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ABSTRACT. We first give a new proof of the non-linear stability of the (34 1)-dimensional
Minkowski spacetime as a solution of the Einstein vacuum equation. We then show that
the metric admits a full asymptotic expansion at infinity, more precisely at the boundary
hypersurfaces (corresponding to spacelike, null, and timelike infinity) of a suitable com-
pactification of R* adapted to the bending of outgoing light cones. We work in a wave
map/DeTurck gauge closely related to the standard wave coordinate gauge. Similarly to
our previous work on the stability of cosmological black holes, we construct the solution of
the non-linear equation using an iteration scheme in which we solve a linearized equation
globally at each step; to fix the geometry of null infinity throughout the iteration scheme,
we devise a hyperbolic formulation of Einstein’s equation which ensures constraint damp-
ing. The weak null condition of Lindblad and Rodnianski arises naturally as a nilpotent
coupling of certain metric components in a linear model operator at null infinity. Further-
more, we relate the Bondi mass to a logarithmic term in the expansion of the metric at
null infinity and prove the Bondi mass loss formula.
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1. INTRODUCTION

We prove the non-linear stability of (3 + 1)-dimensional Minkowski space as a vacuum
solution of Einstein’s field equation and obtain a precise full expansion of the solution in
all asymptotic regions, i.e. near spacelike, null, and timelike infinity. On a conceptual level,
we show how some of the methods we developed for our proofs of black hole stability in
cosmological spacetimes [HiVal6b, Hil6b] apply in this more familiar setting, studied by
Christodoulou-Klainerman [ChKI193|, Lindblad-Rodnianski [LiRo05, LiRo10], and many
others: this includes the use of an iteration scheme for the construction of the metric in
which we solve a linear equation globally at each step, keeping track of the precise asymp-
totic behavior of the iterates by working on a suitable compactification M of the spacetime,
and the implementation of constraint damping. The global nature of the approach and
the way in which we deal with the non-linearity are akin to how one would solve elliptic
equations, though the underlying linear estimates are of course different. Moreover, in
our systematic approach, both the relevant notion of regularity and the determination of
the precise asymptotic behavior of the solution are clear from an inspection of the geo-
metric and algebraic properties of the linearized gauged (or ‘reduced’) Einstein equation;
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correspondingly, once M and the required function spaces are defined (§§2-3), the proof of
stability itself is rather concise (§§4-6).

The estimates we prove for the linear equations—which arise as linearizations of the
gauged Einstein equation around metrics which lie in the precise function space in which
we seek the solution—are based on energy estimates, including versions giving iterated reg-
ularity with respect to certain vector fields, which are rather refined in terms of a splitting
of the symmetric 2-tensor bundle (different components behave differently at null infinity);
these vector fields are closely related to those used in [K186, ChKI193]. Recall that energy
estimates are essentially positive commutator estimates, where the commutant is a vector
field. This is a major restriction relative to microlocal estimates;' however, the special fea-
ture is a better control of error terms, which is important for our analysis at null infinity:
while the analysis on Minkowski space (or a modification of this with a logarithmically
distorted light cone at infinity if the ADM mass is nonzero) can be done fully microlocally
[BaVaWul6] on a (logarithmically modified) radial compactification of R*, microlocal anal-
ysis seems much more difficult once one linearizes around metrics which are well-behaved
(conormal) only on a blow-up of that compactification (see Figure 2.2).

Recall that in Einstein’s theory of general relativity, a vacuum spacetime is described by

a 4-manifold M° which is equipped with a Lorentzian metric g with signature (4, —, —, —)
satisfying the Einstein vacuum equation
Ric(g) = 0. (1.1)

The simplest solution is the Minkowski spacetime (M°,g) = (R, 9),
g:=dt* —da®, R'=R, xR (1.2)

The far field of an isolated gravitational system (M °, g) with total (ADM) mass m is usually
described by the Schwarzschild metric

2 2 -1
grgh=(1-")d = (1= 20) =2, v (1.3)

where ¢ denotes the round metric on S?; the Minkowski metric g = g()g differs from this
by terms of size O(mr~1). In the absence of singular objects close to 7 = 0, such as black
holes, g is then expected to be a smooth extension of (a short range perturbation of) g,% to
all of R*. Such spacetimes are asymptotically flat: keeping t fixed and letting |z| — oo in
R3, g approaches the flat Minkowski metric g in a quantitative fashion.

Suitably interpreted, the field equation (1.1) has the character of a quasilinear wave
equation; in particular, it predicts the existence of gravitational waves, which were recently
observed experimentally [LIGO16]. Correspondingly, the evolution and long time behavior
of solutions of (1.1) can be studied from the perspective of the initial value problem: given
a 3-manifold ¥° and symmetric 2-tensors v,k € C*(X°; S2T*¥°), with v a Riemannian
metric, one seeks a vacuum spacetime (M°, ¢g) and an embedding ¥° C M*° such that

Ric(g) =0 on M°, g|se = —v, II; =k on X°, (1.4)

1On Kerr—de Sitter space, the linear estimates proved in [HiVal6a, HiVal6b] are based (almost) entirely
on microlocal estimates from b-analysis. The huge freedom microlocal analysis gives is that one is not
restricted to using e.g. symbols of pseudodifferential operators which happen to be linear on the fibers of the
cotangent bundle (i.e. those of vector fields); this is crucial due to the complicated structure of the Hamilton
dynamics e.g. at the horizons and at the trapped set.
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where 11, denotes the second fundamental form of >°; the minus sign is due to our sign con-
vention for Lorentzian metrics. A fundamental result due to Choquet-Bruhat and Geroch
[ChBr52, ChBrGe69] states that necessary and sufficient conditions for the well-posedness
of this problem are the constraint equations for v and k,

Ry + (tryk)* — [k]2 =0, &4k +dtr k=0, (1.5)

where R, is the scalar curvature of v, and ¢, is the (negative) divergence. Concretely, if
these are satisfied, there exists a maximal globally hyperbolic solution (M°, g) of (1.4) which
is unique up to isometries. By the future development of an initial data set (X°,v,k), we
mean the causal future of ¥° as a Lorentzian submanifold of (M°, g). Our main theorem
concerns the long time behavior of solutions of (1.4) with initial data close to those of
Minkowski space:

Theorem 1.1. Let by > 0. Suppose that (v, k) are smooth initial data on R? satisfying the
constraint equations (1.5) which are small in the sense that for some small 6 > 0, a cutoff
X € C°(R?) identically 1 near 0, and 5 1=~ — (1 — X)gi|{1=0y, where |m| < &, we have

S )T E (VYT 2+ Y ) () V) R 2 < 6, (1.6)

J<N+1 JEN

where N is some large fized integer (N = 26 works). Assume moreover that the weighted
L? norms in (1.6) are finite for all j € N.

Then the future development of the data (R3,~, k) is future causally geodesically complete
and decays to the flat (Minkowski) solution. More precisely, there exist a smooth manifold
with corners M with boundary hypersurfaces X, i, #+, it and a diffeomorphism of the
interior M° with {t > 0} C R*, as well as an embedding R® = ¥° of the Cauchy hyper-
surface, and a solution g of the initial value problem (1.4) which is conormal on M and
satisfies |g — g| < (1 +t 4 |r|)~1€ for all € > 0. See Figure 1.1. For fived ADM mass m,
the solution g depends continuously on ¥, k, see Remark 6.4.

If the normalized initial data ((r)7, (r)2k) are in addition E-smooth, i.e. polyhomogeneous
at infinity with index set € (see below), then the solution g is also polyhomogeneous on M,
with index sets given explicitly in terms of £.

More precise versions will be given in Theorem 1.7 and in §6. The condition (1.6) allows
for 7 to be pointwise of size r~17%0~¢ ¢ > 0; since by > 0 is arbitrary, this means that
we allow for the initial data to be Schwarzschildean modulo O(r~=17¢) for any € > 0. The
assumption of £-smoothness, i.e. polyhomogeneity with index set £ C C x Np, means,
roughly speaking, that (r)¥ (similarly (r)2k) has a full asymptotic expansion as 7 — oo of
the form

(ryy ~ Z r*iz(logr)kﬁ(z,k)(w), w=x/|z| € S? Yz k) € C™(S?; S°T*R?), (1.7)
(z,k)e€

with Im z < —bg, where for any fixed C, the number of (z, k) € £ with Imz > —C is finite.
(That is, (r)7 admits a generalized Taylor expansion into powers of 7!, except the powers
may be fractional or even complex—that is, oscillatory—and logarithmic terms may occur.
A typical example is that all z are of the form z = —ik, k € N, in which case (1.7) is an
expansion into powers r %, with potential logarithmic factors.) The polyhomogeneity of g
on the manifold with corners M means that at each of the hypersurfaces i°, #*, and i+,
the metric g admits an expansion similar to (1.7), with 7=! replaced by a defining function
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of the respective boundary hypersurface (for example .# 1) such that moreover each term
in the expansion (which is thus a tensor on .#71) is itself polyhomogeneous at the other
boundaries (that is, at .#T Ni% and £ NiT). We refer the reader to §2.2 for precise
definitions, and to Examples 7.2 and 7.3 for the list of index sets for two natural classes of
polyhomogeneous initial data.
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FIGURE 1.1. Left: the compact manifold M (solid boundary), containing
a compactification ¥ of the initial surface ¥X°. The boundary hypersurfaces
iV, #F, and it are called spatial infinity, (future) null infinity, and (future)
timelike infinity, respectively. One can think of M as a blow-up of M as the
blow-up of a Penrose diagram at timelike and spatial infinity. A global com-
pactification would extend across ¥ to the past, with additional boundary
hypersurfaces .# ~ (past null infinity) and i~ (past timelike infinity). Right:
for comparison, the Penrose diagram of Minkowski space.

Applying a suitable version of this theorem both towards the future and the past, we
show that the maximal globally hyperbolic development is given by a causally geodesi-
cally complete metric g, with analogous regularity and polyhomogeneity statements as in
Theorem 1.1, on a suitable manifold with corners whose interior is diffeomorphic to R*
(and contains X°), which now has the additional boundary hypersurfaces .#~ and i~; see
Theorem 6.7 and the end of §7.

Like many other approaches to the stability problem (see the references below), our
arguments apply to the Einstein-massless scalar field system Ric(g) = |V¢>|§, Oy¢ = 0,
with small initial data for the scalar field in order to obtain global stability, and also give
the stability of the far end of a Schwarzschild black hole spacetime with any mass m € R,
i.e. of the domain of dependence of the complement of a sufficiently large ball in the initial
surface, without smallness assumptions on the data; in this case, we control the solution
up to some finite point along the radiation face #*. See Remark 6.6.

The compactification M only depends on the ADM mass m of the initial data set;? for
the class of initial data considered here, the mass gives the only long range contribution
to the metric that significantly (namely, logarithmically) affects the bending of light rays:
for the Schwarzschild metric (1.3), radially outgoing null-geodesics lie on the level sets of

2By the positive mass theorem [SchYa79, Wi81], we have m > 0, but we will not use this information. In
fact, our analysis of the Bondi mass, summarized in Theorem 1.8 below, implies the positive mass theorem
for the restricted class of data considered in Theorem 1.1.
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t —r —2mlog(r — 2m). Concretely, near i U .# T, M will be the Penrose compactification
of the region {t/r < 2, r > 1} C R* within the Schwarzschild spacetime, i.e. equipped
with the metric gi, blown up at spacelike and future timelike infinity. As in our previous
work [HiVal6b, Hil6b] on Einstein’s equation, we prove Theorem 1.1 using a Newton-type
iteration scheme in which we solve a linear equation globally on M at each step. We do not
quite use the wave coordinate gauge as in Lindblad—Rodnianski [LiRo10, LiRo05], but rather
a wave map gauge with background metric given by the Schwarzschild metric with mass m
near i® U .# T, glued smoothly into the Minkowski metric elsewhere; this is a more natural
choice than using the Minkowski metric itself as a background metric (which would give
the standard wave coordinate gauge), as the solution g will be a short range perturbation
of g there. This gauge, which can be expressed as the vanishing of a certain 1-form Y(g),
fixes the long range part of g and hence the main part of the null geometry at .#*. In
order to ensure the gauge condition to a sufficient degree of accuracy (i.e. decay) at %"
throughout our iteration scheme, we implement constraint damping, first introduced in the
numerics literature in [GuCaHiMaGa05], and crucially used in [HiVal6b]. This means that
we use the 1-form encoding the gauge condition in a careful manner when passing from the
Einstein equation (1.1) to its ‘reduced’ quasilinear hyperbolic form: we can arrange that
for each iterate gp in our iteration scheme, the gauge 1-form Y(g) vanishes sufficiently
fast at " so as to fix the long range part of g. In order to close the iteration scheme
and control the non-linear interactions, we need to keep precise track of the leading order
behavior of the remaining metric coefficients at .# ; this is analogous to the arguments by
Lindblad—Rodnianski. We discuss this in detail in §1.2.

Remark 1.2. Fixing the geometry at .# T in this manner, the first step of our iteration
scheme, i.e. solving the linearized gauged Einstein equation with the given (non-linear)
initial data of size §, produces a solution with the correct long range behavior and which is
82 close to the non-linear solution in the precise function spaces on M in which we mea-
sure the solution. (Subsequent iteration steps give much more accurate approximations
since the convergence of the iteration scheme is exponential.) This suggests that our for-
mulation of the gauged Einstein equation could allow for improvements of the accuracy
of post-Minkowskian expansions—which are iterates of a Picard-type iteration scheme as
in [LiRo10, Equation (1.7)]—used to study gravitational radiation from isolated sources
[Bl14].

The global stability of Minkowski space was established by Friedrich [Fr86] (see [Fr91] for
the Einstein—Yang—Mills case), using a conformal method, for a restrictive class of initial
data but with precise information on the asymptotic structure of the spacetime; subse-
quently in the monumental work by Christodoulou—Klainerman [ChK193] for asymptotically
Schwarzschildean data (in a sense similar to (1.6), but with by > %) and precise control at
null infinity, with an alternative proof using double null foliations by Klainerman—Nicolo
[KINi03a]; and more recently in [LiRo05, LiRo10] using the wave coordinate gauge, for ini-
tial data as in Theorem 1.1. Bieri [BiZi09] studied the problem for a very general class of
data which are merely decaying like <r>_1/ 29 for some ¢ > 0—thus more slowly even than
the O(r~!) terms of Schwarzschild; in this case, the ‘correct’ compactification on which
the metric has a simple description will have to depend on more than just the ADM mass.
(This is clear e.g. for the initial data constructed by Carlotto—Schoen [CaSch16], which are
non-trivial only in conic wedges.) Bieri and Chrusciel [BiCh16, Chl7] construct a piece
of #* for the data considered in [BiZi09] but without a smallness assumption. Further
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works on the stability of Minkowski space for the Einstein equations coupled to other fields
include those by Speck [Sp14] on (a generalization of) the Einstein—-Maxwell system, Taylor
[Tal6], Lindblad—Taylor [LiTal7], and Fajman—Joudioux—Smulevici [FaJoSm17] for both
the massless and the massive Einstein—Vlasov system. The global stability for a minimally
coupled massive scalar field was proved by LeFloch-Ma [LeMal5].

The present paper contains the first proof of full conormality and polyhomogeneity of
small non-linear perturbations of Minkowski space in 3+ 1 dimensions. Previously, this was
proved in spacetime dimensions > 9 for the Einstein vacuum and Einstein—-Maxwell equa-
tions, for initial data stationary outside of a compact set, by Chrusciel-Wafo [ChWall]; this
relied on earlier work by Chrusciel-Leski [ChLe06] on the polyhomogeneity of solutions of
hyperboloidal initial value problems? for a class of semilinear equations, and Loizelet’s proof
[Lo08, Lo06] of the electrovacuum extension (using wave coordinate and Lorenz gauges) of
[LiR005]; see also [BeChO07]. Lengard [LeO1] studied hyperboloidal initial value problems
and established the propagation of weighted Sobolev regularity for the Einstein equation,
and of polyhomogeneity for non-linear model equations. In spacetime dimensions 5 and
above, Wang [WalO, Wal3] obtained the leading term (i.e. the ‘radiation field’) of g — ¢
at # 1, and proved high conormal regularity. Baskin-Wang [BaWal4] and Baskin—S4 Bar-
reto [BaSaBalb] defined radiation fields for linear waves on Schwarzschild as well as for
semilinear wave equations on Minkowski space. In 3 + 1 dimensions, Lindblad—Rodnianski
also established high conormal regularity, see [LiRol0, Equation (1.14)], though, in the
context of the present paper, on the compactification corresponding to Minkowski rather
than on M, and hence with a loss in the weights. This was improved by Lindblad [Lil7]
who proved sharp asymptotics for the metric (which are the same as our leading order
asymptotics, albeit in a slightly different gauge), and uses them to establish a relationship
between the ADM mass and the total amount of gravitational radiation. For initial data
exactly Schwarzschildean outside a compact set and in even spacetime dimensions > 6, a
simple conformal argument, which requires very little information on the structure of the
Einstein(-Maxwell) equation, stability and smoothness of .# T were proved by Choquet-
Bruhat-Chrusciel-Loizelet [ChBrChLo06]; see also [AnChO05] for a different approach in
the vacuum case. The construction of the required initial data sets as well as questions
of their smoothness and polyhomogeneity were taken up in the hyperboloidal context by
Andersson—Chrusciel-Friedrich [AnChFr92] and extended in [AnCh93, AnCh96], see also
[ChLe00]. Paetz and Chrusciel [ChPal5, Pal4| studied this for characteristic data; we
refer to Corvino [Co00], Chrusciel-Delay [ChDe03], and references therein for the case of
asymptotically flat data sets.

The backbone of our proof is a systematic treatment of the stability of Minkowski space as
a problem of proving regularity and asymptotics for a quasilinear (hyperbolic) equation on a
compact, but geometrically complete manifold with corners M. That is, we employ analysis
based on complete vector fields on M and the corresponding natural function spaces, which
in this paper are b-vector fields, i.e. vector fields tangent to M, and spaces with conormal
regularity or (partial) polyhomogeneous expansions; following Melrose [Me93, Me96], this
is called b-analysis (‘b’ for ‘boundary’). The point is that once the smooth structure (the
manifold M) and the algebra of differential operators appropriate for the problem at hand
have been identified, obtaining precise results becomes conceptually straightforward (even if

3This means that the initial data are posed on a spacelike but asymptotically null hypersurface transversal
to #T.
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there are technical details along the way); we will give examples and details in §1.1. In this
context, it is often advantageous to work on a more complicated manifold M if this simplifies
the algebraic structure of the equation at hand. While this point of view has a long history in
the study of elliptic equations, see e.g. [MaMe87, Me93, Ma91], its explicit use in hyperbolic
problems is rather recent [BaVaWuls, BaVaWul6, HiVals, Hil6a, HiVal6a, HiVal6b].

Working in a compactified setting makes the structures allowing for global existence
clearly visible in the form of linear model operators defined at the boundary hypersurfaces.
Among the key structures for Theorem 1.1 are the symmetries of the model operator L at
# T, which is essentially the product of two transport ODEs, as well as constraint damping
and a certain null structure, both of which are simply a certain Jordan block structure of
L?, with the null structure corresponding to a nilpotent Jordan block. At i*, the model
operator will be closely related (via a conformal transformation) to the conformal Klein—
Gordon equation on static de Sitter space, which enables us to determine the asymptotic
behavior of g there via resonance erpansions from known results on the asymptotics of
conformal waves on de Sitter space.

While the manifold M is compact, our analysis of the linear equations (arising from a
linearization of the gauged Einstein equation) on M lying at the heart of this paper is not a
short-time existence/regularity analysis near the interiors of i°, resp. i+, but rather a global
in space, resp. global in time analysis. (Conformal methods such as [Fr98] bringing i° to a
finite place have the drawback of imposing very restrictive conditions on the initial data.)
At #T, we use a version of Friedlander’s rescaling [Fr80] of the wave equation, which does
give equations with singular (conormal or polyhomogeneous) coefficients; but since £ is a
null hypersurface, conormality or polyhomogeneity—which are notions of regularity defined
with respect to (b-)vector fields, which are complete—are essentially transported along the
generators of .#+. At the past and future boundaries of £, i.e. at i°N.#T and £+ N3,
the two pictures fit together in a simple and natural fashion. We discuss this in detail in
§61.1.1 and 1.1.3.

We reiterate that our goal is to exhibit the conceptual simplicity of our approach, which
we hope will allow for advances in the study of related stability problems which have a
more complicated geometry on the base, i.e. on the level of the spacetime metric, on the
fibers, i.e. for equations on vector bundles, or both. In particular, we are not interested
in optimizing the number of derivatives needed for our arguments based on Nash—Moser
iteration.

Following our general strategy, one can also prove the stability of Minkowski space in
spacetime dimensions n + 1, n > 4, for sufficiently decaying initial data, with the solution
conormal (or polyhomogeneous, if the initial data are such), thus strengthening Wang’s
results [Wal3]. There are a number of simplifications due to the faster decay of linear
waves in R'*": the compactification M of R does not depend on the mass anymore and
can be taken to be the blow-up of the Penrose diagram of Minkowski space at spacelike
and future timelike infinity; we do not need to implement constraint damping as metric
perturbations no longer have a long range term which would change the geometry of .#;
and we do not need to keep track of the precise behavior (such as the existence of leading
terms at £ 1) of the metric perturbation. We shall not discuss this further here.

1.1. Aspects of the systematic treatment; examples. Consider a non-linear partial
differential equation P(u) = 0, with P encoding boundary or initial data as well, whose
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global behavior one wishes to understand for small high regularity data; denote by L, :=
D, P the linearized operators. Our strategy is:

1. fix a C*° structure, that is, a compact manifold M, with boundary or corners, on
which one expects the solution u to have a simple description (regularity, asymptotic
behavior);

2. choose an algebra of differential operators and a scale of function spaces on M, say
X% Y%, encoding the amount s € R of regularity as well as relevant asymptotic
behavior, such that for v € X* := [, A small in some X* norm, the operator
L, lies in this algebra and maps X' — Y := (1 o V*;

3. show that for such small u, the operator L, has a (right) inverse on these spaces,

(Lu) ™t Y — X (1.8)
4. solve the non-linear equation using a global iteration scheme, schematically

up =0;  uUpr1 = ug + Vg, Vg = —(Luk)*l(P(uk)); U= klgglo up € X, (1.9)

5. (Optional.) Improve on the regularity of the solution u € X°°, provided the data
has further structure such as polyhomogeneity or better decay properties, by using
the PDE P(u) = 0 directly, or its approximation by linearized model problems in
the spirit of 0 = P(u) ~ Lou + P(0) and a more precise analysis of Lg.

We stress that steps 1 and 2 are non-trivial, as they require significant insights into the
geometric and analytic properties of the PDE in question, and are thus intimately coupled
to step 3; the function spaces in step 2 must be large enough in order to contain the solution
u, but precise (i.e. small) enough so that the non-linearities and linear solution operators
are well-behaved on them.

Note that if one has arranged 3, then the iteration scheme (1.9) formally closes, i.e. all
iterates ug lie in X*° modulo checking their required smallness in A'®. Checking the latter,
thus making (1.9) rigorous, is however easy in many cases, for example by using Nash—
Moser iteration [Ha82, SaRa89], which requires (L, )~! to satisfy so-called tame estimates;
these in turn are usually automatic from the proof of (1.8), which is often ultimately built
out of simple algebraic operations like multiplications and taking reciprocals of operator
coefficients or symbols, and energy estimates, for all of which tame estimates follow from
the classical Moser estimates. The precise bookkeeping, done e.g. in [HiVal6a], can be
somewhat tedious but is only of minor conceptual importance: it only affects the number
of derivatives of the data which need to be controlled, i.e. the number N in (1.6); in this
paper, we shall thus be generous in this regard.

As a further guiding principle, which applies in the context of our proof of Theorem 1.1,
one can often separate step 3, i.e. the analysis of the equation L,v = f, into two pieces:

3.1. prove infinite regularity of v but without precise asymptotics;
3.2. improve on the asymptotic behavior of v to show v € X*°.

The point is that a ‘background estimate’ from step 3.1 may render many terms of L,
lower order, thus considerably simplifying the analysis of asymptotics and decay; see e.g.
the discussion around (1.19).

Remark 1.3. Let us compare this strategy to proofs using bootstrap arguments, which
are commonly used for global existence problems for non-linear hyperbolic equations as
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e.g. in [ChK193, LiRo10, Lul3]. The choice of bootstrap assumptions is akin to choosing
the function space X*° (and thus implicitly Y°°) in step 2, while the consistency of the
bootstrap assumptions, without obtaining a gain in the constants in the bootstrap, is
similar to proving (1.8). However, note that the bootstrap operates on a solution of the
non-linear equation, whereas we only consider linear equations; the gain in the bootstrap
constants thus finds its analogue in the fact that one can make the iteration scheme (1.9)
rigorous, e.g. using Nash—Moser iteration, and keep low regularity norms of u; bounded
(and vy decaying with k) throughout the iteration scheme. In the context in particular
of Einstein’s equation, a bootstrap argument has the advantage that the gauge condition
is automatically satisfied as one is dealing with solutions of the non-linear equation; thus
the issue of constraint damping does not arise, whereas we do have to arrange this. In
return, we gain significant flexibility in the choice of analytic tools for the global study of
the linearized equations (e.g. methods from microlocal analysis, scattering theory), as used
extensively in [HiVal6b]; bootstrap arguments on the other hand are strongly tied to the
character of P(u) as a (non-linear) hyperbolic and differential operator, and it is much less
clear how to exploit global information (e.g. resonances).

We proceed to describe this strategy for wave equations on Minkowski space before
discussing Finstein’s equation in §1.2.

1.1.1. Linear waves in Minkowski space. For step 1, our manifold M should have as one
of its boundary hypersurfaces null infinity .# T, as this is the locus of the radiation field.
At future timelike infinity i*, the asymptotic behavior of waves is governed by quantum
resonances [BaVaWulb] on a class of asymptotically Minkowski spacetimes, and non-linear
interactions are much simpler to deal with than near .#7; thus, we want to include ™
as a 3-dimensional boundary hypersurface, rather than, say, a 2-sphere as in a Penrose
compactification. (The fact that i™ can be blown down smoothly is a very special feature
of exact Minkowski space!) Likewise, spacelike infinity i, as a place where (non-)linear
analysis is conceptually different and simpler than at .#T, should be another boundary
hypersurface. Thus, let R4 denote the radial compactification of R?*, defined as

RE:=R*U([0,1)g x S?)/ ~, (1.10)

where ~ identifies (R,w), R > 0, w € S, with the point R~!'w € R*; the quotient carries
a natural smooth structure. The function p := (1 4 > +72)~1/2 € C*(R4) is a boundary
defining function, i.e. 9R4 = p~1(0) with dp non-degenerate everywhere on OR%. Letting
v = (t —r)/r away from r = 0, all future null-geodesics tend to ST = {p = 0, v = 0},
and we then define M as the closure of ¢ > 0 within the blow-up [R*, ST] of R* at ST (see
Figure 1.1), i.e. the manifold obtaining by declaring polar coordinates around S™ to be
smooth down to the origin. We refer to the front face .# of this blow-up as null infinity
or the radiation face; it has a natural fibration by the fibers of the map .#+ — ST. See the
local coordinate descriptions below, as well as [Me96, Chapter 5] for a detailed discussion
of blow-ups.

To motivate a preliminary choice of function spaces for step 2, recall that the behavior
of solutions of Ogu := —u,,*" near £ can be studied using the Friedlander rescaling

L = p~*Oyp. (1.11)
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This operator extends smoothly and non-degenerately as a conformally related wave oper-
ator to .# 1 and across; its solutions, for C3°(R?) initial data, are thus smooth up to %
and typically non-vanishing there. (A more sophisticated version of this observation lies
at the heart of Friedrich’s conformal approach [Fr83] to the study of Einstein’s equation.)
However, for more general initial data, and, more importantly, in many non-linear settings
(see §§1.1.2 and 1.2 below), smoothness will not be the robust notion, and we must settle
for less: conormality at OM. Namely, let V(M) denote the Lie algebra of b-vector fields,
i.e. vector fields tangent to the boundary hypersurfaces of M other than the closure ¥ of
the initial surface ¥° = {t = 0}, a function u on M is conormal iff it remains in a fixed
weighted L? space on M upon application of any finite number of b-vector fields. For M
defined above, V(M) is spanned over C*°(M) by translations 9, and 0,: as well as the
scaling vector field t0; + x0,, boosts td,: + x'0;, and rotation vector fields x°0,; — 270,:;
note however that the definition of V(M) depends only on the smooth structure of M.
(Vb(M) can also be characterized directly on R4, cf. [BaVaWulb, Definition 4.2] who write
M for our R%.) For comparison, the space V,(R?) is spanned by translation vector fields
and all linear vector fields t0y, t0,:, x70;, 27 0,:.

Considering L globally, one finds that L € Diff?(R1), the algebra generated by Vj,(R?).
Let us explain how to obtain a background estimate, step 3.1 above, for the forcing problem
Lu = f with trivial initial data. First, we can estimate w in H' on any compact subset
of R* N {t > 0} by f on another compact set. Then, on a neighborhood of (i®)° which is
diffeomorphic to [0,1),, x (0,1); x S?, where

po =1t T:=t/r
with po a local boundary defining function of i®, this problem roughly takes the form
(D? = (poDp,)? = A)u = f; (1.12)

here A = Ay > 0 is the Laplacian on S?, and f has suitable decay properties making
its norms in the estimates below finite. This is a wave equation on the (asymptotically)
cylindrical manifold [0,1),, X S2. For any weight ap € R, we can run an energy estimate
using the vector field multiplier p, 2a09_ and obtain

ull o gra S W f 1l o 2 (1.13)

in the domain Uy, see Figure 1.2. Here L% is the L? space with respect to the b-density
dT%‘dm, the weighted L norm is defined by HprgoL% = llpg “ fll 2, and H} is the space
of all u € L% such that Vu € L% for all V. € W,(M); taking V = 9-, po0p,, ¥ suffices
in Up. In order to obtain a higher regularity estimate, one can commute any number of
b-vector fields through (1.12); the estimate (1.13) only relies on the principal (wave) part
of L; lower order terms arising as commutators are harmless. Thus, f € pg° Ho® (weighted
L%—regularity with respect to any finite number of b-vector fields) implies u € pg” Hp®, with
estimates.

The same conclusion holds for the initial value problem for Lu = 0 with initial data
which near i® are (ulr—o, 9rulr=0) = (ult=o, rOuli=0) = (uo,u1), uj € p§® H°(R3), where
R3 is the radial compactification of R3, defined analogously to (1.10), which has boundary
defining function py = r~!. The assumption (1.6) on the size initial data is a smallness
condition on [[(r)7| b v + |(r)2k|| bo -

Po Po
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FIGURE 1.2. The domain Uy on which the energy estimate (1.13) holds.
Left: as a subset of M. Right: as a subset of the Penrose compactification.

Re-defining p = 7~! near ST, a neighborhood of i® N .7 is diffeomorphic to [0, 1)y %
[0,1),, x S?, where

po:=—p/v=>—t)"t, pr:=—v=(r—t)/r (1.14)

are boundary defining functions of i® and .# %, respectively. The lift of L to M is singular
as an element of DiffZ (M) but with a very precise structure at #*: the equation Lu = f
is now of the form

(28/)1 (poapo - p[aﬂl) - A)U =f (1.15)

modulo terms with more decay; here, ignoring weights, p;0,, ~ 0; + 0, and pgO,, — p19,; ~
Oy — O, are the radial null vector fields. Assuming f vanishes far away from £, we can run
an energy estimate using V' = p,, 2a0 pI_Q‘” Vo, where Vo = —cpr0,; + po0,, is future timelike
in M\ .#% if we choose ¢ < 1; note that Vj is tangent to i and .#+ (and null at .#+);
this is necessary for compatibility with our conormal function spaces, and gives control at
# T which is weaker but more robust than the smoothness following from Friedlander’s

argument. A simple calculation, cf. Lemma 4.4, shows that for a; < ag and ay < 0,
1/2 :
HUHPSOP?IL% + H(poap()ap[apjypl/ V)UHngp?IL% 5 ”p_[prgOp?IL}Q3 m U], (116)

see Figure 1.3, where L% is the L? space with integration measure %%M;ﬂ. The as-

sumptions on the weights are natural: since 0; — 0, transports mass from i to .# 1, we
certainly need a; < ag, while ay < 0 is necessary since, in view of the behavior of linear
waves discussed after (1.11), the estimate must apply to v which are smooth and non-zero
down to #T. In (1.16), derivatives of u along b-vector fields tangent to the fibers of the
radiation face are controlled without a loss in weights, while general derivatives such as
spherical ones lose a factor of p}/ >4 When controlling error terms later on, we thus need
to separate them into terms involving fiber-tangent b-derivatives and general b-derivatives,
and check that the coefficients of the latter have extra decay in pr; see §2.4.

From (1.15), L € p; 'DiffZ(M) is equal to the model operator
L= 205, (P00py — P10p;)

modulo Diff%(M ). The commutation properties of this model are what allows for higher reg-
ularity estimates:” (py times) equation (1.15) commutes with pyd,, (scaling), p;d,, (roughly

4This is to be expected: indeed, letting x := p}/g, the rescaled metric chz(p2g) is an edge metric [Ma91],

i.e. a quadratic form in %, df, %, with 6% coordinates on S?, for which the natural vector fields are
precisely those tangent to the fibers of .# ", that is, poOp,, 0z = 2p10,,, and x0pa = p}”aga.

5See the discussion after (1.25) for an even stronger statement.
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FIGURE 1.3. The domain U; on which the energy estimate (1.16) holds.

a combination of scaling and boosts), and spherical vector fields which are independent of
po and pr.° In the end, we obtain u € p§°p7' H® when f € pgop‘}f_ngo.

Lastly, near i™, one can use energy estimate with weight p;2a’ pfa*, a4+ < ay large and
negative, multiplying a timelike extension of the above Vj;” higher regularity follows by
commuting with the scaling vector field p;.0,, , where p; is a defining function of i*—this
is automatic, modulo terms with faster decay, for any b-differential operator—and elliptic
regularity for C(p;D, +)2 — L, C > 0 large, in ™ away from .# T, which is a consequence
of the timelike nature of the scaling vector field p;.8,, in (i7)°. See Figure 1.4. Note that
it is only at this stage that one uses the asymptotically Minkowskian nature of the metric
in a neighborhood of all of i*; when dealing with a more complicated geometry, as e.g.
in the study of perturbations of a Schwarzschild black hole, establishing this part of the
background estimate (as well as the more precise asymptotics at i discussed momentarily)
is the main difficulty.

j+ j+ . AN

FIGURE 1.4. The neighborhood (shaded) of i* on which we use a global (in
iT) weighted energy estimate.

