(2X0 − σ2 − (d− 1)2/4)x
iσ+(d−1)/2
X0

,

P̂X�X± = x
−iσ−(d−1)/2−2
X±

(∆X± − σ2 − (d− 1)2/4)x
iσ+(d−1)/2
X±

,

to the very best of our knowledge made explicit the first time in [56], where

xX0 =

(
z2

1 + · · ·+ z2
d − z2

0

z2
1 + · · ·+ z2

d + z2
0

) 1
2

, xX± =

(
z2

0 − (z2
1 + · · ·+ z2

d)

z2
1 + · · ·+ z2

d + z2
0

) 1
2

.

As the first identity in (1.8) connects P with the Klein-Gordon operator on X0, this
suggests a sort of duality between QFT on M and QFT on de Sitter space X0 and
one can wonder if that would mean that there is also a duality between QFT on M
and a hypothetical QFT on hyperbolic space X+ (or X−). In the present paper we
provide evidence for this claim by setting up a QFT on X± indeed (in fact, on the
whole extended de Sitter space X) and by relating it to QFT on de Sitter. Beside

4Recall that the Mellin transform of u ∈ C∞c ((0,∞)) is defined by (Mρu)(σ) ··=
´∞
0
ρ−iσ−1u(ρ)dρ.



Quantum fields from global propagators on asymptotically Minkowski and de Sitter spacetimes 8

the case of exact de Sitter space, our results do also apply to even asymptotically de
Sitter spacetimes (Definition 6.1), introduced in [56] (as well as even asymptotically
hyperbolic space, cf. the work of Guillarmou [27]), where a direct analogue of (1.7)
and (1.8) is available in terms of some asymptotically Minkowski spacetime M .

The relevant feature of the operator P̂X on extended asymptotically de Sitter space-
times is that it fits into the framework of [53, 30] and thus possesses various inverses
in a similar way as P does (here as meromorphic functions of σ), the main difference
being that one only needs to consider regularity in the sense of Sobolev spaces Hs(X)
(note that X is a closed manifold). This allows to obtain in a very analogous way an
isomorphism

(1.9) P̂−1
X,I − P̂

−1
X,Ic :

C∞(X)

P̂XC∞(X)
−→ Sol(P̂X)

with Sol(P̂X) the space of solutions of P̂Xu = 0 such that WF(u) ⊂ N∗(S+ ∪ S−).
Moreover, the definition of Hadamard two-point functions transports directly to this
case, thus once their existence is proved one gets a perfectly reasonable QFT on X (at

least if σ ∈ R so that P̂−1
X,Ic is the formal adjoint of P̂−1

X,I), despite it being governed by

a differential operator P̂X that is hyperbolic only in the asymptotically de Sitter region
{v < 0}. In order to understand the relation of this new QFT with the well-established
theory on X0, let us recall that the latter is based on the isomorphism

P̂−1
X0,+

− P̂−1
X0,− :

C∞c (X◦0 )

P̂X0C∞c (X◦0 )
−→ Sol(P̂X0)

where Sol(P̂X0) is the space of solutions of P̂X0 that are smooth in the interior X◦0 . On
the other hand, we prove that the map

(1.10) �X0 ◦x
iσ+(d−1)/2
X0

: Sol(P̂X)→ Sol(P̂X0)

is an isomorphism (i.e. symplectomorphism), which allows to conclude that QFT on
X0 extends across the boundary. Even more specifically, we show:

Theorem 1.2. Any pair of Hadamard two-point functions Λ±X0
on an even asymptoti-

cally de Sitter spacetime (X0, gX0) extends canonically to Hadamard two-point functions
Λ±X on X via the isomorphism (1.10).

Furthermore, we construct Hadamard two-point functions Λ±X0,I
on X0 from asymp-

totic data in a similar fashion as in the Minkowski case: these then extend to Hadamard
two-point functions on X and we give a direct formula for the latter in terms of the
X0 asymptotic data.

QFT on asymptotically hyperbolic space. Intriguingly, since the two-point func-
tions on asymptotically de Sitter space X0 give rise to two-point functions on the
extended space X, in particular one gets ‘two-point functions’ Λ±X± on the two copies

X± of asymptotically hyperbolic space (by restricting to X± and conjugating with

x
iσ+(d−1)/2
X±

). We show that in fact there is an underlying QFT on X+ and on X−,
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given by the isomorphism

(1.11) P̂−1
X±,+

− P̂−1
X±,− :

Ċ∞(X±)

P̂X± Ċ∞(X±)
−→ Sol(P̂X±)

where P̂−1
X±,+

, P̂−1
X±,− are defined by analytic continuation of the resolvent of ∆X0 start-

ing from positive, resp. negative large values of the imaginary part of complex param-
eter σ, and Sol(P̂X±) is a space of solutions (defined more precisely in Subsect. 5.2) of

P̂X± that are smooth in the interior X◦±.
Let us stress that the QFT obtained this way, although of course defined with funda-

mentally Euclidean objects, is crucially different from Euclidean QFTs often considered
in the physics literature and obtained by a Wick rotation (i.e. complex scaling) of the
time variable in a relativistic QFT, cf. [33, 34, 35] for the case of curved spacetimes and
other recent developments. For instance, our two-point functions on X± are subject
to a positivity condition reminiscent of relativistic QFT, as opposed to the reflection
positivity in Euclidean QFT.

Outlook. Since the two-point functions Λ±X+
that we consider on asymptotically hy-

perbolic spaces are smooth, we expect that this could serve as a basis to construct
a very regular interacting (i.e. non-linear) QFT. We plan to follow on this idea in a
future work.

One can also wonder whether the strategy adopted in the present paper extends to
other classes of spacetimes, possibly with trapping; it is plausible that this question
could be addressed using the recent advances in [30, 53, 7, 17].

A further aspect to look into is the relation of the Feynman and anti-Feynman as-
ymptotic data that we consider with the Atiyah-Patodi-Singer and anti-Atiyah-Patodi-
Singer boundary data adapted recently to the Lorentzian case by Bär and Strohmaier
[4, 5] in the context of the Dirac equation on a manifold which is the product of a finite
interval with a compact Riemannian manifold. Although the setup is clearly different,
there are many striking analogies to be explored [24], in particular it would be thus
beneficial to have a Dirac version of our results. (Cf. the differential forms setup of
[51].)

1.2. Summary of results. Our main results can be summarized as follows.
In the case of the wave equation on an asymptotically Minkowski spacetime M , we

assume that l = 0 is not a resonance (i.e., of the Mellin transformed normal operator
family of the relevant function space setup corresponding to I, Ic, see Subsect. 3.1),
and we assume ‘smoothness of kernels’ (1.4).

1) In Proposition 4.2 we prove that the propagator difference P−1
I − P−1

Ic induces
an isomorphism that generalizes (1.3).

2) In Proposition 5.4 we show bijectivity of the maps %I that assign to a solution
its asymptotic data (strictly speaking, in order to have a bijection we consider a
space of solutions SolI(P ) with elements of KerPI , KerPIc removed) and then
Theorem 5.5 provides an explicit formula for the induced symplectic form on
asymptotic data.
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3) In Theorem 5.7 we prove the Hadamard property (1.2) of the operators Λ±I
constructed from asymptotic data (1.5) and in particular we get two pairs of
Hadamard two-point functions Λ±−, Λ±+ from data at past and future null infinity.

Then, for any even asymptotically de Sitter spacetime X0, we consider the Klein-
Gordon operator P̂X0 = 2X0 − σ2 − (d − 1)2/4 and the associated operators on the
extended space X and on the asymptotically hyperbolic spaces X±. We assume that

σ ∈ R \ {0} is not a pole of P̂−1
X,I(σ).

4) In Propositions 6.2 and 6.6 we prove isomorphisms (1.9), (1.11) induced by
respective propagator differences, and the isomorphism (1.10) between solution
spaces on X and on X0.

5) In Theorem 6.7 we give a formula in terms of asymptotic data for Hadamard
two-point functions in the asymptotically de Sitter region X0 and for the in-
duced Hadamard two-point functions on X±.

In particular, the latter two results mean that non-interacting scalar fields on even
asymptotically de Sitter spacetime canonically extend across the conformal horizon.

2. Asymptotically Minkowski spacetimes and propagation of
singularities

2.1. Notation. If M is a smooth manifold with boundary ∂M , we denote M◦ its
interior. We denote C∞(M) the space of smooth functions on M (in the sense of
extendability across the boundary). The space of smooth functions vanishing with all

derivatives at the boundary ∂M are denoted Ċ∞(M) and their dual C−∞(M). The
signature of Lorentzian metrics is taken to be (+,−, . . . ,−). We adopt the convention
that sesquilinear forms 〈·, ·〉 are linear in the second argument.

2.2. Geometrical setup. The spacetime of interest is modelled by an n-dimensional
smooth manifold M with boundary ∂M (n ≥ 2), equipped with a Lorentzian scattering
metric g.

To define this class of metrics, let ρ be a boundary-defining function of ∂M , meaning
that ∂M = ρ = 0 and dρ 6= 0 on ∂M , and let w = (w1, . . . , wn−1) be coordinates on
∂M . Then scT ∗M is the bundle whose sections are locally given by the C∞(M)-span of
the differential forms ρ−2dρ, ρ−1dw = (ρ−1dw1, . . . , ρ

−1dwn−1). Lorentzian scattering
metrics are by definition non-degenerate sections of Sym2scT ∗M of Lorentzian signature
[42], and they define an open subset of C∞(M ; Sym2 scT ∗M) (equipped with the C∞
topology).

A more refined structure near the boundary ∂M can be specified as follows [6, 29, 25].

Definition 2.1. One says that (M, g) is a Lorentzian scattering space if there exists
v ∈ C∞(M) s.t. v �∂M has non-degenerate differential at S ··= {ρ = 0, v = 0} and
moreover:

• on ∂M , g(ρ2∂ρ, ρ
2∂ρ) has the same sign as v;

• g has the form

(2.1) g = v
dρ2

ρ4
−
(
dρ

ρ2
⊗ α

ρ
+
α

ρ
⊗ dρ

ρ2

)
− g̃

ρ2
,
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where g̃ ∈ C∞(M ; Sym2T ∗M) with g̃�(dρ,dv)ann positive definite5 at S, and α is
a one-form on M of the form α = dv/2 +O(v) +O(ρ) near S.

The zero-set S = {v = 0, ρ = 0} is called the light-cone at infinity and is in fact a
submanifold of M .

The example of primary importance of a Lorentzian scattering space is the radial
compactification of n = 1 + d-dimensional Minkowski space R1,d outlined in the intro-
duction. Namely, writing the Minkowski metric as dz2

0 − (dz2
1 + · · ·+ dz2

d), a manifold
M with boundary ∂M = {ρ = 0} is obtained by making the change of coordinates

z0 = ρ−1 cos θ, zi = ρ−1ωi sin θ, (valid near ρ = 0), where ρ = (z2
0 + z2

1 + · · · + z2
d)−1/2

and ωi are coordinates on the sphere Sd−2. Then a further change of coordinates

v = cos 2θ = ρ2(z2
0 − (z2

1 + · · ·+ z2
d))

brings the metric into the form

g = v
dρ2

ρ4
− v

4(1− v2)

dv2

ρ2
− 1

2

(
dρ

ρ2
⊗ dv

ρ
+
dv

ρ
⊗ dρ

ρ2

)
+

1− v
2

dω2

ρ2
,

which is a special case of (2.1) with α = dv/2.

2.3. Wave operator and b-geometry. The main object of interest is the wave op-
erator 2g ∈ Diff2(M). It is convenient to introduce at once the conformally related
operator

(2.2) P ··= ρ−(n−2)/2ρ−22gρ
(n−2)/2.

With this definition, P is a b-differential operator, that is P ∈ Diff2
b(M) where Diffkb(M)

consists of differential operators of order k which are in the algebra C∞(M)-generated
by ρ∂ρ, ∂w, using as before coordinates (ρ, w) near ∂M . The operator P is formally
self-adjoint with respect to the b-density (i.e., smooth section of the density bundle of
bTM) ρn|dg|. We denote 〈·, ·〉b the corresponding pairing and L2

b(M) the Hilbert space
it defines.

Let us now introduce the notions relevant for the description of the bicharacteris-
tic flow in the b-setting. To start with, the C∞(M)-module generated by the vector
fields ρ∂ρ, ∂w can be viewed as the space of smooth sections of a bundle bTM , called

the b-tangent bundle. The dual bundle bT ∗M is called the b-conormal bundle and
locally near ∂M its sections are the C∞(M)-span of ρ−1dρ, dw. Since vector fields
(i.e., sections of TM) can also be considered as sections of bTM , there is a canonical
embedding C∞(bTM) → C∞(TM) and a corresponding dual map on covectors. Now
for a submanifold S ⊂ M , the b-conormal bundle bN∗S is defined as the image in
bT ∗M of covectors in T ∗M that annihilate the image of TS in TM .

Specifically, in the setting of Lorentzian scattering spaces, the b-conormal bundle of
S = {ρ = 0, v = 0} is easily seen to be generated by dv. Indeed, the vectors in TS are
annihilated by dv and dρ, and their image in bT ∗M is respectively dv, ρ(ρ−1dρ) with
the latter vanishing above {ρ = 0}.

5Here g̃�(dρ,dv)ann denotes the restriction of g̃ to the annihilator of the span of dρ, dv.
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The bundles bT ∗M \o, bN∗S \o have their ‘spherical’ versions bS∗M and bSN∗S,
defined as the quotients

bS∗M ··= (bT ∗M \o)/R+,
bSN∗S ··= (bN∗S \o)/R+.

by the fiberwise R+-action of dilations, where o is the zero section.
Let now p ∈ C∞(T ∗M \o) be the principal symbol of P (in this paragraph the specific

form of P is irrelevant, only the fact that it belongs to Diffmb (M) and that p is real).
By homogeneity, the Hamiltonian vector field of p on T ∗M \o extends to a vector field
on bT ∗M \o, which is tangent to the boundary. Specifically, it is given by (and could
be defined by) the local expression

Hp = (∂ςp)(ρ∂ρ)− (ρ∂ρp)∂ς +
∑

i ((∂ζip)∂wi − (∂wip)∂ζi) ,

in b-covariables (ς, ζ) in which sections of bT ∗M read ς(ρ−1dρ) +
∑

i ζidwi.
In order to keep track of the behavior of Hp along the orbits of the R+ action it is

actually convenient to view bS∗M as the boundary of the so-called radial compactifi-
cation bT

∗
M of bT ∗M . Without giving the details of the construction (cf. [43, Ch.

1.8]), the relevant feature here is that it comes with a function ρ̃ ∈ C∞(bT ∗M \o),
homogeneous of degree −1, that serves as a boundary defining function. Since p is ho-
mogeneous of degree m, ρ̃mp can be restricted to fiber infinity and thus identified with
a smooth function on bS∗M . Now, the characteristic set Σ (of P ) is the zero-set of the
rescaled principal symbol ρ̃mp ∈ C∞(bS∗M). The bicharacteristic flow of P is defined
in the present setup as the flow Φt of the rescaled Hamilton vector field Hp ··= ρ̃m−1Hp

in Σ. Accordingly, the (reparametrized) projections of the integral curves of Hp by the

quotient map in bT ∗M \o→ bS∗M are called bicharacteristics6.

2.4. Non-trapping assumptions. In contrast to standard real principal type esti-
mates that are entirely local and are therefore not invalidated by the presence of
trapping, the estimates that we use here to obtain the Fredholm property of P on
appropriate function spaces are global, i.e. depend on what happens at infinite times,
therefore issues related with trapping are very likely to produce difficulties. To elimi-
nate these we make use of the non-trapping geometrical setup considered in [6, 25, 53]
(of which radially compactified Minkowski space is an example again):

Hypothesis 2.1. We assume that g is non-trapping in the following sense.

(1) S = {v = 0, ρ = 0} is the disjoint sum of two components S = S+ ∪ S− and
moreover:

(2) {v > 0} ⊂ ∂M splits into disjoint components X± with S± = ∂X±
(3) all maximally extended bicharacteristics flow from bSN∗S+ to bSN∗S− or vice-

versa.

The Lorentzian scattering space (M, g) is then called an asymptotically Minkowski
spacetime and the submanifold S+ is the lightcone at future null infinity and S− the
lightcone at past null infinity.

The characteristic set Σ ⊂ bS∗M of P splits into two connected components Σ±. Ac-
cordingly, each of the radial sets bSN∗S± splits further into two components bSN∗±S±

6These are often called null bicharacteristics in the literature.
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v > 0

v > 0

v < 0

bSN∗−S−

bSN∗+S−

bSN∗−S+

bSN∗+S+

Figure 3. An asymptotically Minkowski spacetime M . The radial sets
are located above S = S+∪S− and split into sources and sinks bSN∗±S±.

which act as sources (-) or sinks (+) for the bicharacteristic flow, meaning specifically
that

Hpρ̃ = ρ̃β0,

where ±β0 > 0 for sources, resp. sinks [6].
We introduce the short-hand notation R ··=

⋃
±

bSN∗±S for the whole radial set.
Let us remark that in this setup, a time orientation of (M, g) can be fixed as follows:

one specifies the future lightcone to be the one from which forward bicharacteristics
(in the sense of the Hp-flow) tend to S+. Moreover, it was shown in [30] that if ρ can
be chosen in such way that ρ−1dρ is timelike near X+ ∪X− (with respect to ρ2g) then
the interior of M , M◦, is globally hyperbolic, we will however not use this assumption
unless specified otherwise.

2.5. b-regularity and propagation of singularities. Recall that the algebra of b-
differential operators Diffb(M) is generated by vector fields tangent to the boundary
(and the identity), thus setting

Hk,0
b (M) = {u ∈ C−∞(M) : Au ∈ L2

b(M) ∀A ∈ Diffkb(M)},

for k ∈ N gives a space of distributions (the b-Sobolev space of order k) that have usual
Sobolev regularity of order k in M◦, the interior of M , and are moreover regular of
order k at the boundary in the sense of conormality. In the above expression Diffkb(M)
can be replaced by b-pseudodifferential operators of order k, Ψk

b(M) — here we will
not give the precise definition (instead we refer the reader to [41, 54, 55]), though
formally one can simply think of those as operators of the form A = a(ρ, w; ρ∂ρ, ∂w),
with a a symbol in the usual sense. By analogy this allows to define b-Sobolev spaces
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of arbitrary order m ∈ R, and at the same time we introduce weighted ones:

Hm,0
b (M) = {u ∈ C−∞(M) : Au ∈ L2

b(M) ∀A ∈ Ψm
b (M)},

Hm,l
b (M) = ρlHm,0

b (M),

so that m corresponds to usual Sobolev regularity in M◦ and conormal regularity at
the boundary, whereas l corresponds to decay near the boundary (and this agrees with

the definition sketched in the introduction). The dual of Hm,l
b (M) can be identified

with H−m,−lb (M) using the L2
b(M) pairing 〈·, ·〉b. We have correspondingly spaces of

distributions of arbitrarily low and arbitrarily high b-Sobolev regularity

H−∞,lb (M) ··=
⋃
m∈RH

m,l
b (M), H∞,lb (M) ··=

⋂
m∈RH

m,l
b (M),

endowed with their canonical Fréchet topologies, one of which is the dual of the other
if l is replaced by −l.

There is a notion of b-Sobolev wave front set of a distribution u ∈ H−∞,lb (M),

denoted WFm,lb (u) ⊂ bS∗M , which consists of the points in phase space in which u is

not in Hm,l
b (M). Concretely, the definition says that for α ∈ bS∗M , α /∈ WFm,lb (u) if

there exists A ∈ Ψ0,0
b (M) elliptic at α and such that Au ∈ Hm,l

b (M), where ellipticity
refers to invertibility of the principal symbol, cf. [41, 55, 54]. Note that locally in the
interior of M , b-Sobolev regularity and standard Sobolev regularity are just the same,
so the b-Sobolev wave front set coincides with the standard wave front set there. We
refer to [54, Sec. 2 & 3] for a more detailed discussion.

The definitions of Ψm,l
b (M), Hm,l

b (M) and WFm,lb (u) can be extended to allow for

varying Sobolev orders m ∈ C∞(bS∗M), cf. for instance [6, App. A]. This is particu-
larly convenient for the formulation of propagation of singularities theorems near radial
sets. We will use in particular the following result from [53], cf. also the discussion in
[25].

Theorem 2.2. Let (M, g) be a Lorentzian scattering space. Let P be the rescaled wave
operator (2.2), let us denote by Ri any of the components of the radial sets, and let

u ∈ H−∞,lb (M).

(1) If m < 1
2 − l and m is nonincreasing along the bicharacteristic flow in the

direction approaching Ri, then

WFm,lb (u) ∩Ri = ∅ if WFm−1,l
b (Pu) ∩Ri = ∅

and provided that (U \Ri)∩WFm,lb (u) = ∅ for some neighborhood U ⊂ Σ∩bS∗M
of Ri.

(2) If m0 >
1
2 − l, m ≥ m0 and m is nonincreasing along the bicharacteristic flow

in the direction going out from Ri then

WFm,lb (u) ∩Ri = ∅ if
(
WFm0,l

b (u) ∪WFm−1,l
b (Pu)

)
∩Ri = ∅.

Thus, there is a threshold value m = 1
2−l, and in the ‘below-threshold’ case m < 1

2−l
one has a propagation of singularities statement similar to real principal type estimates,
while in the ‘above-threshold’ case one gets arbitrarily high regularity at the radial set
provided Pu is regular enough.
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3. Propagators

3.1. Inverses of the wave operator. Theorem 2.2 is deduced from (and is in fact

equivalent to) a priori estimates involving Hm,l
b norms of u and Hm−1,l

b norms of Pu

(plus a weaker norm of u in Hm′,l
b , m′ < m), microlocalized using b-pseudodifferential

operators accordingly with the stated direction of propagation. These estimates give
a global statement if for each component Σj of the characteristic set (j ∈ {+,−}) one
takes m to be above-threshold at one radial set within Σj and below-threshold at the
other [29, 25], one gets namely

(3.1) ‖u‖
Hm,l

b (M)
≤ C(‖Pu‖

Hm−1,l
b (M)

+ ‖u‖
Hm′,l

b (M)
).

Thus, in other words, (3.1) is obtained by ‘propagating estimates from one radial set
to another’. Defining then

(3.2) Ym,l ··= Hm,l
b (M), Xm,l ··=

{
u ∈ Hm,l

b (M) : Pu ∈ Hm−1,l
b (M)

}
,

by analogy to some elliptic problems [55] one would like to conclude a statement about
P being Fredholm as a map Xm,l → Ym−1,l (using a standard argument from func-
tional analysis, see [32, Proof of Thm. 26.1.7]). The problematic point (as explained

in more detail in [25]) is however that Hm,l
b is not compactly included in Hm′,l

b (as

opposed for instance to Hm,l
b ↪→ Hm′,l′

b for m′ < m, l′ < l) and therefore the corre-
sponding remainder term is not negligible. Improved estimates (with better control
on the decay of remainder terms) can be however derived by a careful analysis of the
Mellin transformed normal operator of P , defined as follows.

Recall that any P ∈ Diffkb(M) is locally given by

P =
∑

i+|α|≤k

ai,α(ρ, w)(ρ∂ρ)
i∂αw.

Its Mellin transformed normal operator family is then

N̂(P )(σ) ··=
∑

i+|α|≤k

ai,α(0, x)σi∂αx .

A direct computation shows that in our specific case of interest, N̂(P )(σ) ∈ Diff2(∂M)
takes the form

(3.3) N̂(P )(σ) = 4
(
(v +O(v2))∂2

v + (iσ + 1 +O(v))∂v
)
+O(1)∂2

y+O(1)∂y+O(v)∂v∂y

near {v = 0} modulo terms O(σ2), cf. [6] for more explicit expressions. The crucial

property is that N̂(P )(σ) is hyperbolic on {v < 0} (and elliptic elsewhere, which is the

easiest part) and its characteristic set splits into two connected components Σ̂± with
bicharacteristics starting and ending at radial sets. Fredholm estimates combined with
a semiclassical analysis with small parameter |σ|−1 are then used in [25] to prove that

N̂(P )(σ)−1 exists as a meromorphic family and the structure of its poles determines the
Fredholm (or invertibility) property of P : Xm,l → Ym−1,l. In particular the following
assumption is made use of.
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Hypothesis 3.1. The weight l is assumed to satisfy l 6= − Im σi for any resonance7

σi ∈ C of the Mellin transformed normal operator family N̂(P )(σ) of P .

Concerning the possible choices of the order defining function m, different choices of
directions along which m is increasing give different (generalized, see below) inverses of
P . Specifically, for each of the two sinks bSN∗+S±, we can choose whether estimates
are propagated from it or to it. Following the convention in [52], let us label this
choice by a set of indices I ⊂ {+,−} indicating the sinks from which we propagate, i.e.
where high regularity is imposed (and thus also the components of the characteristic
set Σ = Σ+ ∪ Σ− along which m is increasing). Then the complement Ic indicates
the sinks to which we propagate. We denote correspondingly R−I the components of

the radial set from which the estimates are propagated, and R+
I the remaining others.

Note that by definition R∓Ic = R±I .

With these definitions at hand, the main result of [25] states that P : Xm,l → Ym−1,l

is Fredholm for any m such that

(3.4) ±m > 1/2− l near R∓I ,
with m monotone along the bicharacteristic flow as long as l satisfies Hypothesis 3.1.
Moreover, it is shown that P : Xm,l → Ym−1,l is invertible if |l| is small and (M, g)
is a perturbation of the radial compactification of Minkowski space in the sense of
Lorentzian scattering metrics C∞(M ; Sym2 scT ∗M), within the closed subset of Lorentzian
scattering spaces (cf. Definition 2.1).

We will use the shorthand notation XI , YI for the spaces Xm,l,Ym−1,l with any
choice of orders and weights m, l as in (3.4). We will also write occasionally PI for P
understood as an operator XI → YI .

A consequence of the Fredholm property is that one can define a generalized inverse
of PI : XI → YI as follows. First, one makes a choice of complementary spacesWI , ZI ,
to respectively KerPI , RanPI in XI , YI , withWI of finite codimension and ZI of finite
dimension. We define P−1

I to be the unique extension of the inverse of P :WI → RanPI
to YI → XI such that

KerP−1
I = ZI , RanP−1

I =WI .

In what follows we will choose a complementary space ZI consisting of Ċ∞(M) func-

tions, which is always possible since RanPI is of finite codimension and Ċ∞(M) is dense

in YI . The property ZI ⊂ Ċ∞(M) then ensures that PP−1
I equals 1 on YI modulo

smoothing terms. To make sure that P−1
I is also a left parametrix8, one needs the

following additional property.

Hypothesis 3.2. Assume that KerPI ⊂ H∞,lb (M).

We will refer to Hypothesis 3.2 simply as smoothness of the kernel, we will actually
see in Proposition 5.6 that it is in fact automatically satisfied in the Feynman and anti-
Feynman case (the argument we use therein does however not apply to the retarded
and advanced case).

The (generalized) inverses P−1
I corresponding to the four possible choices of I are

named as follows:

7This is synonym for σi being a pole of the meromorphic family N̂(P )(σ)−1.
8By say, left parametrix, we mean that P−1

I P equals 1 modulo terms that have smooth kernel in M◦.
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(1) I = ∅ (i.e., R−I = bSN∗−S) — Feynman propagator,

(2) I = {+,−} (i.e., R−I = bSN∗+S) — anti-Feynman propagator,

(3) I = {−} (i.e., R−I = bSN∗S−) — retarded (or forward) propagator,

(4) I = {+} (i.e., R−I = bSN∗S+) — advanced (or backward) propagator.

The terminology for I = {−}, resp. I = {+} is motivated by the fact that due to
its mapping properties, the corresponding inverse P−1

I solves the forward, resp. back-
ward problem in the interior M◦ of M , and thus equals the advanced, resp. retarded
propagator defined in the usual way as in the introduction (modulo smoothing terms
if P−1

I is just a parametrix). The name Feynman propagator for P−1
∅ can be justified

by relating it to a Feynman parametrix in the sense of Duistermaat and Hörmander
[16], as pointed out in [25, 52] (and analogously for the anti-Feynman one). Here we
make this precise by proving that the Schwartz kernel of P−1

∅ (considered as a distri-
bution on M◦ ×M◦) has wave front set of precisely the same form as the Feynman
parametrix’ of Duistermaat and Hörmander, and therefore the two operators coincide
modulo smoothing terms (at least provided (M◦, g) is globally hyperbolic so that the
assumptions in [16] are satisfied).

Such statement is closely related to the propagation of singularities along the bichar-
acteristic flow Φt. In the present setting it can be formulated as follows. If I ⊂ {+,−},
m, l are chosen consistently with I, m0 >

1
2 − l is a fixed constant and u ∈ Xm,l then

(3.5)(
WFm0,l

b (u) ∩ Σ
)
\R+

I ⊂WFm0−1,l
b (Pu) ∪

⋃
j∈I
(
∪t≥0 Φt(WFm0−1,l

b (Pu) ∩ Σj)
)

∪
⋃
j∈Ic

(
∪t≤0 Φt(WFm0−1,l

b (Pu) ∩ Σj)
)

provided that WFm0−1,l
b (Pu)∩R−I = ∅. The latter condition is trivially satisfied if for

instance suppPu ⊂⊂M◦, then in the interior of M (3.5) reduces to

(3.6)
WFm0(u) ∩ Σ ⊂WFm0−1(Pu) ∪

⋃
j∈I
(
∪t≥0 Φt(WFm0−1(Pu) ∩ Σj)

)
∪
⋃
j∈Ic

(
∪t≤0 Φt(WFm0−1(Pu) ∩ Σj)

)
,

in terms of the standard Sobolev wave front set WFm0(u) ⊂ S∗M◦ (since the restriction

of WFm0−1,l
b to M◦ is precisely WFm0). Therefore, disregarding singularities lying on

diagT ∗M◦ (the diagonal in T ∗M◦×T ∗M◦), one expects that the primed wave front set
of the Schwartz kernel of P−1

I , denoted WF′(P−1
I ), is contained in

CI ··=
⋃
j∈I
(
∪t≥0 Φt(diagT ∗M◦) ∩ π−1Σj

)
∪
⋃
j∈Ic

(
∪t≤0 Φt(diagT ∗M◦) ∩ π−1Σj

)
,

where Φt operates on the left factor and π : Σ × Σ → Σ is the projection to the left
factor9.