Putting everything together, we find that

Qa

F e ooy ol HP(M), f=0mear S = u e popit ot HE(M), (L.17)

for a; < min(ag,0) and a4 < a; (the latter explicit, if desired).

6we briefly sketch the argument: denoting the collection of these vector fields—which span Vi (M)
locally—by {V;}, this gives L(Vju) = Vi f + [L, V;]u with [L,V;] € Difff (modulo multiples of L which
arise for V = p;0,,, and which we drop here), which is one order better in the sense of decay than the a
priori expected membership in p; 'Difff due to these commutation properties. Write [L, V;] = Cji Vi with
Cji € Diff}, and apply the estimate (1.16) to Vju; then the additional forcing term [L, V;]u obeys the bound
>k HpICjkaUHpgop‘;I L2 Sk HVkqugopcIL,qHé, which close to .#T is bounded by a small constant times
the left hand side of (1.16), with Vju in place of u and summed over j, due to the gain (of at least 3) in
the weight in pr.

7Explicit calculations allow one to make a4 explicit; we accomplish this in §4.3 by identifying L with the
conformal wave operator on static de Sitter space for a suitable choice of p.
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For non-linear applications, this is not sufficient; let us thus turn to step 3.2 and analyze
Lu = f for f, vanishing near ¥, having more decay,

Feye = pbop M HO(M); by < by < bo, br e (0,1). (1.18)

The background estimate (1.17) gives u € pg‘]pfpi+ HEe for all € > 0. Near i° N .7 then,
the conormality of u allows for equation (1.15) to be written as

P10, (P00py — P10, )u = S(prf + préhu) € pi oy HZ® on Uy, (1.19)

i.e. L effectively becomes the composition of transport ODEs along the two radial null
directions. See Figure 1.5. Integration of pgd,, — pr0,, is straightforward, while integrating
p10,;, which is a regular singular ODE with indicial root 0, implies that u has a leading
order term at .#*; one finds that

uw=u® +up; u® e plHX(IT), w, € pgop?IHﬁo(M) near i° 0.7,

which implies the existence of the radiation field.® The procedure to integrate along (ap-
proximate) characteristics to get sharp decay is frequently employed in the study of nonlin-
ear waves on (asymptotically) Minkowski spaces, see e.g. [LiRo10, §2.2], [Lil7], and their
precursors [Li90, Li92].

<5 P00py — p10p,
j-i—

! —p19p,

FIGURE 1.5. The integral curves of the vector fields 0; + 0, ~ —p;0,, and
Ot — O ~ poOpy — p10,,; . Integration along the former gives the leading term
at £, while integration along the latter transports weights (and polyho-
mogeneity) from i to # .

At .#T N it the same argument works, showing that u(®) and w;, have weight pi’“ at
i*. Improving this weight however does not follow from such a simple argument. Indeed,
at 97, the behavior of u is governed by scattering theoretic phenomena: the asymptotics
are determined by scattering resonances of a model operator at i*, namely the normal
operator of the b-differential operator L at i™, obtained by freezing its coefficients at i ™,
see equation (2.1). We thus use the arguments introduced in [Val3], see also [HiVal5,
Theorem 2.21], based on Mellin transform in p,, inversion of a ‘spectral family’ L(c),
which is the conjugation of the model operator (called ‘normal operator’ in b-parlance)
of L at it by the Mellin transform in i+, with o the dual parameter to py, and contour
shifting in the inverse Mellin transform to find the correct asymptotic behavior at i*: the
resonances o € C, which are the poles of E(O‘)_l, give rise to a term p’_fv, v a function on
i™, in the asymptotic expansion of u. (See §§5.2 and 7 for details.) The resonances can

8For rapidly decaying f, one can plug this improved information into the right hand side of (1.19),
thereby obtaining an expansion of u into integer powers of p; and recovering the smoothness of v at .
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easily be calculated explicitly in the present context, and they all satisfy —Imo > 1 > b,..
The upshot is that

Fey® = uex® = {xu® +u,: u® e gt HE (), w, € plppl o HE (M)},
(1.20)
where x cuts off to a neighborhood of .#*.

For later use as a simple model for constraint damping, consider a more general equation,
Lyu = p=3(0, — 24t70,) (pu) = f, (1.21)
for v € R; near .#* and i, this now roughly takes the form
(207 (190 = 7)(p0Dpy — p18p,) — A)u = f.

Once the conormality of u is known, integrating the first vector field on the left gives
a leading term p], which is decaying for v > 0. (One can show that the background
estimate (1.17) holds for a; < 7, but even an ineffective bound a; < 0 would be good
enough, as the transport ODE argument automatically recovers the optimal bound.)

Remark 1.4. Note that for small v, the normal operator of L., at i™ is close to the normal

operator for v = 0, hence one would like to conclude that mild decay pl_t’, by < 1,at it
still holds in this case. This is indeed true, but the argument has a technical twist: L,
does not have smooth coefficients at .# as a differential operator (unlike L in Friedlander’s
argument) due to the presence of derivatives which are not tangential to ST. However, we
still have L, € Diff%(]R‘l); we thus deduce asymptotics at i* via normal operator analysis

on the blown-down space R*, analogously to [BaVaWul5, BaVaWul6]. See §5.2.

Remark 1.5. The improved decay at .# T translates into higher b-regularity of u on the
blown-down space R?%, as we will show in Lemma 5.6; in the language of [BaVaWulj,
Proposition 4.4], this corresponds to a shift of the threshold regularity at the radial set by
7 coming from the skew-symmetric part of L.,.

1.1.2. Non-linearities and null structure. If u is conormal on M, then its derivatives along
0 := O; + O, or size 1 spherical derivatives 7~!¥ have faster decay by one order at .# 7,
whereas its ‘bad’ derivative along 0y := 9, — 0, does not gain decay there; indeed, modulo
vector fields with more decay at .#+, we calculate near i® N .+ using (1.14)

90 = —5p0p1 P10p;, 1 = po(Podp, — P10y, );

note the extra factor of pr in Jy. All these derivatives gain an order of decay at i, hence
the structure of non-linearities is relevant mainly at .#T; let us thus restrict the discussion
to a neighborhood of iN.#*. (Similar considerations apply to a neighborhood of it N.#+.)
Consider the non-linear equation Cyu — (81u)? = f, or rather the closely related equation

P(u) = Lu— p Y (01u)? — f, f€ Y™ small, (1.22)

with L given by (1.11); this is well-known to violate the null condition introduced by
Christodoulou [Ch86] and Klainerman [KI86]. From our compactified perspective, the issue
is the following. For v € X*, the linearization L, = L — 2p~'(d1u)d; is, to leading order
as a b-operator,

2p;1(p18p1 — 01u)(p00py — P10p,;);
so the indicial root at % is shifted from 0 to dyu| s+. Therefore, a step L,v = —P(u)
in the Newton iteration scheme (1.9) does not give v € X*°. A Picard iteration, solving
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Lov = —P(u) would, due to the leading term of p~'(81u)? of size p; ', cause v to have a
logarithmic leading term when integrating the analogue of (1.19). Neither iteration scheme
closes, and this will remain true for any modification of the space X*°, e.g. by including
leading terms involving higher powers of log p;. In fact, solutions of global versions of this
equation blow up in finite time [Jo81].

Assuming initial data to have sufficient decay, the non-linear system Lu{ = 0, Lu; —
p~1(01u$)? = 0 on the other hand can be solved easily if we design the function space x>
in step 2 to encode a p! leading term for u§ at £, as in (1.20), and two leading terms, of
size log pr and pY, for u;. Extending this model slightly, let v > 0, recall L, from (1.21),
and consider the system for u = (ug, uf,u1),

P(u) = (Lyuo, Lu§ — p 1 (O1ug)?, Luy — p_l(aluf)Q) =0; (1.23)

which is a toy model for the non-linear structure of the gauged Einstein’s equation with
constraint damping, as we will argue in §1.2. Only working in (#1)°, i.e. ignoring weights
at i and it for brevity, the above discussions suggest taking b; € (0,v) and working with
the space’

% = {u = (o, 1, ur): (g, 65— (), wr— (1) D log py — (ur)©) € pl HE(M)}, (1.24)
where (u$)©), (u1)®, (u1)® € C>((#£)°) are the leading terms. Then
P: X% Y = {f = (fo, Ji, f1): (o S, o= o (1)) € pp 0 HRY,

where (f1)(® € €>((#1)°). The linearization L, of P around u € X then has as its
model operator at &+

0% 0 0
Ly = 2p7 (p18p, = Au)(p0Dpy — p18,;),  Au= [0 0 0f, (1.25)
0 (u$H)® o

which has a (lower triangular) Jordan block structure, with all blocks either having positive
spectrum (the upper 1 x 1 entry) or being nilpotent (the lower 2 x 2 block). Thus, by
integrating prd,, — Au, we conclude that for L,v = —P(u), we have v € X*°, thus closing
the iteration scheme (1.9). A background estimate as well as its higher regularity version,
which is the prerequisite for LY being of any use, can be proved as before. Error terms
arising from commutation with A, have lower differential order and can thus be controlled
inductively; that is, only the commutation properties of the principal part of L2 matter for
this.

Remark 1.6. A tool for the study of the long time behavior of non-linear wave equations on
Minkowski space introduced by Hérmander [H687] is the asymptotic system, see also [H597,
§6.5] and [LiRo03]: this arises by making an ansatz u ~ er U(t — r,elogr,w) for the
solution and evaluating the €2 coefficient, which gives a PDE in 1 4 1 dimensions in the
coordinates t — r and ¢ := elogr which one expects to capture the behavior of the non-
linear equation near the light cone; if the classical null condition is satisfied, the PDE is
linear, otherwise it it non-linear. The weak null condition [LiR003] is the assumption that
solutions of the asymptotic system grow at most exponentially in ¢, and for the Einstein

9Here as well as in the previous example, one could of course work with much less precise function spaces
since the full non-linear system is lower triangular; for the Einstein equation on the other hand, we will need
this kind of precision.
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vacuum equation in harmonic gauge, solutions are polynomial (in fact, linear) in ¢. The
latter finds its analogue in our framework in the nilpotent structure of the coupling matrix
n (1.25). (However, quasilinear equations with variable long-range perturbations, see the
discussion around (1.32), cannot be treated directly with our methods, corresponding to
the difficulty in assigning a geometric meaning to the asymptotic system in such situations.)
For works which establish global existence of nonlinear equations even when the asymptotic
system has merely exponentially bounded (in ¢) solutions, we refer to Lindblad [Li92, Li08]
and Alinhac [Al03].

1.1.3. Polyhomogeneity. Consider again equatlon (1 12) near (i°)°, now assuming that f is
polyhomogeneous. For simplicity, let f = pi*f. + f, where f, € COO(OR4), z € C, and f
decays faster than the leading term, so f € pSOH > with by > —Im z. A useful character-
ization of the polyhomogeneity of f is that the decay of f improves upon application of
the vector field poD,, — z. The solution w satisfies u € pi® HY® for any ag < —Imz; but

u' := (poD,, — z)u solves'”

Lu/ = (pODpo - Z)f = (pODpo - )f € P Hb 3
sou € pOOH >°. This is exactly the statement that u has the form u = p§u, + u for some

u, € CC(ORY), U € pbOHﬁo If f has a full polyhomogeneous expansion, an iteration of this
argument shows that v has one too, with the same index set.

Near the corner i® N .#+ then, one can proceed iteratively as well, picking up the terms
of the expansion at .#* one by one, by analyzing the solution of the product of trans-
port equations in equation (1.19) when the right hand side has a partial polyhomogeneous
expansion at .#*: the point is that pyd,, — prd,, transports expansions from ¥ to ST,
ultimately since it annihilates pi? plf See Lemmas 7.5-7.7.

To obtain the expansion at i+, we argue iteratively again, using the resonance expansion
obtained via normal operator analysis as in the proof of [HiVal5, Theorem 2.21]. One needs
to invert the normal operator family of L on spaces of functions which are polyhomogeneous
at the boundary 9i*, which is easily accomplished by solving away polyhomogeneous terms
formally and using the usual inverse, defined on spaces of smooth functions, to solve away
the remainder; see Lemma 7.8.

1.2. Analysis of Einstein’s equation. For Einstein’s equation, the strategy outlined in
§1.1 needs to be supplemented by a preliminary step, the choice of the non-linear operator P,
which in particular means choosing a gauge, i.e. a condition on the solution g of Ric(g) =0
which breaks the diffeomorphism invariance; by the latter we mean the fact that for any
diffeomorphism ¢ of M, ¢*g also solves Ric(¢*g) = 0. Following DeTurck [DeTu82], the
presentation by Graham-Lee [GrLe91], and [HiVal6b], we consider the gauged Einstein
equation N

Po(g) = Ric(g) — 6" Y(g) =0, (1.26)

where 8* is a first order differential operator with the same principal symbol (which is
independent of g) as the symmetric gradient (6;u)., = (U + Upyy); We comment on the

choice of 8* below. Further, the gauge 1-form is
T(Q?Qm)u = (gg;zlégGggm)u = guug“(r(g)b = T(gm)in); (1.27)

10Commutator terms have improved decay at po = 0 as before, hence are dropped here for clarity.
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where §; is the adjoint of 47, i.e. the (negative) divergence, G, = 1 — %g try is the trace
reversal operator, and g, is a fixed background metric; we write Y(g) = Y(g; gm) from
now on. This is a manifestly coordinate invariant generalization of the wave coordinate
gauge, where one would choose g,, = g to be the Minkowski metric on R* and demand that
a global coordinate system (z#): (M°,g) — (R% g) be a wave map. (Friedrich describes
T (g) = 0 and more general gauge conditions using gauge source functions, see in particular

[Fr85, Equation (3.23)].)

Two fundamental properties of Py(g) are: (1) Py(g) is a quasilinear wave equation, hence
has a well-posed initial value problem; (2) by the second Bianchi identity—the fact that
the Einstein tensor Ein(g) := G4Ric(g) is divergence-free—the equation Py(g) = 0 implies
the wave equation

5,G46*Y(g) =0 (1.28)

for YT(g), which thus vanishes identically provided its Cauchy data are trivial; we call
5gGgg* the gauge propagation operator. Therefore, solving (1.26) with Cauchy data for
which T(g) has trivial Cauchy data is equivalent to solving Einstein’s equation (1.1) in the
gauge Y(g) = 0.

Since we wish to solve the initial value problem (1.4), we need to choose the Cauchy
data for g, i.e. the restrictions gp and g; of ¢ and its transversal derivative to the initial
surface 3° as a Lorentzian metric on M° such that ~ is the pullback of gy to X° and k
is the second fundamental form of any metric with Cauchy data (go, g1); note that k only
depends on up to first derivatives of the ambient metric, hence can indeed be expressed
purely in terms of (go,g1). These conditions do not determine gg, g1 completely, and one
can arrange in addition that Y(g) vanishes at 3° as a 1-form on M. Provided then that
Py(g) = 0, with these Cauchy data for g, holds near 3°, the constraint equations at ¥° can
be shown to imply that also the transversal derivative of Y(g) vanishes at X° (see the proof
of Theorem 6.3), and then the argument involving (1.28) applies.

If the initial data in Theorem 1.1 are exactly Schwarzschildean for r > R > 1, the
solution g is equal (i.e. isometric) to the Schwarzschild metric in the domain of dependence
of the region r > R; more generally, for initial data which are equal to those of mass m
Schwarzschild modulo decaying corrections, we expect all outgoing null-geodesics to be bent
in approximately the same way as for the metric g . Thus, we should define the manifold
M in step 1 so that .#7 is null infinity of the Schwarzschild spacetime. Now, along radial
null-geodesics of g2, the difference t — r, is constant, where

T« = 1+ 2mlog(r — 2m) (1.29)

is the tortoise coordinate up to an additive constant, see [Wal0, Equation (6.4.20)]. Corre-
spondingly, we define the compactification ™R4 near t ~ 7, such that p = ~! is a boundary
defining function, and v := (¢t — r,)/r is smooth up to the boundary; ™M is defined by
blowing this up at ST = {p =0, ™v = 0}. (This is smoothly extended away from ¢ ~ r, to
a compactification of all of R%.) Thus, R4 and the Minkowski compactification R4 = ‘R4
are canonically identified by continuity from R?*, but have slightly different smooth struc-
tures; see §2.3 and [BaVaWul6, §7].) The interior of the front face .#* of the blow-up is
diffeomorphic to Ry x S?, where s := ™v/p =t — r, is an affine coordinate along the fibers
of the blow-up. We denote defining functions of i® (the closure of {p = 0, ™v < 0} in ™M),
4+, and i (the closure of {p =0, ™v > 0} in ™M) by po, pr, and p., respectively.
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It is then natural to fix the background metric g,, to be equal to g2 near i U.#+ and
smoothly interpolate with the Minkowski metric near » = 0 (which is non-singular there,
unlike g). We then work with the gauge Y(g; g,) = 0, and seek the solution of

P(h) := p°Po(g) =0, g=gm + ph, (1.30)

with h to be determined; the factors p are introduced in analogy with the discussion of the
scalar wave equation (1.11).!* Here, p is a global boundary defining function of ™R%; one
can e.g. take p = r~! away from the axis 7/t = 0, and p = ¢t~! near r/t = 0. Now, due to the
quasilinear character of (1.26), the principal part of L;, := Dy P depends on h: it is given
by %Dg. Thus, one needs to ensure that throughout the iteration scheme (1.9), the null-
geometry of g is compatible with ™M, in the sense that the long range term of g determining
the bending of light rays remains unchanged. To see what this means concretely, consider
a metric perturbation A in (1.30) which is not growing too fast at &, say |h| < p; € for
€ < 1/2; one can then check that, modulo terms with faster decay at .# 7,

O, =20, " (p10p; + 2p0h00(P0Dpy — P10p;)) (P00p, — p10,;) mear Nt (1.31)
which identifies
h()() = h(a(), (90), (90 = 615 + 87«*, (1.32)

as the (only) long range component of h; see the calculation (3.15).'? Indeed, the first
vector field in (1.31) is approximately tangent to outgoing null cones, so for hgy # 0 at
7+, outgoing null cones do not tend to (.#1)°. (Rather, if hog > 0, say, they are less
strongly bent, like in a Schwarzschild spacetime with mass smaller than m.) Whether or
not hgp vanishes at .#* depends on the choice of gauge. A calculation, see (A.5), shows
that the gauge condition Y(g) = 0 implies the constancy of hgy along .#T; but since
hoo is initially O due to g,, already capturing the long range part of the initial data, this
means that hoo| ,+ = 0 indeed—provided that P(h) = 0 with Cauchy data satisfying the
gauge condition, as we otherwise cannot conclude the vanishing of T(g). We remark that
T (g) = 0 implies the vanishing of further components of h, namely 7~ *ho, = h(9y, 71 9pa)
and r_anbhab, hap := h(0pa, Ops ), which we collectively denote by ho; see (3.4) and (3.11),
where the notation hg =: mph is introduced.

As we are solving approximate (linearized) equations at each step of our Newton-type
iteration scheme in step 4, we thus need an extra mechanism to ensure that Y(g), g =
Jgm + ph, is decaying sufficiently fast at .#T to guarantee the vanishing of hgy at # 7.
This is where constraint damping comes into play. Roughly speaking, if one only has an
approximate solution of Py(g) ~ 0, then we still get 6,G40*Y(g) ~ 0; if one chooses ¢*
carefully, solutions of this can be made to decay at .# T sufficiently fast so as to imply the
vanishing of hgg (provided the right hand side is sufficiently small). We shall show that the
choice

§fu = 5;mu + 271% ®@s u = Y2(tg-194U)gms V1,72 > 0,

HNote that we use gm in two distinct roles: once as a background metric in the gauge condition, and
once as a rough first guess of the solution of the initial value problem which (1) already has the correct long
range behavior at null infinity and (2) is globally close to a solution of the Einstein vacuum equation if m
is small. See also Remark 6.6.

1210 the case that hoo vanishes at .# T, the approximate null directions p10,; and po0p, — p10,,; have
the same form as in the discussion surrounding (1.19), however, due to our choice of compactification ™M,
they are now the radial null directions of Schwarzschild with mass m. (Integration along these more precise
characteristics was key in Lindblad’s proof of sharper asymptotics in [Lil7].)
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accomplishes this.!® As a first indication, one can check that 25gmGgmg* has a structure
similar to (1.21) with v > 0, for which we had showed the improved decay at ..

Regarding steps 2 and 3 of our general strategy, the correct function spaces can now be
determined easily (after some tedious algebra): solving Lou = 0, where L, = Dy P as usual,
one finds that ug = myu, so in particular the long range component ugg of u decays at .# ™,
while the remaining components, denoted uf, have a size 1 leading term at # %, just like
solutions of the linear scalar wave equation. This follows from the schematic structure

_ 0
Pr ! <pfapl - (g 0>>(p0800 - plaﬂ[) (Zg)

of the model operator at .# 7 in this case. However, for such u then, solutions of L,u’ =
—P(u) have slightly more complicated behavior. Indeed, the model operator at .#* has
a schematic structure similar to (1.25), acting on (u, (u’)§;,u};), where we separate the
components of (u)§ into two sets, one of which consists of the single component

uyy = u(0,0), O =0 — 0, (1.33)

while (u')§; captures the remaining components, which are wyy, r~luyy, and the part
2 (Ugy — %gabgc‘iucd) of the spherical part of w which is trace-free with respect to ¢. Cor-
respondingly, we need to allow u}; to have a logarithmic leading order term, just like the
component called u; in the definition of the function space (1.24). In the next iteration
step, Lyu” = —P(u'), no further adjustments are necessary: the structure of the model
operator at .#7 is unchanged, hence the asymptotic behavior of u” does not get more
complicated.'* We remark that due to our precise control over each iterate, encoded by
membership in X', the relevant structure of the model operators and the regularity of
the coeflicients of the linearized equations are the same at each iteration step; in particu-
lar, the fact that equation (1.30) is quasilinear rather than semilinear does not cause any
complications beyond the need for constraint damping.

The decoupling of the model operator at £ into three pieces—one for the decaying
components ug, one for the components u§; which have possibly non-trivial leading terms
at .# T, and one for the logarithmically growing component u11—is the key structure making
our proof of global stability work. The fact that the equation for the components uy decou-
ples is not coincidental, as they are governed by the gauge condition and thus are expected
to decouple to leading order in view of the second Bianchi identity as around (1.28).'5 The
decoupling of u;1; and u{; on the other hand is the much more subtle manifestation of the
weak null condition, as discussed in Remark 1.6.

The solution h of (1.30) is a symmetric 2-tensor in M°; as part of step 1, we still need
to specify the smooth vector bundle on M which h will be a section of. Consider first the
Minkowski metric g on the radial compactification ORY, In R, g is a quadratic form, with
constant coefficients, in the 1-forms dt and dz?, which extend smoothly to the boundary as

I3For technical reasons related to the definition of the smooth structure on ™R4, we shall modify t
slightly; see Definition 2.3 and equation (3.3).

e coupling matrix, called A, in (1.25), is in fact slightly more complicated here, see Lemma 3.8,
necessitating a more careful choice of the weights of the remainder terms of elements of the spaces X*° and
V> at £, whose precise definitions we give in Definitions 3.1 and 3.3.

151y practice, it is easier to analyze ug directly using the structure of the linearized gauged Einstein
equation, rather than via an (approximate) linearized second Bianchi identity, so this is how we shall
proceed.
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sections of the scattering cotangent bundle *°T™ OR? first introduced in [Me94]; in a collar
neighborhood [0,1), x R% of a point in 0°R%, the latter is by definition spanned by the

1-forms %, dTXi, which are smooth and linearly independent sections of 5¢T* ORY down to
the boundary. For instance, near r = 0, we can take p = t=1 and X = z/t, in which
case % = —dt and % = da' — X' dt. Similarly then, g,, will be a smooth section of the

second symmetric tensor power S25T* ™R4. Since our non-linear analysis takes place on
the blown-up space ™M, we seek h as a section of the pullback bundle 8*S$25¢T* ™R%, where
B: ™M — ™R4 is the blow-down map. For brevity, we shall suppress the bundle from the
notation here.

Theorem 1.7. Suppose the assumptions of Theorem 1.1 are satisfied, i.e. for some small
m € R and bg > 0 fixed, the normalized data pgli and pEQk € pSOHgo(@) are small
in pgoHéVH and pgoHéV, respectively. Then there exists a solution g of the initial value
problem (1.4) satisfying the gauge condition Y(g) = 0, see (1.27), which on ™M is of the
form g = gm + ph, h € pgopfprgo(mM) for all € > 0; here p is a boundary defining
function of R4, and po, pr, and py are defining functions of i, Zt, and i, respectively.

More precisely, near ™ and using the notation introduced after (1.32) and (1.33), the
components hoy, v~ hoy, and r*2g“bhab lie in pgopl}’prgo(mM) for all by < min(1,bg)
and € > 0, while hoy, 7~ hyy, and 772(hapy — %gabgc‘ihcd) have size 1 leading terms at I+
plus a remainder in the same space, and hi1 has a logarithmic and a size 1 leading term at
I T plus a remainder in the same space. At i on the other hand, h has a size 1 leading
term: there exists h € py “H°(i%) such that h — ht € pfpi*Hﬁo(mM) near it for any
by < min(bg,1).

See Theorem 6.3 for the full statement, which in particular allows for the decay rate by of
the initial data to be larger and gives the corresponding weight at i for the solution. The
final conclusion follows from resonance considerations, as indicated before (1.20), and will
follow from the arguments used to establish polyhomogeneity in §7. We discuss continuous
dependence on initial data in Remark 6.4. A typical example of a polyhomogeneous expan-
sion of h arises for initial data which are smooth functions of 1/r in r > 1: in this case,
the leading terms of the expansion of h are schematically (and not showing the coefficients,
which are functions on #)

ho ~ prlog=* pr, h§; ~ 1+ prlog=* pr, hir ~log=" p; + prlog=‘ p;
at 1, and h ~ 14 pylog=tp, at it; see Example 7.3.

While a solution g of Ric(g) = 0 in the gauge Y(g) = 0 of course solves equation (1.26)
for any choice of g*, we argued why a careful choice is crucial to make our global iteration
scheme work. Another perspective is the following: implementing constraint damping allows
us to solve the gauged equation (1.26) for any sufficiently small Cauchy data; whether or
not these data come from an initial data set satisfying the constraint equations is irrelevant.
Only at the end, once one has a solution of (1.26), do we use the constraint equations and
the second Bianchi identity to deduce Y(g) = 0.

In contrast, consider the choice 0* = 6, in (1.26); the linearization of Py(g) around the

Minkowski metric g = g is then equal to %Dg, which is % times the scalar wave operator

acting component-wise on the components of a symmetric 2-tensor in the frame dz* @ dz” +
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dz¥ @ dx*, where 2 = t, 2%, i = 1,2,3, are the standard coordinates on ]R%:,g?’. Solving
Oy (ph) = 0 with given initial data, which would be the first step in our iteration scheme for
initial data with mass m = 0, does not imply improved behavior for any components of h,
in particular hgg; this means that constraint damping fails for this choice of §*. Thus, the
next iterate g + ph in general has a different long range behavior, and correspondingly °M
is no longer the correct place for the analysis of the linearized operator in the next iteration
step—even though the final solution of Einstein’s equation is well-behaved on °A/ for such
initial data. With constraint damping on the other hand, the linearized equation always
produces behavior consistent with the qualitative properties of the non-linear solution.

1.3. Bondi mass loss formula. The description of the asymptotic behavior of the metric
g = gm + ph in Theorem 1.7 on the compact manifold "M and in the chosen gauge allows
for a precise description of outgoing light cones close to the radiation face .#*. Work on
geometric quantities at .# T started with the seminal works of Bondi—van der Burg—Metzner
[Bo60, BoBuMe62], Sachs [Sa62b, Sa62a], Newman—Penrose [NePe62], and Penrose [Pe65];
the precise decay properties of the curvature tensor—in particular ‘peeling estimates’ or
their failure—were discussed in [KINi03b, Ch02], see also [Dal2]. (For studies on condi-
tions on initial data which ensure or prevent smoothness of the metric at .#* in suitable
coordinates, see [Fr83, Fr85, ChMaSi95, AnCh93, Va04] and [KINiO3a, §8.2].)

As remarked before, the logarithmic bending of light cones is controlled by the ADM mass
m, which measures mass on spacelike, asymptotically flat, Cauchy surfaces. A more subtle
notion is the Bondi mass [BoBuMe62|, see also [Ch91], which is a function of retarded
time 2! = t — r, that can be defined as follows: let S(u) C .#% denote the u-level set
of z! at null infinity; S(u) is a 2-sphere, and naturally comes equipped with the round
metric. If Cy, denotes the outgoing light cone which limits to S(u) at null infinity and which
asymptotically approaches the radial Schwarzschild light cone {! = u}, one can define a
natural area radius 7 on Cy, equal to the coordinate r plus lower order correction terms; the
Bondi mass Mg (u) is then the limit of the Hawking mass of the 2-sphere {z! = u, # = R}
as R — oo. See §8 for the precise definitions. A change %MB(U) of the Bondi mass reflects
a flux of gravitational energy to .#* along C,. We shall calculate these quantities explicitly
and show:

Theorem 1.8. Suppose we are given a metric constructed in Theorem 1.7, and write h11 =
h(lll) log(r) + O(1) near £, where h(lll) € pgoprﬁo(f*) is the logarithmic leading term.
Then the Bondi mass is equal to

1 (1)
Mg (u) =m + / 1hy, dg. (1.34)
47T S(u) 27 g
The Bondi mass loss formula takes the form d%MB(u) = —E(u), where
1

E(u) /( : |N|; df, Nap=1"201hap| s+,
S(u

T 32r
is the outgoing energy flux. Finally, Mp(—oc0) = m and Mg(400) = 0.

We prove this for all initial data which are small and asymptotically flat in the sense
of (1.6). The Bondi mass was shown to be well-defined (and to satisfy a mass loss formula)
for the weakly decaying initial data used in [BiZi09] by Bieri—Chrusciel [BiCh16] in the geo-
metric framework of [ChKI193], but the question of how to define Bondi-Sachs coordinates
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remained open. Our result is the first to accomplish this for a large class of initial data,
and to identify the Bondi mass in a (generalized) wave coordinate gauge setting.'® The
key to establishing the first part of Theorem 1.8 is the construction and precise control of
the aforementioned geometric quantities leading to the identification (1.34); the mass loss
formula itself is then equivalent to the vanishing of the leading term of the (1, 1) component
of the gauged Einstein equation at .#". The vanishing of Mp(u) as u — —oo follows im-
mediately from the decay properties of h there. On the other hand, the proof that the total
radiated energy [ E(u)du equals the initial mass m proceeds by studying the leading order
term h|;+ as the solution of a linear equation on i+ (obtained by restricting the non-linear
gauged Einstein equation to i), with a forcing term that comes from the failure of our
glued background metric g,, to satisfy the Einstein equation and which is thus proportional
to m. This equation now is closely related to the spectral family of exact hyperbolic space
at the bottom of the essential spectrum;'” a calculation of the scattering matrix acting on

the incoming data given by hgll) and comparing the (0,0) component of the outgoing data
with hgo—which vanishes by construction!—then establishes the desired relationship.

Theorem 1.8 shows that the logarithmic term in the asymptotic expansion of hi; carries
physical meaning. Its vanishing forces m = 0, which by the positive mass theorem means
that the spacetime is exact Minkowski space. (The observation that [ E(u)du > 0 immedi-
ately implies the non-negativity of the ADM mass of the small initial data under consider-
ation here, which in this case was first proved by Choquet-Bruhat-Marsden [ChBrMa76].)

Further geometric properties of the vacuum metrics constructed in this paper, such as
the identification of (.#1)° C M, resp. (i7)°, as the set of endpoints of future-directed null,
resp. timelike, geodesics, will be discussed elsewhere.

1.4. Outline of the paper. In §§2 and 3, we set the stage for the analysis (steps 1 and
2): we give the precise definition of the compactification M = ™M on which we will find
the solution of (1.4) in §2.1; the relevant function spaces are defined in §2.2, and the
relationships between different compactifications are discussed in §2.3. In §2.4, we prepare
the invariant formulation of estimates such as (1.16); the results there are not needed until
84. In §3.1, we define the spaces X*° and Y*° on M in which we shall find the solution h in
Theorem 1.7, and calculate the mapping properties and model operators of the (linearized)
gauged Einstein operator in §§3.2 and 3.3, respectively. (The necessary algebra is moved
to Appendix A.) The key structures (constraint damping, null structure) critical for our
proof will be discussed there as well. We accomplish part 3.1 of step 3—the proof of a high
regularity background estimate with imprecise weights—by exploiting these structures in
§4. The recovery of the precise asymptotic behavior in §5 finishes step 3.2. Putting this
into a Nash—Moser framework allows us to finish the proof of Theorem 1.7 in §6; the proof
of polyhomogeneity, thus of the last part of Theorem 1.1, is proved in §7. Finally, a finer
description of the resulting asymptotically flat spacetime near null infinity, leading to the
proof of Theorem 1.8, is given in §8.

16pg o by-product, we also obtain a lower bound for the regularity of the conformally rescaled metric
down to £, namely C"* for all & < min(bp, 1), which is expected to be sharp [Ch02]; see Remark 8.12.

L7This linear operator acts on the symmetric scattering 2-tensor bundle restricted to i*; see [Hal7] for
the relation with the hyperbolic Laplacian acting on its intrinsic 2-tensor bundle. The spectral parameter
here is fized, and the definition of the scattering matrix (incoming data having logarithmic rather than
algebraic growth) is specific to working at the bottom of the spectrum; this is in contrast to the description
of the scattering matrix depending on the spectral parameter as e.g. in [GrZw03].
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For the reader only interested in the key parts of the proof, we recommend reading §§2.1
and 2.2 for the setup, §3.1 for the form of metric perturbations we need to consider, and §3.2
for an explanation of the main features of the linearized problem; taking the background
estimate, Theorem 4.2 (whose proof roughly follows the steps outlined in §1.1.1), as a black
box, the argument formally concludes in §5. (Getting the actual non-linear solution in §6
is then routine.)
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2. COMPACTIFICATION

As explained in §1.2, we shall find the metric g in Theorem 1.7 as a perturbation of a
background metric g, which interpolates between mass m Schwarzschild in a neighborhood
{r>1, |t| < 2r} of i U .# and the Minkowski metric elsewhere. In §2.1, we define such
a metric g,, as a smooth scattering metric on a suitable partial compactification ™R* of
R* to a manifold with boundary which is closely related to the radial compactifications of
asymptotically Minkowski spaces used in [BaVaWul5, BaVaWul6]. The ideal boundaries
i%, 1, and it are then the boundary hypersurfaces of a manifold with corners obtained by
blowing up ™R#* at the ‘light cone at infinity.” The spaces of conormal and polyhomogeneous
functions on this manifold are defined in §2.2.