In other words CI consists of pairs of points ((y, η), (x, ξ)) such that (y, η), (x, ξ) ∈ Σ
are connected by a bicharacteristic and such that on the component Σj , (y, η) comes
after (x, ξ) respective to the Hamilton flow if j ∈ I and (x, ξ) comes after (y, η) other-
wise.

Proposition 3.1. Assume smoothness of the kernel (Hypothesis 3.2) and global hyper-
bolicity of (M◦, g). Then:

9Here one can equivalently take the projection to the right factor.
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(1) WF′(P−1
I ) = (diagT ∗M◦) ∪ CI for I ⊂ {+,−};

(2) WF′(P−1
∅ − P

−1
± ) = ∪t∈RΦt(diagT ∗M◦) ∩ π−1Σ±.

Proof. In the case of retarded/advanced propagators, statement (1) follows from [16],
so we only have to show (1) in the (anti-)Feynman case. We start by proving (2).

Let δx be the Dirac delta distribution supported at some point x ∈M◦. For any I we
can choose the order defining function m in XI = Xm,l in such way that δx ∈ YI . Even
more, we can arrange that δx is at the same time in Y∅ and in Y+. Then P−1

I δx ∈ XI for

I = ∅ and I = {+}. Consequently, the distribution (P−1
∅ −P

−1
+ )δx has above-threshold

regularity microlocally in Σ− near S+. Since it also solves the wave equation (modulo
smooth terms), this implies by propagation of singularities

(3.7) WF((P−1
∅ − P

−1
+ )δx) ⊂ Σ+.

In fact, this holds in the sense of the uniform wave front set for the family

(3.8) {(P−1
∅ − P

−1
+ )δx : x ∈ K},

K compact in M◦, by propagation of singularities estimates (which are uniform es-
timates), i.e. that for A ∈ Ψ0(M) of compactly supported Schwartz kernel and with
WF′(A) ∩ Σ+ = ∅,

(3.9) {A(P−1
∅ − P

−1
+ )δx : x ∈ K} is bounded in C∞.

On the level of the Schwartz kernel (P−1
∅ − P

−1
+ )(y, x) = ((P−1

∅ − P
−1
+ )δx)(y), which

holds in a distributional sense, (3.9) yields

(3.10) WF′(P−1
∅ − P

−1
+ ) ⊂ (Σ+ ∪ o)× T ∗M◦,

as can be seen e.g. by using the explicit Fourier transform characterization of the wave
front set, using appropriate pseudodifferential operators in (3.9). We now use [52,
Thm. X], which states (for parametrices, which our inverses are) that i−1(P−1

∅ − P
−1
± )

differs from a positive operator by a smooth term. Disregarding this smooth error, one
can write a Cauchy-Schwarz inequality for |〈f, (P−1

∅ −P
−1
+ )g〉b| in terms of |〈f, (P−1

∅ −
P−1

+ )f〉b|, |〈g, (P−1
∅ − P

−1
+ )g〉b| for any test functions f, g. This allows to get estimates

for the wave front set in o× (T ∗M◦ \o) from estimates in (T ∗M◦ \o)× (T ∗M◦ \o), and
also to get a symmetrized form of the wave front set10, in particular (3.10) gives

(3.11) WF′(P−1
∅ − P

−1
+ ) ⊂ Σ+ × Σ+.

The analogous argument gives correspondingly

(3.12) WF′(P−1
∅ − P

−1
− ) ⊂ Σ− × Σ−.

Observe that the two wave front sets (3.11), (3.12) are disjoint. In view of the identity

(P−1
∅ − P

−1
+ )− (P−1

∅ − P
−1
− ) = P−1

− − P−1
+

this implies that WF′(P−1
∅ −P

−1
± ) equals (Σ±×Σ±)∩WF′(P−1

− −P−1
+ ). On the other

hand, using the exact form of WF′(P−1
± ) \ diagT ∗M◦ = C± one obtains WF′(P−1

− −

10It is worth mentioning that this sort of argument was already used for instance in [18, 49, 47].
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P−1
+ ) = C+ ∪ C−, thus

(3.13)
WF′(P−1

∅ − P
−1
± ) = (Σ± × Σ±) ∩ (C+ ∪ C−)

= ∪t∈RΦt(diagT ∗M◦) ∩ π−1Σ±.

The exact form of WF′(P−1
∅ ) is concluded from (3.13) and WF′(P±) = diagT ∗M◦ ∪ C±

by means of the two identities P−1
∅ = (P−1

∅ − P
−1
± ) + P−1

± . �

Concerning the b-wave front set, it would require more work to make precise state-
ments about the Schwartz kernel of P−1

I (in the sense of manifolds with boundaries),

we still have however at our disposal information on WFm,lb (P−1
I f) given the b-wave

front set of f . For our purposes it is sufficient to observe that P−1
I adds singularities

only at the radial set, specifically by propagation of singularities (3.5)

(3.14) WFm0,l
b (P−1

I f) ⊂ R+
I , f ∈ RanPI

for m0 < m, where m, l are the orders corresponding to I, so in particular if f ∈
H∞,lb (M) then WF∞,lb (P−1

I f) ⊂ R+
I .

4. Symplectic spaces of smooth solutions

4.1. Solutions smooth away from R. A particularly useful way to construct solu-
tions of Pu = 0 is to take u = (P−1

I −P
−1
Ic )f for f ∈ RanPI∩RanPIc . For such solutions,

by (3.14) and Hörmander’s propagation of singularities we have WFm0,l
b (u) ⊂ R for

m0 ≤ max(m,mc), where m, l, resp. mc, l are the orders corresponding to I, resp. Ic.
We will see that the so-obtained space of solutions can be equivalently defined as

(4.1) SolI(P ) ··=
{
u ∈WI +WIc : Pu = 0, WFm0,l

b (u) ⊂ R, m0 = max{m,mc}
}
.

Note that by definition SolI(P ) = SolIc(P ). If PI is invertible then the condition
u ∈ WI +WIc in (4.1) reduces to u ∈ XI + XIc (recall that WI is a complement of
KerPI). In the case when PI is merely a Fredholm operator, the main reason to use
WI in the definition is the validity of the following lemma.

Lemma 4.1. Assume Hypothesis 3.2. If u ∈ SolI(P ) is microlocally in Hm,l
b (M) near

R−I for m > 1
2 − l then u = 0.

Proof. By assumption u ∈ XI and Pu = 0, hence u ∈ KerPI by definition of
PI : XI → YI . Using Hypothesis 3.2 this implies u ∈ XIc , and repeating the previous
argument one gets u ∈ KerPIc . This contradicts that u ∈WI +WIc unless u = 0. �

We will use Lemma 4.1 repeatedly. For instance, let QI ∈ Ψ0,0
b be microlocally the

identity near R−I and microlocally vanishing near the remaining components R+
I of the

radial set. For any u ∈ SolI(P ),

u = QIu+ (1−QI)u = QIu+ P−1
I P (1−QI)u+ (1− P−1

I P )(1−QI)u.

Since (1 −QI)u belongs to XI , the term (1 − P−1
I P )(1 −QI)u is in the null space of

P , so in fact we have

(4.2) u = QIu− P−1
I PQIu
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modulo a term in KerPI , and hence in XI ∩ XIc by Hypothesis 3.2. Rewriting now
(4.2) in the form u = QIu − P−1

I [P,QI ]u (modulo irrelevant terms) we conclude that

−P−1
I [P,QI ]u agrees with umicrolocally atR+

I , and so does P−1
Ic [P,QI ]u−P−1

I [P,QI ]u.
The latter is in SolI(P ) (because [P,QI ]u = PQIu = −P (1−QI)u ∈ RanPI ∩RanPIc),
therefore by Lemma 4.1 (using R+

I = R−Ic) we obtain

(4.3) (P−1
Ic − P

−1
I )[P,QI ] = 1 on SolI(P ).

For the sake of compactness of notation we define GI ··= P−1
I −P

−1
Ic , in terms of which

the above identity reads

(4.4) −GI [P,QI ] = 1 on SolI(P ).

Proposition 4.2. Assume Hypothesis 3.2. Then the map GI induces a bijection

(4.5)
RanPI ∩ RanPIc

P (XI ∩ XIc)
[GI ]−−−→ SolI(P )

Proof. We first need to check that GI induces a well-defined map on the quotient,
i.e. GI(RanPI ∩RanPIc) ⊂ SolI(P ) (which we already know) and GIP (XI ∩XIc) = 0.
The latter follows from the identity

(4.6) P (WI ∩WIc) = P (XI ∩ XIc),
(this is true because the spacesWI∩WIc and XI∩XIc differ only by elements of KerPI
and KerPIc) and the fact that P−1

I P = 1 on WI .
Surjectivity of [GI ] means

GI(RanPI ∩ RanPIc) ⊃ SolI(P ).

but this follows readily from (4.4), taking into account that [P,QI ] is smoothing near
the radial set. Injectivity of [GI ] means that the kernel of GI acting on RanPI∩RanPIc

equals P (WI∩WIc). Indeed if u ∈ RanPI∩RanPIc and GIu = 0 then setting w = P−1
I u

we have u = Pw, with w ∈ WI . On the other hand w = P−1
Ic u hence it is also in

WIc . �

To simplify the discussion further it is convenient to eliminate the dependence of the
spaces XI , SolI(P ) and RanPI on the specific choice of Sobolev orders m,mc by taking

the intersection over all possible orders. With this redefinition, WF∞,lb (u) ⊂ R for all
u ∈ SolI(P ). Furthermore, Proposition 4.2 remains valid and in the special case when
PI and PIc are invertible (this is true for instance when (M◦, g) is globally hyperbolic)
one gets instead of (4.5) the more handy statement that there is a bijection

(4.7)
H∞,lb (M)

PH∞,lb (M)

[GI ]−−−→ SolI(P ).

The case I = {−} in (4.7) is the analogue of the well-known characterization of smooth
space-compact11 solutions of the wave equation on globally hyperbolic spacetimes as
the range of the difference of the advanced and retarded propagator acting on test
functions, cf. [3, Thm. 3.4.7].

11By space-compactness one means that the restriction to a Cauchy surface has compact support.
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In what follows we will consider pairings between elements of spaces such as XI , XIc
and for that purpose we fix l = 0 for the weight respective to decay. As shown in [52],
the formal adjoint of P−1

I is P−1
Ic , possibly up to some obstructions caused by the lack

of invertibility of P : XI → YI in the case when it is merely Fredholm. In addition to
that, there is a positivity statement in the Feynman case, more precisely:

Theorem 4.3 ([52]). As a sesquilinear form on RanPI ∩ RanPIc, GI = P−1
I − P−1

Ic

is formally skew-adjoint. Moreover if I = ∅ then i−1〈·, GI ·〉b is positive on RanPI ∩
RanPIc.

The relevance of Proposition 4.2 and Theorem 4.3 in QFT stems from the conclusion
that 〈·, GI ·〉b induces a well-defined symplectic form (in particular non-degenerate,
thanks to the injectivity statement of Proposition 4.2) on the quotient space

VI ··= RanPI ∩ RanPIc/P (WI ∩WIc),

which can be then transported to SolI(P ) using the isomorphism in (4.5). In the case
I = {−} the resulting structure is interpreted as the canonical symplectic space of the
classical field theory and is the first ingredient in the construction of non-interacting
quantum fields. The next step is to specify a pair of two-point functions on VI , defined
in the very broad context below.

Definition 4.4. Let V be a complex vector space equipped with a (complex) symplectic
form G. One calls a pair of sesquilinear forms Λ± on V bosonic (resp. fermionic)
two-point functions if Λ+ − Λ− = i−1G (resp. Λ+ + Λ− = i−1G) and Λ± ≥ 0 on V .

Note that in the fermionic case one needs to have necessarily i−1G ≥ 0. Once Λ±

are given, the standard apparatus of quasi-free states and algebraic QFT can be used
to construct quantum fields, see Appendix A or [15, 28, 39], here we will rather focus
on the two-point functions themselves.

In the literature on QFT on globally hyperbolic spacetimes one considers usually
the symplectic space VI with I = {−} or equivalently I = {+} (or strictly speaking
an analogous quotient space defined in terms of test functions) and bosonic two-point
functions Λ±I on it. The physical reason is that for I = {±} the Schwartz kernel

GI(x, y) = ±(P−1
− (x, y) − P−1

+ (x, y)) vanishes for space-like related x, y ∈ M◦ and in

consequence the relation Λ+
I − Λ−I = i−1GI translates to the property that quantum

fields commute in causally disjoint regions.
In contrast, two-point functions on VI in the cases I = ∅, I = {+,−} have not been

considered before to the best of our knowledge. We argue that since i−1GI is positive
in the Feynman case, it is natural to consider then fermionic two-point functions Λ±I .
In later sections we will indeed construct fermionic two-point functions (in particu-
lar satisfying Λ+

I + Λ−I = i−1GI for I = ∅) for which the quantity Λ+
I − Λ−I equals

i(P−1
+ (x, y)−P−1

− (x, y)) modulo terms smooth in M◦. In the special case of Minkowski

space one finds i(P−1
+ (x, y)−P−1

− (x, y)) exactly, i.e. the smooth remainders are absent.
In our setup, rather than with abstract sesquilinear forms on VI it is much more

convenient to work with operators Λ±I that map continuously, say, Hm′,0
b → H−m

′,0
b for

large m′, these then define a pair of (hermitian) sesquilinear forms 〈·,Λ±I ·〉b on VI if

Λ±I is formally self-adjoint on RanPI ∩ RanPIc with respect to 〈·, ·〉b and

(4.8) 〈φ,Λ±I Pψ〉b = 0 ∀φ ∈ RanPI ∩ RanPIc , ψ ∈WI ∩WIc .
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The sesquilinear forms 〈·,Λ±I ·〉b are two-point functions on VI if they satisfy

(4.9) (−1)I(+)Λ+
I + (−1)I(−)Λ−I = iGI , 〈·,Λ±I ·〉b ≥ 0 on RanPI ∩ RanPIc

where we employed the notation

(−1)I(±) ··=

{
1 if ± ∈ I,
−1 otherwise,

so that one gets bosonic two-point functions in the retarded/advanced case and fermionic
ones in the Feynman/anti-Feynman case.

In QFT on curved spacetime one is primarily concerned about the subclass of
Hadamard two-point functions, which in the present setup can be defined as follows
(conforming to the discussion above, two-point functions will be considered to be op-
erators instead of sesquilinear forms).

Definition 4.5. We say that Λ±I : Hm′,0
b (M)→ H−m

′,0
b (M) are Hadamard two-point

functions for P if they satisfy (4.8), (4.9) and if moreover

(4.10) WF′(Λ±I ) =
⋃
t∈R Φt(diagT ∗M◦) ∩ π−1Σ±

over M◦ ×M◦.

Remark 4.6. In practice if we are given a pair of operators Λ±I satisfying (4.8), and

Λ+
I − Λ−I = iGI , Λ±I ≥ 0 w.r.t. 〈·, ·〉b, then to ensure the Hadamard condition (4.10)

it is sufficient to have WF′(Λ±I ) ⊂ (Σ± ∪o) × T ∗M◦, as can be shown by the same
arguments as in the proof of Proposition 3.1.

The wave front set condition (4.10) will be called the Hadamard condition, in agree-
ment with the terminology used on globally hyperbolic spacetimes, cf. [46, 47, 49] for
the various equivalent formulations. From the point of view of applications in QFT
(renormalization in particular, see [31, 39, 11] and references therein), one of the key
properties of Hadamard two-point functions is that any two differ by an operator whose
kernel is smooth in M◦×M◦. This statement (known on globally hyperbolic spacetimes
as Radzikowski’s theorem [46]) is easily shown using the identity

(−1)I(+)(Λ+
I − Λ̃+

I ) + (−1)I(−)(Λ−I − Λ̃−I ) = iGI − iGI = 0

for any two pairs of Hadamard two-point functions Λ±I , Λ̃±I . Indeed, the terms in

parentheses have disjoint primed wave front sets in the interior of M , so in fact Λ+
I −Λ̃+

I

and Λ−I − Λ̃−I have smooth kernel in M◦.

4.2. Time-slice property. Let us consider again the identity

(4.11) GI [P,QI ] = 1 on SolI(P ),

which we proved to be true for any pseudo-differential operator QI ∈ Ψ0,0
b (M) that

is microlocally the identity near R−I and microlocally vanishes near R+
I . In the cases

I = {+}, I = {−}, QI can actually be chosen to be a multiplication operator and one
can ensure that [P,QI ] vanishes in a neighborhood of S = S+ ∪ S−, so this way one
can characterize SolI(P ) as the range of GI acting on functions supported away from
S.
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Proposition 4.7. Suppose I = {+} or I = {−} and let QI ∈ C∞(M) be equal 0 near
S− and 1 near S+. Then for any u ∈ RanPI ∩RanPIc there exists ũ ∈ RanPI ∩RanPIc
s.t. [u] = [ũ] in RanPI ∩ RanPIc/P (XI ∩ XIc) and

(4.12) supp(ũ) ⊂ supp(QI) ∩ supp(1−QI).

Proof. It suffices to set ũ = [P,QI ]GIu, then it is clear that this has the requested
support properties. Furthermore GI(ũ − u) = 0 by (4.11), thus ũ − u ∈ P (XI ∩ XIc)
by the injectivity statement of Proposition 4.2. �

In the case when M◦ is globally hyperbolic this statement implies that for any
[u] ∈ H∞,0b (M)/PH∞,0b (M) one can find a representative ũ supported in an arbitrary

neighborhood of a Cauchy surface. This fact (with C∞c (M◦) in place of H∞,0b (M)) is
known as the time-slice property, a particularly useful consequence is that this allows
to construct two-point functions by specifying their restriction to a small neighborhood
of a Cauchy surface.

5. Parametrization of solutions on the lightcone at infinity

5.1. Mellin transform. In what follows we collect some elementary facts on the
Mellin transform that will be needed later on.

Recall that for u ∈ C∞c ((0,∞)) the Mellin transform is defined by the integral

(Mρu)(σ) ··=
ˆ ∞

0
ρ−iσ−1u(ρ)dρ.

It extends to a unitary operator ρlL2
b(R+) → L2({Imσ = −l}) whose inverse can be

expressed using the integral formula

(5.1) u(ρ) = (2π)−1

ˆ
{Imσ=−l}

ρiσ(Mρu)(σ)dσ,

and it intertwines the generator of dilations ρDρ with multiplication by σ, i.e. ρDρ =
M−1

ρ σMρ.
Let us denote S ({Im σ = −l}) the space of complex functions with boundary value

Im σ = −l rapidly decreasing as σ →∞. If the Mellin transform of u is in that space
then by (5.1) ρ−lu is bounded near ρ = 0, and by a simple reduction to this case we
get the following estimate.

Lemma 5.1. If Mu ∈ S ({Im σ = −l}) then ρ−l(log ρ)k(ρ∂ρ)
ju(ρ) is bounded near

ρ = 0 for any j, k ∈ N.

5.2. Asymptotic data of solutions. Let now l ≥ 0 be any order satisfying Hypoth-
esis 3.1. For a brief moment let us consider the space of all solutions with wave front
set only in the radial set, i.e.

(5.2) Sol(P ) ··= {u ∈ H−∞,lb (M) : WF∞,lb (u) ⊂ R}.
This is simply the space SolI(P ) considered in Subsect. 4.1 plus possible elements of
KerPI and KerPIc . These solutions enjoy the following properties:

(1) by below-threshold propagation of singularities they belong to Hm,l
b (M) for all

m < 1
2 − l;



Quantum fields from global propagators on asymptotically Minkowski and de Sitter spacetimes 24

(2) as proved in [6] they are ‘b-Lagrangian’ distributions12 associated to R in the
sense that

A1A2 . . . AkSol(P ) ⊂ Hm,l
b (M), ∀k ∈ N, Aj ∈M(M),

where M(M) ⊂ Ψ1
b(M) is the space of b-pseudodifferential operators whose

principal symbols vanish on the radial set R. More explicitly, M(M) can be
characterized as the Ψ0

b(M)-module generated by ρ∂ρ, ρ∂v, v∂y, ∂y and 1.

Let η± ∈ C∞(M) be smooth cutoff functions of a neighborhood of S± in M . For the
moment we restrict our attention to S+, keeping in mind that the discussion for S− is
analogous.

For a solution u ∈ Sol(P ), cutting it off with η+ and taking the Mellin transform13

in ρ one obtains a family of functions M(η+u)(σ) that is holomorphic in Im σ > −l
with boundary value at Im σ = −l lying in the Hm-based Lagrangian space

{f ∈ Hm(∂M) : A1A2 . . . Akf ∈ Hm(∂M), Aj ∈M(∂M)},
and such thatM(η+u)(σ) rapidly decreases as σ →∞ (where M(∂M) is generated by
v∂y, ∂y). Furthermore, as shown in [6], M(η+u)(σ) is necessarily a classical conormal
distribution in the sense that it is given by the sum of two oscillatory integrals of the
form ˆ

eivγ |γ|iσ−1ã±(σ, v, y, γ)dγ

modulo Schwartz functions of σ, on Im σ = −l, holomorphic in the upper half plane,
with values in C∞(∂M), with ã± (Schwartz function of σ with values in) classical
symbols14 of order 0 in γ. Here ã± are supported in ±γ > 0, corresponding to the
half of bSN∗S+ considered (bSN∗+S+ versus bSN∗−S+). Thus, inverting the Mellin
transform, and absorbing a factor of 2π into a newly defined ã±, η+u itself is of the
form

J(ã±) =

ˆ
Imσ=−l

ˆ
ρiσeivγ |γ|iσ−1ã±(σ, v, y, γ) dγ dσ,

modulo elements of H∞,lb . We call such distributions weight l b-conormal distributions

of symbolic order 0 associated to the half of bSN∗S+ considered (bSN∗+S+ versus
bSN∗−S+). Note that if ã± vanishes to order k at v = 0 then integration by parts

in γ allows one to conclude that J(ã±) = J(b̃±) where b̃± now take values of classical
conormal symbols of order −k. Then, by an asymptotic summation argument (which
is just the σ-dependent version of the standard argument for conormal distributions,
conormal to v = 0) one sees that the v dependence of ã± can be essentially completely
eliminated in that one can write the integrand as χ0(v) times a v independent symbol,
with χ0 ≡ 1 near 0 and of compact support, again modulo Schwartz functions of σ, on
Im σ = −l, holomorphic in the upper half plane, with values in C∞(∂M). In particular,

12Note that components of bSN∗S are not even Legendre in bS∗M since the symplectic structure
degenerates at ∂M in the b-normal directions, so bSN∗S has dimension n− 2 if n is the dimension of
M : both the boundary defining function ρ and its b-dual variable σ vanish on bSN∗S.
13Near the boundary M admits a product decomposition of the form [0, ε)ρ × ∂M , we can then take
η+ supported in, say, ρ < ε/2, which makes the Mellin transform of η+u well defined.
14Here we use L∞-based symbols, so a symbol a of order 0 satisfies |Dα

yD
k
vD

N
γ a| ≤ CαkN 〈γ〉−N for all

α, k, N .
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the leading term of the asymptotic expansion of ã± as γ → ±∞ is recovered by simply
taking the Fourier transform of the Mellin transform of η+u and letting γ → ±∞.
Furthermore, analogous statements apply if ã± is a classical symbol of order s. In
particular, the isomorphism properties of the Fourier and Mellin transforms show that

when ã± is a classical symbol of order s, J(ã±) is in Hm,l
b (M) if m < 1

2 − l − s =

−1
2 − (l + s− 1), with l + s− 1 being the symbolic order of the symbol |γ|iσ−1ã±.
In terms of u ∈ Sol(P ), this means that for v and ρ near 0, η+u is the sum of two

integrals of the form

(5.3)

ˆ
ρiσeivγ |γ|iσ−1a±(σ, y)χ±(γ)dγdσ

with a± (Schwartz function of σ with values in) smooth functions, modulo terms that

belong to Hm′,l
b (M) for some m′ > 1

2−l (indeed, any m′ < 3
2−l) and for this reason will

turn out to be irrelevant for the analysis that follows. Above, χ± are smooth functions
with support in ±[0,∞)γ .

In the reverse direction, taking the inverse Mellin and Fourier transform yields two
maps

(5.4) Sol(P ) 3 u 7→ a+(σ, y) ∈ Ĩ l+, Sol(P ) 3 u 7→ a−(σ, y) ∈ Ĩ l+,
where we have introduced the notation

Ĩ l± ··=
{
a ∈ C∞(C−l × S±) : ∂a = 0,

∀M,N, k ∈ N, B ∈ Diff(S±), 〈σ〉N∂kσBa�{σ: Im σ∈(−l,M)}∈ L∞
}

for the principal symbols of conormal distributions considered here. Above, C−l =
{σ ∈ C : Im σ > −l} and the Cauchy–Riemann operator ∂ acts in the first variable
(i.e., σ) in the domain where l is such that no resonances of the Mellin transformed
inverse of P have imaginary part in [−l, l].

Now, we make a choice of components R−I in the radial set from which the estimates
are propagated from, labelled as usual by I ⊂ {+,−} and set

ĨI ··= Ĩ l± ⊕ Ĩ l±,
where the signs are chosen in such way that the number of pluses (resp. minuses)
reflects the number of components of R+

I in S+ (resp. S−). Accordingly, we have a

map (denoted %I) that assigns to a solution its pair of data on R+
I

(5.5) Sol(P ) 3 u 7→ %Iu = (a, a′) ∈ ĨI .

We will show that the map %I : SolI(P ) → ĨI is in fact bijective, possibly after

removing a finite-dimensional subspace from ĨI .
Injectivity is a consequence of Lemma 4.1 (note that the hypotheses of this lemma are

the reason why we consider here the restricted solution space SolI(P ) instead of Sol(P )),

so we focus on surjectivity. Let P̃0
I be the map defined for (a, a′) ∈ ĨI , by applying

formula (5.3) to a and a′ (with the signs chosen consistently with I), multiplying the
resulting distributions by η+ or η− (consistently with I), and then adding them up.

Then w = P̃0
I (a, a′) belongs to Hm,l

b (M) for m < 1
2 − l and its wave front set is in R.

Moreover, w is regular under M. The especially non-obvious part of this statement is
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regularity with respect to ρDv, which uses the holomorphicity: ρDv applied to (5.3)
yields indeed

(5.6)

ˆ
Im σ=−l

ρi(σ−i)eivγ |γ|i(σ−i)−1a±(σ, y)χ±(γ)dγdσ

=

ˆ
Im σ=−l+1

ρi(σ−i)eivγ |γ|i(σ−i)−1a±(σ, y)χ±(γ)dγdσ

=

ˆ
Im σ=−l

ρiσeivγ |γ|iσ−1a±(σ + i, y)χ±(γ)dγdσ.

One also gets that Pw ∈ Hm,l
b (two orders better than a priori expected, this follows

from P being equal to −4Dv(vDv + ρDρ) modulo M2). We can improve this further:

Lemma 5.2. Suppose l ∈ R. There is a continuous linear map P̃I : ĨI → Hm,l
b , for all

m < 1
2 − l, such that P ◦ P̃I : ĨI → H∞,lb and P̃I − P̃0

I : ĨI → Hm+1,l
b for all m < 1

2 − l.

Proof. This is a standard construction in microlocal analysis; see the proof of [6,
Lemma 6.4] for a similar argument, but phrased without the explicit use of oscillatory
integrals.

For ã holomorphic in Imσ > −l, with boundary value Schwartz taking values in

classical symbols of order s, consider a distribution w that modulo H∞,lb is given an
oscillatory integral of the form

J(ã) =

ˆ
ρiσeivγ |γ|iσ−1ã(σ, v, y, γ)dγdσ.

Then for any Q ∈ Diffjb(M), Qw is a distribution of the same form (modulo H∞,lb ), but
with s replaced by s+ j, namely:

Qw =

ˆ
ρiσeivγ |γ|iσ−1b̃(σ, v, y, γ)dγdσ

moduloH∞,lb , where b̃ is of order s+j, and b̃ differs from σb,j(Q)(0, 0, y, σ, γ, 0)ã(σ, v, y, γ)
by a classical symbol of order s + j − 1 (where the variables are the local coordi-
nates (ρ, v, y, σ, γ, η) on the b-cotangent bundle). Indeed, this is straightforward to see
for multiplication operators by C∞ functions on ∂M , as well as for the vector fields
ρDρ, Dv, Dyj : indeed, due to the Mellin transform this amounts to a σ-dependent ver-
sion of the standard regularity statement for conormal distributions, conormal to v = 0.
In addition, the statement holds for multiplication by powers ρk of ρ which in fact in-
crease the domain of holomorphy, and indeed on Imσ = −l (and in the corresponding

upper half plane) yields a similar term but with b̃ now of order s− k by a contour shift
argument similar to (5.6). Thus, for finite Taylor expansions of arbitrary C∞ functions
on ∂M one has the same multiplication property, with the symbolic order improving
as one increases the power of ρ, so in fact the symbols arising from the full formal
Taylor series can be asymptotically summed. One also sees by rewriting multiplication
by ρk times an element φ of C∞(M) of support in ρ < ε as a convolution on the Mellin

transform side that ρkφJ(ã) is in fact in Hm,l
b for any m < 1

2 − l − s + k. Combining
this with the asymptotic summation statement, using that b-conormal distributions of
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symbolic order s− k lie in Hm,l
b for any m < 1

2 − l− s+ k, we see that (modulo H∞,lb )
multiplication by a C∞ function indeed gives a distribution of the stated form.