Let us recall the notion of the scattering cotangent bundle °T* X over an n-dimensional
manifold X with boundary dX. Over the interior X°, *T%.X := Tx.X is the usual

cotangent bundle. Near the boundary, let p > 0 and y = (y*,... ,y"‘_l) € R ! denote

local coordinates, in which 9X is given by p = 0; then the 1-forms %, d%] (j=1,...,n—=1)

are a smooth local frame of ¢T* X, i.e. smooth scattering 1-forms are precisely the linear
dy?

combinations a(p,y)% + a;(p,y)=- with a,a; smooth. (Equivalently, we can use d(1/p)

and d(y’/p) as a smooth local frame.) The point is that, viewed from the perspective
of X° such 1-forms have a very specific behavior as one approaches 0X. Tensor powers
and their symmetric versions S¥%¢T* X, k € N, are defined in the usual manner; the dual
bundle is denoted *°T'X and called scattering tangent bundle. In the case that 0X =Y x Z
and X = [0,1), x 0X are products, so T*Y C T*X is a well-defined subbundle, then the
rescaling p~'T*Y C S°T* X, spanned by covectors of the form p~'n, n € T*Y, is a smooth
subbundle.

To give an example, calculations similar to the ones prior to Theorem 1.7 show that the
differentials of the standard coordinates on R™ extend to the radial compactification R" as
smooth scattering 1-forms; they are in fact a basis of S°T*R"”, and any metric on R” with
constant coefficients, such as the Minkowski or Euclidean metric, is a scattering metric, i.e.
an element of C>°(R™; §2 S°T*Rn).
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The b-cotangent bundle PT* X is locally spanned by the 1-forms d—pp, dy (j=1,...,n—1);
its dual is the b-tangent bundle PT X, spanned locally by pO, and d,;. The space V,(X)
of b-vector fields on X, consisting of those vector fields V on X which are tangent to 0.X,
is then canonically identified with C*°(X;PTX). A b-metric is a non-degenerate section of
S2PTX. The space Difff(X) of b-differential operators of degree k consists of finite sums
of k-fold products of b-vector fields. Fixing a collar neighborhood [0, €), x 9X and choosing

local coordinates 3/ on 90X as before, the normal operator of an operator L € Diff'g(X )
given locally by L = Zj+\a|§k aja(p,y)(pD,)’ Dy is defined by freezing coefficients at p = 0,
N(L) = 3 aja(0,4)(pD,) DS € Diff([0,50), x OX). (2.1)

JjH+al<k

This depends on the choice of collar neighborhood only through the choice of normal vector
field 0plax; see [Me93, §4.15] for an invariant description. The Mellin-transformed normal

operator family E(O’), o € C, is the conjugation of N(L) by the Mellin transform in p, that
is,

E(O’) = Z aja(O,y)ajD;‘;
Jtlel<k

this is a holomorphic family of elements of Diff* (0X). Analogous constructions can be
performed for b-operators acting on vector bundles.

2.1. Analytic structure. Fix the mass m € R; for now, m does not have to be small.
The Schwarzschild metric, written in polar coordinates on R x R3, takes the form

g = (1= 2m)de? — (1 — 22y~ 1ar? — 2y
= (1 — 22)ds® + 2ds dr — r*¢, (2.2)
where ¢ denotes the round metric on S2, and where we let
s:=t—ry, Tv:=1+2mlog(r—2m), (2.3)
so dry = -—5—dr. Note that level sets of s are radial outgoing null cones. Define
pi=r"t vi=r(t—r—x(t/r)2mlog(r — 2m)), (2.4)
where x(z) =1, z < 2, and x(z) =0, = > 3. Let then
C1:=[0,€0)p x (—%,5), x SZ, (2.5)

where we shrink ¢y > 0 so that t is well-defined and depends smoothly on p > 0 and v, via
the implicit function theorem applied to (2.4). This will provide the compactification near
the future light cone (and part of spatial infinity). Near future infinity, we use standard
coordinates (t,x) € R x R on R*; define

pr=t"' X =g/t (2.6)
and put
Cy =10, 60)p’+ x {X eR®: |X| < it (2.7)

For ¢y > 0 small enough, we can consider the interiors C7, C5 as smooth submanifolds of
R* using the identifications (2.4) and (2.6). (Note in particular that the smooth structures
agree with the induced smooth structure of R*.) Let us consider the transition map between
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C{ and Cf in more detail: in Cf N Cy and for ¢~! small enough, we have x(t —r) = 0 and
7> %, so the map
(P, X) = (p =Pl /IX], v = X7 = 1, w = X/|X]) (2.8)
extends smoothly (with smooth inverse) to p/, = 0. We then let
R% = (R4I_|01 UCQ)/N

where ~ identifies C; and Cs with subsets of R* as above, and the boundary points of C
and Cy are identified using the map (2.8). This is thus a smooth manifold with boundary,'®
though both R4 and OR4 = (dC; UHCy)/ ~ are non-compact. In other words, R4 is only a
compactification of the region v > —%. See Figure 2.1.

FIGURE 2.1. The partial compactification R* of R*, constructed from R,
(4, and Cs. Also shown is the hypersurface ¥ from (2.14).

The scattering cotangent bundle of R* near the light cone at infinity has a smooth
partial trivialization T¢, R* = (dr) & (d(v/p)) & p~*T*S?, thus if ¢ is a smooth function
with ¢(v) =1 for v < 1 and ¢(v) =0 for v > 2, then

g = (1= 220N g0/ p)2 + 2d(v/p) dr — r2¢ € C(Cy; S2T, RY). (2.9)
In v > 3 and for ¢y > 0 small enough, we simply have g, 1 = dt*> — dr? — r2g, which is thus
equal to o
gmp2 = d(1/pl)? = d(X/py)? € C(Co; S**°T¢,RY)
on the overlap C; NCy. Thus, we can use a partition of unity to glue gy, 1 and g, 2 together
and define a Lorentzian scattering metric g,,, on Cq U Cy. Lastly, fix ¢ € C°°(R*) such that
supp ¢ C C' U C?, and set
Gm = Gm + (1 — @) (dt* — dz?) € C®°(R4; S?5°T*R4), (2.10)
thus gluing g, to the Minkowski metric away from C; U C2.
Next, denote the light cone at future infinity by

ST:={p=0, v=0} C IR% (2.11)
and let

M’ = [R%; SH]

18Djifferent choices of x produce the same topological space, indeed C* manifold (« < 1); on the other
hand, the smooth structure at the boundary does depend on Yy, but only in the gluing region C; N Cy. All
resulting smooth structures work equally well.
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denote the homogeneous blow-up, see Figure 2.2.

S+ St
gt

OR*

FIGURE 2.2. Left: the partial compactification R? and its light cone at

infinity S*. Right: the blow-up M’ = [R%; S| 5, RE, with front face .9+
(null infinity) and side faces i® (spatial infinity), i+ (future timelike infinity).

Thus, M’ is a smooth (non-compact) manifold with corners. Denote the front face by
I = (M3 7))
note that s = v/p =t — r, is an affine parameter on the fibers of the blow-down map
B: M' — R4, (2.12)

so £ = 371(S") is the set of all endpoints of future-directed outgoing radial null-geodesics
of mass m Schwarzschild. We further denote the future temporal face by

it = B1((0C, N ORY) U {v > 0}),

whose image 3(i") is a closed 3-ball with boundary S*. The spatial face, or rather the
part of it that we chose to include in the compactification R4, is defined by

i := g1 (0R* N {v < 0}).

Using 3, one can pull back natural vector bundles on R4 to M’; for instance, the pullback
% Gm, which we simply denote by g, for brevity, is an element of C>°(M’; 3*S?5°T*R*) (and
constant along the fibers of 3).

Denote by t}, the smooth function
ty, = po(t — 2mx(r) log(r — 2m)), (2.13)
defined for |¢|/(r) < 3, where py = r~! near v = —1, and where x = 0 for r < R and x = 1
for r > 2R, with R > 0 large; this extends the function v+ 1 smoothly into the interior R*,

and dty, is timelike on
¥ =t.1(0). (2.14)

We restrict our analysis from now on to the smooth manifold with corners
M :=M'n ({t, >0} U{t > (r)}),

where we regard the boundary X as ‘artificial,” i.e. incomplete, from the point of view of
b-analysis; recall Figure 1.1; abusing notation slightly, we shall denote the part i N M
of spatial infinity contained in M again by i®. We denote by po, pr, and py € C®(M)
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defining functions of i, .#*+, and i*, respectively; we further let p € C>°(M) denote a
total boundary defining function, e.g. p = poprp+. Defining functions are well-defined up
to multiplication by smooth positive functions. We shall often make concrete choices to
simplify local calculations; by a local defining function of i¥, say, on some open subset
U C M we then mean a function pg € C*>°(U) so that for any K € U, po|x can be extended
to a globally defined defining function of i. We remark that py|s, € C®(X) is a defining
function of 0% within X.

Remark 2.1. The causal character (spacelike, null, timelike) of level sets of pg, i.e. of dpy,
depends on the particular choice of pg. On the other hand, the vector field py0,,, defined
using any local coordinate system, is well-defined as an element of PT,c M, and thus so is
its causal character at i° with respect to the b-metric p2g,,: it is the scaling vector field
at infinity, see the discussion after equation (1.11), and spacelike away from the corner
i N # . Likewise, p10,, is the scaling vector field at i*, which is timelike.

Let us relate ¥ to the radial compactification R3 of Euclidean 3-space; recall that the
latter is defined using polar coordinates (r,w) € (0,00) x S? on R3 as the closed 3-ball
R3 = (R3 U ([0, 00)p, X 82))/ ~, where (r,w) ~ (po,w), po =71, r>0.
Consider the map ¢: R3 3 2 = (r,w) = (2mx(r) log(r —2m),x) € ¥° C Ry x R3, which
is the projection along the flow of 9;. Expressed near OR3, i.e. for small pg, this takes the
form ¢(po,w) = (p,v,w) for p = pg and v = —1; thus, ¢ extends to a diffeomorphism

¥ =~ R3, (2.15)

Whenever necessary, we shall make the mass parameter m in these constructions explicit
by writing

mMRA, MM M, ™S, My, ™0, gt Mt mE My ete (2.16)
In particular, R4 is the radial compactification of R* with the closed subset {|t|~! =
0, t/r < —% of the boundary removed; note here that on their respective domains of

definition, 7! and |¢t|~! are indeed local boundary defining functions of °R%. Moreover, the
metric g, for m = 0 is equal to the Minkowski metric g. We shall explore the relationships

between ™R4 etc. for different values of m in §2.3.

Working on ™R4%, it is convenient for performing calculations near the light cone at
infinity ST to introduce double null coordinates,

q=1t+4+ry, S=1—r1,,
which we will also denote 2" := ¢, 2! := s. Using dq = ds + 2dr, and (2.3),
SCT*RE = (dg) © (ds) © r T*S? (2.17)

therefore defines a smooth partial trivialization near S¥; recall that p = r~! there. Simi-
larly,
Oy = 0,0 = 6q = %(&5 + 87«*), 01 =0, =05 = %(8t — 87«*)

are smooth scattering vector fields on R4, and together with »~17T'S?, they give a smooth
partial trivialization of S°TR4 near S*.'° Letting 2%, a = 2,3, denote local coordinates on
S?, we will denote spherical indices by early alphabet Latin letters a, b, ¢, d, e, and general

190n the other hand, ¢t " is not smooth on ™R? for m # 0; see Lemma 2.2 below.
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indices ranging from 0 to 3 by Greek letters. The components of a section w of S*T*R* in
the splitting (2.17) are denoted with barred indices:

wy :=w(Bp), wi:i=w(d1), wa:=w(pdy)=r1r"tw(d,). (2.18)

Thus, the components of a tensor with respect to this splitting have size comparable to the
components in the coordinate basis of T*R*. The splitting (2.17) induces the splitting

S25T* R = (dg?) @ (2dq ds) @ (2dq @, 7 T*S?)
@ (ds?) @ (2ds ®s r T*S?) @ r? S*T*S?,

as well as the dual splittings of the dual bundles **TR* and S?°TR4. We will occasionally
use the further splitting

(2.19)

S*T*S* = () @ (g)*. (2.20)

For calculations of geometric quantities associated with the metric, the bundle splittings

induced by the coordinates ¢, s, 22, 23, i.e.

T*R* = (dq) @ (ds) ® T*S?,
S2T*R* = (dg?) @ (2dqds) @ (2dq @ T*S?) @ (ds?) @ (2ds @ T*S?) @ S2T*S?,

are more convenient. Components are denoted without bars, that is, for a 1-form w and
for p = 0,1, we have w, := w(9d,) = wp, while we let w, := w(dy) = rwg. In short, we have

wp = T_S(“)OJ”, s(”b cee HUN) = #{)‘ kX € {27 3}}7 (222)
likewise for tensors of higher rank.

(2.21)

On the resolved space M, the null derivatives dy, d; can be computed as follows: near
N 7t we can take

po=—plv=>re =)', pr=—v=_(ra=t)/r, p=popr=r" (2:23)
then
8o = —3popr(1 —2mp)pr0,,, (2.24)
1 = po(podp, — (1= 3p1(1 = 2mp))p1d,, ), '
and dually
pdq:—l_gmp(%+%)+pl%, pdszpjdp%. (2.25)

A similar calculation near i™ N .# T yields

9o = fopopip+ - p10p;, O € pop+Vu(M), (2.26)
for some fy € C>°(M), fo > 0, depending on the choices of boundary defining functions.

2.2. Function spaces. We first recall the notion of b-Sobolev spaces on Rz’d := [0, 00)2 x

R4 first, we set HO(RYY) = LR(RY?) = LR |9 .. 4 dy|); for k € N then,
H,’;(]Rﬁ’d) consists of all u € L such that Vi...Vju € L2 for all 0 < j < k, where each
Ve is equal to either 2P0 or Oy« for some p = 1,...,d, ¢ = 1,...,n — d. For general
s € R, one defines H]‘;’(R?r’d) by interpolation and duality. One can define b-Sobolev spaces
on compact manifolds with corners by localization and using local coordinate charts; we
give an invariant description momentarily. Note that the logarithmic change of coordinates
t/ .= —logz?, j =1,...,d, induces an isometric isomorphism Hg(Rz’d) >~ H%(R™) with the
standard Sobolev space on R".
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Now on M’, fix any smooth b-density, i.e. in local coordinates as above a smooth positive
multiple of \dw—“’;l . ‘%;idm, then the space L%(M ") with respect to this density is well-defined;
the space LZ(M) of restrictions of elements u € L3 (M') to M is similarly well-defined, and
since M is compact, any two choices of b-densities on M’ yield equivalent norms on L%(M ).
More generally, if by, by, b, € R are weights, we define the weighted L? space

br b _ b; b — —b; —b
PPy ot HO(M) = pil oy pit LE(M) := {u: pg™p; " p " u € LY(M)}.

The b-Sobolev spaces of order £ = 0,1,2, ... are defined using a finite collection of vector
fields ¥ C W,(M’) such that at each point p € M, the collection ¥, spans PT, M, namely

HE(M) :={u€ LE(M): Vi...Viju€ LE(M), 0< j <k, V, € V};

the norm on this space is the sum of the L% (M)-norms of u and its up to k-fold derivatives

along elements of #. One defines pgo pl}I plfH{f(M ) and its norm correspondingly. Note
that the vector fields in # are required to be tangent to i®, #%, and i*, but not to
Y; thus, we measure standard Sobolev regularity near ¥, and b- (conormal) regularity
at i, T, and i*. (Thus, our space Hf(M) would be denoted HF(M) in the notation
of [H607, Appendix BJ.) Due to the compactness of M, any two choices of collections ¥
and boundary defining functions pg, pr, p+ give rise to the same b-Sobolev space, up to
equivalence of norms. The space HZ°(M) = (>, HF (M) and its weighted analogues have
natural Fréchet space structures; we refer to their elements as conormal functions. Weighted
b-Sobolev spaces of sections of vector bundles on M are defined using local trivializations.
We will in particular use the space

Jeibo,br b o ksbobrb by b
Hy P2 (B) = Hy ™V (M B) o= pilpy! pi Hyy (M E), (2.27)

with F dgoting the trivial bundle C := M x C — M, or E = B*T*R%, or E =
B*S%5¢T*R4. When the bundle E is clear from the context, we will simply write H{j ibo,brbs

When estimating error terms, we will often use the inclusion

CO(RY) C (M) c HEF 07070 = (Y H o797
e>0

For the last part of Theorem 1.1, we need to define the notion of polyhomogeneity (or £-
smoothness) and discuss its basic properties; see [Ma91, §2A] and [Me96, §4.15] for detailed
accounts and proofs. An index set is a discrete subset £ C C x Ny such that

(2,) €€ = (2,j") €& Vi < (2.284)
(20, 40) € E, |2zel + je — 00 = TImz — —o0; (2.28b)
(2,j) €& = (2—1i,7) €€. (2.28c¢)
We shall write
Imé <c <= Imz<c V(z,k) €€, (2.29)

likewise for the non-strict inequality sign. Let now X denote a compact manifold with
boundary 0X, and let p € C*°(X) be a boundary defining function. The choice of a collar
neighborhood [0,1), x 0X makes the vector field pD, well-defined, and any two choices

of collars give the same vector field pD, modulo elements of pV,(X). The space Aghg (X)
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then consists of all u € p~°H*(X) = U yer oV HL°(X) for which

H (pD, — 2)u € pN H*(X) for all N € R; (2.30)
(z,5)€€&
Imz>—-N
equivalently, there exist a(, ;) € C*°(X), (2,7) € £, such that
u— > p*(logpaz € pVHP(X). (2.31)
(z,7)€€
Imz>—N

(Condition (2.28c) ensures that this is independent of the choice of pD,.) In particular,
u € p~ME-0[(X). When no confusion can arise, we write

(a,k):={(a—in,j):neNy, 0<j5<k}, a:=(a,0). (2.32)

For example, Aphg(X ) = p*C>°(X). We also recall the notion of the extended union of two
index sets &1, &, defined by

EU&E =6 UEU{(z,k): 3(2,j40) € &, k< g1+ j2+ 1},
so e.g. 0UO0 = (0,1), as well as their sum

&1+ & :={(2,7): (20, Je) € &, 2 =21+ 22, = j1 + Ja};
thus Aphg( ) Aphg( ) C Agg&( ). For j € N and an index set £, we define

j&1 =&+ -+ &,

with j summands.

If X is a manifold with corners with embedded boundary hypersurfaces Hi,..., H; to
each of which is associated an index set &;, we define Ait’é"’g’“ (X), as the space of all
u € p~*HX(X), with p € C*°(X) a total boundary defining function, such that for each
1 <i < k, there exist weights b; € R, j # 14, such that, with p; € C°>°(X) denoting a defining

function of H;,?°

H (piDy, Ju € p; Hp]JHb near H;.
ik 77

This is equivalent to u admitting an asymptotic expansion at each H; as in (2.31), with
each a(, ;) polyhomogeneous with index set £; at each non-empty boundary hypersurface
Hj N H; of H;.

We shall also need spaces encoding polyhomogeneous behavior at one hypersurface but
not others; for brevity, we only discuss this in the case of two boundary hypersurfaces
Hy, Hs: for an index set £ and o € R, .Af)}’fé,b consists of all u € p~*°Hy® such that

H (p1Dp, — 2)u € pY pS H® mnear Hy, for all N € R;

(27.7)657;
Imz>—N

this is equivalent to u having an expansion at H; with terms a(, j) € p3 Hy°(Ha).

We briefly discuss non-linear properties of b-Sobolev and polyhomogeneous spaces; for
brevity, we work on an n-dimensional compact manifold X with boundary 9.X, and leave

2075 before, the vector fields p; D,,, defined using a collar neighborhood of H;, are in fact well-defined
modulo p; Vs (X), which is all that matters in this definition.
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the statements of the obvious generalizations to the setting of manifolds with corners to
the reader. Thus, if s > n/2, then H{(X) is a Banach algebra, and more generally u; - us €
p T2 HS(X) if uj € p% HE(X), j = 1,2. Regarding the interaction with polyhomogeneous
spaces, if £ is an index set, then Aghg(X) - pHE(X) C p* °H(X) for all a,s € R when
e > Im¢&; in the case that &€ = (ap,0) U & with Im&" < Imag, we may take e = Imay.
One can also take inverses, to the effect that u/(1 —v) € HZ(X) provided u,v € Hy(X),
s >mn/2, and v < C < 1, which follows readily from the corresponding results on R", see

e.g. [Ta96, §13.10], by a logarithmic change of coordinates.

For comparisons with the Minkowski metric, we study the regularity properties of t—1
on ™R4. Define the index set

Elog = {(—ik,j): k € No, 0< 7 <k}, Elog := Elog \ {(0,0)}. (2.33)
Lemma 2.2. Letting U = {t > 2r} C MR, we have
— g()' o0 — o0 - o0
t7h e p- ApE(U) C pC(U) + p* "H*(U) C p' " H®(U), (2.34)

and t=1/p € C®(U N ORY) is everywhere non-zero.

Definition 2.3. We define p; € C>("R%) to be any boundary defining function satisfying
pi/p=1t"1/pat UNImRL,

By Lemma 2.2, this fixes p; in U modulo p2c<>°(m@); away from U, p; is merely well-
defined modulo pC*>°(™R?).

Proof of Lemma 2.2. Using the notation of §2.1, we have t ! € C°(Cs). Thus, it suffices to
work in C; N {v > —%}, where we can take p = r~!; we then need to prove f := pt € Af)lﬁ’;
and f| gz # 0 there, which implies the claim about t™1/p=1/f as Ailﬁg is closed under

multiplication. Note that f € C*(R*), and f > 1. Let x(z) = x(z~!) € C*°((0, 00); [0, 1])
in the notation (2.4), so x(z) =0, z < %, and x(z) =1, x > %, then
f=1+v—2mpx(f)(logp — log(1 — 2mp)). (2.35)

Note that near p = 0, f = p~ 't~ is the unique positive function satisfying this equation:
indeed, if f’ is another such function, then |f — f'| < (plogp)|f — f'|- At p = 0, we have
f =14wv. Thus, let £k > 2 be an integer, and consider the map

T: f— —2mp(log p — log(1 — 2mp))X(1 + v + f)
on pL = HE([0, ex), x (—1/2,5),), where § € (0,1) is fixed. Now

IT(F) = T(f ) pr-spzp < Crllplog p — plog(L = 2mp)| gl Xlcrlf = F'll o-s g

choosing €; > 0 sufficiently small, the first norm on the right can be made arbitrarily small.
By the contraction mapping principle, this gives f —1—v € p1*5H§° since k was arbitrary.
We can now improve the remainder term by plugging this into (2.35), which gives

f— (1 +v—2mx(1+v)(plogp— plog(l —2mp))) € p? O H,

so f € Ailﬁ’g + p2_5H§°. Using that y o (-) maps Ailﬁ’g into itself, as follows from the testing
definition (2.30), the desired conclusion follows from an iterative argument. O
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2.3. Relationships between different compactifications. The only difference between
the compactifications ™R? for different values of m is the manner in which a smooth collar
neighborhood of R4 is glued together with R%. Since this difference is small due to the
logarithmic correction in (2.4) being only of size r~!logr, different compactifications are
closely related; see also [BaVaWul6, §7]. Indeed:

Lemma 2.4. The identity map R* — R* induces a homeomorphism ¢: mR4 — OR?, which
in fact is a polyhomogeneous diffeomorphism with index set Eog; that is, in smooth local
coordinate systems near OMR* and O°R4, the components of both ¢ and ¢~ are real-valued
functions on [0,00) x R3 of class .Ailﬁg. Moreover, ¢ induces a smooth diffeomorphism

IR = 9OR4, which restricts to ™B(Mit) =2 08(%1), and also induces a smooth diffeomor-
phism ™it = 0,

Proof. We have Ailﬁ’é C C®+ pl_OHfD’O C CY, so it suffices to prove the polyhomogeneity
statement. Defining the smooth coordinates p and v as in (2.4), and the corresponding
smooth coordinates °p = =1 and v = r~1(¢t — 7) on OR4, we then observe that %p = p,
while in the notation of equation (2.35), we established that 1 +% = f ¢ Ailﬁ’; on MR4,
giving the desired conclusion for ¢. For ¢~1, we write v = Qv — r=1x(¢/r)2mlog(r — 2m)

and note that t/r € C°(°R%). For the last claim, we observe that
v=" at 9"R* (2.36)

under the identification with 9°R# given by ¢. This also shows that the sets ™3(™it) =
{v > 0} and °8(%*) = {% > 0} are diffeomorphic. On ™M, resp. M then, v, resp.
Oy, are local defining functions of the boundaries 94T, resp. %™, hence by (2.36), the
identification ™4t = %% in the interior of ™iT indeed extends smoothly to its boundary. [

In a similar vein, the scattering (co)tangent bundles can be naturally identified over the
boundary:

Lemma 2.5. The identity map T*R* — T*R* extends by continuity to a continuous bun-
dle map °T* ™R4 — ¢T*OR4 which restricts to a smooth bundle isomorphism over the
boundary.

Proof. Since away from r = 0, (d(r~')) and 7 T*S? are smooth subbundles of *7* "R*
for any m, it suffices to show that d(¢t~!), which is a smooth section of °T* °R4, extends
by continuity from R* to 0™R* and restricts to a smooth section of T* _™R4. By

8'mR4
Lemma 2.2, we have t = p~Lf, f € Ailﬁ’g, sodt = fd(p~') 4+ p~ldf; but f‘amﬂzzlis smooth
indeed, while in a local product neighborhood [0, 1), x R?)’( of a point in O"RY, p~ldf =
(papf)ﬁ—g + (8Xf)d7x restricts to the smooth scattering 1-form (8Xf)d7X on O™R%. O

Let us discuss this on the level of function spaces. The map ¢ in Lemma 2.4 induces
C>®(MR%) C Ailﬁ’; (R4) and vice versa. Moreover, it induces an isomorphism

("p) H 1oe("RY) = (p)*Hy oc ("RY), 5,0 €R, (2.37)
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as follows from ¢ € .Ai'}fé.

spaces ™M, the failure happening at ™. ; there, let us use

The corresponding statement is not quite true on the blown-up

mp=Op =1y My =% — 2m(%p) log((%p) " — 2m), %v = rL(t — 7).
Now, the b-tangent bundle on %M/ is spanned near #+ by spherical derivatives,

/
glog

phg

/
glog

0
pdo, € " pOm, + A phe

- Omy, Ov(?ov S (mU + A )amv,

and °pdo, = ™ pOm,; due to the logarithmic loss at .#+, we thus only have

(mpo)bo (mpf)bl (mp+)b+ Hg,loc(mM) C (Op())bo (Op1>b1_€(0p+)b+ ng,loc (OM)

for all € > 0, but the inclusion fails for ¢ = 0. That is, conormal function spaces are the
same on ™M and °M up to an arbitrarily small loss in the weight at 7.

Polyhomogeneous spaces on ™R? for different values of m are related in a simple manner:
if £ C C x Ny is an index set and g is given by (2.33), then ¢ induces inclusions

— EtElon 0=T — EtElon 1T
Ay ("RT) s A5 HER ORT), AG) (ORT) s AT Elon (MRY); (2.38)

this is only non-trivial where the two compactifications differ, i.e. away from r = 0, i.e.
where we can use r~! as a boundary function for both °R4 and ™R%. Considering a single
term r~%*(logr)¥ f(™v,w), with w € S? and f smooth, in the expansion of an element of

Aghg(m@), the first inclusion in (2.38) follows from fo¢ € Aiﬁ (YR%), which in turn can be
seen by Taylor expanding f(%v — 2m(%p)log((°p)~! — 2m),w) in the first argument around
Oy. The proof of the second inclusion is similar. See [BaVaWul6, Proposition 7.8] for an

alternative argument.

Polyhomogeneity on different spaces "M on the other hand is much less well-behaved:
for instance, a function u € C*° (™M) compactly supported near a point in ("% )°, m > 0,
sou € Agfg’w (™M), is not polyhomogeneous on °M: it vanishes near (. )° and (%i*)°, but
is non-trivial at the corner .+ N %+,

2.4. Bundles and connections near null infinity. In the energy estimate (1.16) for the
toy problem (1.15), derivatives of u along vector fields tangent to the fibers of 3: T — ST
are better controlled than general b-derivatives. In this section, we introduce analytic
structures on the blow-up M of R* capturing this in an invariant manner.

Definition 2.6. For vector bundles E; — R4, 7 =12 let
Mg+, i, C Diffy (M; 5°Ey, 5* E)

denote the C*>°(M)-module of all first order b-differential operators A which satisfy the
following condition near .#*: if F; = U x Cki, j = 1,2, is a local trivialization of E;,
with 4 C R* a neighborhood of S*, see (2.11), and we pull these trivializations back to
B*E; = B~ U) x CFi, then A = V + f, where V is a ko x k; matrix of vector fields
Vij € V(M) which are tangent to the fibers of 3, and f € C>°(M)*2**1. Let moreover

OMﬂ*Elﬂ*Ez C Mg, g5,
denote the submodule for which f|,+ =0
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For a single vector bundle £ — R4, we write (O)Mﬂ*E = (O)Mﬁ*Eﬁ*E. Whenever the
bundle E is clear from the context, we shall simply write (O M := (O A gxp. For k € N, we
write M¥ C Difff for sums of k-fold products of elements of M.

It is easy to check that the definition of Mg«g, 3+E, is independent of the choice of local
trivializations; for M, this is true as well, since vector fields tangent to the fibers of S
annihilate the matrices for changes of frames of Fy and E5 which lift to be constant along
the fibers of 8. We make some elementary observations:

Lemma 2.7. We have:
(1) prDiff(M; 8*E) C "Mpep C Mp-p;
(2) if A,B € Mg«g, and A has a scalar principal symbol, then [A,B] € Mpg-g.
Strengthening the assumption to A, B € "Mg+g, we have [A, B] € "Mg:g;
(3) there is a well-defined map

Mc oA A®1d € "Mgp/p; C®°(M;End(8*E)).

Proof. (1) and (2) are clear from the definition. The map in (3) is given in a local trivi-
alization E = U x CF of E near St as A - Idjy; € Diff%)(M)ka; the transition function
between two different trivializations is given by C' € C°°(U; CF**), which pulls back to M
to be constant along the fibers of 3; but then C~1(A - Idgxx)C — (A - Idgxr) = C7TA(C) €
C>®(M;CF*¥) with A acting component-wise, vanishes on . by definition of Mc. O

In local coordinates [0,€g)p, X [0,€0)p, x R2, 5 near i N .#T as in (1.14), with R? a
local coordinate patch on S?, elements of M are linear combinations of po0,,, pr0,,, and
p10za, a = 2,3, plus smooth functions. We thus see that (O)Mg is generated over C*° (M)
by (pr)C®(M) and lifts of elements V € Vy,(R%) which vanish at ST as incomplete vector
fields, i.e. V|g+ = 0 € Tg+R4. (This should be compared to the larger space W}, (M), which

is generated by lifts of elements V' € V},(R*) which are merely tangent to Sy.) Note that
by (2.26), we have

p~ 1o, py Py 0 € "Mc; (2.39)

for a fixed choice of p, the operators p~'dy and 9; acting on sections of any bundle 3*E
are therefore well-defined, modulo p; C* and pop;p+C> valued in End(8*E), respectively.

The modules defined above are closely related to a natural subbundle of PT .+ M:
Definition 2.8. Denote by
BT]+M - bTy+M

the rank 2 subbundle generated by all V € PT,+ M which are tangent to the fibers of j,
see (2.12), and let T M be any smooth rank 2 extension of T ,+ M to a neighborhood of
4. Let then

PTM)* :={a ePT*M: a(V) =0 for all V € °TM} c PT* M
denote the annihilator of PTM in PT*M.

Near ¥ N ., we can for instance take #TM C PT'M to be the subbundle whose fibers
are spanned by p;d,, and po0p,.
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Remark 2.9. Another equivalent characterization of M is that the principal symbols of
its elements vanish on (°T,+M)L. We also note that for p € .#F, there is a natural
isomorphism

(PTM)y = Tj,, ST (2.40)
Indeed, given V € prM , note that 3,V € PT. S+@ is tangent to ST, hence has a well-defined
image in 7,S; and V € 5TPM is precisely the condition that this image be 0. Thus, the
isomorphism (2.40) is obtained by mapping n € Tg(p)SJr to PT,M 3 V = n(B.V).

Using this subbundle, we have
Mc = C®(M;PTM + p/°TM) +C>®(M) C Diff} (M),
where we write
C®(M;PTM + p/PTM) := C®°(M;PTM) + p; C°(M; T M). (2.41)

Note here that the sum of the first two spaces on the right is globally well-defined on M even
though we only defined #T'M in a neighborhood of 7 this is due to PTM c PTM. The
general modules Mg, g+, have a completely analogous description obtained by tensoring
the bundles with Hom(5*E1, 5*Es).

We next prove some lemmas allowing us to phrase energy estimates for bundle-valued
waves invariantly.

Lemma 2.10. Let E — R* be a vector bundle, and let d¥ € Diff'(R*; E,T*R4 ® E) be a
connection. Then d¥ induces a b-connection, i.e. a differential operator

d¥ e Diffi (M; B*E,°T*M @ B*E), (2.42)
on B*E — M. If d¥ is another connection on E, then, with notation analogous to (2.41),
d¥ —d¥ € ¢ (M; ((°PTM)* + p/°T*M) ® End(B*E)). (2.43)

Proof. Fix a local frame €' of E, then for u; € C*°(M) C C®(R*), we have

dE(uiei) = du; ® €' + u; dPe'.
Now the map u; — du; extends to M as the map u; — bdu;, with Pd € Diff%,(M; C,>T*M);
and}fi = d?ei € C®(R%T*R* ® E) canonically induces 8*f! € COO(M;bT*M ® B*E) by
B fH(V) = f1(BV), V € PTM. Therefore, the expression d¥ (u; - B*e') = Pdu; @ B*e! + u; -
B* f* proves (2.42).