On the other hand, under the stronger assumption that Q ∈ M ⊂ Diff1
b, we have

that Qw is of the same form, but now with the same s, i.e. it equalsˆ
ρiσeivγ |γ|iσ−1c̃(σ, v, y, γ)dγdσ

modulo H∞,lb , where c̃ is order s. Again, this is readily seen by applying the generator
vector fields ρDρ, ρDv, vDv and Dyj to the oscillatory integral, with the argument for
ρDv having already been discussed above. In addition, if Q = ρDρ+vDv, then c̃ differs
from −γDγ ã(σ, v, y, γ), hence from isã, by a classical symbol of order s− 1; note that
this says concretely that for s = 0, the result is a classical symbol of order −1.

Taking this into account, for ã as above of order 0, one can iteratively solve the
problem of constructing u of the form

J(ã∞) =

ˆ
ρiσeivγ |γ|iσ−1ã∞(σ, v, y, γ)dγdσ

modulo H∞,lb , with ã∞ − ã classical of order −1, and with Pu ∈ H∞,lb . Indeed, take
first ã0 = ã, so for Q ∈M2, the expression

PJ(ã0) = −4Dv(ρDρ + vDv)J(ã0) +QJ(ã0)

is of the form J(r̃0) with r̃0 classical of order 0. Thus taking ã′1 of order −1, PJ(ã′1) is

of the form J(r̃′1) modulo H∞,lb with r̃′1 a symbol of order 0, equal to −4iγã′1 modulo

symbols of order −1. Thus, choosing ã′1 = − i
4 r̃0, ã1 = ã0 + ã′1, PJ(ã1) is 0 modulo

J(r̃1) + H∞,lb , with r̃1 symbol of order −1, i.e. it is of the form J(r̃1) + H∞,lb , which
is one order improvement over r̃0 corresponding to PJ(ã0). Similarly, we inductively

construct ãk = ã0 +
∑k

j=1 ã
′
j such that PJ(ãk) is of the form J(r̃k) + H∞,lb , with r̃k

classical of order −k. This can be done because for ã′k classical of order −k, P J̃(a′k)

is of the form J(r̃′k) modulo H∞,lb with r̃′k a symbol of order −k + 1, equal to −4ikγã′k
modulo symbols of order −k; the point being that as k 6= 0, −4ikγã′k = −r̃k−1 (where
r̃k−1 corresponds to PJ(ãk−1)) can be solved for ã′k. Finally asymptotically summing
ã′∞ ∼

∑∞
j=1 ã

′
j , we see that ã∞ = ã0 + ã′∞ satisfies the requirements of the lemma. �

We now define the Poisson operator

(5.7) PI ··= (P−1
I − P−1

Ic )P P̃I .

Let us analyze its mapping properties. First, P P̃I maps ĨI to RanPI directly from
the definition as P̃I maps into XI by virtue of Lemma 5.2. Furthermore P P̃I maps
also to Y∞,l =

⋃
m Ym,l, which is a subset of YIc . Since P : XI → YI is Fredholm,

the kernel of P P̃I is finite dimensional and has thus a complement KI ⊂ ĨI . On KI ,
P P̃I is injective, so the pre-image of ZIc (where we recall that ZIc is a complement of
YIc) is finite dimensional. Taking the pre-image of RanPIc and adding to it elements

of KerP P̃I we obtain a subspace of ĨI , denoted II , which has a finite dimensional
complement and such that P P̃III ⊂ RanPIc . Thus, the Poisson operator (5.7) maps

PI : II → SolI(P ).
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We will prove that %I maps SolI(P )→ II and that it does so bijectively, with inverse
PI . We will need the following lemma.

Lemma 5.3. The operator P̃I ◦%I acts on Sol(P ) as a pseudodifferential operator that
is microlocally the identity near R+

I and microlocally vanishes near R−I , modulo terms

that map to Hm′,l
b (M) for some m′ > 1

2 − l.

Proof. Let us introduce an analogue of the map P̃I that acts on full symbols (rather
than on principal symbols):

(5.8) P̃0a ··=
ˆ
ρiσeivγη+(v, ρ, y)a(σ, v, y, γ)dγdσ,

and correspondingly

%0u ··= (2π)−2

ˆ
ρ−iσe−ivγη+(ρ, v, y)u(ρ, v, y) dρ dv.

Now, the already discussed statement on the regularity of solutions is that they are of
the form P̃0a for some symbol a as above (with the appropriate holomorphy properties)

modulo H∞,lb . If they were actually of this form (and the difference in H∞,lb is easy to
deal with in any case), one would get

P̃0%0u = P̃0%0P̃0a = P̃0(%0P̃0a),

and hence one is done if %0P̃0 is essentially the identity. Now,

(5.9) %0P̃0a = FvMρη
2
+M−1F−1a,

so the question is whether

FvMρ(1− η2
+)M−1F−1a

is trivial. But it indeed is, since M−1F−1 maps symbols to distributions which are in

H∞,lb away from {ρ = 0, v = 0}, thus on the support of 1 − η2
+, and then FM sends

these to symbols of order −∞ in the required sense.
Given this, the map % is simply a restriction of a rescaled version of %0 to ±∞ in γ;

P̃ is an analogous composition with extension from ±∞ (ignoring χ± which just cuts
everything in two), namely

% = r∞|γ|−iσ+1%0, P̃ = P̃0|γ|iσ−1E∞.

Thus,

(5.10) P̃% = P̃0%0 + P̃0|γ|iσ−1(E∞r∞ − 1)|γ|−iσ+1%0,

and the first term is microlocally the identity as we have seen before, while the second
term maps to b-conormal distributions of one lower order because E∞r∞ − 1 maps
smooth functions on the compactified line (times various irrelevant factors) to functions
vanishing to first order at ±∞. �

Now, since in the sense stated in the above lemma, P̃I%I is microlocally the identity
near R+

I and microlocally vanishes near R−I , arguing as in the paragraph below (4.2)
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we conclude that P P̃I%I maps SolI(P ) to RanPI ∩ RanPIc . This in turn implies that
%I maps to II . On the other hand using (4.3) we get

(5.11) −(P−1
Ic − P

−1
I )P P̃I%I = 1 on SolI(P ),

that is PI%I = 1 on SolI(P ). Thus, to deduce surjectivity of %I we need to show that
PI is injective.

First, we observe that PI(a, a′) = P̃I(a, a′) at R+
I modulo Hm+1,l

b terms with M(M)

regularity. Thus, it suffices to prove that (a, a′) 7→ [w] = [P̃I(a, a′)] is injective, with

the equivalence class considered modulo Hm+1,l
b , −1

2 + l < m < 1
2 + l. This can be

readily seen from the computation in (5.9) which gives injectivity of the auxiliary map

P̃0, and hence the stated injectivity of P̃I modulo Hm+1,l
b .

We have thus proved:

Proposition 5.4. The map SolI(P ) 3 u 7→ %Iu ∈ II defined in (5.5) is bijective with
inverse PI .

We now consider the pairing formula for smooth approximate solutions, i.e. for u
satisfying

(5.12) u ∈ H−∞,0b (M), Pu ∈ H∞,0b (M), WF∞,0b (u) ⊂ R;

the computations below are closely related to [52]. To this end we will need a family

of operators Jr belonging to Ψ−Nb for r ∈ (0, 1] (and N sufficiently large), uniformly
bounded in Ψ0

b for r ∈ (0, 1] and tending to 1 as r → 0 in Ψε
b for any ε > 0, so

that [P,Jr] → 0 in Ψ1+ε
b . Let us take concretely Jr to have principal symbol jr =

(1 + r|γ|)−N near the radial sets. Then

(5.13)
i−1(〈Pu1, u2〉b − 〈u1, Pu2〉b) = i−1 lim

r→0
(〈JrPu1, u2〉b − 〈Jru1, Pu2〉b)

= lim
r→0
〈i[Jr, P ]u1, u2〉b,

for any u1, u2 satisfying (5.12) and the principal symbol of i[Jr, P ] is

−Hpjr = (sgnγ)Nr(1 + r|γ|)−1jrHpγ.

Moreover, Hp|γ| = (sgnγ)Hpγ is positive at sinks, negative at sources. Concretely, in
our case, as p is given by −4γ(vγ + σ) modulo terms that vanish quadratically at the
radial set R, Hpγ is given by 4γ2 modulo terms vanishing at R. Hence, −Hpjr equals
4γ2(sgnγ)Nr(1 + r|γ|)−1jr modulo such terms, thus the sinks correspond to γ > 0,
whereas the sources to γ < 0.

Now, u1 and u2 have module regularity of the same type as already discussed for
Sol(P ), so the result of the computation of (5.13) is unaffected if P is changed by
terms in M2 (provided they preserve the formal self-adjointness). Moreover, ui can be

replaced by distributions ũi with ui − ũi ∈ Hm+1,l
b , Pũi ∈ Hm,l

b with wave front set

in the radial sets. So in particular, for each i we may replace u = ui by P̃∅(a+
−, a

−
−) +

P̃{+,−}(a+
+, a

−
+), where a±± are the b-conormal principal symbols discussed before, with

the superscript denoting the component of the characteristic set and the subscript the
component of the radial set: R−∅ versus R+

∅ .
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Therefore, as the Mellin transform and Fourier transform are isometries up to con-
stant factors, we can reexpress (5.13) as

= lim
r→0

2π
∑
±

ˆ
4γ2Nr(1 + r|γ|)−1jr|γ|iσ−1|γ|−iσ−1

×
(
χ+(γ)2

∑
±
a±1,+a

±
2,+ − χ

−(γ)2
∑
±
a±1,−a

±
2,−

)
|dh(y)|dγdσ

= lim
r→0

2π
∑
±

(ˆ
4Nr(1 + r|γ|)−1jrχ

+(γ)2dγ

)(ˆ
a±1,+a

±
2,+|dh(y)|dσ

)
−
(ˆ

4Nr(1 + r|γ|)−1jrχ
−(γ)2dγ

)(ˆ
a±1,−a

±
2,−|dh(y)|dσ

)
where h is the metric on S± and the integral in σ is over Imσ = 0. Integrating by
parts and then applying the dominated convergence theorem gives

= lim
r→0

2π
∑
±

(ˆ
−4

d

dγ
(jr)χ

+(γ)2dγ

)(ˆ
a±1,+a

±
2,+|dh(y)|dσ

)
−
(ˆ
−4

d

dγ
(jr)χ

−(γ)2dγ

)(ˆ
a±1,−a

±
2,−|dh(y)|dσ

)
= lim
r→0

2π
∑
±

(ˆ
−4jr

d

dγ
χ+(γ)2dγ

)(ˆ
a±1,+a

±
2,+|dh(y)|dσ

)
−
(ˆ
−4jr

d

dγ
χ−(γ)2dγ

)(ˆ
a±1,−a

±
2,−|dh(y)|dσ

)
= 8π

∑
±

(ˆ
a±1,+a

±
2,+|dh(y)|dσ −

ˆ
a±1,−a

±
2,−|dh(y)|dσ

)
.

This means that for u1 = P̃I(a+
1 , a

−
1 ), and u2 ∈ Sol(P ) with asymptotic data %Iu =

(a+
2 , a

−
2 ) we have

(5.14) 〈P P̃I(a+
1 , a

−
1 ), u2〉b = 8πi

∑
±

(−1)I(±)

ˆ
a±1 a

±
2 |dh(y)|dσ,

where we have used the notation introduced before

(−1)I(±) =

{
1 if ± ∈ I,
−1 otherwise.

If instead (a+
2 , a

−
2 ) are the asymptotics of u2 at R+

I = R−Ic then

〈P P̃Ic(a+
1 , a

−
1 ), u2〉b = −8πi

∑
±

(−1)I(±)

ˆ
a±1 a

±
2 |dh(y)|dσ.

This gives in the former case

(5.15) %Iu2 = 8πi

(
(−1)I(+) 0

0 (−1)I(−)

)
(P P̃I)∗u2
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and so if u2 belongs to the restricted solution space SolI(P ),

u2 = 8πiPI
(

(−1)I(+) 0

0 (−1)I(−)

)
(P P̃I)∗u2

= 8πi(P−1
I − P−1

Ic )P P̃I
(

(−1)I(+) 0

0 (−1)I(−)

)
(P P̃I)∗u2.

In particular,

(P−1
I − P−1

Ic ) = 8πi(P−1
I − P−1

Ic )P P̃I
(

(−1)I(+) 0

0 (−1)I(−)

)
(P P̃I)∗(P−1

I − P−1
Ic ),

hence using (5.15) again,

(P−1
I − P−1

Ic ) = i(8π)−1(P−1
I − P−1

Ic )%∗I

(
(−1)I(+) 0

0 (−1)I(−)

)
%I(P

−1
I − P−1

Ic )

Denoting now

(5.16) qI ··= (8π)−1

(
(−1)I(+) 0

0 (−1)I(−)

)
,

and recalling that GI = P−1
I − P−1

Ic , this can be rewritten as iGI = −GI%∗IqI%IGI . In
the sense of sesquilinear forms on RanPI ∩ RanPIc , iGI is formally self-adjoint so this
gives

(5.17) iGI = G∗I%
∗
IqI%IGI .

In summary:

Theorem 5.5. Let I ⊂ {+,−} and suppose l = 0 is not a resonance in the sense of
Hypothesis 3.1. There are isomorphisms of symplectic spaces

(5.18)
RanPI ∩ RanPIc

P (XI ∩ XIc)
[GI ]−−−→ SolI(P )

%I−−−→ II ,

where the symplectic form on the first one is given by 〈·, GI ·〉 and on the last one by
(5.16).

As an aside, observe that if we get back to equation (5.14) specifically in the Feynman
or anti-Feynman case, we obtain that for any approximate solution u with asymptotic
data %Iu = (a+, a−), the quantity 〈P P̃I(a+, a−), u〉b vanishes if and only if (a+, a−) =
0. In particular, if u ∈ KerPI (so that u is regular at R−I ) then

〈P P̃I(a+, a−), u〉b = 〈P̃I(a+, a−), Pu〉b = 0

so (a+, a−) = 0. This implies u has above-threshold regularity at R+
I ; it is also regular

at R−I so in fact by above-threshold estimates we get:

Proposition 5.6. In the Feynman (I = ∅) and anti-Feynman case (I = {+,−}),

Hypothesis 3.2 is satisfied for l = 0, i.e. KerPI ⊂ H∞,0b (M).
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5.3. Hadamard two-point functions. The second arrow in (5.18) means that the
symplectic space VI is isomorphic to II equipped with the symplectic form i−1qI , which
is more tractable in applications.

Let us denote

π+ = (8π)−1

(
1 0
0 0

)
, π− = (8π)−1

(
0 0
0 1

)
,

and for I ⊂ {+,−} consider the pair of operators

(5.19) Λ±I ··= G∗I%
∗
Iπ
±%IGI : H∞,0b (M)→ H−∞,0b (M).

They satisfy PΛ±I = Λ±I P = 0, (−1)I(+)Λ+
I + (−1)I(−)Λ−I = iGI and Λ±I ≥ 0 when

identified with sesquilinear forms on RanPI ∩ RanPIc via the product 〈·, ·〉b. We will
prove that they also satisfy the wave front set condition required from Hadamard two-
point functions.