Letting fi := dZe’, we have (dE—dE)(ui-ﬁ*ei) = ui~(ﬁ*fi—5*fi). But AT+ M C ker B,
so the bundle map d¥ — d¥ annihilates °TM at .#+, giving (2.43). O
Lemma 2.11. In the notation of Lemma 2.10, suppose E is equipped with o fiber metric
(-,VE, and let

K € C®(M; (S*PTM + pr S**TM) ® End(B*E)). (2.44)

Moreover, let B € C*°(M;Hom(PTM,>T*M)) denote a fiber metric on T M. Then, acting
on sections of B*E, we have

(dE)*BKd¥ — (d¥)*BKdY € p;Diffi(M; 5*E), (2.45)

where we take adjoints with respect to the fiber metrics on P TM and E, and any fized b-

density on M. Moreover, if (d¥)T denotes the adjoint with respect to another fiber metric
on E, then (d¥)IBKd¥ — (d¥)*BKdF ¢ p/Diff](M; B*E).
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Note that for K as in (2.44) with both the S?2T'M and the S? T M summands positive
definite, and adding weights, the pairing ((d®)* BKd"u,u) provides the control on fiber-

tangential derivatives of u as in the toy model (1.16), but is weaker by p}/ % for general
b-derivatives; we will take care of this in Definition 4.1. The space in (2.45) will be weak
enough to be treated as an error term (similar to the Diff}, spaces arising as error terms in
Lemma 3.8 below).

Proof of Lemma 2.11. We write the left hand side of (2.45) as
(d¥)y*BK (d¥ — d¥) + (d¥ — d¥)*BKd",
with one summand being the adjoint of the other. Now, (d¥)*B ¢ Diff%)(M;bTM ® p*E,
B*E), while Lemma 2.10 implies
K(d¥ —d¥) € p; C®(M;"TM ® End(5*E)).
This proves (2.45). (Alternatively, one can analyze the second summand directly, using that
over p € M, ((d¥ —d®)*(B(V)®e),e')p = (e, (d¥ —dE)(V @ ¢€'))g for V € PT,M, e, e’ €
Eg(p)-) For the second part, note that the two adjoints are related via (dE)T = Cc~1(dF)*C
for some C' € C®(R4; End(F)), hence d¥ := (d¥)™* = d¥ + C*[d¥,(C~1)*] is a connection
on F, and therefore
(BT — (d®))BKdF = (d¥ — d¥)*BKd" € p/Diff}(M; 3*E)
by what we already proved. O
Lemma 2.12. Equip E — R* with a fiber metric and fiz a b-density on RE. Then for

principally scalar W &€ OM/g*E, with principal symbol equal to that of the real vector field
Wi € Wo(M), we have W + W* € —div Wy + pr C>°(M; End(8*E)).

Proof. In alocal trivialization on E, we have W = W1 ®@1+Wy, Wy € pr C°(M;End(8*E)),
while the fiber inner product k on F is related to the standard Euclidean fiber inner product
k in the trivialization by k(e, ') = k(Ce, C¢’) for some C smooth on R4, hence fiber constant
on M. Denoting adjoints with respect to k by 1, and letting C := C*C', we thus have
W4+ W= (W, ®1+C W] @1)C) + (Wo + W)
e —(diviV) @1+ C~ ' W] ®1,0)] + prC>,

with the second term also lying in p; C* since C' is fiber-constant. (|

3. GAUGED EINSTEIN EQUATION

As motivated in §1.2, we work in the wave map gauge with respect to the background
metric g,, constructed in §2.1, since we expect the solution g of the initial value problem
(1.4) for the Einstein vacuum equation with initial data asymptotic to mass m Schwarzschild
to be well-behaved on the space M. The gauge condition reads

T(g;gm)u = (ggr_nl(ngggm)# = g;wg’”(l“(g)b - F(Qm)ZA) =0, (3.1)

where we recall the notation G4 = 1 — %g trg, and (6gu), = —u,”. For brevity, we shall
write

T(g9) = T(g; 9m),
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when the background metric g, is clear from the context. A simple calculation shows that
if he H" 9797 °(™M), € > 0 small, is a metric perturbation, and g = gn, + ph, then the
gauge condition Y(g; gm,) = 0 implies that the d;-derivatives of the good components hoo,
hop, and thh := §%hz; decay towards .# . (See equation (A.5) for this calculation for A
with special structure.) A key ingredient of our iteration scheme is therefore constraint
damping, which ensures that the gauge condition, or, more directly, the improved decay of
the good components at .# T, is satisfied to leading order for each iterate h. We implement
constraint damping by considering the gauged Einstein equation

P(h) := p~*Po(gm + ph), Polg) := Ric(g) — 6*Y(g; gm). (3.2)
where on 1-forms u
o u = Ot — 271% ®s U+ ’}/Q(Lpt—lvgmptu)gm (3.3)

is a modification of the symmetric gradient d;, by a 0-th order term; here p; is fixed
according to Definition 2.3. We discuss the effect of this modification in §3.3, see in par-
ticular (3.25a). From now on, the mass parameter m will be fixed and dropped from the
notation whenever convenient.

3.1. Form of metric perturbations. One can easily establish the existence of a solution

of (1.4) near i\ (i N .#1) for normalized initial data (see Theorem 1.7) which lie merely

. 1/240 . . . . . , S
in /’0/ * HPe; this is due to non-linear interactions being weak at i?, which in turn can

ultimately be traced back to the null derivatives (2.26) coming with extra factors of pg.*!
However, we will use (and prove) the existence of leading terms of the perturbation h of
g = gm+ph at FT; as discussed around (1.15), this requires the initial data to be decaying
to mass m Schwarzschild data. At it however, weak control, i.e. h € p:Ll/ 2+0H§° away
from .# 7T, suffices due to the non-linear interactions being as weak there as they are at
i’. (The decay of our initial data does imply the existence of a leading term at i*, see
§7.) Motivated by this and the discussion of constraint damping above, and recalling the
notation (2.27) and the bundle splittings (2.17) and (2.19), we will seek the solution h of

P(h) = 0 in the function space X%:bo:br:bp.b+ .
Definition 3.1. Let k € Ny U {co}, and fix weights®>
—1 < by <0< by <y <min(3,b);

let further x € C®°(M) be identically 1 near .# ", with support in a small neighborhood
of # where the bundle splitting (2.17) is defined; different choices of x will produce
the same function space, as we shall discuss below. The space X *ibo:b1 b+ consists of all
he HZ™ ™M (M; 882 T*R7) such that

k3bg,b’,b k;bo,b" b % *
XhO(Ja Xt/i"hEHb o +(Q>7 XhOE GHb o +(6 (TT SQ))? (34)

21This is related to the solvability of semilinear equations with initial data or forcing terms which are
mildly growing at spatial infinity, see [HiVal5, Theorem 5.14], where one can take the weight | < —1/2 in
certain circumstances. This is also the level of decay for which Bieri [BiZi09] establishes the global stability
of Minkowski space.

22The imposed upper bound of % for by and b} simplifies the arithmetic in §4 but is otherwise artificial;
the natural bound is by < b7 < min(1,bo), with the upper bound 1 arising from the expected presence of
lower order terms in expansion of the metric at .# ™ as well as from the requirement that the function space
be independent of the choice of collar neighborhood of # .
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Xt = xh{) 1og pr + XY + ha (3.5)
0 0 0
X (hot, hag, hap) = X(hél)v h§5)7 hég)) + (hot,b, hll_),b’ haf),b)v (3.6)

where the leading and remainder terms are
{4 0 0 0 by b k
h§1)7 h(()1)7 hgg)a h((_zl_)) € p00p++Hb(j+)7
K;bo,br,b

hotbs Mtbs iy Papn € Hy o7,
the latter supported on suppy and valued in the bundles C (for £ = 0,1), C, B*(r T*S?),
and *(r? S2T*S?), respectively; we describe the topology on Xkibobrbpbt helow. Here, we
use a collar neighborhood to extend functions from .#* to a neighborhood of .# J;in M,
and to extend the relevant bundles from .#% to smooth subbundles of 3*S?5T*R% near
T all choices of collar neighborhoods and extensions give the same function space. We
shall suppress the parameters by, by, b}, by from the notation when they are clear from the

context, so
k. ykibobrbiby

Remark 3.2. The partial expansions amount to a statement of partial polyhomogeneity:
for example, the condition on hg; in (3.6) for k = oo can be phrased as hg; € A{tolﬁl’gl +

H]:O ibo,br ’b+, and similarly for k < oo if one replaces the first summand by a function space

capturing the finite regularity of the leading term at .#T. In view of the existence of
at most logarithmically growing leading terms of h € X* at .#%, we automatically have
h c Hk§b07*0»b+

b .

Thus, h € X* decays at i, while (3.4) encodes the vanishing of the good components at
4, (3.5) and (3.6) assert the existence of leading terms of the remaining components, in
the case of hy; allowing for a logarithmic term;?* at it finally, h is allowed to have mild
growth. The existence of leading terms of h € X*k0brbrbt at 7+ implies in particular that

P10y g € HY 000 (,7) = (0,1),(1,0), (,B),
p1dprhnn € WYY + HY WO (010, )2k € HYTEON

which we will frequently use without further explanation.

(3.7)

For h € X°obobrbibt e describe P(h) using a closely related function space:

Definition 3.3. For k£ € Ny U {oo} and weights bg, br, b7, b4 as above, the function space

Pkibobrb1b+ consists of all fe Hs;bo’_Q’b+(M;ﬁ*S2 SCT*@) so that near &,
kibo,—1+b' b kbo,—1+br,b

f007 fOB: M‘feHb 0 ! +7 f017 f1137 f@EGHb ° ! +’

(3.8)
0 0 bo b K;bo,—1+b1,b

fu=f0+ fupe fY € oo HE(TT), fuap € HY T

The shift by —1 in the decay order at .#T is due to the linearized gauged Einstein

equation, or even the linear scalar wave equation, being pfl times a b-differential operator

at #t, cf. (1.15). A calculation will show that P(h) € Y>ibo:br:brb+ see Lemma 3.5 for

23The slightly faster decay b of the good components as compared to the decay b; of the remainder terms
of the other components is needed to handle the logarithmically large size of the coefficients coupling good
components into the others, encoded in the (4, 1) entries of A, and B in Lemma 3.8; see the discussion
following (3.25c¢).
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a more precise statement. Note here that P(h) is well-defined in a neighborhood of oM
due to the decay (in L*°) of g = gm + ph to gpm; in order for P(h) to be defined globally,
we need to assume ph to be small in L, or h to be small in X (using the norm defined
momentarily) by Sobolev embedding.

Fixing a smooth cutoff x as in Definition 3.1, we can define a norm on Y*:0.01:b1.0+ ysing
the notation of Definition 3.3 by setting

”f”yk;bo,b},bpu = H(Xfoo, X fops Xt’ff)HH:;bOﬁHb},bJr + H(XfOL X f1ps XfaB)HHk;boqflerz»bJr

b
T + (i = FN wsvor—rssron + [FI] o =2
po’ Py H () Hy, Hy,

where the choice of pj-weight in the remainder term is arbitrary (as long as it is fixed and less
than —1). Equipped with this norm, Ykibo-b1 b1:b+ is a Banach space. A completely analogous
definition gives a norm ||- “Xk?b()’bl’b;'vb{»' The spaces X'°000101b+ and Yooibo-brbib+ equipped
with the projective limit topologies, are Fréchet spaces.

It will occasionally be useful to write
XE=xh o ex, V=yh eV, (3.9)
where yghg = {xfl((l]): 1((1)) € pgoplfH]];(ﬂ“')} encodes the leading term of elements of V¥,
while YF = {f € Y*: fl((l)) = 0} captures the remainder terms (i.e. with vanishing leading

terms at .#1); the spaces X;lfhg and Xf are defined analogously.

In order to exhibit the ‘null structure,” or upper triangular block structure, of the lin-
earized gauged Einstein operator Dy, P for h € X at # in a compact fashion, we introduce:

Definition 3.4. Define the subbundles
K§ = (2dsdq) ® 2ds @ r T*S*) @ <r2g>J‘, K§ = K, © (ds?),
of §25°T*R4|¢+, which we extend in a smooth but otherwise arbitrary fashion to a neigh-

borhood of S* as rank 5, resp. 6, subbundles if S2seT*R4, still denoted by Kf, and K§.
Let K11 and K be any subbundles of S?5°T*R4, defined near ST, such that

K§® Ko = S**T*RY, K{, & Ky; = K§.
For example, we can take
Ko = (d¢®) ® 2dq@rT*S*) @ <T2g) (3.10)
and K11 = (ds?), but the particular choices are irrelevant. Denote by

mo: SECTRE - §25°T*RA /K = Ko,

~ (3.11)
T K§— K§/Kf = Kn
the projections onto the quotient bundles,
75 :=1—m: S2T*RY — K,
and
miy o= Aws: SECTRY = Ky, 7y o= (1 — 7py)w§: S25°T*RY — K. (3.12)
Writing

B*S% = p*S?seT*RA (3.13)
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from now on, the improved decay (3.4) of the good components of h € Xkibo-br b+ can

then be expressed as mgh € Hk ibo:b7 b+ (B*Kyp), similarly for (3.8). The refinement K{, C K§
will be used to encode part of the ‘null structure’ of the linearized gauged Einstein equation
at £, as discussed in §5.

Consider now a fixed h € X* which is small in X3 so that g := gm + ph is a Lorentzian
metric on RY. Working near .#, we recall gn, = (1 — 22)dgds — r?¢ and the barred index
notation (2.18), so with p = r~!, the coefficients of g in the product splitting (2.21) are

goo =rhoo, go1 =3 + 7 "(hor —m), gop = hp,

_ (3.14)
g1 =7r""hi1, g = hy, Gab = =T Gab + Thgp;
the coefficients g"* of the inverse metric g=! = g1 —r~1g thg '+ r=2g thg lhg 1 +
ooi3+3b0,3-0,3+3by
b

— ;2+b0,2—0,24-2b
900 c —Ar 1h11 + HOO’ 0,2=0, Jr7 01 c9 1 ( hOl) Hoo2 0,2—0,2+2b :
= H - _ H. 2+bo,2 b 72+2b+
gob o~ 2h o0; 3+b0,3 0 3+2b+ 11 - 1h00 00;2+b0,2-+b

003+b 3+ ,3+2b _ 4+42b ,4 0,4+2b
gle2T 2hb+H 0 1 + g“be—r gab_,r 3hab+H§O+0 ++’

9
(3.15)
where we raise spherical indices using the round metric ¢, i.e. ho® = g“bhog etc. Thus,

Gams "7 € CF 4 HYFHPOITOIE b gab s 0L g ¢ pee y gt TPl m0 1 (396)

The calculation of the connection coefficients, components of Riemann and Ricci curvature,
and other geometric quantities associated with the metric g is then straightforward; the
results of these calculations are given in Appendix A.

3.2. Leading terms of the gauged Einstein equation. Let h € X°° = x°oibo.brbp.by
In order to compute the leading terms of the gauged Einstein operator P(h) = p~3Py(g),

g = gm + ph, see (3.2), we first use the form (A.2) of 2(6* — O7s ) and the observation, from

(A.5), that Y(g) € Hy" 2+b0’1+b1’2+b+, to deduce that

2(8" — 6% )Y(g) € HHHOAT I
gm

The decay rate at ™ holds globally there—mnot only near i* N .#+ where ¢,, = g;fl. To
see this, it suffices to show that Y(g) € 2+b+H > near (i7)°. But this follows from the
fact that there g differs from the smooth scattering metric g, by an element of pr* Hpe
(with values in S2°T *R4). Concretely, choosing local coordinates y*, 42,4 in OR4, near
any point p € (i*)°, we can introduce coordinates 2z := pj_l, 2% = p_T_lya (a =1,2,3), in
a neighborhood of p intersected with p > 0, and {d,u: p = 0,...,3} is a frame of *TR*

there; but then, using d,u € p+V,(R?), one sees that I'(g,, + ph)”, — I'(gm )Y, is a sum of
terms of the form

((gm + ph)*" = (gm )"0z (gm)ro € P+ b+Hb - p4CP(RY) C PQ+b+H§O (near p),
and (g + ph)"" 9.~ (phas ), which likewise lies in p o +H > near p. (The Christoffel symbols
themselves satisty T(gin)2, € p*C(RT), D(gn + ph)y € pyC(RY) + 27 HE®)

Using the calculations (near i® U .# 1) of 6% T(g) in (A.6) and of Ric(g) in (A.8), we
obtain:
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Lemma 3.5. For h € X*°, we have P(h) € Y*° near OM, and globally provided ||h|| s is

. ;b0,— 14,0
small. More precisely, we have P(h)y € Hy " 0 and

P(h)11 € =2p~*0180h11 — %p_lalhgé@hgé 4 o T (3.17)
when p =r~' near S+.

Proof. Tt remains to justify the decay rate at it. We use local coordinates near p € (i1)° as
f. justify y p

above: firstly, the membership of 5;‘m’f(g) follows directly from the above arguments. Sec-
ondly, the difference of curvature components R(g, +ph)*,xx — R(gm )" vk 1s a sum of terms

of the schematic forms 9,(I'(gm + ph)5y — T'(gm)5y) and (I'(gm + ph)5, — T(9m) 5 )T (gm +

ph)¥,, both of which lie in pier*Hgo by the calculations above. But by construction,

see in particular the discussion around (2.9), g, differs from the flat Minkowski met-
ric (expressed in a non-standard coordinate system on R* due to the logarithmic term
in v) by a smooth symmetric scattering 2-tensor of class p,C>(R%), which implies that
R(gm)"vrx € pLC(R*) near p. Therefore, the Riemann curvature tensor satisfies

R(gm + ph) € p " HEE (3.18)

as a section of *TR* @ (**T*R*)®3 near (i+)°, which a forteriori gives Ric(g) € p?’ﬁb* Hye,

as desired. (The vanishing of P(h) modulo the faster decaying space pgngo near (i")
requires more structure of g,,, namely the Ricci flatness of the background metric g,,.) O

Note that one component of P(h) has a non-trivial leading term at .# *; in order for this to
not create logarithmically growing terms in components (other than the (1,1) component)
of the next iterate of our Newton-type iteration scheme (which would cause the iteration
scheme to not close), one needs to exploit the special structure of the operator Dy P. See
also the discussion around (1.23).

3.3. Leading order structure of the linearized gauged Einstein operator. For
h € xooibobrby by small, write

Ly := Dy P, (3.19)
and let g = g, + ph. We shall now calculate the structure of Lj ‘at infinity,” that is, its
leading order terms at i, .#+, and iT: at £, we will find that the equation Lju = f can
be partially decoupled to leading order; this is the key structure for proving global existence
for the non-linear problem later. Recall from [GrLe91] that

DyRic = 30, — 0;6,G 4 + %y,
%g(u)uu = (RQ)HMV/\UHA + %(Ric(g)#AuAu + Ric(g)uAu)\,u)a (3'20)
DY (g)u = —64Ggu — Gy(u) + Y (u),

where (our notation differs from the one used in [GrLe91] by various signs, and notice that
in [GrLe91, Equation (2.8)], C,;\V = —(F(g)ﬁy - F(gm)ﬁy) and D* = —Y(9)")

%ﬂg(U)n = MWUHV’ Cnp,y = F(g)mw - F(gm)mw; %(U)n = T(Q)Aumk
Here, index raising and lowering as well as covariant derivatives are defined using the metric
g, and (Hgu)u, = —up.x™. Thus, for g = gm + ph, and recalling the definition (3.3) of 6%,
we have

Ly, = p=2 (30, + (6" — 65)8,Gy + 0" (€, — D) + By, (3.21)
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which has principal symbol
oa(Lp) = 3Gp == 3(g) ™", gv =Py, (3.22)

where G € C*®(T*R?) is the dual metric function G(¢) = |[¢|4. As a first step towards
understanding the nature of Lj; as a b-differential operator on M, we prove:

Lemma 3.6. We have Ly € p; 'Diff2(M; *S?) (see (3.13)).

Proof. Since gy, is a smooth scattering metric, the discussion preceding Lemma 3.5) implies
Rg,, € p? C*°(R*; End(S% °T*R%)), O, € p Diff} (R%; S2 5°T*R4, °T*R4),

and Oy, € p? Diff(RY; S25T*R%). This gives Lo € Diff3(R%; S25°T*R1), and thus the
desired conclusion away from .#+. Near .#*, any element of Diff} (R?) lifts to an element
of p;'Diff] (M); moreover, for Vi,Va € W,(R%), the product ViV4 lifts to an element of
pleiﬁ"% (M) provided at least one of the Vj is tangent to ST. Thus, expressing [, in the

null frame 9y, 01,9, (a = 2,3), we merely need to check that the coefficient of 97 vanishes
at S*; but this coefficient is gl! = 0. O

As suggested by the toy estimate (1.16) and explained in §2.4, we need to describe lower
order terms of Ly near .# " in two stages, one involving the module M from Definition 2.6,
the other being general b-differential operators but with extra decay at p; = 0. For illus-
tration and for later use, we calculate the leading terms, i.e. the ‘normal operator,” of the
scalar wave operator:

Lemma 3.7. The scalar wave operator U, satisfies
Oy, € —4p 20001 + HyoF0 70 02 (oo 4 ot T 0 D2 (M), (3.23)

For the linearized gauged Einstein operator Lj, the analogous result is:
Lemma 3.8. For h € X small in X3, we have
Ly =LY+ Ly
where, using the notation (3.13) and fizing p = r~ near # 7+,
L) = —p ' ((2p7 00 + Ap)01 — By),
Ine HEO;1+b0,71+b’I,1+b+MrQB*S2 + (™ +HEO;HbO’_O’Hb*)Diff%(M;B*SQ); (3.24)

here p~10y and Oy are defined using equation (2.39) and Lemma 2.7(3). In the refinement
of the bundle splitting (2.19) by (2.20), Ay and By, are given by

271 0 0 00 0 0
Y1 — Y2 — 231h01 0 0 00 %(’yl - "}/2) 0
0 0 " 00 0 0

Ah == *281h11 0 0 00 Y1 %alhab
*281h15 0 v+ 81h5a 00 0 0
275 0 0 00 7o 0
0 0 0 00 0 0
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and

0 0 00 0O0OTG O

20101hgt 0 0 0 0 0O O

0 000 0O0OTO O

By, =12010ih17 0 0 0 0 0 O

20001hyy 0 0 0 0 O O

0 0 00 O0OO0OTO O

2000hhgz 0 0 0 0 O O

We remark that this captures the structure at £ in a well-defined manner; for example,
L% is well-defined modulo the remainder space in (3.24). The proofs of these lemmas only
involve simple calculations and careful bookkeeping; they are given in Appendix B. We thus
see that at .#t, L;, effectively becomes a differential operator in the null coordinates z° = ¢
and z! = s only, as spherical derivatives have decaying coefficients; this is to be expected
since =1V, V € V(S?) € W,(M), is the naturally appearing (scattering) derivative just
like g and ;. We point out that a number of terms of Lj which are not of leading order
at #1 do contribute to the normal operators at ¥ and iT; this includes in particular the

spherical Laplacian, which is crucial for proving an energy estimate.

For the analysis of the linearized operator Ly, the structure of the leading term L% will
be key for obtaining the rough background estimate, Theorem 4.2, as well as the precise
asymptotic behavior at .#", as encoded in the space X*°. To describe this structure
concisely, recall the projection 7y defined in (3.11) projecting a metric perturbation onto
the bundle Ky encoding the components which we expect to be decaying from the gauge
condition; and the projection 711 defined in (3.12) onto the bundle K1; encoding the (1,1)
component, which we allow to include a logarithmic term. Thus, in the splitting used in
Lemma 3.8, mp picks out components 1,3,6, m; picks out component 4, and 7f; picks
out components 2,5,7. Suppose now h’ satisfies the asymptotic equation L?Lh’ = 0. Since
moAp| Kg = 0 and 7o By Kg = 0, the components moh’, which we hope to be decaying, satisfy
a decoupled equation

2’)’1 0 0
(2,0_180 + ACD)al(ﬂ'oh/) =0, Acp:= 0O v 0], (3.25&)
22 0 7

where Acp € C%°(M;End(Kjp)) is the endomorphism induced by mgAy, on 5*S%/K§ = K.
(Thus, this matrix is the expression for Ay, o in the splitting of K¢ = 5*S 2/ K§ induced by the
splittings (2.19)—(2.20) via the projection my.) Note that by equation (2.26), p~19p is pro-
portional to the dilation vector field —p;0,, (which is the asymptotic generator of dilations
on outgoing light cones), hence equation (3.25a) is, schematically, (pr0,, — Acp)(moh') = 0.
Choosing 1,72 > 0, the spectrum of Acp is positive, which will allow us to prove that mgh'
decays at £ T, similarly to the discussion of the model equation (1.21); we will make this
precise in §84.1 and 5.1.

Next, using that 7§, Ap|k,, = 0 and 7, By|k,, = 0, i.e. the logarithmic component hqy
does not couple into the other non-decaying components, we can obtain an equation for the
non-logarithmic components 7§, A’ which only couples to (3.25a), namely

2071000 (n§1 1) = (= Af, 1101 + Bf, 11) (mol), (3.25b)
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Y1 — 72 — 201ho 0 5(m—m) 20101ho1 0 0
0 0 0 2000hhg 0 0

the precise form of Aj ,,, Bj, ;, mapping sections of Ky to sections of KT, is irrelevant:

only their boundedness matters (even mild growth towards .#* would be acceptable). The
operator on the left hand side of (3.25b) has the same structure as the model operator
in (1.19); the fact that the forcing term in (3.25b) is decaying will thus allow us to prove
that 7€, 1/ is bounded at .# ", consistent with what the function space X'*° encodes.

Lastly, m11// couples to all previous quantities,
_ n
2p 18081(7711h/) — (—Ah71181 + Bth) <7:%01h’> , (325C)
Apii=(-20h1y 0 v 0 0 101h™), By = (20100hi1 0 0 0 0 0).
The logarithmic growth of first components of Ay, 11 and By, 11 is more than balanced by the

fast decay of the (0,0)-component of i’ that it acts on; more subtly though, the pl;f decay
of h{y is required at this point to allow for an estimate of the remainder of hy; with weight

pl}I (> ,Ol;’ log pr). The last component of Ay, 11, acting on the trace-free spherical part of
I/, in general has a non-zero leading term at % +:24 hence, solving the equation (3.25¢),
schematically p;0,,(01m11h') ~ O1h®(O1h) 45, requires w11k to have a log p; term.

At the other boundaries i® and i*, we only need crude information about Lj, for the
purpose of obtaining an energy estimate in §4:

Lemma 3.9. We have Ly, — Ly € H>' 0700 Dige2 (ar; 552,

Proof. Near (i)°, one obtains this using the arguments used in the proof of Lemma 3.5.
Near .+, we revisit the proof of Lemma 3.8: in the notation of equation (3.24), the

expressions for A, and By, give L?L — L8 € ch:o ;Hbo’_O’Hb*Diff%). Regarding the second
remainder term in Ly, we note that the leading order terms, captured by the Diﬁ% summand

with C* coefficients, come from terms of the metric and the Christoffel symbols which do
not involve h; thus, these are equal to the corresponding terms of Ly. U

In order to obtain optimal decay results at it in §5.2, we shall need the precise form of
the normal operator of Ly, which by Lemma 3.9 is the same as that of Ly. Now, gy, is itself
merely a perturbation of the Minkowski metric, pulled back by a diffeomorphism, see (2.9).
It is convenient for the normal operator analysis at ™ in §§5.2 and 7 to relate this to the
usual presentation of the Minkowski metric g = dt?> — dz? on R* in U = {t > %r}:

Lemma 3.10. The metric g lies in .Ailﬁ’g (U; S25eT* ™R4) for the index set g defined in
gl
(2.33), and g — gm € A

pﬁg (U; SQ scx m@) C plfngo(U; SQ sck m@)

The failure of smoothness (for m # 0) of g is due to the logarithmic correction, see (2.4),

in the definition of the compactification ™R%. On the radial compactification R% on the
other hand, g is a smooth scattering metric.

24The discussion of Theorem 1.8 shows that for non-trivial data, this leading term must be non-trivial
somewhere on 7.
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Proof of Lemma 3.10. In the region C3 defined in (2.7), g, = g is smooth, see the discussion
after equation (2.9). In the region Cf, see equation (2.5), the spatial part dr? + T2g is a
smooth symmetric scattering 2-tensor on ™R%. In the region ¢ > %r and for large 7, the

claim follows from Lemma 2.2 in that region. O
Define
L:= %Dg + (5* —04)04Gy, (5* — 0g)u = 2yt dt @5 u — 'ygtfl(ngtu)g, (3.26)

cf. the definition (3.3), which is the linearization Ric(g) — 6*Y(g) around g = g, where
X(g) is defined like Y(g) in (3.1) with g in place of g,,. Using Lemma 3.10, one finds

L e Aiﬁ’g - DiffZ (U; 82 °T*R4%). Furthermore,

&l —
L — Lo € Ap:(U) - Difff (U; S2*T*RY); (3.27)
but 9, € p; 'V, (M), while derivatives along b-vector fields tangent to ST lift to elements

of Vy(M); thus,
L—Lo€p; " pl7Hy? - Difff (near it C M). (3.28)

4. GLOBAL BACKGROUND ESTIMATE

We prove a global energy estimate for solutions of the linearized equation Lpu = f with
h € A%, and show that u lies in a weighted conormal space provided f does; recall here the
definition (3.19) of Lj,. The weak asymptotics of u at the boundaries i, .#*, and i* can be
improved subsequently using normal operator arguments in §5. At .# T, the estimate loses

a weight of p}/ % for general b-derivatives, as we will explain in detail in §4.1. We capture
this using the function space H;:

Definition 4.1. Let E — R? be a smooth vector bundle. With Mg«g defined in §2.4, let
Hy(M; B°E) == {u € L{(M; B"E): Mg-pu C L(M; 8" E)},
HY(M; 3°E) = {u € HY(M; B*E): py/*Diff},(M; 8*E)u C L}(M; 5*E)}.
For k € Ng and e = 3, .7, define
HYF(M; B*E) == {u € L}(M; 3*E): Difff(M; f*E)u C H}(M; 3*E)}.
If {A;} C Mg~ is a finite set spanning Mg«p over C>°(M), we define norms on these
spaces by

J

1/2
”“”H;’jb(M;ﬁ*E) = HU”H;:’Q(M;,B*E) + HP/ UHHII;H(M;/;*E).

Note that for u € Hg, we automatically have p;Difff (M)u C L by Lemma 2.7(1), so
/2

the subspace H}ﬂ C Hé encodes a ,0} improvement over this. Away from .# T, the spaces

1k 1Lk k+1
H/& and Hﬂ,b are the same as H™.

Fix a vector field o
0, € Vb(R4) (4.1)
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transversal to the Cauchy surface ¥; we extend the action of J, to sections u of a vector
bundle E using an arbitrary fixed b-connection d” on E, see (2.42), by setting 0,u :=
(d¥u)(0,).

Theorem 4.2. Fiz weights bo, b7, br, by as in Definition 3.1, let y1,v2 > V) in the defini-
tion (3.3) of 0%, and fix ag,ar,a’; € R satisfying

aj < ay <ag, ay<0, ay<ay+b.

Then there exists ay € R such that the following holds for all h € X0 brbbs which are
small in X3: fork € N, u; € pgoHéﬂ(E), 7=0,1, and f € Hg_l;ao’a’_l’aJr(M; B*S?) with
mof € H][]:_l;ao’a’_l’a’+ (M; B*S?), the linear wave equation

Lhu = fa (u)al/u)‘z = (UO,Ul), (42)

has a unique global solution u satisfying

Hu”pﬁ“ﬂ?’ﬂ?H??EI(M;B*S"’) + Hﬂouupgop;,’pi+H}k§l(M;B*SQ) (4.3)
' 4.3
< C(Huollpgoﬂg +llunll oo g + 1l prriaonar—ay + Hﬂ-OfHHllg—l;ao,a'I—La+)'

In particular, if the assumptions on u; and f hold for all k, then

’
00;a0,a 1,0+ 00;a0,a 7,0+
u e ;, 20,471, , Tou c Fl sa0,U7, .

For completeness, we prove a version of such a background estimate with an explicit
weight a4 in §4.3. As we will see in §5.2, this allows us to give an explicit bound on the
number of derivatives needed to close the non-linear iteration in §6. A non-explicit value of
a4 as in Theorem 4.2 is sufficient to prove Theorem 1.1 if one is content with a non-explicit
value for N.?> We will prove Theorem 4.2 by means of energy estimates, as outlined in
§1.1.1. Microlocal techniques on R* on the other hand, as employed in [BaVaWul5], would
work well away from the light cone at infinity S, but since the coefficients of L;, are singular
at ST, it is a delicate question how ‘microlocal’ the behavior of Lj, is at ST, i.e. whether
or not and what strengths of singularities could ‘jump’ from one part of the b-cotangent
bundle to another at S™; since we do not need precise microlocal control of Lj, for present
purposes, we do not study this further.

Since dt is globally timelike for g = g,, + ph provided ph is small in pX3 C L*, existence
and uniqueness of a solution u € HIIZC(M NR*; S2T*R*) are immediate, together with an

estimate for any compact set K € M NR?,
lell e rey < Crcluollpgo prp + lluallypo =1 + 11l yr-riaoiaras ), (4.4)

where one could equally well replace the norms on the right by standard Sobolev norms
on sufficiently large compact subsets of M N R* depending on K, due to the domain of
dependence properties of solutions of (4.2).

250me could obtain an explicit value for N even from a non-explicit weight a4 if one improved the
argument in §6, which proves precise decay rates at it, to not lose regularity. We expect that this can be
accomplished by microlocal propagation estimates along .#* and radial point estimates at .#+ Ni*, though
we do not pursue this here.



48 PETER HINTZ AND ANDRAS VASY

Using Lemma 3.9, it is straightforward to prove (4.3) near any compact subset of (i®)°,
where H}fkb_l is the same as H{;. Let us define pg, ps, p near i¥ as in equation (2.23). Fix

€ > 0, and define for 4,7 > 0 small
U:= {p1>€7 PO_TIPI<5}CMa

which for e small is a neighborhood of any fixed compact subset of M N (i%)°. (Since p;
is bounded from above, U can be made to lie in any fixed neighborhood {py < g} of i°
provided § and 7 are sufficiently small.) In view of (3.15), we have G € 49001 — 2@ +
po CH(U; S?5°T*R%), hence the calculation (2.24) gives

Gy = Gop + po "HP(U; S2PT*RY), Goy, == 20,,(p19p, — podp,) — @- (4.5)

Thus, dpr and d(py — npr) are timelike in U once we fix §,n > 0 to be sufficiently small,
and thus U is bounded by ¥ N U and two spacelike hypersurfaces, U? = {pr = €} and
U = {po —npr = 8} (as well as by U N OM at infinity), see Figure 4.1.

FIGURE 4.1. The domain U with its spacelike boundaries U?, and UJ. We
draw i° at a 45 degree angle as the level sets of the chosen boundary defining
function py are approximately null (namely, |dpo|¢, , = 0). The level sets of
pr are spacelike in p; > 0, but not uniformly so as bl — 0.

Proposition 4.3. Under the assumptions of Theorem 4.2, we have
HqugOH]’;(U) < C(HUOHpgoH{_j(sz) + HualgOHl]j*l(gmU) + ”prgoH{ffl(U))' (4'6>

Proof. We give a positive commutator proof of this standard estimate, highlighting the
connection to the more often encountered fashion in which energy estimates are phrased
[DaRo08]. Let us work in a trivialization PT*R* 22 R4 x R?, and fix the fiber inner product to
be the Euclidean metric in this trivialization. For proving the case k = 1 of the lemma, we
set L := Ly; it will be convenient however for showing higher regularity to allow L € Diff2b +
p(l)*OHgoDiffzb to be any principally scalar operator with o 2(L) = %Gb, acting on CN-
valued functions for some N € N; we equip CV with the standard Hermitian inner product.
(One may also phrase the proof invariantly, i.e. not using global bundle trivializations, as
we shall do in §§4.1 and 4.2 for conceptual clarity.)

We will use a positive commutator argument: let V = —Vp; € Vy(R?), with V defined
with respect to gp; this is future timelike. For /> 0 chosen later, let w = p; “ef #7, and let
1 denote the characteristic function of U. Put W = 1yw?V. Write L = Lo + Ly, where
Lo = %ng ® l1ox10, L1 € (C® + péfoHﬁo)Diﬁ‘é. We then calculate the commutator

2Re(lywf, lywVu) = 2Re(Lu, Wu) = (Au,u) + 2Re(lywLliu, lywVu) (4.7)
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using the L? inner product, where A = [La, W]+ (W + W*)Ls. A simple calculation gives
op,2(A4)(§) = Kw (&, §), where

Kw = —3(LwGy + (divg, W)Gy). (4.8)
(The K-current is often given in its covariant form 3(Lw gy, — (divg, W)gp).) Therefore,
A = d*Kywd, since the principal symbols of both sides agree, hence the difference is a
scalar?® first order b-differential operator which has real coefficients and is symmetric—
thus is in fact of order zero, and since it annihilates constant vectors in CV, the difference
vanishes. Differentiation of the exponential weight in W upon evaluating Ky, will produce
the main positive term into which all other terms can be absorbed. Indeed, the identity
LivGy = fLyGy, =2V f®,V for V€V, and f € C gives

Ky =T(Vf,V)+ fKv, (4.9)

where

T(Xv Y) =X®sY — %gb(Xa Y)Gb
denotes the (abstract) energy-momentum tensor. (The energy-momentum tensor of a scalar
wave u, say, is given by T(X,Y)(du, du).) Therefore, Ky = w?(2F 1yKo + 1y K1 + Ka),
where

Ko=T(Vp1,V), K| = —2a0T(%, V), Ky=T(Vly,V).

Since Vpy is past timelike, the main term K is negative definite; K5 has support in
OU \ OM, so V1 being past timelike at U and U¢, Ko has the same sign as K there.
Lastly, K7 has no definite sign, but can be absorbed into Ky by choosing F > 0 large:
indeed, |T(%, V)&, &) < —CT(Vpr, V) for some constant C' depending only on K, since
gp is a b-metric. Thus, (4.7) gives the estimate

(Lyw(—2F Ko — Ky)du, Lydu) < 2(||1gwVul® + | LywLyul?)
+[[Lpwf | + Ol lyw(dug, ur)|*.
In order to control u itself, consider the ‘commutator’
2Re(lywu, IywVu) = 2Re(u, Wu) = (—1gw(div V)u, lypwu) — (V (Iyw?)u,u), (4.11)
where V(1yw?) = 2F lgw?(Vpr) — 2a0]lUw2% + w?V(1y). In the first, main, term,
Vpr = —|dp1|§b < —¢p < 0 has a strictly negative upper bound on U; the third term gives

(4.10)

S-distributions at OU with the same sign as this main term at U and UJ since V' is outward
pointing there. Choosing F large to absorb the contribution of the second term, we get

cof | 1gwull® < nF | 1gwul® + CyF Y 1ywVul|* + C|| lywu|)?,

so fixing n = cg/2, this gives ||1ywul? < CF 2| 1ywVu|? + Cr || lywuo||>. Adding C’
times this to (4.10) yields

(1yw(—2F Ko — K1)du, 1ydu) + C'|| Lywul|?
< (24 CC'F )| 1gpwVul?® + 2| lywLiu|?
+ C’F(||ILUwa2 + (C + O 1yw(uo, duo, ul)H2)

Fixing C’ sufficiently large and then F > 0 large, we can absorb the two first terms on the
right into the first term on the left hand side, using that —fF Ko > —2F Ky — K for large
F. This gives (4.6) for k = 1.

26That is, it is a scalar operator tensored with the identity operator on C¥.
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We now proceed by induction, assuming (4.6) holds for some value of k for all operators
L of the form considered above. If Lu = f, let X € (Difff (R4))" denote an N-tuple of
b-differential operators which generate Diff} (R%) over C*(R4); writing [L, X] = L' - X for
L’ an N-tuple of operators in (C* + py "H®)Diff}, we then have (L — L')(Xu) = X f.
Applying (4.6) to this equation, we obtain the estimate (4.6) for Lu = f itself with k
replaced by k + 1. O

Given the structure of the operator Lj; on the manifold with corners M as described in
§3.3, it is natural to proceed proving the estimate (4.3) in steps: in §4.1, we propagate the
control given by Proposition 4.3 uniformly up to a neighborhood of the past corner i°N .7+
of null infinity and thus into (.#7)°. In §4.2, we prove the energy estimate uniformly up to
i*; the last estimate cannot be localized near the corner .#+ N since typically limits of
future-directed null-geodesic tending to .#+ Ni* pass through points in i+ far from & 7.

4.1. Estimate up to null infinity. We work near the past corner i°N.# 7 of the radiation
field; recall the definition of the boundary defining functions py and p; of i° and &+
from (2.23), and let p = r~!. At #T, we need to describe G}, more precisely than was
needed near (i)°; we make extensive use of the structures defined in §2.4. Equations (3.15)
and (2.24) give

Gy = Go,b + Gl,b + éb, Gl,b = prQ;LI — Go,b S COO(M; S? 'BTJW)7 (4.12)
with Gop, = 20,,(p10,, — pP0Op,) — G’ € p;1C®(M; S?2BTM + pr S?PTM) as before, and
G, € pitbo o U oo (N S2BTM + pp S2PTM).
Dually, equation (2.25) gives
g € (€ + pht )t oY (M; S2(PTM)* + py S2PT* M) (4.13)

where the smooth term is p?g, = —2pr1 Ciﬁ)o (dpo + dp[) —¢+ p2C®(M; S?2PT*M).

Fix 8 € (0,07). For small € > 0, we define the domain
Ue:={pr <e€, po— p? <1} c M, U)=Un{de<pr<e}, (4.14)

see Figure 4.2. Thus, U, is bounded by i®, %, {pr = €}, and U? = {py — ,0/13 =1, pr < €}.
At U?, we use (4.5) and (4.12) to compute

1+

(d(po — )%, € 2807 P (po + B) + p27C + pOp; T H, (4.15)

hence Uf is timelike for small enough €. As in the proof of Proposition 4.3, the main term
is the K-current of a timelike vector field with suitable weights:

Lemma 4.4. Fizcy € R, let W := pazaop?‘”\/, and V := —(1+ cy)pr0y, + po0Op,, then
Kw € py>®p; 27 <2a1(00<9po = p10,,)% = 2¢v(ag — ar)(pr,,)”
—2(1+2(ap—ar) +ev(1— 2a1)),01$> (4.16)

+ pg 20 p 2 (C + patop be Y(M; S2PTM + p; S2PTM).
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Furthermore,
divg, W € —2p62a°p;2‘” (1+2(ao — ar) + cv (1 — 2ay))

—2ag —2ar+1 /00 14by  —14b} 1700 (417)
+ py 0 p 2N (C® + pytp, TTHEY)

Here, p;1|V\gb € 2cy +pr COO—}—p(l)erOpl];IHgo, so V is timelike for ¢y > 0. This calculation
also shows that the level sets of p; are spacelike in Ue. The term p; Ky (du, du) will provide
control of u in pf°pP H, (modulo control of |u|? itself, which we obtain by integration),

similarly to (1.16).

Proof of Lemma 4.4. Recall that Ky = & (7 — 3(trg, 7)Gy), ™ := —LwGh. Since V € M,

Lemma 2.7(2) shows that ™ := —Ly Gy, expressed using vector field commutators, lies in

the remainder space in (4.16); using (4.13), this implies tr, 7 € p52a0+1+b0p;2a1+b1H§°,

so (trg, m)Gy also lies in the remainder space. Similarly, Gy}, contributes a (weighted)
smooth remainder term to Ky . Lastly, for 7o = —Lw Gy, o, the term %(7’[’0 — %(trgb 70)Gb)
contributes the main term, i.e. the first line of (4.16) after a short calculation, as well as two
more error terms, one from Gy, the other coming from the non-smooth remainder term in
(4.13). The calculation (4.17) drops out as a by-product of this, and can also be recovered

by divy, W = —try, Kw. ([

In order to get the sharp weights®” for the decaying components mou of u at £+ in
Theorem 4.2, we need to exploit the sign of the leading subprincipal part of Lj at .,
given by the term involving p~'A,0; in Lemma 3.8, in the decoupled equation for mu, see
(3.25a) for the model. We thus prove:

Lemma 4.5. Define W = pa2a°pl_2a1 (p00p, — (1 +cv)p10,,) similarly to previous lemma.
Let vy € R, and fiz ag,a; € R such that o’y < min(vy,ap). Then for small ¢y > 0, there exists

a constant C > 0 such that
—2a—1

Kw —29W @ p 101 < —Cpy?™p, ((p10p;)* + (p00po)* + pr), (4.18)

in the sense of quadratic forms, in Ue, € > 0 small.

Proof. Using the expression (2.24) for py*p; 101, we have

P pr W @, 70y
€ (p00py — P19p;)* — v prp; @s (poBpy — prOp;) + p1 C(M;PT M)

We can then calculate the leading term of pgao p?a’ ! times the left hand side of (4.18) by
completing the square:

yey 2 ey
—2(y —a}) (Poapo — p10p, — Wﬂl%) —cv (ao —aj - M) (010p,)?

1
— 2(1+2(ap — af) + cv (1 — 2a7)) pr .

27As explained before in the context of the weight at ¢, this is not necessary, but easy to accomplish
here without lengthy calculations.
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The first term is the negative of a square, and so is the second term if we choose cy > 0
sufficiently small; reducing ¢y further if necessary, the coefficient of the last term is negative
as well, finishing the proof. O

Remark 4.6. For the value of ¢y, determined in the proof, we have div, W < —Cp _2% Pr S

near £+ by inspection of the expression (4.17).

Suppose now wu solves Lpu = f with initial data (ug,u;) as in (4.2). Note that the
estimates (4.4) and (4.6) provide control of u on U? for any choice of € > 0; thus, it suffices
to prove an estimate in U, for any arbitrary but fixed e > 0. Let x € C*°(R) be a cutoff,
X(pr) = 1 for p; < €/4 and x(pr) = 0 for p; > €/2, and put @ := xu, then u solves the
forward problem N

Lyt = f = xf + [Ln, x]u (4.19)
i Uer with o0 ety + 19071 i v

I
norm of f plus the right hand sides of (4 4) and (4.6). (Use Lemma 3.9 to compute the
rough form of the commutator term.) Note that w = yu is the unique solution of Lyu = f
vanishing in p; > %e. See Figure 4.2.

controlled by the corresponding

FIGURE 4.2. The domain U, and its subdomain U? where we have a priori
control of u, allowing us to cut off and study equation (4.19) instead.

Thus, the estimate (4.3) of u in Ue is a consequence of the following result (dropping the
tilde on w and f):

Proposition 4.7. For weights bo,b’l,bf,ao,a’[,af, and for h € XOO, small in X3, as in

Theorem 4.2, and for keN, let f e pi’pi'™ lHk Yy, mof € Po pI’ H]l;_l(Ue); suppose
f vanishes in pr > 26. Let u denote the umque forward solution of Lyu = f. Then
HUHPSOF?IH?'IVUJ * HﬂoU”pS%%H%ﬁ(Ud
(4.20)

< O ozt 17001 it i)

I

Proof. The idea is to exploit the decoupling of the leading terms of L;, at £ given by
equations (3.25a)—(3.25¢): this allows us to prove an energy estimate (for the case k = 1)

0t 0 < O gy s 50 g0, ) (a.21)

B2 I
where > 0 fixed such that
ay — by <a;—96, ay<aj—éd. (4.22)
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The estimate (4.21) contains m§u as an error term, but with a weaker weight due to the

decay of the coefficients of the error term Lj,—which is dropped in (3.25a). On the other
hand, mou couples into w§u via at most logarithmic terms, hence we can prove

Il oo o111, < OIS o a1 g + ol o erss1) (4.23)

Close to .#T, the last term in the estimate (4.21), resp. (4.23), is controlled by a small
constant times the left hand side of (4.23), resp. (4.21), hence summing the two estimates
yields the full estimate (4.20). The proof of (4.23) and its higher regularity version will itself
consist of two steps, corresponding to the weak null structure expressed by the decoupling
of (3.25b) and (3.25¢).

All energy estimates will use the vector field
‘/1 = _(1 + CV)pIap[ + poapo

from Lemma 4.4, with ¢y > 0 chosen according to Lemma 4.5. Denote ug := mou, w11 :=
TU, u, = mHu, and uf ;= 75u = uir +uf;. We expand Lyu = f as

7T()Lh7T()uO = 7T()f — 7TOLh7'('8’u,8, (4.24&)
TI'fthﬂ'flu(fl = ﬂflf — ﬂfthﬂ'ouo — Wfthﬂ'null, (4.24b)
’7['11Lh7T11U11 = 7T11f — 7711Lh7r0u0 — 7T11Lh7['f1u§1. (4.24C)

Here, we regard *Ko — M as a vector bundle in its own right, and ug as a section of
B*Ko: the inclusion K < S?5°T*R* and the structures on the latter bundle induced by g
or gy, play no role; likewise for K11 and K.

Starting the proof of the estimate (4.21) using equation (4.24a), let us abbreviate L :=
moLpmo. By Lemma 3.8 and recalling the definition of Acp from equation (3.25a), we have

L=IL°+L, L°=—2p"200; + LY, L) = —p~'Acpd, (4.25)

with L lying in the same space as Ly, in (3.24) with 5*S? replaced by 3* K. Here, L{ denotes
a fixed representative in pl_l O Mg+, defined by fixing a representative of p, 19, € "M 8% Ko

see equation (2.39), in the image space of Lemma 2.7(3). Let w = p,*° p;ai’; let further 1y,
denote the characteristic function of U.. Fix V € OMg* Ko, With scalar principal symbol
equal to that of V. Let
W=1p.W°, W°:=w?V.

Fix a positive definite fiber inner product B: PTM — PT*M on PTM, a connection d €
Diffl(@; Koy, TR ® Ky) on Ky, and a positive definite fiber metric kg on K\ with respect
to which Acp = Agp; note here that Acp is constant on the fibers of .#, hence indeed
descends to an endomorphism of Ky|g+. (Strictly speaking, the self-adjointness of Acp can
only be arranged if 75 # 27;: equality would cause a non-trivial Jordan block in (3.25a).
However, even if 49 = 271, one could still make Acp — Afp arbitrarily small, which is
sufficient for subsequent arguments.) Let (-, -) denote the L? inner product with respect to
ko and the density |dgp| ~ |%dp1 dg|; defining the b-density dpuy, := p;dgy| ~ |%%dg!
to define L (M), we then have

(u,v) = (pru, v)L%. (4.26)
We shall evaluate

2Re(wLug, 1y, wVug) = (Cug, uog),

4.27
C:=L'W+W*L=[L,W|+(W+WHL+ (L — L)W. (4:27)
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Let Kyw denote the current associated with the scalar principal part of W, see (4.8),
now understood as taking values in the bundle S?PTM ® End(8*Kj), acting on 8*Kj
by scalar multiplication. While Ky, provides positivity of C near .# T for suitable weights
by Lemma 4.4—in particular, this would require a} < 0—we will show around (4.34) below
how to obtain a better result by exploiting the sign of Acp entering through (L* — L)W.

In the proof of Proposition 4.3, where we worked in a global trivialization, all terms of W
and L other than the top order ones could be treated as error terms; we show that the same
is true here by patching together estimates obtained from calculations in local coordinates
and trivializations. Thus, let {U;} be a covering of a neighborhood of St containing U, by
open sets on which K is trivial, and let {x;}, x; € Ce°(U;), denote a subordinate partition
of unity; let x; € C°(U;), X; = 1 on supp x;. Fix trivializations (Ko)y, = U; x C* and the
induced trivializations of 8*Ky. Write

L - L‘]’Q —‘l_ Lj71, W - W‘%l —‘l_ Wj70’
where Lo 1= %ng acts component-wise as the scalar wave operator and L; 1 is a first order
operator, while W; 1 := ]erszl acts component-wise, and W o € Ierpr[ Coo(uj,ﬂTM),
with the extra factor of p; due to the choice of V. On (Ko)ly;, let moreover d; denote the
standard connection, given component-wise as the exterior derivative on functions, and let

k; denote the standard Hermitian fiber metric; we denote adjoints with respect to k; by f.
Now,

<CUO, U()> = Z(Cj'&o, XjU0>, (4.28)
where
Ci=> Cirt, Cine:=L;Wje+W;(Ljp.
k.0
The usual calculation in the scalar case, see the discussion around (4.7), gives
Cio1 = LI, Wi1 + W Lj» = diBKydj,

SO

(Cj 210, Xju0) = (d"BKwduo, Xjuo) + ((Cj21 — Cj21)uo, X;juo) (4.29)

+((d} — d}) BKwdjuo, xjuo) + {(d; BKwd; — d* BKywd)uo, x;uo).

Summing the first term over j yields

/ pIKWo(duo,duo)dub+/T(p1V]lUE,W°)(du0,du0) dp, (4.30)

€

upon application of the formula (4.9). The first summand—after adding the term (4.34)
below—is negative definite, controlling derivatives of ug as in (4.21); the second term gives
a contribution of the same sign: we have

T(prViy,, W°) = oy @ w?T?,

with 79 < 0 since —V1y, and W° are future causal. The remaining terms in (4.29) are
error terms: the second term is equal to

(Wjauo, (Lj2 — LEo)xjuo) + (Ljauo, (W1 — W) x;uo)-

Now, ko and k; are related by k;(-,-) = ko(Q;-, Q;-), with Q; € C*°(U;; End(Ky)) invertible,
and then Al = Q;lA*Qj for Q; := Q7Q; when A is an operator acting on sections of Kj.
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Thus, Wj1 — Wﬁ = W1, Q;](Q;l)* On M, the constancy of Q;, and hence of Q%, along

the fibers of 8 and V; € M give the extra vanishing factor pr in

W1 — Wf{ = 1y, prw’q;1, i1 € C(B~"(U;); End(B8*Ky)),

with ¢;1 only depending on @;. Similarly, L;o — L;*Q = [Lj2, Q;](Q;l)*; using Lemma 3.7
and [0, Q;“] € pC*>, we find (replacing the weight —0 there by —1/2 + b/, for definiteness)

—1/2+V,
I

—1+b ) .
Lja—LVy € pb™pr T HE (M) Mgy +(C+p5 ™p HEO)DiffL (U; B Ko). (4.31)

Writing L;oug = Lug — Lj1up and using the relationship (4.26), we thus get

J2+b

~ ~ b ~ 1 ’
{(Cja1 = Cjan)uo, xjuo)| < ClIXjwViuoll 2 (IX;o wuoll my + [Xip, ™ wuol )

(4.32)
+ C(IXjprwLuollz + IXjprwLjuoll 2 ) IX;prwuoll .z,

where the norms are taken on U.. Note that in all terms on the right, at least one factor
comes with an extra decaying power of p; relative to wug, hence is small compared to wuyg
if we localize to U, for small € > 0, i.e. to a small neighborhood of .# . Next, we combine
Lemmas 2.10 and 4.4 in the same fashion as in the proof of Lemma 2.11 to estimate the
last two terms of (4.29) by

C(IXjprwuol g llxjwuoll L2 (4.33)
+ (IXprwT? (dug, duo) || 12 oy + 1K prwuoll 12 way) I xswuoll 12 w2));

where the second term in the inner parenthesis comes from the pointwise estimate Ta(djuo,
de0)1/2 < C(Ta(duo, du0)1/2 + ’UO‘)
The next interesting term in (4.28) is Cj 11 + Cj10, specifically the term coming from the

‘constraint damping part’ LY defined in (4.25). In a local trivialization, LY = —p~1Acpd +

L(l),j, L(l)J € C*™(U;) (using the discussion around (2.39) for this membership), so we have

the pointwise equality
2 Re ko(Wuy, L(l]XjUO) = —2Re ko(W; 1uo, p_lACDE)lXjuo)
+ 2 Re ko(W) guo, L(I)Xjuo) + 2Re ko(Wj 1uo, L?,ij”O)?
letting
K' = —20*(V} ®, p7101) ® Acp
€ py 20, 2110 (UL (S2PTM + pr S2PTM) @ End (B Ky)),

the first term integrates to [ prK’(d;uo, djx;u0) dpy, which equals

/mK'(dUO, dxjuo) dp, (4.34)

plus error terms of the same kind as in the second line of (4.29). The extra factor of p; in
W;.0 and L(i ; (as compared to W;; and LY) allows the remaining two terms to be estimated
in a fashion similar to (4.32). The remaining contributions to C; 11 4 Cj 10 are error terms
coming from L in (4.25) and can be estimated as in (4.32).

Lastly, the terms of (4.28) involving C; 29 can be rewritten and estimated as follows:

12Re((L — Ly1)uo, Wjox;uo) + (Wjouo, [Ljz2, xj]uo)|
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< 2([lprwLuollzz + IXjprwLjiuollpz ) Ixjprwuoll L2
~ ~ b ~ 1/2+4Y
%5 prwuol 2 (10, wuoll gy + K50 woll gy );
the norms are taken on U, and we use that [L; 2, ;| lies in the same space as (4.31). We
note that by Lemma 3.8, the terms involving L, here and in (4.32) can be estimated by

~ _ v _ 1/24¥
IXiprwLjauollrz < C(lIX;p, wuollsy + Ixier "wuol g1 ),

where x; € C°(U;) is identically 1 on supp X;.
This finishes the evaluation of (4.27); we now turn to the estimate of wuyg itself by wV u.

As in the proof of Proposition 4.3, this follows from integration along V. Concretely, we
consider a ‘commutator’ as in (4.11), that is,

2Re(ly. wVug, p; 'wue) = —{p;* divg, (Ly. w?Vi)ug, ug) + E, (4.35)

where |E| < C||wu0\|L%Hp1wuoHL% by Lemma 2.12. Using the negativity of the divergence

near .# % due to Lemma 4.4 and Remark 4.6, and that V} is outward pointing at U?, so
Vi(1y,) is a negative 5-distribution at U?, we get

lwuol| 22w, + llwuoll 2oy < CllwVuol r2w,); (4.36)

recall here that uo vanishes in p; > §, hence there is no a priori control term on the
right. Subtracting this estimate from (4.27) (the latter having main terms which are neg-
ative definite in dug), the main terms are the left hand side of (4.36) and er pr(K' +
Kyyo)(dug, dug) dpp from (4.30) and (4.34). By Lemma 4.5, they control ||wu0\|H;(U€): the

error terms in U, can be absorbed into this, while those at U? in (4.33) can be absorbed
into the second terms of (4.30) and (4.36), due to the extra decaying weights on at least one
of the factors in each of those error terms as discussed after (4.32). Thus, we have proved

) (4.37)

< C B L c, C
HUOHPSO (Hﬂ-oprgop?lI IL% + Hﬂ—o hﬂ—OU’OHp

a = a’y—1
Iyl ag o1 2
pr Hy 0 Pr Ly

valid for a/; < min(ag,7). Since Lj, is principally scalar, moL,7§ is a first order operator,
and by Lemma 3.8, we have
_o —1+V 0 — . %
moLnm§ € py Up; T Mpere, + (C + pg p CHER)DIfEL (M B* Ko); (4.38)
since a} < ay + b} < ar + 3, the second term in (4.37) is bounded by ||u8||p80p?1_5H}]
for sufficiently small 6 > 0 (by the assumptions on the weights in Theorem 4.2), which
establishes the estimate (4.21).

The proof of the estimate (4.23) proceeds along completely analogous lines, using the
weight w = py“p;*" and positive commutator estimates for the equations (4.24b) and
(4.24¢). The main difference is that 711 Lym11 and 7§, Ly 7§, have no leading order subprin-
cipal terms like 7oLy m does, hence we need a; < min(ag,0) for K2y to have a sign—this
is the case a}; = ay, v = 0 in the notation of Lemma 4.5. In order to estimate the coupling
terms on the right hand side of (4.24b), we use Lemma 3.8, so

751 Lo € (p7C% 4 pb Cpr OHE)M 4 (€ + pi 0 p; CHE®)DifE], (4.39)
_o —1+V¥ —0 — .
iy Lamin € py Cpp M+ (C + py pp )Diff,,
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which gives
J5all 00111, < CIT51 01 o + ol o sy + nall o ors )i (4:40)

for our choice (4.22) of §, the second term is bounded by a small constant times the left
hand side of (4.21). For analyzing the equation (4.24c) for wuj1, we observe that 711 L7
lies in the space (4.39), while

mu Ly € (oo pr HHE (I 0T + py~Opp TUHES) M+ (C + pypp H)DifE,
where we exploit that h® has a leading term at .# . Thus,
/ [
||“11Hp30p§”H; <C (”7?11f||pgop;rlle) + ‘|u0Hpgop;I*5Hi¢ + HuangOp‘;IH;)' (4.41)

In order to obtain the estimate (4.23), we add (4.40) and a small multiple, 7, of (4.41), so
that nC’ < 1 and u§, can be absorbed into the left hand side of (4.40); note that the wujy
term in (4.40) is arbitrarily small compared to the left hand side of (4.41) when we localize
sufficiently closely to #*. As explained at the beginning of the proof, this establishes the
desired estimate (4.20) for k = 1.

To prove (4.20) for k > 2, we proceed by induction on the level of the hierarchy (4.24a)—
(4.24c) and the corresponding estimates (4.21), (4.40), and (4.41). The key structures
for obtaining higher regularity are the symmetries of the normal operators of mgLymg etc.
at #+. Namely, —2p~20001 € 0,,(p00p, — p10,,) + Difff commutes (modulo Diff?) with
po0p,, while for the vector field p;d,, generating dilations along approximate (namely,
Schwarzschildean) light cones, we have

[—2p728081,p[6p1] € —2,0728081 + Diff%.

Commutation with spherical vector fields is more subtle: we need to define rotation ‘vector
fields” somewhat carefully. We only define these on g*Kj, the definition for the other
bundles being analogous. Using the product splitting R, x Ry x S? of R* near ST, denote
by {Q:i=1,2,3} C V(S?) = W,(M) a spanning set the space of vector fields on S?, e.g.
rotation vector fields, though the concrete choice or their (finite) number, is irrelevant; we
can then define elements €; € Diffll)(M ; B*Ko) with scalar principal symbols equal to those
of 4 ; such that

[0~ 80, %], [pg 01, Q] € piDiffy(M; 5 Ky), (4.42)

where p~10p, Po 19, denote elements in "M g+, (Note that the p;C* indeterminacy of
pflao,po_l(?l does not affect (4.42).) Here, it is crucial that we fiz py and p to be given
by (2.23) and thus rotationally invariant: €;1p9 = 0, so [Q;, po] € prC™; we also have
[Qi, pr] € prC> independently of choices. Regarding (4.42) then, we automatically have
membership in Diff,lJ by principal symbol considerations; to get the additional vanishing
at ps is then exactly the statement that the normal operators of p~'dy, resp. Po 19, and
Q; commute. For p~'dy, whose normal operator is —%plf)pl, this is automatic, while for
Po 191, we merely need to arrange 100y, ] = 0 at 7, which holds if we define €; in the
decomposition (3.10) by €4 ; & WQM ® ;. We therefore obtain

[—20" 20001, %], [L°, ] € Diff,

with L? given in (4.25), which improves over the a priori membership in pI_IDiff%. Let
us now assume that for the solution of equation (4.24a), we have already established the
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estimate

[woll 4y o < C(HmfHpaopag-lH,H + Im6ull oo jar-s (4.43)
0 0 Fr

P PIIH;}Il b
We use {G;} := {p00py, P10p;, 1, Qo, Q3, 1}, which spans Diff} (M; 8*Ky) over C®(M),
as a set of commutators. Writing L = moLpmg, we then have

LGjU() = fj + [L, Gj]U[), fj = Gjﬂ'gf - Gjﬂ'()Lhﬂ'Su(cJ. (4.44)
We estimate the first term by

kal)-
Hg,

Cc
51 g s s < OO gy s+ - )

For the second, delicate, term, we use the above discussion to see that
IL,Gj] € ¢;L + pb %0, " Mo Diff} + (€™ + pl0p; ) Diff2 (4.45)
with ¢; = 1 if G; = p;0,,, and ¢; = 0 otherwise. Thus, [L,Gj] = ¢;L + Cng with

Cte p(l]_opI_Hb’/\/l +(C® + pg°p; ")Diff], and therefore

”[L, Gj]uo"pgop?§7lH§_l S Cj”LuOHngp?}le,bc_l + ng: ||Géuo”pgoptlz1—5_5/

o (446)
for 6’ > 0 small; recall that our choice (4.22) of § leaves some extra room. Now, apply-
ing (4.43) to Gjug in equation (4.44) and summing over j, we can absorb the term (4.46)
into the left hand side of the estimate due to the weaker weight. This establishes (4.43) for
k replaced by k + 1. The higher regularity analogues of the estimates (4.40) and (4.41) are
proved in the same manner; as before, this then yields the estimate (4.20) for all k. O

This proposition remains valid near any compact subset of .#* \ i*: the proof only
required localization near .# . At this point, we therefore have quantitative control of the
solution of the initial value problem for Lju = f in any compact subset of M \ i*.

4.2. Estimate near timelike infinity. Near the corner it N .#*, fix the local defining
functions

pri=v=_(t—r)/r, pr:=(t—r)"" (4.47)
of #% and it, and let p := prp; = r~!; these only differ from the expressions for the
defining functions p; and py used in §4.1 by a sign. We thus have Gy, = p~2G = Gop +
Gl,b + éb for

Gop = —20p,(p10p, — p+05,) — & € p; *C°°(M; S*PTM + p; S*PT M) (4.48)

+b

and Gy, € C®°(M; S2PTM), Gy, € pjl 'fpf“HgO(M; S28TM + p; S2PTM), while

b € (C° + pot ph 0 HEo) (M S2(PTM)™ + p; S2°T* M)
with smooth term given by p2g,, = 2p1%(% + %) + p2C®(M; S?PT*M). In order to
be able to work near all of i, we first prove:
Lemma 4.8. There exists a defining function py € C¥(M) of it such that dpy /p+ is past
timelike near i* for the dual b-metric p~2g,.t. Moreover, if C > 0 is fived, then for any
h € X with ||h||xs < C and for any € > 0, there exists § > 0 such that dp4/py is past

timelike with ]dp+/p+]éb > 0 in {p; > ¢ py < 8} for the dual b-metric Gy, = p~2g~ 1,
= gm + ph.
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Proof. For the second claim, note that in p; > € > 0, we have G}, — p~2g,} € pr*LOO

with norm controlled by ||A|| y3, so

1+b
(dp+/ P41y, € ldps /o2 i + 0y T H (4.49)

is indeed positive near p; = 0. To prove the first claim, we compute on Minkowski space
\f5 tdfol? = 1, fo = t/(t> —r?) in t > r, computed with respect to the dual metric of
~2(dt? — dr?).?% Similarly, in r/t > %, and t > 7, large, we have |f;1df*|i,29m > 0 for
fe = t/(t>—r2): this is a simple calculation where g,, = g> is the Schwarzschild metric, and
follows in general by an estimate similar to (4.49) since g, differs from g by a scattering
metric of class pl_OH][‘fo inr/t< %. Moreover, f, is (apart from minor smoothness issues,
which we address momentarily) a defining function of i+ near .# . But fy — f. € p> "H®
for r/t € (1,2), hence f = xf. + (1 — x)fo has |(f')~tdf’ /2f2gm > 0 near i, where
X = x(r/t) is smooth and identically 0, resp. 1, in 7/t < %, resp. r/t > %. Fixing any
defining function p/, of i, Lemma 2.2 implies f' € p/, C®°(M) + (p/,)* "H°(M) (with
the non-smooth summand supported away from #1 by construction), so we may take
p4+ € C®(M) to be any defining function of i* such that f — py € (o, )> " H®. O

For the remainder of this section, p4 will denote this particular defining function. Near
it N .#1, we need to modify p; in the spirit of (4.15) in order to get a timelike (but not
quite smooth) boundary defining function. Thus, fix 5 € (0, b)) and some small n > 0, and

let pg € p} COO(U) be a non-negative function in a neighborhood U of it such that pg = n?
in pr > 2n, pslpr) = Py in pr < 37, and 0 < pjy < Bp771; let then

P = p(1+pg) € pi(1+p]) C(M). (4.50)
It is easy to see that pi" HF (M) = p’" HF(M), likewise for weighted H s and H s, spaces.

Lemma 4.9. Fiz C > 0. Then there exist n,0 > 0 such that for all h € X*° with
|h]| s < C, we have ]dﬁ+/ﬁ+]2Gb >0 in pg <9.

Proof. We compute the Gp-norms

dp d 1P} dpy d Vs |dpy |2
1+p,8 P+ PI L+pgl pr
In pr < 2n and thus near ﬂ“‘,we first note that py = fp4 with f > 0 smooth; since df/ f

thus vanishes at .#* N it as a b-1-form, we have
2( dp+ dpr
P+ prI

_ —1+b"
> € (24 prC=+p  C¥)pr  +p, T R,

6 i pr < ln and p; small. The first and

—14b

thus the second summand of (4.51) is 2 p;

third terms on the other hand are dominated by this, as they are bounded by p;, ' and

Py T1+28 , respectively. In 277 < pr < 2n and p4 small, the parenthesis in (4.51) is positive,

the second summand being bounded by p;HB ; the prefactor being positive due to p’ﬁ >0,
the claimed positivity thus follows from Lemma 4.8. ([l

283ee also the related calculations and geometric explanations around equation (4.63).
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We also note that p;d,, , which is well-defined as a b-vector field at it and equals the
scaling vector field in (:1)°, is past timelike in (i7)°. Let
U= {ﬁ+ < (5} M
denote the neighborhood of it C M on which we will formulate our energy estimate. Near
Z T, we need to exploit the weak null structure as in §4.1; thus, let
X € CZ([0,00),,), x =1 near p; =0, (4.52)

denote a smooth function on U localizing in a neighborhood of .#* where the projections
m ete. are defined, see the discussion around Definition 3.4.