Theorem 5.7. The pair of operators Λ±I defined in (5.19) satisfy the Hadamard condi-

tion, and thus if I = {±}, Λ±I are Hadamard two-point functions for P (cf. Definition
4.5).

Proof. We assume for simplicity that all the operators PI are invertible, otherwise
one simply needs to use projections to the finite-dimensional spaces KerPI and ZI to
legitimize the arguments that follow. We consider the case I = {+}, the remaining
ones being analogous, and we skip the subscript I for brevity of notation.

First observe that for any v ∈ X+ ∩ X−, the distribution f = P̃π+%Gv has above-

threshold regularity at bSN∗+S−, bSN∗−S− (due to the definition of P̃) and also at
bSN∗−S+ (due to the presence of π+). Now Λ+v = (1 − P−1

+ P )f differs from f by a

term regular at bSN∗S+, thus Λ+v is regular near bSN∗−S+. It also solves the wave
equation, so by propagation of singularities WF(Λ+v) ⊂ Σ+ in M◦.

Applying this to v = δx, this means on the level of the Schwartz kernel that
WF′(Λ+) ⊂ (Σ+∪o)×T ∗M◦, and in the same way one gets WF′(Λ−) ⊂ (Σ−∪o)×T ∗M◦.
By Remark 4.6 this suffices to conclude that WF′(Λ±) equals ∪t∈RΦt(diagT ∗M◦) ∩
π−1Σ±. �

As already outlined in the introduction, the two-point functions Λ±+ and Λ±− con-
structed from asymptotic data %+ and %− can be thought as analogues of two-point
functions constructed in other setups [44, 45, 21, 24] for the conformal wave equa-
tion and for the massive Klein-Gordon equation (rather than for the wave equation
considered here).

5.4. Blow-up of S. In the setting of Definition 2.1, a convenient way to specify the
asymptotic data of a solution of the wave equation is based on the radiation field blow-
up proposed by Baskin, Vasy and Wunsch in [6] in the context of asymptotic expansions
for the Friedlander radiation fields (much in the spirit of Friedlander’s work [19]). In
what follows we briefly discuss how this can be used in our situation to provide a more
geometrical description of the data %Iu (for a restricted class of solutions), starting
with the following example. Namely, on Minkowski space R1+d with coordinates (t, x),

a convenient choice of new coordinates is s = t− |x|, y = x/|x|, ρ = (t2 + |x|2 + 1)−1/2.
These make sense locally near the front face ff = {ρ = 0}, and asymptotic properties
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of solutions can be described in terms of their restriction to ff, multiplied first by
a ρ−(n−2)/2 factor to make this restriction well-defined. The step that consists of
multiplying a solution u by ρ−(n−2)/2 can be interpreted as replacing the original metric
by a conformally related one, which extends smoothly to {ρ = 0}, and then considering
u as a solution for the conformally related wave operator.

In the general setting of Lorentzian scattering spaces, recalling that ρ is a boundary
defining function of ∂M and (v, y) are coordinates on ∂M with S = {ρ = 0, v = 0}, the
analogue of this construction consists of introducing coordinates (s, y) with s = v/ρ,
valid near a boundary hypersurface ‘ff’ (the front face) of a new manifold that replaces
M , constructed as the sum of M \ S and the inward-pointing spherical normal bundle
of S. More precisely, one replaces M with a manifold with corners [M ;S] (the blow-
up of M along S, cf. [41]), equipped in particular with a smooth map [M ;S] → M
called the blow-down map which is a diffeomorphism between the interior of the two
spaces. It is possible to canonically define [M ;S] in such way that ‘polar coordinates’

R = (v2 + ρ2)1/2, ϑ = (ρ · v)/R are smooth, and smooth functions on M lift to smooth
ones on [M ;S] by the blow-down map. The boundary surface of interest ff is simply
defined as the lift (i.e. inverse image) of S to [M ;S], and near its interior, (ρ, s, y)
constitute a well-defined system of coordinates indeed.

X+ X+

X− X−

ff−→

Figure 4. The radiation field blow-up of M along S = S+ ∪ S−. The
blow-down map goes in the reverse of the direction of the arrow.

Although the metric g (lifted using the blow-down map) is ill-behaved as ρ tends to
0, rescaling it by a conformal factor ρ2 yields a Lorentzian metric ρ2g which is smooth
down to ρ = 0. Note that if u(ρ, v, y) solves Pu = f , then u(ρ, ρs, y) is a solution of
the inhomogeneous Klein-Gordon equation conformally related to 2g.

It can be argued that the restriction of u to the front face is well-defined for u ∈
SolI(P ) at least if l > 0. Indeed, in that case, u can be (locally) expressed as P̃0a

modulo some decaying terms, where we recall that P̃0 was defined in (5.8) and adapted
to the present setup, it maps to distributions which are conormal to the front face
(in particular we get decay in the L2

b sense due to the assumption l > 0), thus the
restriction to ff makes sense.

Now, recall that in our discussion of the asymptotic data %I , the starting point was
the expression

(5.20)

ˆ
ρiσeivγ |γ|iσ−1a±(σ, y)χ±(γ)dγdσ
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for elements of Sol(P ), valid (near S) modulo terms in Hm′,l
b (M) for some m′ > 1

2 − l.
Performing the σ integral first, one obtains (up to non-zero constant factors)ˆ

eivγ(M−1a±)(ρ|γ|, y)χ±(γ)|γ|−1dγ,

where M−1 is the inverse Mellin transform in σ. Replacing γ by ν = ργ, one hasˆ
eiν(v/ρ)(M−1a±)(|ν|, y)χ±(ρ−1γ)|ν|−1dν.

As ρ→ 0 this becomes ˆ
±[0,∞)

eiν(v/ρ)(M−1a±)(|ν|, y)|ν|−1dν,

which is the inverse Fourier transform in ν of (M−1a±)(|ν|, y)1l±(ν)|ν|−1 (1l± being the
characteristic function of ±[0,∞)) evaluated in the radiation face coordinate s = v/ρ:

(5.21) F−1
(
(M−1a±)(| . |, y)1l±( . )| . |−1

)
(v/ρ).

Note that the inverse Fourier transform above is well-defined because the product
of (M−1a±)(| . |, y) and 1l±( . )| . |−1 is in L1 by Lemma 5.1. As the inverse Fourier
transform of a distribution conormal to the origin, (5.21) is a symbol, although it is
difficult to make an exact statement for the exact class of symbols it is in since the
superlogarithmic decay at the origin does not translate directly into nice estimates.

After performing the blow-up, we can view (5.21) as the restriction of a solution to
the front face ff. Thus in the reverse direction, one takes u�ff , one Fourier transforms
it, then restricts to the positive or negative half-lines and then Mellin transforms the
result to obtain the principal symbol of the solution in the respective half of bSN∗S± =
bSN∗+S± ∪ bSN∗−S±. This means that %I can be expressed as

(5.22) Sol(P ) 3 u 7→ %Iu ··=
(
M(F(η±u�ff)|γ| 1l±),M(F(η±u�ff)|γ| 1l±)

)
∈ ĨI ,

where the signs are chosen relatively to I, i.e. for each component the subscript indi-
cates S+ versus S− and the sign in the superscript indicates bSN∗+S versus bSN∗−S,
provided that u is such that the restriction u�ff is well-defined.

We remark here that specifying u�ff is analogous to setting (part of) a characteristic
Cauchy problem in the sense that the conormal of ff lies in the characteristic set of
2ρ2g, this bears thus some resemblance to the construction used in [44, 45, 21] in the
case of the conformal wave equation.

6. Asymptotically de Sitter spacetimes

6.1. Geometrical setup. The proof of the Fredholm property of the rescaled wave
operator P on asymptotically Minkowski spacetimes in [6, 30, 25] is based on a care-

ful analysis of the Mellin transformed normal operator family N̂(P )(σ), which is a
holomorphic family of differential operators on the compact manifold ∂M . Recall also
that we used results from [6] on module regularity of solutions of P , these in turn are
based on the Mellin transformed version of the operator P . The relevant property is
that for fixed σ one has an elliptic operator in the two connected components of the
region v > 0 and a hyperbolic one in v < 0. Furthermore, in the respective regions
they can be related to the Laplacian on an asymptotically hyperbolic space and to the
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wave operator on an asymptotically de Sitter space by conjugation with powers of the
boundary-defining functions of S±, with S = S+∪S− playing the role of the asymptot-
ically de Sitter conformal boundary. In this section we will be interested in the reverse
construction, which extends a given asymptotically de Sitter space X0 (conformally
compactified, with conformal boundary S = S+ ∪ S−) to a compact manifold X, and
relates the Klein-Gordon operator on the asymptotically de Sitter region to a differen-
tial operator P̂X defined on the whole ‘extended’ manifold X. The main merit of this
construction is that P̂X acts on a manifold without boundary and more importantly it
fits into the framework of [53, 30], with bicharacteristics beginning and ending at the
radial sets located above S+ and S−.

These various relations are explained in more detail in [50, 56], here as an illustra-
tion we start with the special case of actual n = 1 + d-dimensional Minkowski space
R1+d with metric gR1,d = dz2

0 − (dz2
1 + · · · + dz2

d). Its radial compactification is a

compact manifold M with boundary ∂M = Sd−1, and with ρ = (z2
0 + · · · + z2

d)−1/2

the boundary defining function, Mellin transforming the rescaled wave operator P =
ρ−(d−1)/2ρ−22gρ

(d−1)/2 yields a (σ-dependent) differential operator P̂∂M on the bound-
ary ∂M

P̂∂M (σ) ··=Mρρ
−(d−1)/2ρ−22gρ

(d−1)/2M−1
ρ ∈ Diff2(∂M).

Now the crucial observation is that the region in the boundary Sd corresponding to
z2

1 + · · · + z2
d > z2

0 in the interior can be identified with the de Sitter hyperboloid
z2

0 − (z2
1 + · · · + z2

d) = −1. The latter is a manifold that we denote X0 and which is
equipped with the de Sitter metric gX0 , related to the Minkowski metric by

gR1,d = −dr2
X0

+ r2
X0
gX0 =

1

ρ2

(
− x2

X0

(
−dρ
ρ

+
dxX0

xX0

)2

+ x2
X0
gX0

)
,

where rX0 = (z2
1 + · · ·+ z2

d − z2
0)1/2 is the space-like Lorentzian distance function and

xX0 =

(
z2

1 + · · ·+ z2
d − z2

0

z2
1 + · · ·+ z2

d + z2
0

) 1
2

= rX0ρ.

Here we consider the de Sitter space X0 as a manifold with boundary S = S+ ∪ S−
(this is the so-called conformal boundary of X0) and boundary-defining function xX0 .

Remarkably, as shown in [56], P̂∂M (σ) is related to the (Laplace-Beltrami) wave
operator on X0 by15

P̂∂M (σ)�X0= x
−iσ−(d−1)/2−2
X0

(2X0 − σ2 − (d− 1)2/4)x
iσ+(d−1)/2
X0

.

In turn, the two connected regions on the boundary Sd−1 that correspond to |z0| >
z2

1 + · · · + z2
d and respectively ±z0 > 0 in the interior of M can be identified with the

two hyperboloids

z2
0 − (z2

1 + · · ·+ z2
d) = 1, ±z0 > 0.

These hyperboloids are in fact two copies of hyperbolic space, here in the compactified
setting we consider them as two manifolds X±with boundary ∂X± = S±, with metric

15Note that this differs from the formulas in [56] by a sign in front of σ, because there the Mellin
transform is taken with respect to ρ−1 instead of ρ.
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gX± satisfying

gR1,d = dr2
X± − r

2
X±gX± = − 1

ρ2

(
− x2

X±

(
−dρ
ρ

+
dxX±
xX±

)2

+ x2
X±gX±

)
,

with rX+ = rX− = (z2
0 − z2

1 + · · · + z2
d)1/2 the time-like Lorentzian distance function

and xX± = rX±ρ; note that the pull-back of the Minkowski metric to the hyperboloid
is the negative of the Riemannian metric. Similarly as in the case of X0, one has an
identity relating P̂∂M to the Laplace-Beltrami operator on X±:

P̂∂M (σ)�X±= x
−iσ−(d−1)/2−2
X±

(∆X± − σ2 − (d− 1)2/4)x
iσ+(d−1)/2
X±

.

We now consider the more general setup of asymptotically hyperbolic and asymptot-
ically de Sitter spacetimes (note that the latter have to be thought as a generalization
of ‘global’ de Sitter space, as opposed for instance to the static or cosmological de Sitter
patch), following [50, 56].

Definition 6.1. Let X• be a compact d-dimensional manifold with boundary, equipped
with a metric g on X◦• , and let x be a boundary defining function. One says that (X•, g)
is:

• asymptotically hyperbolic if g = x−2ĝ, where ĝ is a smooth Riemannian metric
on X• with ĝ(dx, dx)�x=0= 1;
• asymptotically de Sitter if g = x−2ĝ, where ĝ is a smooth Lorentzian metric on
X• of signature (1, d−1), with ĝ(dx, dx)�x=0= 1, and the boundary is the union
∂X• = S+ ∪ S− of two connected components, with all null geodesics in X◦•
parametrized by t ∈ R tending either to S+ as t → ∞ and to S− as t → −∞,
or vice versa.

An argument from [30] (discussed therein for a class of asymptotically Minkowski
spacetimes) can be used to show that (X0, gX0) is asymptotically de Sitter then (X◦0 , gX0)
is globally hyperbolic. Moreover, it is well-known that X0 diffeomorphic to [−1, 1]×S+

(and to [−1, 1]× S−).
Furthermore, one says that an asymptotically de Sitter space (X0, gX0) is even if it

admits a product decomposition [0, ε)x × (∂X0)y near ∂X0 such that

(6.1) gX0 =
dx2

X0
− h(x2

X0
, y, dy)

x2
X0

with h(x2
X0
, y, dy) smooth. In a similar way (but with different sign in front of h) one

defines even asymptotically hyperbolic spaces [50, 56], cf. also the work of Guillarmou
[27] for the original definition. It can be shown that the product decomposition (6.1)
is a general feature of asymptotically de Sitter spacetimes (this is analogous to the
Riemannian case treated in [26]), so the essential property in the definition of even
spaces is smoothness of h(x2

X0
, y, dy). For us what matters the most is that this amounts

to requiring that h is smooth with respect to a C∞ structure onX, modified with respect
to the original one in such way that v = −x2

X0
is a valid boundary-defining function

(we call it the even C∞ structure on X0).
Now, given an even asymptotically de Sitter space (X0, gX0), as explained in [56],

one can construct two even asymptotically hyperbolic spaces (X±, gX±) with boundary
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defining functions xX± , and a compact manifold X (without boundary) of the form

X = X+ ∪X0 ∪X−,
where ∂X± is smoothly identified with the component S± of the boundary ∂X0 = S
of X0. Strictly speaking, in general one needs to replace X0 with two copies of it for
topological reasons (although this is not necessary in the case of exact de Sitter space).
Next, equipping X with the even C∞ structure on the respective components allows
one to construct an asymptotically Minkowski space (M, g) with M = R+

ρ ×X (so that
∂M = X) and g a smooth metric of the form

g =
1

ρ2

(
v
dρ2

ρ2
− 1

2

(
dρ

ρ
⊗ dv + dv ⊗ dρ

ρ

)
− h(−v, y, dy)

)
with v = −x2

X0
on X0 and v = x2

X±
on X±. The Mellin transformed (rescaled) wave

operator on M defines a family of differential operators P̂X(σ) ∈ Diff2(X) which is
related to the Laplace-Beltrami (wave) operator on X± and X0 by

(6.2) P̂X(σ)�X◦±= xiσ̃−2
X0

P̂X0(σ)x−iσ̃
X0

, P̂X(σ)�X◦±= xiσ̃−2
X±

P̂X±(σ)x−iσ̃
X±

,

where we have set σ̃ = −σ + i(d− 1)/2 and

(6.3) P̂X0(σ) = 2X0 − σ2 − (d− 1)2/4, P̂X±(σ) = −∆X± + σ2 + (d− 1)2/4.