Proposition 4.10. For weights b}, br, by, a;, ar asin Theorem 4.2, there exists ay € R such
that for all h € X which are small in X3, the following holds: Let f € 7 l,oa*Hk l(U),

xmof € pl - a*Hk I(U), and suppose f vanishes in py > 55. Let u denote the unique
forward solutzon of Lyu= f. Then

HUHP?IPTH;{“;I(U) ™ HXWOUHP?’IPTH;%%U)

(4.53)

< (Il gtz s+ 0 s s)

Proof. We first consider k = 1. Near 9i", we will make use of the vector field Vj =
(1 = ev)pr0p, — p+0s,, cy > 0 small, analogously to Lemma 4.4; away from it the
vector field Vi’ := —Vp, /py is future timelike. Fix (19r < —% and consider the vector field

24y o2
V= p; 25 a*VO, then

—2a7—1o— 2a+

Ky, € o> 5 (200 (a8 = an)(pi8,))? + 2a1(p10y, = p105, )

+ (%(1 — Cv) + a?r —ay + Cva])p[$>

0 4 ) (M ST + pr ST M)
< _pra-l —2a§ . . —2a; —2a%
is S —p; Py as a quadratic form, and divg, V7 < —p; “p, ". Analogously to
2a1 o

Lemma 4.5, if V] = p, 2a*VO, then Ky, — 29V} ®s p~10; is negative definite near 9i*

for ¢y > 0 sufficiently small
To explain the idea for obtaining a global (near i*) negative commutator, consider the
timelike vector field Wy := x V7 +(1—x) pfai Vy', and let W = ﬁfa‘l“ Wo; then formula (4.9)
gives
Kw =5, K, +2aL 5, " T(Wo, ) (4.54)
Letting

ay = a(—)&- + (l};'_,
the first term gives control in p}’ p‘rH near .# " in a positive commutator argument. On
the other hand, its size is bounded by a fixed constant times pjr?a* in pr > € > 0; but there,
~ ) 0 ~ ~
T(Wy, —%) 2Py “* in the sense of quadratic forms on PT* M since Wy and —dp. /p+ are

both future timelike. Therefore, choosing a}F large and negative, we obtain

Kw < —Cp >~ p Ky,
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where K7, is positive definite on PT*M in p; > € > 0, while near .#*, we have Ky, =
K1 + prKs, with Ky, resp. Ko, positive definite on "T* M, resp. (T M)*. This gives global
(near i) control in p¢ it HY.

We now apply this discussion to the situation at hand. For brevity, let us use the same
symbol to denote a b-vector field in M and an arbitrary but fixed representative in °M B E
according to Lemma 2.7(3), similarly for b-vector fields with weights (such as V; and VY);
the bundle F — R% will be clear from the context. For a}‘_ € R chosen later, consider then
the operator W acting on sections of 3*S52,

2 1 ) 0
“Wo, Wo = x(moVimo + 5, Vi, + nmua Vi) + (1= x)p, VY, (4.55)

W=p,
where 77 > 0 will be taken small, as in the discussion after (4.41). (Since u vanishes in p; >
%5, we do not need to include a cutoff term here.) ‘Integrating’ along W via a commutator
calculation for 2 Re(Wu, p;1u> as in (4.35) gives control on u in the function space appearing
in (4.6) in terms of Wu. The evaluation of the commutator 2Re(Lpu, Wu) = (Cu,u),
C=[Lp, W]+ W+ W*)Lj, + (L} — L)W, then combines the three separate calculations
for the equations (4.24a)—(4.24c) into one: near .# T, one writes Ly, in block form according
to the bundle decomposition 8*S? = Ko & K {1 @ K11, with the diagonal elements myLp,mo
etc. giving rise to the main terms of the commutator, while the off-diagonal terms can be
estimated using Cauchy—-Schwarz and absorbed into the main terms due to the weak null
structure, as explained in detail in the proof of Proposition 4.7. Away from .# 7, all error
terms can be absorbed in the main term, corresponding to the second term in (4.54) upon
choosing a}r < 0 negative enough. This proves the proposition for k = 1.

Suppose now we have proved (4.53) for some k > 1. First, the b-operator L; automati-
cally commutes with p; 9,, to leading order at i*; concretely, Lemma 3.8 gives

+b

—1+4b, 1+b —0 1+b .
[Lny pr0p ) € pp o Mo + (4 C° + py Op % HYO)Diff.

Here, by an abuse of notation, pyd,, € OMB* g2 is defined by first extending the vector
field py0,, € C®(it,PT;+ M) to an element of “Mc, and then taking a representative of
the image space in Lemma 2.7(3); for this particular vector field, such a representative is
in fact well-defined modulo pyp; C°°(M;End(3*S?)), the extra vanishing at p, being due
to the special (b-normal) nature of p40,, .

Therefore, commuting p;d,, through the equation Lju = f, we have the estimate

losDor il s+ NP0 Bl
(4.56)
< af7r— a . ! _ ar— a_ —
< Oty + I i+ g 05000
by the inductive hypothesis, where we used af — 0 > a} — b} for § > 0 small to bound
the forcing term [Lp, p4+0,,]u by the third term on the right; see the related discussion

around (4.38).

Second, the timelike character of p10,, at (i7)° for € > 0 implies that C(p1D,, )% — Ly,
is elliptic in p; > € for large C' (depending on €); therefore, letting x; € C°(U \ FT),
j = 1,2, denote cutoffs with xy; = 1 on supp(l — x) and x2 = 1 on supp x1, we have an
elliptic estimate away from .# ™,

||X1U||pi+H§+1 < C(||sz+3p+u||pi+H§ + ||X2U||pi+H§ + ||X2f\|pi+H§—1)a (4.57)
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for u supported in p; < %(5 . Near .#T on the other hand, we have the symmetries of null
infinity at our disposal, encoded by the operators p;0,, and the spherical derivatives 1;,
see the discussion around (4.42). Let x € C*°(U) be identically 1 on supp x, and supported
close to .#*. Defining the set of (cut-off) commutators {xG;} := {xprd,,, X1, xQ2, xQs3}
which together with p;8,, spans V(M) near .#, and recalling the commutation rela-
tions (4.45), we find

|‘XGju||P?IPi+H§IT§1 * HXWOG].UHP?I%TH%?

< ar— a I
< O Mgy + oSN s o (4.58)

+ ; HXGZUHP‘III_‘sPi-ﬁ-H;ﬁ;l + HXP+30+“HP;I—6P¢1+H{ly,iycbfl)-
But for any n > 0, we have the estimate

||>?G£U‘|p?1*5pi+H;ITb—1 < 77||XGEU||p?1pi+H;/?gl + CnHXlUHp‘fH]I;H»

and the second term can in turn be estimated using (4.57). Summing the estimate (4.58)

over j and fixing n > 0 sufficiently small, we can thus absorb the terms involving YGyu into

the left hand side, getting control by the norm of f, plus a control term C||p40, +qua+ ke
+ b

Adding to this estimate 2C' times (4.56), this control term can be absorbed in the left hand
side of (4.56). This gives control of u as in the left hand side of (4.53) with k replaced by
k + 1, but with an extra term on the right coming from the last term in (4.56); however,

this term has a weaker weight at ™, ,ocf_(l_b*) > pit, hence can be absorbed. This
gives (4.53) for k replaced by k + 1. O

il

Combining the estimate (4.4) in compact subsets of M° with Proposition 4.3 near (i")°

Proposition 4.7 near £+ \ (41 Ni"), and Proposition 4.10 near i* proves Theorem 4.2.

4.3. Explicit weights for the background estimate. We sketch the calculations needed
to obtain explicit values for the weights in the background estimate. More precisely, we
prove the following slight modification of Theorem 4.2:

Theorem 4.11. Let ay = —%. There exists an € > 0 such that for aj < ar < a’I <
min(0, ag) with |ag|, |a}|, |ar|, br, by < 1, v2 < € subject to the conditions in Definition 3.1,
as well for h € X°0PLVLb+ with ||| s < €, the unique global solution of the linear wave
equation

Lyu=f, (u,0u)|s = (uo,u1)
satisfies the estimate

c _
letllggo g e sy Wil oo o e s & Hmu”pﬁop?}p?w'fgl

< C (ol o s + Nt o g (4.59)

oo 75 Pl oo+ 1701 v v )

Proof. The usage of an intermediate weight a; € (ar,a’) allows for a small but useful
modification of the argument following (4.41): namely, in the notation of that proof, we
are presently estimating w1 with weight p}’, while the term u§, coupling into the equation
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for wyy via w1 L7y, is estimated with weight p?l < p7", hence automatically comes with
a small prefactor if we work in a sufficiently small neighborhood of .# . Correspondingly,
in the proof of Proposition 4.10, we would replace the third inner summand in (4.55) by

_ _ o= —92q0
w11 Vim, with Vi = p; 2“1p°Jr a*Vb’ in order to obtain (4.59) (with a4 < 0 not explicit at
this point yet).
The only part of the proof of Theorem 4.2 in which we did not get explicit control on
the weights is the energy estimate near ¢*. In order to obtain the explicit weights there, we
note that for 1,72 = 0, h = 0, and Schwarzschild mass m = 0, we simply have 2L; = Uy,

the wave operator of the Minkowski metric g = dt?> — dz?, which acts component-wise on

S2T*R* in the trivialization given by coordinate differentials. Recalling from (2.16) that
9M denotes the manifold with corners constructed in §2.1 for m = 0, we shall prove that
the solution of the scalar wave equation tgﬂgtflu = f, with f € p?f_lpf L% supported in

p+ < 1, satisfies the estimate
a a < ar— a .
Hu||p11p++H}7 ~ HprII 1p++L% (4 60)

for ay = —% and a; < 0 small, using a vector field multiplier argument; here, p; = %p;
and p; = %p,. But then, if the weights ar,a’,ar etc. are very close to one another, the
non-scalar commutant used in (4.55), modified as above, is very close to being principally
scalar away from .#T; correspondingly, a slight modification of our arguments below for
the Minkowski case (4.60) yield the estimate (4.59) for k& = 1. Higher b-regularity follows

as in the proof of Proposition 4.10.

In order to prove the estimate (4.60), we introduce explicit coordinates near the tem-
poral face i™ C M within the blow-up of compactified Minkowski space. First of all, the
calculations in A.3 imply

3 -1
t°Ogt™ =Uggg — 2, (4.61)
where
gas =t 2(dt* — dz?) (4.62)
is the de Sitter metric; notice though that we are interested in ¢ > 1. Thus, consider the
isometry

(t,2) = (7, 2) = %ﬂ(t,x) € [0,00); x B2 (4.63)

t2
of ggs, defined in ¢ > r = |z|: it maps i* to (0,0) and . to {7 = |2|}, see Figure 4.3. (The
map (4.63) is the change of coordinates between the upper half space models of de Sitter
space associated with ¢ on the one hand and its antipodal point on the future conformal
boundary of de Sitter space on the other hand; see [HiZw17, §6.1] for the relevant formulas.)

Define the blow-up M’ := [[0,00); x R2,{(0,0)}] at the image of i*. Then the lift of
{7 <|Z|} to M’ is canonically identified with a neighborhood of it C M. Concretely,

(p+,Z) = (7,2/7) = (t/(t* — %),z /t) € [0,00) x R?

gives coordinates on M’, in which U := [0,1),, x {|Z| < 1} is identified with a collar
neighborhood of i™ C M so that
dp? d
gas = 7 2(d#? — da?) = (1 — |2])2E — 22dz™% — dz?. (4.64)

P+ P+
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FIGURE 4.3. Left: part of the conformal embedding of Minkowski space
into the Einstein universe (E,dt? — ggs), E = R x S3. Right: conformal
embedding of de Sitter space into E, and the backward light cone of a point
q on its conformal boundary, whose interior is the domain of the upper half
space model (4.62) of de Sitter space, which near ¢ is equal to the static
model of de Sitter space near its future timelike infinity, ¢. The coordinates
(7,2) are regular near ¢ = (7 = 0,2 = 0).

Furthermore, p; := 1 — |Z|? = 1 — 72/t? is a defining function of #* in U. Let us write
R :=|Z|. Instead of the vector field Vioc = (1 — ¢v)pr0,; — p+0,, , which is defined locally
near .# 1 and was used in the proof of Proposition 4.10, we use the global vector field

Vo = —(1+ R*)p19p, — (1 —cv)(1 — R*)ROg

which is equal to Vi near .# T, up to an overall scalar and modulo p;Vy, + pyVy; more-
over, Vp is timelike in U \ £ for small ¢y > 0. Considering the commutant /vector field
multiplier W := ,01_2‘” pfa*VO with ay = —% and a; < 0 small, the expression for the
K-current Kyy is somewhat lengthy, so we merely list its main features in 0 < R < 1,
writing p?‘”“pia* Kw =: K1+ K&, with K; a section of S%(p49,, ,0r) (considered a 2 x 2

matrix in this frame) and K a scalar:

— tr K1lepy—0 = —2(1 — R* — a;R?(4 + R?)) < 0, which persists for small ¢y > 0;
— det K1|ey—0 = —4ar(1+ar)R*(1 — R?) <0 and

(Oey det K1) |ey=0 = —16a7(R* — 7z ) (R + 5755-) <0,

so det K1 < 0 for small ¢y > 0;
— Kley—0 = —2(1 4+ ayR?) < 0, which persists for small ¢y > 0;
— P21 2 vy Wey—0 = 6 — (2 — 4ar)R? > 0.

Thus, fixing ¢y > 0 to be small, the main term arising in the evaluation of the commutator
—2Re((Ogys — 2)u, Wu) is [, —Kyw (du, du) 4+ 4(divg,s W)|ul? dp’% dZ, which thus gives the

desired control on u in H,, except |u|? itself is only controlled in p}’ pi*il/ 2LQb due to the

weaker weight of divg,, W at .#; control in p}’ p‘f L% is obtained by integrating pd,, u €
p7pSt LE from py = 1. This yields (4.60). O
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5. NEWTON ITERATION

Fix bg, by, b}, by, 71, and 72 as in Theorem 4.2. Recall that we want to solve the
symmetric 2-tensor-valued wave equation

P(h) =0, (h,0,h)|s = (ho,h1)

for initial data (ho, h1), hj € pgngo(Z), small in a suitable high regularity norm, and we
hope to find a solution h € X°:0:b1brb+  Following the strategy, outlined in §1, of solving a
linearized equation at each step of an iteration scheme, we consider, formally, the iteration
scheme with initialization

Loh!” =0, (h9,8,h0)|5 = (ho, hn),
and iterative step RNt = p(N) 4 (N4 where
LyoouN D = —p(h™)) (hNFD g, N+ = 0.

Assume that hY) € x> has small X2 norm. In order for this iteration scheme to close, we
need to show that AN+ ¢ x> Since P(h(N)) € Y>° by Lemma 3.5, this means that we
need to prove:

Theorem 5.1. For weights as above, there exists € > 0 such that for h € X ooibo,br,bp.by
with ||h||xs < €, the following holds: if f € Yoo:brbpbe and ho, hy € pgngo(E), then the
solution of the initial value problem

Lhu = fa (u)al/u)‘z - (UO,Ul),

. . /
satisfies u € X°0b0brbb+

According to Theorem 4.2, we have the background estimate

= Hgo;b07_07a+ (M’ 5*5«2)7 Tou c Hso;b07b1_07a+ (M, 5*52)’ (51)
for suitable a,.. We shall improve this to u € Xbo-br 10+ using normal operator analysis
in several steps, which were outlined around (1.19): using the leading order form (3.24) of
Ly, or rather its decoupled versions (3.25a)—(3.25¢), we obtain the precise behavior of u
near 1\ (T Ni") in §5.1 by simple ODE analysis; the correct weight at i* but losing
some precision at £ near its future boundary in §5.2 by normal operator analysis and
a contour shifting argument; and finally the precise behavior near .# T, uniformly up to
Z T Nit, again by ODE analysis in §5.3.

For later use, we record the mapping properties of P and its linearization on the poly-
homogeneous and conormal parts of X'*—recall (3.9).
Lemma 5.2. Let h € X°0brbnbs with, ||h||xa small; write h = hypg + hy, hphg € XS5y,
hy, € X°. Then: (1) P(hpng) € Y, (2) LY: X, — Y™, (3) LY, Ly A — Vre,

= phg
(4) Ly,: Ahe = -

The point is that the behavior (2)-(3) of the leading term L and simple information (1)
on the non-linear operator automatically imply precise mapping properties (4) of the error
term Lj, which are not encoded in (3.24).
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Proof of Lemma 5.2. Part (1) follows from Lemma 3.5. One obtains (2) by inspection

of (3.24); note that LY is only well-defined modulo terms in (C*° + p[1)+b° pfopifb* H®)Diff]

which always map X F — Y. Likewise, the first part of (3) follows from (3.24); the fact
that the ‘good components’ (encoded by the bundle Kj) have a better weight b than the
weight by of the remaining components (in K() is again due to the structure of L% discussed
after Lemma 3.8. The second part of (3) is clear, since this concerns the remainder operator
Eh, whose coefficients are decaying relative to pl_lDiff%, acting on X>°, which consists of

tensors decaying at ¥,
Finally, to prove (4), we take upps € A, and write Ehuphg = DpP(uphg) — LYupng. The
second term lies in Y*° by (2), while the first term equals

d
%P(hphg + SUphg + hb) ’5:0
d

1
= % <P(hphg + Suphg) + /0 L(}lehg+suphg+thb (hb) + thhg+suphg+thb (hb) dt)
s=0

but each of the three terms in parentheses depends smoothly on s as an element of Y
by (1), (2), and (3), respectively. O

5.1. Asymptotics near i°N.#*. With conormal regularity of u at our disposal, all but the
leading order terms of Lj, can be regarded as error terms at #: from (5.1) and Lemma 3.8,
we get

Lue Yo0ibo,brbbe | H}:o,bg,—1+b1—0,a+.
Let us now work in a neighborhood U C M of i N .#* and drop the weight at it from the
notation. To improve the asymptotics of u$; := 7§;u, we use part (3.25b) of the constraint
damping/weak null structure hierarchy as well as b} > b: this gives

20200011, € pi? Py~ HEY.
Using the local defining functions pg and p; from (2.23) and multiplying by p7, this becomes
bo b
P10, (P08py — prOp,)uiy € po’ Py Hy®- (5-2)
We can integrate the second vector field from p; > €, where uf, € pg‘)Hgo, obtaining
p10,uf; € pgop?IH{;o; this uses by < by (see Lemma 7.7 for details). Integrating out

p10p, (see Lemma 7.6) shows that uf; is the sum of a leading term in pgonf’(ﬂJr NnU)

and a remainder in pgo plI’I H*(U). This then couples into the equation for ui;y = mu,
corresponding to part (3.25¢) of the hierarchy:

P10, (P00py — prOp, un € prminf — 5(01h™)01 (usy) a5 + pif Py HiY- (5.3)

The first two summands lie in pgngo(/ tnU)+ pgo pl}f Hpe; integrating this along p;d,,
geperates the logarithmic leading term of wy;. Thus, u; = ugll) log pr + uﬁ) + uq1,p With
ug]l) € pgoﬂgo(er NU) and ujyp € pg(’p?’Hgo, as desired.

It remains to improve uy = mou. Write u = uppg + up, where upng € Xgﬁg and up, €
pgopl}’ Hp° according to what we have already established; note that the space X;ﬁg is
independent of the choice of by, b} € (0,1). Then

4 = = by br—1
7TOL27TOU0 = 7T0f — 7TOLh<7T0u0> — ﬂoLh(WSUb) — ﬂ'OLh(WSUphg) S pOOpII Hgo :
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for the first summand, this follows from f € )>bo.br b+ for the second summand from

uy € pgo pI;I 70H§° and the decay of the coefficients of Eh, similarly for the third summand;
and for the fourth summand, we use Lemma 5.2(4). Using the notation of part (3.25a) of
the hierarchy, this means

bo b
(P10p; — Acp)(P00py — P10y, )uo € py’ Py Hy' -
Since we are taking v; > b7, all eigenvalues of Acp are > b, so integration of p;d,, — Acp

and then of ,0/08,)0 — p10,, (using b} < by) gives ug € pgo p?’ Hpe. We have thus shown that
u € X0 brbbt near 9N .7+ in fact, this holds away from .

5.2. Asymptotics at the temporal face. We work near i™ now and drop the weight
at i from the notation. Recall from (3.26) the gauge-damped operator L on Minkowski
space; by Lemma 3.9 and (3.28), we have

Ly~ L € p; ' OpL " Hi (M) - Diff}(M; 5°5°). (5.4)

We shall deduce the asymptotic behavior of u at i* from a study of the operator L (and
its resonances) on a partial radial compactification N of R*—without blowing up the latter
at the light cone at future infinity. Before making this precise, we study L in detail as a
b-operator on N. Let

r=t' X=uz/t;
these are smooth coordinates on the radial compactification

N :=[0,00), x R%
of R* in t > 0, see Figure 5.1. We have dx = td,, t6. = 6x, 16} = 0%, and t0; =
—70; — X0x. Thus, if we trivialize S%5°T* 'R4 using coordinate differentials, the explicit

expression of L given in §A.3 shows that L is a dilation-invariant element of Diﬁ‘%(N : C19),
i.e. L = N(L), recalling the definition (2.1) of the normal operator.

Note that Lj, (and even Lg) has singular coefficients at 9i™ C ™M due to the gauge/con-
straint damping term: the singular terms come from —p~'A4;0; in Lemma 3.8. Likewise,
L, on the blow-up of N at the light cone {7 = 0, |X| = 1} at infinity, has coefficients with
pfl singularities, which would complicate the normal operator analysis at the temporal
face %i*, the lift of

B:={r=0,|X| <1},
On the other hand, L does have smooth coefficients on the un-blown-up space N, and
we recall its well-understood b- and normal operator analysis at 0N momentarily. The
discussion of the relation between the blown-up and the un-blown-up picture starts with
Lemma 5.6 below.

(X =1

FiGUuRE 5.1. Illustration of the compactification N near its boundary at
infinity ON = {7 = 0}. Shown are future timelike infinity B = °(%i%), its
boundary dB = ST, and, for illustration, the light cone |z| = ¢ (dashed).
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Conjugating L by the Mellin-transform in 7, thus formally replacing 70; by io, gives the
Mellin-transformed normal operator family L(o) € Diff2(9N; C), depending holomorphi-
cally on o € C; the principal symbol of i is independent of o.

We already control u in Theorem 5.1 away from T C M, so only need to study u
(and how L relates to it) near ™", whose image under the blow-down map ™3 on ™M is
identified with B, see Lemma 2.4. For s € R, we then define the function space H* (B;C9)

as the space of all v € H (ON; C1%) which are supported in B. (We are using the notation
of [H607, Appendix B].) Let

x* = {u e H*(B;C'"%): L(0)u € H*"'(B;C'%)}, 2°:= H*(B;C").
Semiclassical Sobolev spaces are defined by H: = H* with h-dependent norm || i =
[(hD)*u||z2 on ON = R%. Let further M C Diff' (9N;C!) denote the C>(9N)-module

of first order operators with principal symbol vanishing on N*0B, and fix a finite set
{A;} C M of generators.”” For k € Ny, we then define

HM(B;C%) ={uec H*: Aj,--- Ajuc H, 0 < (< k}
and the semiclassical analogue Hf;k = H5F with norm

Hqus,k = HU||2'5 + Z [(hAj)- - (hAje)UHQ';L-
" 0<t<k

Lemma 5.3. Let C > 0, and fix s < % —C. Then z(a): X5 — 9° ! is an analytic family
of Fredholm operators in {o € C: Imo > —C'}, with meromorphic inverse satisfying

L) Flges < Chlo) Ifll s |Imo] C. Rea| > 1,
for any k € Ny.

Proof. For k = 0, this is almost the same statement as proved in [Val3, §5], see also
[BaVaWul5] and the summary of the presently relevant results in [BaVaWul6, §6]; adding
higher module regularity, i.e. k > 1, follows by a standard argument, commuting (composi-
tions of ) a well-chosen spanning set of M through the equation E(J)u = f; see [BaVaWul5,
Proof of Proposition 4.4] and the discussion prior to [HiVal5, Theorem 5.4] for details in
the closely related b-setting (i.e. prior to conjugation by the Mellin transform). We shall
thus be brief.

The only two differences between the references and the present situation are: (1) L(o)
is an operator acting on a vector bundle; (2) we are working with supported function
spaces in B, i.e. future timelike infinity, rather than globally on the boundary of the radial
compactification of Minkowski space. Since L(o) is principally scalar, (1) only affects the
threshold regularity at the radial set N*9B. For v1 = 72 = 0, L is simply a conjugation of
% times the scalar wave operator, acting diagonally on C'°, and in this case the threshold
regularity is given as s < % + Imo in [BaVaWul6, §6], which is implied by our assumption
5 < % — C. For small 71,72 > 0 (depending on the choice of s), this assumption is still
sufficient. A straightforward calculation (which we omit) shows that the eigenvalues of
o1 (13 (8" — 63)04Ggt™1)|N+ap are > 0, hence the threshold regularity is s < 3+ Imo for

_29Near 0B, and omitting the bundle C'°, one can take as generators the vector fields (| X| — 1)X0x,
X790y — X1y,
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any v1,72 > 0. (This is closely related to the fact that the components of the solution
of Lu = f € C°(R*) do not grow at aﬁ“ ; see Lemma 5.6 below for the relation between
growth/decay on M and regularity on R%.)

In order to deal with (2), it is convenient to first study f}( ) acting on supported distribu-
tions on a larger ball By := {|X| <1+ d} The only slightly delicate part of the argument
establishing the Fredholm property of L( ) acting between H $(Ba; C'Y)-type spaces is the
adjoint estimate: we need to show that E( )* satisfies an estimate

[ull 1= (Bg) S NIL(0) ull -5 (Bg) + llull o (B3) (5:5)

for some sy < 1 — s; here H*(B3) denotes extendible distributions, i.e. restrictions of H
sections on ON to Bjs. This estimate however is straightforward to obtain by combining
elliptic, real principal type, and radial point estimates in Bj, as in the references, with
energy estimates for E( )* which is a wave operator (on the principal symbol level) in
By \ Bl/g, see e.g. [Zw16, §3.2] where our L( )* is denoted P. High energy estimates for
L(0) on H*(By)-type spaces follow by similar arguments (using [Val3, Proposition 3.8] for
the energy estimate).

Suppose now L(c)u = f € H1(B) with u € HS(BQ) Then energy estimates in By \ B
imply suppu C B. This and the Fredholm property of L on By yield the desired Fredholm

property of L: x5 2)5~1 (specifically, the finite codimensionality of the range). Similarly,
the high energy estimates on Bs imply those on B, finishing the proof. ([

Lemma 5.4. For small 1,72 > 0, all resonances o € C of L satisfy Imo < 0.

Remark 5.5. One can in fact compute the divisor of L, i.e. the set of (z,k) € C x Ny such
that L(c)~! has a pole of order > k + 1 at ¢ = z, quite explicitly for any v,79: it is
contained in —iU—2iU —i(1 4 1) U—i(1 4+ v1 + 72), using the shorthand notation (2.32).

Proof of Lemma 5.4. For y1 = 2 = 0, and in the trivialization of S?T*R* by coordinate
differentials, L acts, up to conjugation and rescaling, component-wise as the scalar wave
operator on Minkowski space, for which the divisor is known to be —i, see [BaVaWul5,
§10.1]. For small 7, L is a small perturbation of this, and the lemma follows. (See also
[Val3, §2.7].) O

Since by equation (3.27), Ly — L € p'"CH°DiffZ(™R?), the normal operators as b-
differential operators on ™R* are the same, N(Lg) = N(L), hence the above results hold
for N (L) in place of L.

We next relate the relevant function spaces on ™M, ™R, We only need to consider
supported distributions near ™it C ™M. We drop m from the notation. If p; € C®(M)
denotes a defining function of it such that p, > 2 at %, let

U:={ps <1} C M.

Let My, C Diff{ (R%) be the C*°(R%)-module of b-differential operators with b-principal
symbol vanishing on PN*S+ 30 and define HZF (RY) to consist of all u € H; 1, (R*) for

30The b-conormal bundle "N*S* ¢ bT§+@ is the annihilator of the space of b-vector fields tangent to
ST. In the coordinates (2.5), My, is spanned by pd,, p0y, v0,, and spherical vector fields.
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which A; -+ Agu € Hgloc(@) forall 0 < ¢ <k, A; € My,. Supported distributions on a
compact set V C R4 are denoted Hgk(V)

Lemma 5.6. For a; € R, d > —1, and k € Ny, the map Blinom: U\ OM = B(U) \ OR*
mduces a continuous inclusion

p?++d—1/2pi+H]l;+d(U) <y png’k(ﬁ(U)), (5.6)

and conversely
ayt 174, ar+d—1/2 ay 7
PN (BU)) = ppt T HE(U). (5.7)

Thus, given the condition on supports, b-regularity near S is, apart from losses in
module regularity, the same as decay at .#+. See Figure 5.2. A version of the inclusion (5.7)
is (implicitly) a key ingredient of [BaVaWul6], see in particular §9.2 there.

FIGURE 5.2. The neighborhood U of it C M as well as its image in R*
under the blow-down map £.

Proof of Lemma 5.6. First consider (5.6). Dividing by p®t = pj*p%", it suffices to prove
this for ay = 0. Furthermore, elements of My, lift to b-differential operators on M; in
fact, Diff| (M) is generated, over C*°(M), by the lift of My, to M. Therefore, it suffices to
consider the case k£ = 0 and prove
d 1/2 :

PH{(U) < B(BU), d> 4. (5.8)
For d = 0, this is a consequence of the fact that p; times a b-density on M pushes forward
to a b-density on R, cf. (4.26). Next, note that V;,(R%) lifts to p; ' Vi,(M) and thus maps
PTHS o (M) — pf~ IHS ! (M); the Leibniz rule thus reduces the case d € N to the already

b,loc
established case d 0. For general d > 0, (5.8) follows by interpolation; we discuss

d € (—3,0] below.

For ( .7), we again only need to consider a4 = 0, k = 0, and prove

H{(B(U)) = by PLY(U) = pf LY (B(V)). (5.9)
For d = 0, this is trivial; for d = 1, integrating the l-dimensional Hardy inequality,
|]x_1uHL2(R+) S 2wy, v € CE(Ry), in fact gives HL(BU)) — zLE(B(U)), where
x is a defining function for 8(AU) within R%. In particular, f*z € C°°(M) vanishes at .+

and is hence a bounded multiple of p;, from which (5.9) follows. For general d € N, we use
the following generalization of the Hardy inequality: for u € C°(R),

|z | 2 = H/ / / )(tx) dt dty - - - dty da

L2
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1 S92 Sd

g// / 0D (1) o dt dty - - - dt da
0 0 0
2244

2d ! d

For real d > 0, (5.9) again follows by interpolation.

For d € (—3,0], we dualize (5.8) with respect to L}(B(U)) and thus need to show
HE(BU)) — p§_1/2ﬁ§(U), e = —d € [0,1/2). But this follows from (5.7), as in this
regularity range, supported and extendible Sobolev spaces are naturally isomorphic [Ta96,
§4.5]. Similarly, (5.9) for d € (—1,0] follows from (5.8) for d € [0, 3) by dualization. O

Returning to the proof of Theorem 5.1, we have already proved (1—x)u € X* where x =
X(p+) is identically 1 for py < % and vanishes for p, > 1. Consider yu € p;Oprgo(U),
a4 < by, which satisfies

1-0 by s
Lixu = fi:=xf + [Ln, XJu € p; " ~0p T HX(U),
where we use that [Lyp, x]u is supported away from i*. Let
a, =min(aq +1+by,by) <O,

and fix d € (-1,—1 —d/.), then L, — N(Lg) € pl_l_opfb*Hgo(M) - Diff3 (M) (see
Lemma 3.9) and Lemma 5.6 yield

N(Lo)xu =: fo € py*=0p" F(U) = o H™(B(U)). (5.10)

Shrinking U if necessary, we may assume that ¢ > 1 + r, in U. It then suffices to use
dilation-invariant operators on ™R?* to measure module regularity at ™S*. Indeed, for
m = 0 and thus r, = r (the discussion for general m being similar), recall that with
R = |X|, w = X/|X|, we can take 70;, (1 — R)JR, 0., and T70r as generators of My,; but
T0r = ¢(1 — R)Or with ¢ = 7/(1 — R) € [0,1] bounded. Write (5.10) using the Mellin
transform in 7 as

1 T (17
Xu=— T7L(0)"" f2(0) do,
27 Imo=—a
initially for « = —a; then f/E(O') is holomorphic in Im o > —a/, with values in H%>(B;C'?),

and in fact extends by continuity to

Falo) € L2 ({Imo = —a s (o) VLY (B ) (¥ ). (5.11)
By Lemmas 5.3 and 5.4, L(0)~ fy(0) is thus holomorphic in Imo > —a!, as well, with

values in H%1:°° extending by continuity to the space in (5.11) with d replaced by d + 1;
therefore yu € p“;HgH’OO(B(U)), SO YU € pI_Opff’Hﬁo(U) by Lemma 5.6, as we may choose
d arbitrarily close to —% — a/,. This improves the weight of u at ¢ by a/, — a; iterating

the argument gives yu € pl_oplr[-.[go(U).
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5.3. Asymptotics near .# T Ni". It remains to show that the precise asymptotics at & T
which we established away from 7 in §5.1 extend all the way up to i+, with the weight pbj
at i7. This is completely parallel to the arguments in §5.1: working near i, we now have
Lou € ooibobrbybe HEO;bO’be}*O’b“L, so with coordinates pr, p1 as in (4.47) (dropping
the superscript ‘o’),
P11 (p40p,. — p1dp, Uy € P Py HES

now, in py > 0 (and away from i), u$; has a leading term at £, plus a remainder
in p?’Hﬁo, while in p;y > 0, u{; = 7{u lies in pljoﬁo. Using Lemma 7.6 to integrate the
above equation for u{,, we conclude that u{; is the sum of a leading term in pgo pi* HX®(7T)
and a remainder in pgo pZ}I plf Hpe, as desired. Similarly, we obtain the desired asymptotic

behavior, uniformly up to it of u;; and then of ug. Therefore, u € X3bo:br bb+ completing
the proof of Theorem 5.1.

6. PROOF OF GLOBAL STABILITY

We now make Theorem 5.1 quantitative by keeping track of the number of derivatives
used and proving tame estimates, the crucial ingredient in Nash—Moser iteration. Fix the
mass m; for weights bo, by, b}, b4 as in Definitions 3.1 and 3.3, let

Bk — Xk;bo,bj,b},lur; BF — :yk;bo,b],b’l,lur ® Dk;bo’ DFkibo . — ngH]erl(E) & pgoHé(E)
Let us write |- |s, resp. || - ||s||, for the norm on B?, resp. B®. We recall X. Saint-Raymond’s
version [SaRa89] of the Nash-Moser inverse function theorem:

Theorem 6.1 (See [SaRa89]). Let ¢: B® — B> be a C? map, and assume that there erist
deN, e >0, and constants C1,Ca, (Cs)s>q such that for any h,u,v € B® with |h|3q < €,

(M) lls < Cs(L + |h|s+a) Vs >d, (6.1a)
¢ (h)ullaa < C1lulsa, (6.1b)
16" (h)(u,v)ll2a < Calul3q|vza- (6.1c)

Moreover, assume that for such h, there exists an operator ¥(h): B> — B satisfying

&' (h)Y(h)f = f and the tame estimate

() fls < Cs(Iflsra + [hlsvall fll2a), Vs =d, feB™. (6.2)

Then if |¢(0)|l2a < ¢, where ¢ > 0 is a constant depending on € and Cs for s < D, where
D = 16d? + 43d + 24, there exists h € B, |h|3q < €, such that ¢(h) = 0.

This uses a family of smoothing operators (Sp)p>1: B® — B satisfying the estimates
|Spv|s < C57t987t|v]t, s>t |v — Spv|s < C’s7t987t|v\t, s <t. (6.3)

Acting on standard Sobolev spaces H*(R™), the existence of such a family is proved in
[SaRa89, Appendix], and the extension to weighted b-Sobolev spaces on manifolds with
corners is straightforward: the arguments on manifolds with boundary given in [HiVal6b,
§11.2] generalize directly to the corner setting. For the spaces B° = X’° at hand then,
one writes h € B> as x1h + (1 — x1)h, with x; € C>*(M), j = 0,1,2, identically 1 in
a small neighborhood of .#*, and x;+1 = 1 on suppy;. We smooth out (1 — x1)h €

pgo p?op?: HP*(M) as usual and cut the result off using (1 — xo); since we are working away

from .# 7, the weight of p; plays no role here. (The proof of [HiVal6a, Lemma 5.9] shows
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that cutting off the smoothing of (1 — x1)h away from its support does not affect the
estimates (6.3).) Near .# " on the other hand, we have x1h = (x1ha), where we denote by
hq the components of h in the bundle splitting (2.19). The decaying components (3.4) as
well as the remainder terms hq 1, in (3.5)—(3.6) can then be smoothed out and cut off using
X2. To smooth out the leading terms, fix a collar neighborhood of .#; considering for

example x1ho1 = Xoh((ﬁ) + X1ho1,p, see (3.6), we smooth out h((ﬁ) in the weighted b-Sobolev

space pgo plf H®(F ), extend the result to the collar neighborhood, and cut off using xo;
similarly for the other components of h.

Given initial data (hg,h;) € D>, we want to apply Theorem 6.1 to the map

¢(h) = (P(h), (h,0,h)ls — (ho, h1)), (6.4)
with P given in (3.2). Note that the smallness of ¢(0) in particular requires P(0) =
p3Ric(gm) to be small. Now, P(0) is non-zero only in the region where we interpolate
between the mass m Schwarzschild metric and the Minkowski metric (both of which are
Ricci-flat!), i.e. on supp diy U supp d¢ in the notation of (2.9)—(2.10); thus in fact P(0) €

Ag’}?g’o. It is then easy to see that |[P(0)|y» < Cym for all k € N, which is the reason why

we need to assume the ADM mass m to be small to get global solvability.

For h € X* with |h|3 small, the tensor
9= gm + ph
is Lorentzian (by Sobolev embedding) and hence ¢(h) is defined; since P is a second order
(non-linear) differential operator with coefficients which are polynomials in g~! and up to
2 derivatives of g, and since h + (h,d,h)|s is continuous as a map X* — DF=3/2 for
k > 2, the estimate (6.1a) follows for d = 3. The estimate (6.1b) also holds for d = 3
and |h|3q < € small, since the first component of ¢'(h)u, namely Lpu, is a second order
linear differential operator acting on u, with coefficients involving at most 2 derivatives of
h; similarly for (6.1c).

The existence of the right inverse ¥ (u): B® — B is the content of Theorem 5.1;
we merely need to determine a value for d such that the tame estimate (6.2) holds. (As
stressed in the introduction, the mere existence of such a d is clear, since the estimates
on ¥ (u) are obtained using energy methods, integration along approximate characteristics,
and inversion of a linear, smooth coefficient, model operator in §4, §§5.1 and 5.3, and §5.2,
respectively.) Consider the first term on the right in (6.2): we need to quantify the loss

of derivatives of the solution v of Lyu = f, (u,0,u)|x = (ug, u1), relative to the regularity
k>0 of (f, (uo,ul)) € B,

Now, dropping the H, regularity part of Theorem 4.2, we obtain u € pgop?f pfjH]’;,
mU € pgo p?} pi*H]’;. The arguments near i N .# T in §5.1 first express u§; as the solution
of a transport equation (5.2), with the right hand side involving up to two derivatives of w;
since integration of this equation does not regain full b-derivatives, the leading terms (and
the remainder term) of u{; lie in H{f*Q, with the correct weight by at i® (and by at i°); next,
this couples into the transport equation (5.3) for u;;, again with up to 2 derivatives of u,
so integrating this yields leading and remainder terms of w11 in H{f_4; and similarly then

ug € pgop’}IH}’j*(3 near i° N .7+,
On the other hand, improving the b-weight at i by 1 + by, which we may take to
be arbitrarily close to 1 by taking by < 0 close to 0, uses the rewriting (5.10), which
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due to the second order nature of L, — N(Lg) involves an error term (subsumed into fo
there) with 2 derivatives on u. Passing to the blow-down using Lemma 5.6 loses at most 1
module derivative; inverting N (Lg) gains 1 b-derivative (which is used to recover the p;°
bound at .#), but no module derivatives, so passing back to the blow-up, we have lost at
most 3 b-derivatives. Thus, improving the weight at ™ from a, to by =~ 0 loses at most
dy := 1+ 3[ay] derivatives relative to H}.

These two pieces of information are combined near . Ni™ in §5.3, where we lose at
most 6 derivatives, just as in the discussion near i N.# ¥, relative to the less regular of the
two spaces H{;fﬁ and H]];_d* from above; we thus take d = 6 + max(6,d). If we use the
explicit background estimate, Theorem 4.11, so a4 = %, this gives d4 = 7 and therefore

d=13.

For this value of d, one may then verify the tame estimate (6.2) by going through the proofs
of Theorems 4.2 and 5.1 and proving tame estimates by exploiting Moser estimates; this is
analogous to the manner in which the microlocal estimates for smooth coefficient operators
in [Val3, §2], [HiValb, §2.1] were extended to estimates for rough coefficient operators in
[Hil6a, §§3-6], which were subsequently sharpened to tame estimates in [HiVal6a, §§3—4].
In the present setting, obtaining tame estimates is much simpler than in the references, as
the estimates in §§4-5 are based on standard energy estimates, so one can appeal directly
to the Moser estimates; or, in view of the fact that our energy estimates can be proved
using positive commutators (and are indeed phrased this way here), which also underlie the
tame estimates in these references, the arguments given there (using vector fields instead
of microlocal commutants) apply here as well. We omit the details, but we do point out
that it is key that the proofs as stated only use pointwise control of up to 1 derivative of
h (via causality considerations and deformation tensors, see e.g. the calculation (4.15) and
Lemma 4.5) in order to obtain the main positive terms in the commutator arguments; thus,
control of |h|4 suffices in this sense, that is, the constant in (4.3) for £k = 1 only depends on
|h|4. The proofs of higher b-regularity use commutation arguments, which do not affect the
principal part of Ly, as well as ellipticity considerations around (4.57) which only require
pointwise control of h itself; correspondingly, at no point do we need to use the smallness
of any higher regularity norms of h. (See the end of [H597, §6.4] for a related discussion.)

Next, we deal with a small technical complication stemming from the fact that for m # 0,
the closure of {t = 0}, on which in Theorem 1.1 we compare the initial data with those of
the Schwarzschild metric in its standard form, inside of ™R# is not a smooth hypersurface
when m # 0, the issue being smoothness at 9™R*; furthermore, our discussion of linear
Cauchy problems used "X # {t = 0} as the Cauchy surface. We resolve this issue by solving
the initial value problem for a short amount of time in the radial compactification R4, with
initial surface {t = 0} (whose closure is smooth in “R%), pushing the local solution forward
to R4, and then solving globally from there. Recall the function ¢, from (2.13), and the
notation (2.16). (Thus, %, is a rescaling of ¢, and °% = {%, = 0}.)

Lemma 6.2. Fiz N large, and let bg > 0, ¢ > 0. Suppose v,k € C®(R3; S2T*R3) are
vacuum initial data on R3, that is, solutions of the constraint equations (1.5), such that for
some m € R,

Fi=v = x(r)((1 = 22)"'dr® +12g) € pg™™ H®(R3; 5% *°T*R3) (6.5)
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and k € pg+b°H§°(@; S25°T*R3) satisfy
] 1 g s+ 6] vy < 0 (6.6
where & > 0 is a sufficiently small constant; here x = x(r) is a cutoff, x = 0 for r < 1,
x =1 forr > 2. Then, identifying R3 =% C 'M via R? 3 2 +— (0,2) € R*, there exists a
solution g of the Einstein vacuum equation Ric(g) = 0 in the neighborhood
U= (%) < 1}, (6.7)
attaining the data (y,k) at °% (that is, (1.4) holds) and satisfying the gauge condition
Y(g;9m) = 0; moreover, g = gm + ph, where h € pgngO(U;S2 seT*OR4) has norm
HthgoHéV+1(U) <e€.

Proof. Note that the metric g, is smooth on U C R%, as near i® it is given by the
Schwarzschild metric g;fl, see (1.3). Using the product decomposition R* = R; x R3, we
define a Lorentzian signature metric over the interior (X)° = {t = 0} by

g0 := (1= x(r)3)dt* —y € C*((°D)°; S*T"RY), (6.8)
whose pullback to % is equal to —y. We next find g; € C®(°%; S?T*R*) such that k =

Iy +1g,; denoting by N = (1 — x(r)22)~1/29, the future unit normal, this is equivalent, by
polarization, to

go((VRHT9 — V)X, N) = k(X,X) VX € T(°D)°;

Here, we view gy as a stationary metric near ¢ = 0, which due to its symmetry under time
reversal ¢ — —t has vanishing second fundamental form: gO(VggX ,N)=0. A calculation
in normal coordinates for gg shows that this is uniquely solved by

91(X, X) = —2(Nt) 'k(X, X) = —2(1 — x(r)22)/2k(X, X). (6.9)

It remains to specify ¢1(V,-) and ¢1(IV, N), which involves the gauge condition at ¢ = 0;
that is, for all V € T{tZO}R4, we require

—Y (903 9m) (V) = (Y(go + tg1; gm) — T(g0; gm)) (V)
= (Ggoq1)(V, V1) = (1 — x(r)Z2)"/2(Ggo 91)(V, N).

For V € T(°%)°, this determines (G401)(V, N) = ¢1(V, N). Lastly, if Ey, Es, E3 € T(°%)°
completes N to an orthonormal basis, this also determines (Gg,g1)(N, N) = $(g1(N,N) +
>_; 91(Ej, Ej)) and thus g1 (N, N).

The assumption on v gives
ho == pg (g0 — gm) € pi? HYO(O%; S 5Ty "RY). (6.11)

We claim that likewise

(6.10)

hy = py 21 € pi HEO(O%; STy ORY). (6.12)

We introduce the extra factor of pg since Po 19, is a smooth b-vector field on “R?* near °%
and transversal to it; that is, in (4.1), we can take
Ay = py - 0r.

Now the restriction of hy to S25°T 0% lies in pgoHﬁo , as follows from (6.9). (Recall that
s¢T 0% is spanned by coordinate vector fields on R3.) To prove (6.12), it thus suffices to
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prove that Y (go;gm)(V) € pg+b°H§° for V equal to 9; or a coordinate vector field on R?;
this however follows from (6.11) and the local coordinate expression (3.1) of T, as such a
vector field V is equal to pg times a b-vector field on R4,

This construction preserves smallness, i.e. we have ||hol| sy, 511 + [|P1l] 20 ,,x < C9 for
Py H, Py Hi,

some constant C'. We can then solve the quasilinear wave equation P(h) = 0 in the neighbor-
hood U of °%, e.g. using Nash-Moser iteration as explained above. (Since we are not solving
up to .# T where our arguments in §5 lose derivatives, one can use a simpler iteration scheme
here, see [Ta96, §16.1].) The constraint equations then imply that 9,Y (g + ph; gm) = 0
at Y%, see [HiVal6b, §2.1]; since T solves the wave equation (1.28), we have T = 0. O

To extend this to a global solution, we recall from Lemma 2.4 and the isomorphism (2.37)
that h pushes forward to an element of pgngo(U’), U = {|™ty| < 3}, and satisfies a
bound HthgOH{f“(U’) < Ce, with C a constant depending only on m. We can thus use
(ho,h1) = (h,0,h)|my, as Cauchy data for the equation P(h) = 0. Note that the gauge
condition Y(g) = 0, g = gm + ph, holds identically near ™¥; by uniqueness of solutions of
P(h) = 0 with Cauchy data (hg, h1), a global solution h will automatically satisfy Y(g) = 0,
as this holds near "3, and then globally by the argument given around equation (1.28).

Theorem 6.3. Fiz N large, bg > 0, ¢ >0, and 0 < n < min(%,bo). Then if m € R and
ho, h1 € ,ogngo(mZ) satisfy

[l 1ol po v+ 1Rall o gy <6,

where § > 0 is a small constant, then there exists a global solution h of
P(h) =0, (h,0,h)|ms = (ho, h1), (6.13)

that 1is,
Ric(g) = 6"Y(g9) =0, g = gm + ph,
which satisfies h € X°0brbrbe for qll weights by < V) < min(1,bg) and by < 0, and so
that moreover ||h|| yo:09,m.n/2,—n < €. If in addition Y (gm~+ ph; gm) = 0, 0, Y (gm + ph; gm) =0
at ™3, then g solves
Ric(g) =0
in the gauge Y(g) = 0.

As explained above, data for which the assumption in the second part of the theorem
holds arise from an application of Lemma 6.2. This assumption is equivalent to the state-
ment that the Riemannian metric and second fundamental form of ™ induced by a metric
gm + ph with (h,d,h)|ms; = (ho, h1) satisfy the constraint equations, and that the gauge
condition Y (h;gy,) = 0 holds pointwise at ™. These are assumptions only involving the
data (hg, h1); the vanishing of 9,Y(h)|myx, for the solution h of P(h) = 0 with these data
follows as in the proof of Lemma 6.2.

Proof of Theorem 6.3. This follows, with by < b} < min(%,bo) at first, for N = 2d = 26,
from Theorem 6.1 applied to the map in (6.4). The constant 6 > 0 depends in particular
on the constants Cy in (6.1a) for s < D = 3287; that is, § = 6(||h0”pb0HD+1 + ||h1Hpb0HD).

0 b 0 b
Repeating the arguments in §§5.1 and 5.3 once more shows that one can take by < b} <
min(1,bg); see also the proof of Theorem 7.1 below.
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We remark that & is in fact small in X3¢ = X39 but if one is interested in the size of
up to two derivatives (e.g. curvature) of h, control of its X' norm is sufficient by Sobolev
embedding. ([

Remark 6.4. In other words, using the notation of the proof and d > 13, N = 2d, D =
16d? + 43d + 24 = 3287, and fixing m and by, we can solve the initial value problem (6.13)
for data in the space 2 :=J, Z(C), where

HC) 1= {(ho, h): ho, by € pRHEE(™S), il + ol o s + Il o e < S(C),

ool po s + 1l oy < C -

An inspection of the proof of Theorem 6.1 in [SaRa89] shows that limg_,0 6(C) > 0, so Z in
particular contains all conormal data (hg, hy) for which |m|+ ||h()”pbOHD+1 + || ”pboHD < do,
0 b 0 b

where §p > 0 is a universal constant (i.e. depending only on m and by). Moreover, one
also has a continuity statement: for any choice of weights by, b},b; as in Theorem 6.3,
the solution h € A3%bo:brb1b+ of (6.13) depends continuously on (hg, hi) € 2, the latter
being equipped with the pgoH]? g pgoH{? topology.?! Indeed, to obtain continuity at
the Minkowski solution, note that the map ¢ in (6.4) depends parametrically on the data
(ho,h1) € 2, but the constants appearing in the estimates in [SaRa89] can be taken to
be uniform when (hg, hq) varies in 2(C) with C fixed. Continuity at other solutions is
similarly automatic, but the base point of the Nash—-Moser iteration (called ug in [SaRa89,
Lemma 1]) should then be given by the solution one is perturbing around.

The solution h of (6.13) in fact has a leading term at i T, as will follow from the arguments
in §7, see the discussion around (7.16); this precise information was not needed to close the
iteration scheme, hence we did not encode it in the spaces X°.

The conclusion in the form given in Theorem 1.1 can be obtained by combining Lemma 6.2
and Theorem 6.3: using the coordinate t;, on ™M, the initial surface % in Minkowski space
is given by t, = —2mpox(r)log(r — 2m). A diffeomorphism of ™R* which near ™Y is not
smooth but rather polyhomogeneous with index set &g, and which is the identity away
from ™¥, can be used to map {t, > —2mpox(r)log(r — 2m)} C ™M’ to ™M = {t;, > 0};
pushing the solution ¢ obtained from Lemma 6.2 and Theorem 6.3, which is defined on
t > 0, forward using this diffeomorphism produces the solution ¢ as in Theorem 1.1. (The
gauge condition satisfied by ¢ is the wave map condition with respect to the background
metric which is the pushforward of g¢,,.) We omit the proofs of future causal geodesic
completeness of (M, g), as one can essentially copy the arguments of Lindblad—Rodnianski
[LiR005, §16].

Remark 6.5. By Sobolev embedding, h obeys the pointwise bound
A < Cp(1+t+r) 1+ (re —t) )% V>0 (6.14)

and is small for fixed n > 0 if 6 = d(n) > 0 in the theorem is sufficiently small; here,
we measure the size of h using any fixed Riemannian inner product on the fibers of 5*S2,
equivalently, by measuring >, |h(Z;, Z;)|, where {Z;} = {0, 01, 0,2, 0,3} are coordinate
vector fields. The bound (6.14) also holds for all covariant derivatives of h along b-vector

31Hamilton [Ha82] shows that the data-to-solution map is in fact a tame smooth map D% 3 (hg, hy) —
h € Ao°bobrbT by (defined in the neighborhood Z of the origin of Dw;bo).
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fields on ™M. In particular, by Lemma 3.10, [g—g| < Cy(1+t+7)"*"7 5 > 0. The Riemann
curvature tensor also decays to 0 as t + r — oo, with the decay rate depending on the
component: this follows from an inspection of the expressions in §A.2. Note however that
the components in the frame (2.21) have no geometric meaning away from .. Geometric
and more precise decay statements were obtained by Klainerman—Nicolo [KINi03a].

Remark 6.6. If the ADM mass m of the initial data is large, there does not exist a
metric with the mass m Schwarzschild behavior near #+ but Minkowski-like far from
i®U.#* which is sufficiently close to being Ricci flat for an application of a small data non-
linear iteration scheme like Nash-Moser: this follows from work of Christodoulou [Ch09],
Klainerman—Rodnianski and Luk [KIRo12, KlLuRol14], An-Luk [AnLul4], and (for the
non-characteristic problem) Li—Yu [LiYul5]. On the other hand, for arbitrary m, but with-
out the smallness condition (1.6) on the data, one does obtain small data by restricting
to the complement of a sufficiently large ball. Working on a suitable submanifold of ™M,
defined near i N .Z* by py < €+ p? for 5 € (0,bp) and € > 0 sufficiently small, cf. (4.14),
our method of proof then ensures the existence of a vacuum solution on this submanifold;
in particular, the solution includes a piece of null infinity.

We can also solve towards the past: Lemma 6.2 produces a solution g of Einstein’s
equation in the gauge Y(g; gn) = 0 in a full neighborhood of {t = 0}, and we can then use
the time-reversed analogue of Theorem 6.3 for solving backwards in time, obtaining a global
solution ¢ on R*. Note here that by construction, the background metric g, is invariant
under the time reversal map ¢: t — —t on R%, hence the gauge conditions of the future and
past solutions match. To describe the behavior of g on a compact space, as illustrated in
Figure 1.1, let us denote by ,,R* the compactification defined like ”R% in §2.1 but with ¢
replaced by —t everywhere. Thus, ¢ induces diffeomorphisms ™R* = ,,R%; denote by S~
the image of ST. The identity map on R* induces an identification of the interiors of ™R*
and ,, R* which extends to be polyhomogeneous of class Aii’g on the maximal domain of
existence by a simple variant of Lemma 2.4. We then define the compact topological space

%@ to be the union of ™R?* and ,,R* quotiented out by this identification; this is thus a
manifold of class Ailog, and in fact of class C*° away from 0™R*N9,,R%, hence in particular
near S* as well as near ™3(™i*) and its image under ¢. Therefore,

"M = [T 5%, 5]

is a polyhomogeneous manifold, covered by the two smooth manifolds ™M’ and ,, M’ :=
[mR%;S7], and with interior naturally diffeomorphic to Rﬁx. We denote its boundary
hypersurfaces by .#* and i* in the obvious manner, see Figure 1.1, and i° is the closure of
the remaining part of the boundary. In view of the isomorphism (2.37), weighted b-Sobolev
spaces on ™M are well-defined. For future use, we also note that polyhomogeneity at i°
with index set &y is well-defined provided

&o + Eiog = &, (6.15)

as follows from (2.38); note that given any index set &), the index set & := &) + Elog
satisfies (6.15) (and is the smallest such index set which contains £J) since Eiog + Elog = Elog-
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It is useful to describe ' M as the union of three (overlapping) smooth manifolds, namely
"M M = ™M, and the set U defined in (6.7). We can then define the function space
003b0,br,b7,b+
Xglobal !
to consist of all distributions on R* which lie in pgo Hp° on U, and such that their restriction
as well as the restriction of their pullback by ¢ to ™M lie in X°0:bo:brbp.b+

Theorem 6.7. Given initial data v,k as in Lemma 6.2, there exists a global solution g of
the Finstein vacuum equation Ric(g) = 0, attaining the data v,k at {t = 0} and satisfying

003 bOabfzbl]a

the gauge condition Y(g), which is of the form g = gm + ph with h € X, alobal b+ for all
by < b} < by and by < 0.

7. POLYHOMOGENEITY

We state and prove a precise version of the polyhomogeneity statement, made in The-
orem 1.1, about the solution of the initial value problem which we constructed in §6. We
use the short hand notations (2.29) and (2.32).

Theorem 7.1. Let by > 0, and let £) C C x Ny be an index set with Im £ < —by. Suppose
v,k € C®(R3; S2T*R3) are initial data such that m € R, ¥, defined in (6.5), and k satisfy
the smallness condition (6.6), for N large and 6 > 0 small.>* Assume moreover that the
initial data are polyhomogeneous (namely, E§-smooth):

S1x 2k ¢ A5 (RB; 2T RS 7.1
Po s Py k€ A (R ). (7.1)

Let h denote the global solution of Ric(g) = 0, g = gm + ph, in M, satisfying the gauge
condition Y(g; gm) = 0. Then h is polyhomogeneous on M. More precisely, h is E-smooth,
E=(&,E1,E4):

E0,E1,E
he Ap" ",
with the refinements w{ h € Aiﬂfl’& and moh € Ai?l’g” * near I, where the index sets
are the smallest ones satisfying®>
E0DE) + g, E0Dj(E0—i)+i VjEN (7.2a)

t 10, with Elog defined in (2.33), while at It

& D EU(2E; — i) (7.2b)
ErD0U(&U((Er+ &)U (281 —1))), (7.2¢)
ErD0U&EU((Er + &) U (28r)), (7.2d)
ErojEr—i)+i VjeN, (7.2e)
and finally at iT,
£+ D (—i00)U (&4 — ) T—iT(E \ {(0,1)}). (7.2f)

32We can take N = 26 as in (the proof of) Theorem 6.3.
33We shall prove that such index sets indeed exist.
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At i°, we only need to capture the index set arising from non-linear terms in Einstein’s
equation since the background metric g,, solves p~3Ric(g,,) = 0 identically near i%; the
addition of the index set €0 arises when pushing the solution near {t = 0} C "R* forward

o ™M; see (6.15). We point out that the index sets we obtain are very likely to be
non-optimal due to our rather coarse analysis of non-linear interactions.

Ezample 7.2. For data which are Schwarzschildean modulo Schwartz functions, i.e. 58 =0,
the above gives & = () and

&= i3+, &=ovg, &=Uisi-n, &= U (-i5.20+3),
7€No jEN j€No
giving, schematically, leading terms m11h ~ log=! pr + prlog=* pr, 7§ h ~ 1 + prlog=? py,
moh ~ prlog=2 pr at #t, and h ~ 1+ pylog=tp, at it.

Example 7.3. Consider 58 = —i: this corresponds to initial data which have a full Taylor
expansion in 1/r at infinity, beginning with O(r~2) perturbations of the Schwarzschild
metric. In this case, we get many additional logarithmic terms from & = 58 + Elog =

Ujen(—ij,j — 1), namely
ér=U (=i, + D) +1). & =00 (~ij. 213 +5)).

J€Ng JEN
& =J (=4 35G35 +3)), &= {J (-5, 54(° + 5j + 10)),
JjEeN 7J€Np

so mi1h ~ logS! pr + pr log§6p1, mh ~ 1+ pjlog§4p1, moh ~ p110g§3p1 at Z T, and
h~14p;log=8p, atit.

Remark 7.4. Let us consider the index set 58 = —j again. As indicated above, the addition
of E{Og in (7.2a) is only due to an inconvenient choice of initial surface which produces loga-
rithmic terms when passing from ‘R?* (which the initial surface in Theorem 7.1 is a smooth
submanifold of) to ™R4. If instead one is given the ADM mass m and initial data (-, k) on
™3, with (7, k) close to the data induced by g,, on ™¥ (measured in pgo HY (my; §2seT*my)
for suitable V), then the index set at i® can be defined as in (7.2a) but without Elog- Cor-
respondingly, the index sets at the other boundary faces have fewer logarithms:

7j€Ny JeN
&= (=i,51-2), & = | (i1, 54(55 + 11)),
JEN j€Np

so m1h ~ log=t pr + prlog=f p;, mh ~ 1+ pr log=%pr, moh ~ prlog=3p; at £+, and
h o~ 1+ pplog=®p, at it. (The exponents in subsequent terms of the expansion are
smaller than in Example 7.3.)

The proof of Theorem 7.1 is straightforward but requires some bookkeeping: we will peel
off the polyhomogeneous expansion at the various boundary faces iteratively, writing the
non-linear equation P(h) = 0 as a linear equation plus error terms with better decay, much
like in §5. As a preparation, we prove a few lemmas for ODEs which were already used in

§5:
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Lemma 7.5. Let X :=[0,00),, u € p~*°H°(X), suppu C [0,1], and f := pD,u. Then:

(1) fepHP(X), a<0=>uc p“Hb (X);
(2) fep HP(X),a>0=ue A (X )+,ojH°°(X)'
(3) fe .Aphg( ), € any index set = u € Ag}fgo(X) if (0,0) ¢ &, then u € A‘gﬁgo( ).

Proof. This follows immediately from the characterization of b-Sobolev and polyhomoge-
neous spaces using the Mellin transform [Me96, §4]. Alternatively, one can explicitly con-
struct the unique solution of pD,u = f with support in p < 1: part (1) follows easily from
u = —zf f , while for part (2), u = —i fol f % +i [y f d—p” gives the decomposition into
constant and remainder term. The appearance of the extended union in (3) is due to the
fact that while pD,u = p*(log p)*, k € Ny, is solved to leading order by u = % p**(log p)
for z # 0, we need an extra logarithmic term for z = 0, as pr(k%rl(log p)ftla) = (log p)*a
plus lower order terms. O

Adding more dimensions is straightforward:

Lemma 7.6. Let X = [0,00),, % [0,00),, xR, U ={p1 <1,p2 <1} C X, p= pipa2,
and let £,& denote two index sets. Suppose u € p~*°Hp°(X) has support in U, and let
f=p1Dyu. Then:
(1) f€pipy HP(X), a1 # 0 = u € A2 (X) + pi* 3> H® (X);
& 0,& N
(2) f GAglplgfg( ), a1 #0 :;goiflphgf( ) + Aglph2g( ): e
) U kl .« U bl
(3) e AL (X) = ue A "7 (X); if (0,0) ¢ &, then u € A 77 (X).

Lemma 7.7. In the notation of Lemma 7.6, with v € p~*°Hp°(X) supported in p1 <1, let
f = (p1Dy, — p2Dp,)u. Let x = x(p1,p2) € C([0,1)?) denote a localizer, identically 1 in
a neighborhood of the corner p1 = po = 0. See Figure 7.1. Then:

(1) fe 01;p§2H°°( ), b2 > b1 = xu € pi' pi? H*(X); . .

(2) f €A (X)), Im2 # —by whenever (2,0) € & = xu € AF*(X) + Ayl (X)),

phg
E1,E E1UELE
(3) fe A (X) = xue A} J7(X).

P2
A

supp X
/

} > 01
1
FIGURE 7.1. Illustration of Lemma 7.7 which describes solutions of the

transport equation along the vector field —p10,, + p20,,; one integral curve
of this vector field is shown here.
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Pmof We drop the R} factor from the notation for brevity. For (1), write u(pi,p2) =
—1 fm f~ pl,th) and f = pllpng f € Hp°, then for 0 < e < b — by

*dpy dps
I, _// [T ) 4| 2022
pP1

P1 P2

dzg\1/2dt\*d
(s a2y
0 p1 1) t 101
<</ t2<b2b1€)dt>-/// t2€\f(x1,x2)|2@ﬂ@
- 0 t oJo Jo T2 t I

< C”pr?lngL%’

as desired; higher b-regularity follows by commuting p;D,, through the equation for u.

34
For the proof of (2), it suffices to consider a single term

fr = P (log p2)Fak(p1), (7.3)

with ay € pllHoo(Hl) supported in p; < 1. Let ugx = pi (log p2)*bi(p1), where by = by(p1)
solves

(p1Dp, — )bk = ay, (7.4)
and is supported in p; < 1, then the error term

foo1 = (p1Dpy — p2Dpy)ur — fr = (11 Dy, — 2) — (p2Dypy — 2))ug — fi
= p¥(log po) tax_1(p), ap_1 = ikby,

is one power of log ps better than fi. Rewriting equation (7.4) as p1.D,, (pfizbk) = pfizak €
p11+1msz (H1), we can use Lemma 7.5 to obtain by, € A% (H1) + pglﬂﬁo(Hl); therefore

uy € Aphg k)( )+A]ill’)}fgk (X). Proceeding iteratively, we next solve (p1D,, —p2Dp, )u—1 =
fr_1 to leading order, etc., reducing k£ by 1 at each step, and picking up one extra power

of log p1 at each stage by Lemma 7.5(3) (conjugated by p'*). We obtain u = Z?:o uj €
A(Zk ( )+Ab1,zk ( )'

phg b,phg
The proof of (3) proceeds in the same manner: if fi is of the form (7.3), now with

akEAphg( ) thenkaAgluz(Hl) SO'LLkEAgluz Zk)( )and Fo 1€AS1UZ (z,k— 1)(X)

E1U(z,k),(2,k) phe phe
o R (), O

Iterating as before gives u € A
Proof of Theorem 7.1. We shall first prove that if the Cauchy data (hg, h1) in the notation
of Theorem 6.3 are polyhomogeneous at 0™,

ho, b € A%, ("5, (75)

then the conclusion of Theorem 7.1 holds. Now, by Theorem 6.3, we have h € Xbo.br brbe
for all by < b}, < by and by < 0. Note that since the gauge condition Y(g) = 0 is satisfied

34A more conceptual proof, which does not rely on explicit integration of the vector field, uses a positive

_ by —ba . %) . _
commutator argument with the commutant a = x1(p1)x2(p2)p; *pz 2, x5 € CZ(]0,00)), x;(p) = 1 near 0,
and x; <0, i.e. the evaluation of 2Im((p1D,, — p2Dp, )u, a2u>le) in two different ways: once by using the
equation satisfied by u, and once by integrating by parts and using that (p19,, — p20,,)a has a constant

sign on supp a Nsuppu. See (4.11) for a similar argument.
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identically, h solves Ric(g) — S*T(g) = 0 for any choice of g*; this will be useful as it will
allow us to work with simpler normal operator models.

For now, consider h as a solution of P(h) = 0 for 1,72 > b} as in Theorem 4.2. We
write

1
0= P(h) = po + / Len(h)dt, po := P(0) € A%, (7.6)
0

(In fact, supppo N (i U £ T) = () since g, is the Schwarzschild metric near i® N .#T.)

;0

Let us first work near ¢ away from it Suppose that for some ¢ > by, we already have

l

h € Aghg b T+ pOpI Hb , moh € phgb + popl Hﬁo, with the exponents referring to the
behavior at ¥ and .#, respectively. Then

1
Loh = —po + /0 (Lo — L) (1) dt: (7.7)

now Lo—Lyy, € (Ai%;%_1_0+p8+1’_1_0H§°)Diff% by an inspection of the proof of Lemma 3.8,
and it respects the improved behavior of myh, so we find

280—i,—1—0 c+1,—1-0 280—1,—14b,—0 c+1,—14b7-0 ;100
L()h S Aphgb + ,00 Hb 5 7T()L0h S Aphgb + po Hb .