Denoting 〈·, ·〉X , 〈·, ·〉X0 , 〈·, ·〉X± the pairings induced from the respective metrics, we

have that P̂X(σ) is the formal adjoint of P̂X(σ) with respect to 〈·, ·〉X , similarly P̂X•(σ)

is the formal adjoint of P̂X•(σ) with respect to 〈·, ·〉X• , note also the relation

〈·, ·〉X = 〈·, x2
X• ·〉X• on X•.

Turning our attention to inverses, by global hyperbolicity of (X0, g0), it is well known

that P̂X0(σ) has retarded and advanced propagators16 P̂X0,±(σ)−1 for any value of σ.

The two operators P̂X±(σ) possess inverses P̂X±(σ)−1 for sufficiently large values of
| Im σ| in the sense of the resolvent of the positive operator −∆X± (on the closure of

its natural domain in L2), and moreover it was shown in [27, 40, 50] that P̂X±(σ)−1

continues from say Imσ � 0 to C a meromorphic family of operators (cf. also [60] for
a recent, more concise account).

On the other hand, P̂X(σ) fits into the framework of [53], which allows to set up a
Fredholm problem in the spaces

X s = {u ∈ Hs(X) : P̂X(σ)u ∈ Ys−1}, Ys−1 = Hs−1(X),

with the conclusion that P̂X(σ) : X s → Ys−1 possess in particular two inverses

P̂X,±(σ)−1 in the sense of meromorphic families of operators, where the sign + corre-

sponds to requiring above-threshold regularity s > 1
2 − Im σ near N∗S+ and below-

threshold regularity s < 1
2 − Im σ near N∗S−, while the sign − corresponds to the

same conditions with N∗S+ and N∗S− interchanged. In a similar vein one can define
Feynman and anti-Feynman inverses (as pointed out in [52]), we have thus four inverses

P̂X,I(σ)−1. Focusing our attention on retarded and advanced ones, it is proved in [56]

16This means here that P̂X0,±(σ)−1 are the inverses of P̂X0,±(σ) that solve respectively the advanced,
retarded inhomogeneous problem.
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that just as the identities (6.2) suggest, with additional subtleties in the sign of σ (cor-
responding to whether the inverse is defined by analytic continuation from Im σ � 0
or from Im σ � 0), it holds that

(6.4)

P̂X,±(σ)−1�X◦0→X◦0 = xiσ̃
X0
P̂X0,±(σ)−1x−iσ̃+2

X0
,

P̂X,+(σ)−1�X◦±→X◦± = xiσ̃
X±P̂X±(σ)−1x−iσ̃+2

X±
,

P̂X,−(σ)−1�X◦±→X◦± = xiσ̃
X±P̂X±(−σ)−1x−iσ̃+2

X±
,

away from poles of P̂X,±(σ)−1 and P̂X±(σ)−1. Here the subscript �X◦•→X◦• means that

we act with P̂X,±(σ)−1 on C∞(X•) and restrict the result to the interior of X•, so (6.4)

contains no direct information on how P̂X,±(σ)−1 acts between different components
of X.

To derive a more precise relation, [56] makes use of asymptotic data of solutions
at the common boundaries of X0 and X±. Here we will discuss the corresponding
symplectic spaces in a similar way as in Subsect. 5.2, starting first with the analogues
of the space of solutions smooth away from the radial set (we focus here mainly on the
spaces defined using the retarded and advanced propagator).

6.2. Symplectic spaces of solutions. Assuming σ ∈ R, the symplectic spaces associ-
ated to P̂X(σ) and the various isomorphisms between them can in fact be introduced in

a very similar fashion as in the asymptotically Minkowski case. We denote Sol(P̂X(σ))

the space of solutions of P̂X(σ)u = 0 with WF(u) ⊂ N∗S and set

(6.5) ĜX(σ) ··= P̂X,+(σ)−1 − P̂X,−(σ)−1.

From now on the dependence on σ will often be skipped in the notation, we stress
however that we always make the implicit assumption that σ is not a pole of the two
operators P̂X,+(σ)−1, P̂X,−(σ)−1. Using essentially the same arguments as before (this

is even in many ways simpler due to P̂−1
X,± being exact inverses of P̂X) we get a bijection

(6.6)
C∞(X)

P̂XC∞(X)

[ĜX ]
−−−→ Sol(P̂X).

Furthermore, the sesquilinear form 〈·, ĜX ·〉 induces a well-defined symplectic form on

C∞(X)/P̂XC∞(X), and since (P̂−1
X,+)∗ = P̂−1

X,− by [52], ĜX is anti-hermitian. Although

the method of proof of (6.6) is fully analogous to the case of asymptotically Minkowski
spacetimes, we stress that the physical outcome is much more unusual, as it allows to
build a non-interacting quantum field theory governed by a differential operator that
is not everywhere hyperbolic. Note also that one can obtain an analogue of (6.5) in
the ‘Feynman minus anti-Feynman’ case.

In turn, the discussion of symplectic spaces on X0 is rather standard due to global
hyperbolicity of the interior. Let Sol(P̂X0) be the space of solutions of P̂X0u = 0 that

are smooth in the interior X◦0 . Setting ĜX0
··= P̂−1

X0,+
− P̂−1

X0,−, one gets isomorphisms

(6.7)
C∞c (X◦0 )

P̂X0C∞c (X◦0 )

[ĜX0 ]
−−−→ Sol(P̂X0),
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either by using well-known results (cf. for instance [3]) or by repeating the proof of the
asymptotically Minkowski case.

The next proposition shows that the symplectic spaces (6.6) and (6.7) are in fact
isomorphic, so the content of a QFT on X is induced by a QFT in the asymptotically
de Sitter region.

Proposition 6.2. We have isomorphisms

(6.8)
C∞(X)

P̂XC∞(X)

[ĜX ]
−−−→ ĜXC∞c (X◦0 )

�X0−−−→ (ĜXC∞c (X◦0 ))�X0

x−iσ̃
X0−−−→ Sol(P̂X0).

Proof. Bijectivity of the first arrow is proved in analogy to Propositions 4.2 and 4.7
(the time-slice property).

To prove that the second arrow is bijective, we use the expression for ĜX resulting
from (6.4). Specifically, if f ∈ C∞c (X◦0 ) then

(6.9) (ĜXf)�X0= xiσ̃
X0
ĜX0x

−iσ̃+2
X0

f.

By the isomorphism (6.7) this entails that (ĜXf)�X0 determines f modulo P̂XC∞c (X◦0 ),

and therefore determines ĜXf uniquely.
Bijectivity of the third arrow follows immediately from ĜX0C∞c (X◦0 ) = Sol(P̂X0) (this

is surjectivity of the first arrow in (6.7)) and (6.9). �

6.3. Hadamard states. We now discuss how the relation between symplectic spaces
on X0 and X translates to the level of two-point functions. We denote Σ̂ the charac-
teristic set of P̂X and Σ̂± its two connected components.

In the region X0 it is quite clear what a Hadamard two-point function is, we can
adopt Definition 4.5 quite directly indeed and say that Λ±X0

: C∞c (X◦0 ) → C∞(X◦0 ) are

Hadamard two-point function for P̂X0 if

(6.10) P̂X0Λ±X0
= Λ±X0

P̂X0 = 0, Λ+
X0
− Λ−X0

= iĜX0 , Λ±X0
≥ 0

and WF′(Λ±X0
) = ∪t∈RΦ̂t(diagT ∗X◦0 ) ∩ π−1Σ̂±, where Φ̂t is the bicharacteristic flow of

P̂X0 and π : Σ̂× Σ̂→ Σ̂ projects to the left component. This ensures that Λ±X0
induce

well-defined hermitian forms on C∞c (X◦0 )/P̂X0C∞c (X◦0 ), and agrees with the standard
definition of Hadamard two-point functions on globally hyperbolic spacetimes [46].

Essentially the same definition can be used on X, with the same form of the wave
front set since the regions X± are irrelevant for the bicharacteristic flow.

Definition 6.3. We say that Λ±X : C∞(X)→ C−∞(X) are Hadamard two-point func-

tions for P̂X(σ) if P̂XΛ±X = Λ±X P̂X = 0, Λ+
X − Λ−X = iĜX , Λ±X ≥ 0, and

(6.11) WF′(Λ±X) = ∪t∈RΦ̂t(diagT ∗X◦) ∩ π−1Σ̂±,

where Φ̂t is the bicharacteristic flow of P̂X and π : Σ̂× Σ̂→ Σ̂ is the projection to the
left component.

As a consequence of Proposition 6.2, Hadamard states on X0 extend to Hadamard
states on X in the following sense:
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Theorem 6.4. Let (X0, gX0) be an even asymptotically de Sitter space and let Λ±X0

be Hadamard two-point functions for P̂X0(σ). If σ is not a pole of P̂X+(σ)−1 nor of

P̂X−(σ)−1 then ΛX0± induce canonically two-point functions Λ±X of a Hadamard state

for P̂X(σ) via the isomorphisms (6.7) and (6.8).

Proof. It is easy to see that the isomorphisms (6.7) and (6.8) induce a pair of operators

Λ±X : C∞(X) → C∞(X) with the properties P̂XΛ±X = Λ±X P̂X = 0, ΛX,+ − ΛX,− =

iĜX and Λ±X ≥ 0. Furthermore, Λ±X �X◦0→X◦0 = xiσ̃
X0

Λ±X0
x−iσ̃+2
X0

so by propagation of

singularities the wave front set condition (6.11) is satisfied modulo possible terms in
o× S∗X and S∗X ×o. These can however be excluded using positivity of Λ±X and the
Cauchy-Schwarz argument from the proof of Proposition 3.1. �

6.4. Asymptotic data. We now discuss symplectic spaces of asymptotic data using
the results from [50, 56, 57, 6].

To start with, assuming iσ /∈ Z, any u ∈ Sol(P̂X), i.e. any solution of P̂Xu = 0 with
WF(u) ⊂ N∗S, is of the form

(6.12) u = (µ+ i0)−iσã+
X + (µ− i0)−iσã−X + ãX ,

for some ã±X , ãX ∈ C∞(X). Furthermore, the restriction of ã+
X and ã−X to either S+

or S− defines a pair of smooth functions on X that determine u uniquely [56, Prop.
4.11]. We have thus two maps %X,± assigning data one at S+ and the other one at S−,

defined on Sol(P̂X) by

%X,±u = (%+
X,±u, %

−
X,±u) ··= (a+

X�S± , a
−
X�S±) ∈ C∞(S±)⊕ C∞(S±).

We can construct an approximate Poisson operator P̃X,± by setting

(6.13) P̃X,±(a+, a−) = (µ+ i0)−iσa+(y) + (µ− i0)−iσa−(y), a+, a− ∈ C∞(S±)

Note that this is a very rough approximation, in the sense that P P̃X,±(a+, a−) needs not
even be smooth (though more precise approximate solutions can be easily constructed
as asymptotic series, cf. [6, Lem. 6.4]), all that matters here is that it has above-
threshold regularity. In fact

PX,± ··= P̃X,± − P̂−1
X,∓P P̃X,±

is the corresponding Poisson operator, i.e. the inverse of %X,± : Sol(P̂X)→ C∞(S±)⊕
C∞(S±). We can now adapt the arguments of Subsect. 5.2 and using an analogous
commutator argument show the identity

(6.14) iĜX = Ĝ∗X%
∗
X,±qX%X,±ĜX , where qX = α

(
1 0
0 −1

)
, α ∈ R \ {0}.

We now turn our attention to asymptotic data for solutions of P̂X0 and P̂X± , assum-

ing σ ∈ R. Recall that Sol(P̂X0) is the space of solutions of P̂X0u = 0 that are smooth

in the interior of X0. By the results of [56, 57], each solution u ∈ Sol(P̂X0) can be
written in the form

u = ã+
X0
x
−iσ+(d−1)/2
X0

+ ã−X0
x
−iσ+(d−1)/2
X0

, a±X0
∈ C∞(X0).
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In order to have a similar structure on the two asymptotically hyperbolic spaces X±,

we define Sol(P̂X±) to be the space of solutions of P̂X±u = 0 that can be written as

u = ã+
X±
x
−iσ+(d−1)/2
X±

+ ã−X±x
iσ+(d−1)/2
X±

, a±X0
∈ C∞(X±).

In the case u ∈ Sol(P̂X0), u is uniquely determined by its asymptotic data %X0,+u at
S+, and the same is true for the data at S−, where

%X0,±u = (%+
X0,±u, %

−
X0,±u) ··= (a+

X0
�S± , a

−
X�S±) ∈ C∞(S±)⊕ C∞(S±).

On the other hand, as follows from the results in [40, 36, 56], in each of the cases

u ∈ Sol(P̂X±), there are two maps %+
X±

and %−X± defined by

%+
X0,±u

··= a+
X±

�∂X± , %−X0,±u
··= a−X±�∂X± .

Here, any of the two possible data %+
X±
u or %−X±u determines u uniquely. The inverse

of %X0,±, resp. %+
X,±, %−X,± is the Poisson operator denoted PX0,±, resp. P+

X,±, P−X,±,
note that changing the sign of σ inverses one type of data with the other, so

%−X,±(σ) = %+
X,±(−σ), P−X,±(σ) = P+

X,±(−σ).

More details on the construction of the various Poisson operators and the relation
between them can be found in [56] and references therein.

We now have all the necessary ingredients to state the result from [56] that describes

how P̂−1
X,± acts on different components of X.

Theorem 6.5. The inverse P̂X,−(σ)−1 exists as a meromorphic family in σ, and its

poles in C \ iZ are precisely the union of the poles of P̂X−(σ)−1 and P̂X−(−σ)−1. Fur-
thermore,

P̂X,−(σ)−1 =

x
iσ̃
X+
P̂X+(σ)−1x−iσ̃+2

X+
0 0

xiσ̃
X0
c0,+(σ)x−iσ̃+2

X+
xiσ̃
X0
P̂−1
X0,−(σ)x−iσ̃+2

X0
0

xiσ̃
X−
c−,+(σ)x−iσ̃+2

X+
xiσ̃
X−
c−,0(σ)x−iσ̃+2

X0
xiσ̃
X−
P̂X−(−σ)−1x−iσ̃+2

X−


where

c0,+(σ) = PX0,+(σ)ı−%X+(−σ)P̂X+(σ)−1,

c−,+(σ) = PX−(−σ)(ı−)∗%X0,−(σ)c0,+(σ),

c−,0(σ) = PX−(−σ)(ı−)∗%X0,+(σ)P̂X0,−(σ)−1,

and ı± : C∞(∂•X0) → C∞(∂•X0)⊕ C∞(∂•X0) is the left/right embedding. The matrix
notation above means that given f ∈ C∞(X) there is a unique distribution u with

P̂X,−(σ)−1f = u and such that (u �X+ , u �X0 , u �X−) equals the matrix of P̂X,−(σ)−1

applied to (f�X+ , f�X0 , f�X−).

There is an analogous statement for P̂−1
X,+(σ), namely, it is a meromorphic family

whose poles in C\ iZ are precisely the union of the poles of P̂X−(σ)−1 and P̂X−(−σ)−1,
and

P̂X,+(σ)−1 =

x
iσ̃
X+
P̂X+(−σ)−1x−iσ̃+2

X+
xiσ̃
X+
c+,0(σ)x−iσ̃+2

X0
xiσ̃
X+
c+,−(σ)x−iσ̃+2

X−

0 xiσ̃
X0
P̂−1
X0,+

(σ)x−iσ̃+2
X0

xiσ̃
X0
c0,−(σ)x−iσ̃+2

X−

0 0 xiσ̃
X−
P̂X−(σ)−1x−iσ̃+2

X−


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using the same matrix notation, where

c0,−(σ) = PX0,−(σ)ı+%X−(σ)P̂X−(σ)−1,

c+,−(σ) = PX+(−σ)(ı+)∗%X0,+(σ)c0,−(σ),

c+,0(σ) = PX+(−σ)(ı+)∗%X0,−(σ)P̂X0,+(σ)−1.

In particular, P̂−1
X,±f is supported in X± if f is supported in X±, and P̂−1

X,±f is supported

in X± ∪X0 if f is supported in X± ∪X0 (this weaker statement was already proved in
[6]).

Recall also that if σ ∈ R then P̂ ∗X,+ = P̂X,− with respect to 〈·, ·〉X , so we conclude
immediately

c∗0,− = c−,0, c∗+,− = c−,+, c∗+,0 = c−,0,

where the adjoints are taken using the respective the scalar products 〈·, ·〉X• .

6.5. QFT in the hyperbolic caps X±. Despite the elliptic character of P̂X± , various

similarities between the structure of the solutions of P̂X± and P̂X0 suggest that Sol(P̂X±)
could be characterized as the range of the operator

ĜX±(σ) ··= (P̂−1
X±

(σ)− P̂−1
X±

(−σ)) = x−iσ̃
X±

(ĜX(σ)−1�X◦±→X◦±)xiσ̃−2
X±

on a suitable class of functions. We prove that this is indeed the case for ĜX± acting

on Ċ∞(X±) — the space of smooth functions that vanish with all derivatives at the
boundary ∂X± = S±.

Proposition 6.6. We have bijections

(6.15)
Ċ∞(X±)

P̂X± Ċ∞(X±)

[ĜX± ]
−−−→ Sol(P̂X±)

%+
X±−−−→ C∞(∂X±).

Moreover, 〈·, ĜX± ·〉X± induces a well-defined symplectic form on the quotient space

Ċ∞(X±)/P̂X± Ċ∞(X±).

Proof. We consider the case X+, the other one being analogous, and prove bijectivity
of the first arrow.

The inclusion ĜX+ Ċ∞(X+) ⊂ Sol(P̂X+) is proved using the identity (6.2) that relates

P̂X+ with P̂X , and the asymptotics (6.12) for solutions of P̂X . We now show the reverse

inclusion (this then gives surjectivity of the first arrow). Recall that any u ∈ Sol(P̂X+)

can be written as v+ + v−, where v± = ã±X+
x
∓iσ+(d−1)/2
X+

and ã±X+
∈ C∞(X+). Observe

that P̂X+v
+ and −P̂X+v

− are equal, but with Taylor expansions of different type at the

boundary, so in fact P̂X+v
± ∈ Ċ∞(X+). We will now use the fact that P̂−1

X+
(±σ) maps

Ċ∞(X±) to distributions with asymptotic behavior of the same type as v∓, cf. [40].

This implies that w± = P̂−1
X+

(∓σ)P̂X+v
±− v± has asymptotic behavior of the type v±,

so w± is a solution of P̂X+w
± = 0 with data %∓X+

w± = 0 and therefore vanishes. We

conclude

u = v+ + v− = P̂−1
X+

(σ)P̂X+v
− + P̂−1

X+
(−σ)P̂X+v

+ = (P̂−1
X+

(σ)− P̂−1
X+

(−σ))P̂X+v
−,
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that is u = ĜX+f with f = P̂X+v
− ∈ Ċ∞(X+) as claimed.

To prove injectivity of the first arrow, observe that if f ∈ Ċ∞(X+) is in the kernel

of ĜX+ then P̂−1
X+

(σ)f equals P̂−1
X+

(−σ)f , with asymptotic behavior of the two distinct

types at the same time, so in fact P̂−1
X+

(σ)f ∈ Ċ∞(X+). This means that f = P̂X+g

with g = P̂−1
X+

(σ)f ∈ Ċ∞(X+). �

Proposition 6.6 allows to set up a QFT on X+ and X−, in particular it is natural to

define Hadamard two-point functions for say, P̂X+ , to be operators ΛX+,± : Ċ∞(X+)→
C−∞(X+) such that P̂X+ΛX+,± = ΛX+,±P̂X+ = 0, ΛX+,+ −ΛX+,− = iĜX+ , ΛX+,± ≥ 0
with respect to 〈·, ·〉X+ , and the Schwartz kernel of ΛX+,± is smooth in X◦+ ×X◦+.

Recall that by Theorem 6.4, Hadamard two-point functions for the asymptotically
de Sitter Klein-Gordon operator P̂X0 induce two-point functions for the ‘extended’

operator P̂X . In turn, since there is a monomorphism

Sol(P̂X)
x−iσ̃
X+
◦ �X+

−−−−−−→ Sol(P̂X+),

two-point functions ΛX,± for P̂X induce two-point functions for P̂X+ by

(6.16) ΛX+,± ··= x−iσ̃
X+

(ΛX,±�X◦±→X◦±)xiσ̃−2
X±

.

The two-point functions ΛX+,± obtained this way can be given an explicit formula in

terms of asymptotic data λ±+ at S+ of the asymptotically de Sitter two-point function
we started with.

Theorem 6.7. Let Λ±X0
be two-point functions for P̂X0 of the form

(6.17) Λ±X0
= Ĝ∗X0

%∗X0,+λ
±
+%X0,+ĜX0 .

Then the two-point functions for P̂X+ induced via Theorem 6.4 and (6.16) are given by

(6.18) Λ±X+
= Ĝ∗X+

(%−X+
)∗(ı−)∗λ±+ı

−%−X+
ĜX+ ,

and the induced two-point functions for P̂X− are equal

(6.19) Λ±X− = Ĝ∗X−(%−X−)∗(ı−)∗S∗X0
λ±+SX0ı

−%−X−ĜX− ,

where SX0(σ) = %X0,+(σ)◦PX0,−(σ) is the asymptotically de Sitter scattering operator.

Proof. Let Q ∈ C∞(X) be equal 0 in a neighborhood of X+ and 1 in a neighborhood

of X−. The two-point functions for P̂X induced by Λ±X0
are given by Λ±X = A∗Λ±X0

A
for

A = −x−iσ̃+2
X0

[P̂X , Q]ĜX = −x−iσ̃+2
X0

P̂XQx
iσ̃
X0
x−iσ̃
X0

(�X◦0 ◦ ĜX)

= −[P̂X0 , Q1]x−iσ̃
X0

(�X◦0 ◦ ĜX),

where we have denoted Q1 = x−iσ̃
X0

Qx−iσ̃
X0

. Using (6.17) we get that Λ±X = B∗λ±+B,
where

B = %X0,+ĜX0A = −%X0,+x
−iσ̃
X0

(�X◦0 ◦ ĜX)

= −%X0,+(c0,+x
−iσ̃+2
X+

, ĜX0x
−iσ̃+2
X0

, c0,+x
−iσ̃+2
X−

),



Quantum fields from global propagators on asymptotically Minkowski and de Sitter spacetimes 44

here in the last identity we used the formula from Theorem 6.5. More specifically, the
first component in the above expression equals

%X0,+c0,+x
−iσ̃+2
X+

= %X0,+PX0,+(σ)ı−%X+(−σ)P̂X+(σ)−1x−iσ̃+2
X+

= ı−%X+(−σ)P̂X+(σ)−1x−iσ̃+2
X+

= ı−%X+(−σ)Ĝ−1
X+
x−iσ̃+2
X+

when applied to Ċ∞(X+). This yields

Λ±X+
= x−iσ̃

X+
(Λ±X�X◦+→X◦+)xiσ̃−2

X+
= x−iσ̃

X+
(�X◦+ ◦B)∗λ±+(�X◦+ ◦B)xiσ̃−2

X+

= Ĝ∗X+
(%−X+

)∗(ı−)∗λ±+ı
−%−X+

ĜX+

The proof of (6.16) is similar. �

As a special case of (6.17) we can take λ±+ to be equal π± (just as in the case
of Minkowski space) and get this way a distinguished pair of Hadamard two-point
functions

(6.20) Λ±X0
= Ĝ∗X0

%∗X0,+π
±%X0,+ĜX0 ,

the proof of the Hadamard condition being fully analogous to that of Theorem 5.7.
At the present stage it is worth mentioning that beside abstract existence arguments,

there is a relatively simple construction named after Bunch and Davies that gives
a ‘maximally symmetric’ Hadamard two-point function on exact de Sitter space [1,
8, 9]. Furthermore, the work of Dappiaggi, Moretti and Pinamonti [13] provides a
distinguished Hadamard two-point function for a class of cosmological spacetimes that
asymptotically resemble the de Sitter cosmological chart.

Here the main novelty, beside working on ‘global’ asymptotically de Sitter space-
times, is the extension across the boundary, with a quite surprising outcome for the
two-point functions Λ±X+

on X± induced from (6.20). In fact, since (ı−)∗π+ı− = 0 we

obtain Λ+
X+

= 0 and Λ−X+
= iĜX+ ! This illustrate that the resulting field theory has

quite unusual features, yet to be explored.

Appendix A

A.1. Quasi-free states and their two-point functions. In this appendix we briefly
recall the relation between quantum fields, quantum states and two-point functions in
the framework of algebraic QFT. Although this is standard material which can be
found in many books and review articles, see e.g. [15, 28, 39], it is worth stressing that
there exist several equivalent formalisms — here we follow [22, 23] and use the complex
formalism (used to describe charged fields) as opposed to the real one (used for neutral
fields). The advantage of the complex formalism is that one works with sesquilinear
forms, so the positivity condition for two-point functions has a very neat formulation.
On the other hand, the real formalism is particularly useful if one wants to work with
C∗-algebras rather than mere ∗-algebras.

Let V be a complex vector space V equipped with an anti-hermitian form G. It is
slightly more convenient to have a hermitian form, so we set q ··= i−1G. The polynomial
CCR ∗-algebra CCRpol(V , q) (see e.g. [15, Sect. 8.3.1]) is defined as the algebra
generated by the identity 1 and all abstract elements of the form ψ(v), ψ∗(v), v ∈ V ,
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with v 7→ ψ(v) anti-linear, v 7→ ψ∗(v) linear, and subject to the canonical commutation
relations

(A.1) [ψ(v), ψ(w)] = [ψ∗(v), ψ∗(w)] = 0, [ψ(v), ψ∗(w)] = vqw1, v, w ∈ V .

A state ω is a linear functional on CCRpol(V , q) such that ω(a∗a) ≥ 0 for all a in
CCRpol(V , q) and ω(1) = 1.

The bosonic two-point functions (or complex covariances) Λ± of a state ω on the
polynomial CCR ∗-algebra are the two hermitian forms Λ± defined by

(A.2) vΛ+w = ω
(
ψ(v)ψ∗(w)

)
, vΛ−w = ω

(
ψ∗(w)ψ(v)

)
, v, w ∈ V

Note that both Λ± are positive and by the canonical commutation relations one has
always Λ+ − Λ− = q. Crucially, there is reverse construction, namely if one has a
pair of hermitian forms Λ± such that Λ+ − Λ− = q and Λ± ≥ 0 then there exists a
state ω such that (A.2) holds, and this assignment is one-to-one for the class of bosonic
quasi-free states, see e.g. [2, 15].

Once a state ω is fixed, the GNS construction provides: a Hilbert space H, unbounded
operators ψ̂(v), v ∈ V , such that v 7→ ψ̂(v) is anti-linear (on a common dense domain

in H), and a vector Ω ∈ H in the common domain of ψ̂(v) such that

(A.3) vΛ+w = 〈Ω, ψ̂(v)ψ̂∗(w)Ω〉H, vΛ−w = 〈Ω, ψ̂∗(w)ψ̂(v)Ω〉H, v, w ∈ V ,

and

(A.4) [ψ̂(v), ψ̂(w)] = [ψ̂∗(v), ψ̂∗(w)] = 0, [ψ̂(v), ψ̂∗(w)] = vqw1, v, w ∈ V

on a suitable dense domain. In the case when V is a quotient space of the form
C∞c (M)/PC∞c (M) for some P ∈ Diff(M) (or a similar quotient, such as the space

H∞,0b (M)/PH∞,0b (M) considered in the main part of the text), then, disregarding

issues due to unboundedness of ψ̂(v), C∞c (M) 3 v 7→ ψ̂(v) can be interpreted as an

operator-valued distribution that solves Pψ̂ = 0. The distributions ψ̂ are the (non-
interacting) quantum fields and are the main object of interest from the physical point
of view. Note that although they are solutions of a differential equation, their analysis
differs from usual PDE techniques, as ψ̂ take values in operators on a Hilbert space H
that is not given a priori, but is constructed simultaneously with ψ̂.

There is also a fermionic version of the above construction, relevant for instance for
Dirac fields. Namely, if q is in addition positive then the polynomial CAR ∗-algebra
CARpol(V , q) is defined similarly as the CCR one, except that (A.1) is replaced by the
canonical anti-commutation relations

(A.5) {ψ(v), ψ(w)} = {ψ∗(v), ψ∗(w)} = 0, {ψ(v), ψ∗(w)} = vqw1, v, w ∈ V ,

where {a, b} = ab + ba. Fermionic two-point functions of a state ω on CARpol(V , q)
are defined in analogy to (A.2). This always gives Λ± ≥ 0 and in view of the canonical
anti-commutation relations Λ+ + Λ− = q. Again, there is a construction that assigns
to two hermitian forms Λ± a fermionic quasi-free state provided that Λ± ≥ 0 and
Λ+ + Λ− = q. The GNS construction provides then field operators ψ̂(v) that satisfy
(A.3) and the anti-commutator version of (A.4), with the key technical difference that

in the fermionic case ψ̂(v) are bounded operators.
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