Denote by & = {(z,7) € &: Imz > —c} the (finite) set of exponents already captured,
and let & :={(z,j) € &: —c—1<Imz < —c}. Let

Rj:= ][] (poDp —2), R=RyoRy.
(ZJC)Egj

Let N(Lo) € p; ' DiffZ(M) denote the normal operator of Lo at i, i.e. freezing the coef-
ficients of Ly at pp = 0 for a fixed choice of a collar neighborhood [0, €),, x i® of i%; thus
N(Lg) commutes with pg0,,, and Ly — N(Lg) € popl_lDiff%. Then Rh € pSpI_OHﬁo solves
the equation N(Lg)(Rh) = f, where

1+b,-0

fi=—=R(Lo— N(Lo))h+ RLoh € pi™' p; """ H°, mof € pi'p; Hy®,

due to 2y — i C &; the Cauchy data of Rh lie in p8+1H§° due to the polyhomogeneity of

ho and h;. The background estimate near i® being sharp with regards to the Weight at i°,
see Propositions 4.3 and 4.7, this gives Rh € chpI O[>, moRh € pcﬂpl; Hye. Thus,

he Aghg O et Ol b € Ai%,g b T P(C)ﬂpl; Hgo. Iterating this gives

h e Aphgb, moh € Aphg b near . (7.8)

Following the structure of the argument in §5, we next prove the polyhomogeneity at
ST\ (LT Nit) using Lemmas 7.6 and 7.7. We now take 7; = 72 = 0 in the definition of
P and its linearization. Thus, let us work near i N .#*, and assume that we already have

80 ) ]
phg

&0,c7—0 £0.€ E0,¢1—0 S0.E E0,61—0
+ A wShe ADE p ASe0 e ABVET 4 B0 (7.)

7T0h 6 .A phg phg

for some 0 < ¢; < ¢} < ¢+ 1. Using (7.6) and the structure of Ly, = L?h + Eth, we find

1
76 Lyn$ h = —7§ypo — /0 (7§1 LinmS 1 + 75 Linmoh + 751 Lipmin h) dt. (7.10)
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The proof of Lemma 3.8, condition (7.2¢), and the fact that & D & D &) D & — i give

Ly € (C + AZ 1 4 A% 410 Diff}, (7.11)

c 10 —1/p00 Eo—i,&r Eo—1i,cr—0 crl
T Lo € pp (C™ + Ay + A p - )Diffy,

and 7§, LY 711 = 0. Multiplying (7.10) by pr, grouping function spaces in the order of the
summands in the integrand above, and simplifying using 26y —i C & and 0 C &;, this gives

& S —i £0,E1+E] £
P10p, (P0Dpy — P10, )51k € ASEEITEITE 4 A0 4 ATOREITE 4 g

50,61 0,
phg,b
the first space is contained in the second. In view of condition (7.2¢) (note that the index
sets in parentheses there lie in Im z < 0), we obtain
& )
m§ih € ADE 4 Apggcfb : (7.12)

which improves on the a priori weight of the remainder term at .# . Next,

1
muLmih = —miipo — / (m11Lipmiih + i1 Lipmoh 4 w11 Ly s ) di.
0

Lemma 3.8 and the membership (7.12) imply

0 -1 Eo—i,E Eo—i,er =0\l
7-[-11‘[11,%7-‘-0 € Pr (COO + "‘tp%gZ f+ ‘Ap(})lg,leI )Dlﬁba

Eo—i,&r Eo—i,c; =0\l
T Lty € pp (A" + Ay Diff,

with p; times the latter having a leading order term at .#*, cf. the discussion of (5.3);
together with (7.11) and (7.12), and using & C &1, one finds
&0,2E E0,E1+E; £0,28 o,
plapj (poapo - plaﬂl)wllh S Ap%g = + Ap(})lgl ! + ‘Ap(})ng ! + Ap(})lgCIb ’
with the first space again contained in the second. Condition (7.2d) then gives

mih € ASET 4 A (7.13)

Lastly then, we can improve on the asymptotics of moh at .# T by writing
l ~
7T0L87T0h = —Topo — / (WOLthWOh + WoLthﬂflh -+ ’/T()Lt}ﬂrnh) dt;
0

now moLY, ¢, = 0 = moLY 711 and € C & C &r, so, since y1 = 2 = 0,

80701+1 -0

)01801 (pOapo - p[apl)ﬂ'oh € Agog& Z + 'Aphg, )

phg
but condition (7.2b) and Lemma 7.7 imply

E0.E}) | 1E0:c)+1-0.
pr0p;moh € At + ALy s

an application of Lemma 7.6 gives the same membership for myh, since we already know that
moh has no leading term at .# . This establishes (7.9) for (cz,¢}) replaced by (¢}, ¢} + 1),
and we can iterate the procedure to establish the full polyhomogeneity away from i*. Near
ZTNit, the arguments are completely analogous, except we only have conormal regularity
pUFHE® at it. Thus,

£0,E} by

£0.81,b E0,E1,b
phg,phg b Wflh e AVt miih € AT

moh € A phg,ph, b’ phg,phg,b"
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Next, we use this information to obtain an expansion at i, similarly to the arguments
around (5.10). We shall use the linearization Ly, still defined using 73 = 72 = 0, and
its normal operator at it C M—instead of its normal operator at the boundary of R,
which obviates the need to relate (partially) polyhomogeneous function spaces on R4 and
M. Namely, fix a collar neighborhood

U:=[0,1),, xit, it ={ZeR®: |Z| <1},

of i* in M, and denote by W, _(U) C V(U) the Lie subalgebra of vector fields tangent to
it but with no condition at #*. Then for v = 75 = 0, we have Lo € Diffa_(U) (the
algebra generated by V}, _), acting on sections of 3*S?|;;: by Lemma 3.8, Lo € Diff%) (M) —
Diff%_(M ) certainly has smooth coefficients, and the same is true for L) = —2p=20p0; =
Opy (p10p; — p+0,p, ) + DiffE (M), pr = 1 —|Z|2. Furthermore, by Lemmas 2.4 and 3.9 as well
as equation (3.28), the normal operator N(Lg) of Ly at i* can be identified with N (L),
so that in fact N(Lo) = Oy, — 2, defined using the expressions (4.61) and (4.64), acting
component-wise on the fibers of the trivial bundle R'?, where we use Lemma 2.5 to identify
B*S?|;+ =2 08*(S25T*0R%)|o;+ = R0 by means of coordinate differentials. By [Val3, §4]
and the module regularity proved in [HaVal3|,

Lo(o)™': H5~VR(iT) o HoF() (7.14)

is meromorphic for ¢ € C with s > % — Im o, where the bar refers to extendibility at

0it = {|Z| = 1}, while the parameter k € Ny measures the amount of regularity under the
C>(iT)-module Diff}(i+); that is, H*F(iT) consists of H® functions on i* which remain
in H* under application of any operator in Difff(i*). (This is analogous to Lemma 5.3,
except in the present de Sitter setting we work on high regularity spaces rather than the
low regularity spaces in the Minkowski setting, see [Val3, §5].) Strictly speaking, the
references only apply to the operator obtained from Ly by smooth extension across di™ to
an operator on a slightly larger space than i*; but (7.14) follows simply by using extension
and restriction operators, and the choice of extensions is irrelevant since EB(O') is principally
a wave operator beyond 9i*.

The divisor R of Ly, see Remark 5.5, is then
R = —i; (7.15)

indeed, using the relation between asymptotics on global de Sitter space and resonances on
static de Sitter space as in [HiVal6b, Appendix C], this follows from [ValO, Theorem 1.1]
for n = 4, A = 2, with the logarithmic terms absent: the indicial roots are 1 and 2, see
[ValO, Lemma 4.13], and in the notation of (4.64), the difference of O, ; and its indicial
operator —(79;)2+370; is 72A; vanishes quadratically in 7 as a b-operator on [0, 00)7 x R3,
so for the formal solution u = 7v_ + #2v, constructed in [Val0, Lemma 4.13], the Taylor
series of vy only contain even powers of 7; 1 — 2Ny and 2 — 2Ng being disjoint, there are
no integer coincidences which would cause logarithmic terms.

Now, consider again (7.7): if x = x(p+) denotes a localizer near 7", identically 1 near i*

and vanishing near i, we have

1
Lo(xh) = —xpo + [Lo, xJ + /0 (Lo — Lu)(h) dt. (7.16)
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We have ypg € Am ¢ With the exponents now referring to the behavior at .% T and it,
respectively. Suppose we already have

ELE+

AE},ch < h AEI75+ A517C+ h A5175+ A5170+ 717
phg T Aphgbr 117 € T Aphgpy TN E + Aphg,b- (7.17)

moh € A phg phe
Using that &1 — i is closed under non-linear operations, i.e. JEr—i)+iC &y, jEN, we
find Ly — Ly, € Aphg
Ly, near £ Nit from Lemma 3.8 as above, and noting that supp[Lo, x]h C supp dy is
disjoint from i*, we deduce that

Er+i Er+i,28 Erticy+l &
+ AGED g S RS AT et g = g\ {(0,1),

pS:HH{)’O near (i7)°; see also Lemma 3.9. Using the structure of

L()A

where the weight of the remainder term is as stated since all (z,k) € &4 except for (0,0)
have Imz < 0. (Here 5~1 D& +iD &} + i allows for a non-logarithmic leading term at
7t capturing the worst component of elements of the space Y*° in Definition 3.3, and
moreover captures all non-linear terms of (7.16).) Replacing Ly by N(Lg) causes another

error term, (Lo — N(Lg))(xh) € Aigi,&—i +A‘§fgi;c++l, o

phg

Erti e Foti
N(Lo)(ch) € Ay A 4 A,

Mellin transforming in p; at Imo = —b.., inverting Lo(c) on Ai’h'g'r (i*) using Lemma 7.8
below, taking the inverse Mellin transform, and shifting the contour to Imo = —cy — 1, we
obtain

0,RT0 0U&,(RUED) T(E4—i) 0U&r,cq+1

The index set at i1 is contained in €4 by condition (7.2f), so this improves over (7.17) by the
weight 1 in the remainder term; the index sets at .# " on the other hand are automatically
the ones stated (but now with the improvement at i), as the presence of a non-zero term
in the expansion of m11h, say, at £ corresponding to some element in (OUg’ 1)\ &1, would
contradict our a priori knowledge (7.17). Iterating this gives the polyhomogeneity at i*, as
claimed.

Next, let us show that the smallest sets satisfying conditions (7.2a)—(7.2f) are indeed index
sets: we need to verify condition (2.28b). For &y, this is clear since, letting 5’8 =&Y+ E{og,

Eo=&UJiE —i)+i
jEN
and Im gg < 0; note that this gives Im& < 0. At I, we take & = Uyen &7 1, likewise for
Er and &1, where we recursively define 8}70 =&10=2Er0=10 and

El k1 = E0 U281 — 1), (7.18a)

ng_,_l =0U (50 U((ng + 5},k) U (251,k — Z))), (7.18b)

Erpg1 = (OU&)U((&J@ +EU (zélyk))) U GErg — ) +1). (7.18¢)
jeN

It easy to see by induction that
Im & 4, Im (€7 \ (0,0)), Im (& \ (0,1)) < —¢, ¢:=min(1,—supIm &) > 0,



STABILITY OF MINKOWSKI SPACE 87

for all k. Therefore, to compute the index sets in any fixed half space Imz > —N, it
suffices to restrict to j < N + 1 in (7.18c), which implies that the truncated sets &7 ; =
& N{Imz > —N} etc. are finite for all k; we must show that &7 ;. etc. are independent
of k for sufficiently large k (depending on N). Note then:

= & jy1,v only depends on &y v_1)/25

— &rky1;n only depends on & . (n—1)/25 kN —c, and g},k;N;
= Erk+1;n only depends on Er gN—c, Erp;(N—1)/2: E1k;Ns and 7 .y

Combining these, one finds that, a forteriori, 5}’k+1;N, g]ka;N, and &7 j41.n only depend
on the sets 5}7,%[;]\,70, ELk—t:N—cs El k—tmax(N—c,(N—1)/2), £ = 0,1, 2. Therefore, for N > 0,
S}Jﬂ y etc. are independent of k for k > 3N/c, as desired. An analogous argument implies
that £, is an index set as well.

Finally, we show that the polyhomogeneity of the initial data v and &k in the sense
of (7.1) implies that the solution in the neighborhood U, see (6.7), of {t = 0} constructed
in Lemma 6.2 is indeed polyhomogeneous at i N U with index set &; this however follows
from the same arguments used to prove (7.8) (and we can in fact ignore the weight at
#7T). In fact, working on R4, we have h € Aphg( ) where & = U,en, (5(&Y — i) + 1)
does not include the extra logarithmic terms from &)og; this relies on the observation that
the gauged Cauchy data constructed in the proof of Lemma 6.2, see (6.11)—(6.12), lie in

Apélg(OE) which follows from an inspection of the proof. Upon pushing the local solution
h in U forward to ™R?%, we incur the logarithmic terms encoded in the index set &g,
see (6.15); this proves (7.5). O

To complete the proof, we need to study the action of f/\o(a)_l on polyhomogeneous

spaces. Let £ be an index set, and let ¢ € R be such that Im z < —¢ for all (z,0) € &; then

ASH(iT) C py VHER (i) € B2Hes009 (i),

Lemma 7.8. The opemtor E\O( )=t in (7.14) extends from Imo > —c as a meromorphic

operator family Lo(o) ™! Agﬁg( ) — Agﬁgg( ) with divisor contained in RUE.

Proof. Given f € p; 1.Aphg( i), we explicitly construct a formal solution uppg of Z/Lg(a)uphg =

f at @i, which we then correct using the inverse (7.14) acting on C*°(it). The construction
uses that

Lo(c) = —D,,(p1D,, — o) + Diffg(i"), (7.19)

which follows from the form (4.48) of the dual metric of p~2g,,. Thus, consider (z,k) € &,
fo € C®(9i) = C>(S?), and suppose f = p*~'(log pr)* fx € p; 1Aphg (i*) near p; = 0. If
z # 0, we then have

Lo(0)(—=""(z = o) "o (log p1)* fi) = Fone
:(Z—O') 1 zz l(logpj)k lfk 1+(Z—O') 1f/
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for some fr_1 € C®(di"), and with [’ € 71Apzhg) z( ) holomorphic in 0. We can

iteratively solve away the first term, obtaining u; € C>(9i") such that

k k

Lo(o) (Z(z — o) pff (log pr)" u) —I=2 (=),
§=0 §=0

where f’ € p; 1Apzhg = ( 1) is holomorphic in ¢ and has improved asymptotics at di+. If

on the other hand z = 0, f = p; '(log pr)* fi. € p; 1.Aphg (it), we need an extra log p; term:

there exist u; € C*°(di™) such that

k
<o>(Za‘j*(logm)’f*l‘J'Uj) = ZG‘J i Ao A,

=0 =

(Note that there is no term on the left with (log p)°.) In general, given f € p; I.Aphg(' )
we can use these arguments and asymptotic summation to construct, locally in o, a family
Uphg € Agfgg (i*), depending meromorphically on ¢ with divisor contained in &, such that

ZB(U)Uphg = f 6-’4phg(' ):Coo(i+)

is meromorphic with divisor contained in &; applying f/\o(a)_l to this gives an element of
C®(it) = Aphg(' ), and

U= E(o)_lf = Uphg — EB(U)_IJH

solves L (0)u = f, with divisor contained in RUE due to the second term. O

The global solution g = ¢,, + ph constructed on the space "M in Theorem 6.7 is poly-
homogeneous as well; the only place where this is not immediate is i, where however
polyhomogeneity is well-defined under the assumption (6.15) on the mdex set &y, which is
already satisfied for the set & constructed in Theorem 7.1. Thus, the index sets of h at
i, 7,40 T, and it are £, &1, &, &1, and &£, respectively, likewise for the refined
asymptotics of 7§, h and moh near #*.

8. BONDI MASS AND THE MASS LOSS FORMULA

We shall first use a different characterization of the Bondi mass than the one outlined
in §1.3: the Bondi mass can be calculated from the leading lower order terms of the metric
g in a so-called Bondi-Sachs coordinate system in §8.2; in order to define these coordi-
nates, we first need to study a special class of null-geodesics in §8.1, namely those which
asymptotically look like outgoing radial null-geodesics in the Schwarzschild spacetime. For
simplicity, we work with the infinite regularity solutions of Theorem 1.7, and we only con-
trol the Bondi-Sachs coordinates in a small neighborhood of (.#7)°, as this is all that is
needed for deriving the mass loss formula. More precise estimates, including up to £+ Ni™,
of this coordinate system, and a precise description of future-directed null-geodesics and
other aspects of the geometry near (null) infinity will be discussed elsewhere.
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8.1. Asymptotically radial null-geodesics. Suppose ¢ = g, + ph, h € Xo0ibo;br byt
solves Ric(g) = 0 in the gauge Y(g;gm) = 0, where the weights are as in Definition 3.1;
by an inspection of the expressions in §A.2; the gauge condition implies improved decay of
certain (sums and derivatives of) components of the metric perturbation h, for instance,
T(g)o = 0 implies

1—\80 c mr—2 + H?;2+b0’2+b1’2+b+. (8.1)

We wish to study null-geodesics near (.#1)°. Introducing coordinates v* on TR* by writing
tangent vectors as v*0,u, the geodesic vector field H € V(TR?) takes the form

H = v"0uu + FZ‘)\U”“U’\&JH.
As usual, we will use 2° =t +r,, 2! =t —r,, and local coordinates 22, 23 on S?. Consider
first the case that h = 0, so g is the Schwarzschild spacetime near .#*. Radial null-
geodesics then have constant 2! and z°, b = 2,3, while v%(s) = #%(s) satisfies the ODE
00 = —mr(s)72(v9)?, so i¥ = —mr~2(2°)2. We then use:

Lemma 8.1. We have r = r, —2mlogr, + (’)(r*_l logry), and ry = %(:UO — :zl).

Proof. Let ro(r) = 7« and
i1 (ri) = 1 — 2mlog(ry(ry) — 2m) = 7. — 2mlog(ry) — 2mlog(l — 2mr; '),
then |rpr1 — x| < Or;Yrr —rr—1], k > 1, and the fact that |r; —ro| = O(logr,) show that
r—r1 = O(r;'logr,), hence evaluation of r; gives the result. O
Often, we will only need the consequence that
r=12%+ O(log 2°) (8.2)

for bounded !, suggesting the approximation i = —4m(z%)~2(2%)? for the geodesic equa-
tion. Solving this by Picard iteration with initial guess J(s) = s gives

29(s) = s+ 4mlogs, id(s) =1+ 4ms™ 1,

and subsequent iterations give O(s~!logs), resp. O(s 2logs), corrections to a:(l)(s), resp.

i{(s). Let us generalize such radial null-geodesics:

Proposition 8.2. Fiz a point p € (F1)° with coordinates x*(p) =: z'. Then there exists a
future-directed null-geodesic v: [0,00) — M, v(s) = (z#(s)) such that y(s) — p in M and
2%(s) — 2% = o(s7!) as s — cc.

Proof. We will normalize v by requiring that x°(s) ~ s + 4mlogs, and we shall seek
v: [s0,00) = M for so > 0 large. For weights ag, a1, ¢¢ > 0, to be specified in (8.10) below,
we will solve the geodesic equation on the level of the velocity v# = z* using a suitable
Picard iteration scheme on the Banach space

X = {v=(v"): [s0,00) = RY: 90 € gm0l pl e 7l 2 e 8717¢CO}, (8.3)
where we use the notation

0(s) :=00(s) — (1 4+ 4ms™1),
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and where C = C%([sp, 00)) is equipped with the sup norm; as the norm on X, we then
take the maximum of the weighted C° norms of v° and v*, i = 1,2, 3. For v € X, we define
its integral x = I(v), @#(s) = v¥(s), by

29(s) == 3+4mlogs—/ 2 (u) du,
zi(s) == T —/ vi(u)du, i=1,2,3.

As the first iterate, we take
'178(3), fué(s) =0, x:=1(v);

note that ||vg||x = 0. For k£ > 0 and v; € X, |lvg]|x < €, with € > 0 small and determined
later, and xp = I(vg), let then

UZ_H(S) = vl (00) + / F’;A|xk(u)vg(u)v,i‘(u) du, zpi1:=I(vk1)- (8.5)
Note that for some fixed constant C' > 0,
120(s) — s —4mlogs| < Ces™ @, |zi(s) — T < Ces™ @, |ai(s) — 7| < Ces ™%, (8.6)

which in particular allows us to estimate the Christoffel symbols appearing in (8.5). For
w =0, writing 74 (s) = r(xk(s)), and using the improved decay of various Christoffel symbols
due to the gauge condition Y (g) = 0, we have

Upq(s) = —dms™! +/ mry(u) =2 du +/ O (u™2701) du

—I—/ Og(u2logu-1-eu 7)) + Oy (u™t -1 eu 17%) (8.7)

+ Oy (utlogu - u™271) + O, (u™Hogu - eu 17 - eu17%)

+ Oy (u - u™2724) du,

with the integrals on the first line coming from terms with (x, A) = (0,0) and using (8.1),
while the remaining terms come from (x, A) = (0, 1), (0,5), (1,1), (1,b), (a,b), in this order,
using that v) = 1+ O(e), v} = O(es™17%1), and v¥ = O(es™17%). As for the notation,
the constants implicit in the Oy, notation depend only on sy and are non-increasing with
S0, as they come from the size of the Christoffel symbols along z(s), which satisfies (8.6).
By (8.2) and (8.6), we have

/ mr(u) 2 du = / Am(u? 4+ O(u3logu)) du = 4ms~t + O(s 2log s).

Therefore, we have

0, 1(5)] Sso 80 des 2 log s +es 1 2s T2

~

which, for fixed iy < by, is bounded by es™172 for large sg, provided oy < min(¢, 1 +
ai1,2¢ — 1); in particular, this requires ¢ > % We obtain estimates on vj_(s), i = 1,2,3,
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in a similar manner. Namely,

oo
Ver1(s) = / O (W27 12) 4 O (w2 1 e ) + Oy (w70 -1 eu™ %)
S

+ Oso (ufl . 62167272041) + Oso (ufl . euflfal . 6u717¢) (8'8)

+ Oy (u - Eu™272%) du
I Sso S / e e
satisfies |vp,,(s)] Ssp 571707 + €25 2¢ hence lupiq(s)| < es™!17% provided the weights

satisfy o < min(b}, 2¢¢ — 1), and provided we increase s, if necessary. Lastly, using the
precise form of the leading term of I'f,,

o (s) = / Ou (™) + O (w1 - eu 1)

+ (w1 ew 1L O (w1 eufl*"“)) (8.9)

+ Oy (u 2 Eu™ 229y L O, (ut - eu™ O e TR

+ O (1- Eu272) qu.
Integrating the first term in the second line gives a term bounded from above by

=g < B (> ),
so we get v, (s)] < es™17% provided ¢ < 1+ b} (which is consistent with ¢ > 1). Thus,
the iteration (8.5) maps the e-ball in X into itself, provided we fix weights
ap € (0,br), a1 € (0,b]), ¢ € (5,1+b7), (8.10)

and choose so large; recall here that 0 < by < o}, < 1. Moreover, taking so larger if
necessary, v — U1 is a contraction; such an estimate is only non-obvious for the difference
of quadratic terms in (8.5) involving the component v°; however, the corresponding terms
come with a small prefactor due to the smallness of the relevant Christoffel symbols.

Let now v := limp_,00 v € X denote the limiting curve in TR*, and integrate it by
setting v := I(v). Then v satisfies the integral equation (8.5) with v and vy replaced by
v, so v is C!, hence v is a C? geodesic. In particular, |v(s)|§(s) is constant, hence equal to
its limit as s — oo, which is

O(s 17112 + 0115717 + O(s71 - 1+ 5717
+O(sogs-s7272) £ O(1- 57170 . 5718 L O(s% - s72724) = o(1), s — 0.
This proves that « is a null-geodesic with the desired properties. ([l
Note that v is the unique null-geodesic, up to translation of the affine parameter, tending
to p and such that 4 € X. (Indeed, for any such ~, the velocity 4 has small norm in a space

defined like X but with weights decreased by a small amount and for sy large enough. The
uniqueness then follows from the fixed point theorem.)

Definition 8.3. For p € (#7)°, denote by ~,(s) the maximal null-geodesic such that
v =4, and = = 7, satisfy equation (8.4) and v € X, with X given in (8.3). We call v, a
radial null-geodesic.

We record the following stronger regularity property of the geodesics ,:
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Lemma 8.4. In the notation of Proposition 8.2, let v,(s) = (z*(s)) denote a radial null-
geodesic; then we have

#(s) € 57 ([s0,00)), T'(s) € 87 ([s0,00)), T%(s) € S~%([s0,00)),

for all weights ag < by, an < by, ¢¢ < 1+ b}, where 3%(s) = 2°(s) — (s + 4mlogs),
Ti(s) := x'(s) — @', and where S™([s,00)) denotes symbols of order m, i.e. functions
u € C®([s0,00)) such that for any k € Ny, |[ul¥)(s)] < Cp(s)™*.

Proof. Certainly x*(s) is smooth as a geodesic in a spacetime with smooth metric tensor.
The symbolic estimates for 9¥z#(s) for k = 0, 1 follow immediately from the construction of
7p in the proof of Proposition 8.2; for £ = 2, they follow from the proof as well, specifically,
from the decay of the integrands in (8.7)—(8.9). Assuming that for some k > 1 we have
18220(s)] < (52079, 0 < j < k + 1, with ag as in (8.10), likewise for %, i = 1,2,3, we have

ok (927°) = 9%i0 — 972 (s + 4mlog s) = 9%i0 + 0% (4ms—?),

and 0Fi% = —ﬁf(f‘gyfb“fb”). Note that 2%(s) = O(s), 9s2°(s) = O(1), and F%2%(s) =
O(s7177) for 2 < j < k + 1. Expanding the derivatives using the Leibniz and chain rules
thus gives the following types of terms: for (u,v) = (0,0) and all derivatives falling on the
Christoffel symbol,

(05T00)(2°)* = 05 (4ms™ + O(s7*7"))(1 4+ O(s™ " log s))
= O (4ms™2) + O(sH270n)

by the inductive hypothesis and the b-regularity of the remainder term in Fgo; the remaining
(1, v) = (0,0) terms are, with ¢; + lo + ¢35 = k and /3 > 0,

(00T0) (0/249) (0024%) = O(s~241 - 57142 . 5l5) = O(s+-9).

Estimating the terms with (u, v) # (0,0) does not require special care: derivatives falling on
## are estimated using the inductive hypothesis (thus every derivative gives an extra power
of decay in s); a derivative falling on T}, on the other hand either produces (JoI'), )",
which gains an order of decay due to the Christoffel symbol (recall that 9y is a b-derivative
which vanishes at #1), or (aif‘gy)jci, which gains an order of decay due to i = O(s71).
Thus, the bound 9%(9?7°) = O(s~#72720) follows from the same arithmetic of weights as
used after (8.7).

The arguments for the other components Z* are completely analogous, and in fact simpler
as no terms need to be handled separately. This finishes the inductive step, and thus the
proof of the lemma. O

We further note that for any compact subset K € (.#1)°, there exists a uniform value
sp € R such that the null-geodesics v,, p € K, are defined on [sg, 00); since moreover ~,
arises, via v, = I(9p) as in (8.4), from the Banach fixed point theorem for a smooth (in p)
contraction, Lemma 8.4 holds smoothly in the parameter p, that is, making the dependence
on p explicit as a subscript, we have Z)(s) € C*°(K; S~ ([so, 00))) etc.

Consider now the union of radial null-geodesics tending to the points of particular S?
sections of #*. Concretely, for fixed z! € R, denote

Sty :={pest:at(p)=7z"}, Cpn:= U Yp((s0,00)), (8.11)
peS(z!)
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where sg is chosen sufficiently large, which will always be assumed from now on. See Fig-
ure 8.1. Thus, on the Schwarzschild spacetime, Cz1 is the part of the null hypersurface

z! = 2! on which z° > 5.

Cj 1

FIGURE 8.1. The outgoing light cone Cj: limiting to the sphere S(z') C
(#1)°. Also shown are a number of radial null-geodesics.

Lemma 8.5. For 7' € R, the set Cy1 is a smooth null hypersurface near . +. More

generally, let I' € R be a precompact open interval, then there exists a function u such that
w—al = e pt PHR(M); Cpo={u=3'}, z'el (8.12)

Proof. With coordinates 2%, a = 2,3, on S%, write y(z!;s, 2%, 23) := Yzt 52,2%)(8). First, we
5262,1‘3’

®(z'; 20, 22, 2%) = (2 — dmlogz® 4+ ®°, 2% + 2 17 + &%) =: (8°, B2, ), (8.13)
depending parametrically on z' € I', and with PO ¢ S0, d* € S~% for weights as
in (8.10) (with the symbolic behavior in z"), such that the map

5(x", 2", 2%, 2%) == (2" B(z'; 20, 27, 2%))

satisfies z' 0 § = 2%, i = 0,2,3. To do this, recall that, putting v* := x* o v, we have
70— (s+4mlogs) =70 € S~ 4l — gzl = F1 € S~ and 4* — 2% =: 7 € S™%, so after
some simplifications, our task becomes choosing ®* such that

3" = 4mlog(1 — 4m(z”) " (logz® + 8%)) —3°(zL; @), @ = —F(z'; D); (8.14)

shall prove that there exists a coordinate change of R0 x R

this can be solved, first with ®° € (20)~®C? etc. using the fixed point theorem, and then
in symbol spaces using the smoothness of ®° (which follows from the implicit function

theorem) and an iterative argument.

Let us drop ¥, 2, 23 from the notation. The desired function u is then defined implicitly

by uod = z'. Writing 2'(6(z!)) =: 2! + f, where f € S~ by Lemma 8.4, we see that ¢ is
one to one for large 2°, as 2! + f(z!) = y' + f(y') implies 0 > |z! — gt| — C(2%) 71|zt — 71|,
so z' = ¢! if 20 is large. Writing v = ! + @, we thus need to solve
@' +u)+ f@t+u) =3' = u=-fE'+7),

which by another application of the fixed point theorem has a solution w € S~“!. Lastly,
note that the vector fields d,:, i = 2,3,4, and 2°9,0 span V,(M) near (£ 7)° in view of
pr = 1/2°, hence S~ C p%' O H® near (.#1)°. Since we can take oy arbitrarily close to
b} by (8.10), the lemma follows. O
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The function u is uniquely defined by (8.12); thus, Lemma 8.5 shows the existence of a
neighborhood

(£ cUcM (8.15)
and a function u € z! + pl;/I_OHgCiOC(U*) such that C;x NUT = {u = 2!} for all 2! € R.

Remark 8.6. The weight in (8.12) is consistent with the choice of the domain (4.14) whose
boundary component U? is spacelike, see (4.15).

Since |Vu|?> = 0 by construction, the vector field Vu consists of null-generators of its
level sets C,; more precisely, we have Vv, Vu = 0, so restricted to the image of a radial
null-geodesic v, C Cy, we have (Vu)|, () = ¢p¥p(s) for some constant c,. Taking the inner
product with d; and using the form (3.14) of g yields 1 + O(s~"170) = (3 +0(s7h), so
letting s — oo gives ¢, = 2 and thus

(Vu)ly,(s) = 29p(s)-

We can then extract more information using r = %s + O(log s) and gg1 = % + 257 (hoy —
m) + O(s ?log s): Lemma 8.4 then gives 2(¥,(s), 1) = 1+ 45~ hgy + O(s71720), so

Ot — 2r thoy € py T OHES. (8.16)

8.2. Bondi—Sachs coordinates; proof of the mass loss formula. The function « has
non-vanishing differential everywhere on C;1 when z° is large; we will use it one coordinate
of a Bondi-Sachs coordinate system (u, 7, 22, #3), where the coordinates #* and 2%, a = 2, 3,
are geometrically defined and constructed below; with respect to such a coordinate system,
the metric takes the form

G = Guu du® + 2gy; du dr — F2qab(d%“ -y du)(d:%b — Ut du)

for some guu, Gus, Gab, and U ¢ and quantities of geometric or physical interest such as the
Bondi mass and the gravitational energy flux can be calculated in terms of certain lower
order terms of these metric coefficients [BoBuMe62, MaWil6]. We begin by defining 7.
Introduce a projection 7: Ut — S? by

7['(’)/(5179)(8)) = 9, 0 c SZ,

which is well-defined due to Lemma 8.5; in fact, in the notation of its proof, using local
coordinates z%, a = 2,3, on S?, we have

m(z% 2t 2% 2%) = (@2t +u; 20, 22, 23))uza 3, (8.17)
which in particular gives
m(2, 2t 2%, 2%) — (22, 23) € S, (8.18)

The map 7 defines a fibration of every C,,; these fibrations have natural sections, as we
proceed to explain invariantly. Let N := kerm, denote the subbundle (smooth in M°)
consisting of vectors tangent to the fibers of 7: this is the bundle of null generators of the
null hypersurfaces C,,, and therefore N 1 T'C,. This implies that the spacetime metric g
restricts to an element

l9] € S*(TCu/N)".
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On the other hand, the pull-back 7*¢ induces a Riemannian metric [7*¢] on TC, /N, i.e. an
isomorphism TCy/N — (T'Cy/N)*, hence [7*¢] [g] € End(T'Cy/N) is well-defined. We
then define the area radius 7 by the formula

7= det([w*g]fl[g]), 7> 0.

Lemma 8.7. We have r —r € pI;I_OHgo and Oof = 5 —mr~! + p}+b1_0H§° near (S 1)°.

Proof. 1t suffices to prove the first claim. We start by finding representatives in T'C;, of a
basis of T'C,,/N by considering the vector fields
Vo= faO1 + 04y, a=2,3, (8.19)

with f, to be determined. Working over the image of a fixed geodesic 7, : [sg,00) = M, we
use ¥, = (1 + O(s7 1)) + O(s71791)0; + 3, O(s717%)9, and the form of g to calculate

90 Va) = (5 + O(s7)) (L +O(s71)) fu + O(s);

demanding this to vanish determines f, = O(s'~#). Since ¢¢ < 1 + b, is arbitrary, we
conclude that

9(Vas Vo) = =12 flap + Thyp + O(r~110), (8.20)
while the observation (8.18) implies that m.(V,) € 8, + C%dy, C? = O(s~%), hence
(1) (Var, Vi) = g + O(s~1701740). (8.21)

Therefore,
e det(l _ T_l(gbchal;)a,c:ZS + O(S_l_b/1+0)) _ 7”4(1 ey thh + O(S—l—b’l—i-O))’

which is equal to 74(1+O(s~170110)) due to the decay of t h at .# T coming from the mem-
bership h € X°bobrbrbt - j e ultimately from the gauge condition. Taking fourth roots,
carrying symbolic behavior in s through the argument, and noting that these calculations
depend smoothly on the parameter p € (#)° completes the proof. ([

Corollary 8.8. Define the punctured neighborhood Ut := U*’\(ﬂ‘*‘)o of (F71)°, see (8.15).
Then if U+.is a sufficiently small neighborhood, (u,7,7): UT — R x R x S? is a coordinate
system on U™ .

Proof. This follows from Lemma 8.7 and the asymptotics of v and 7 in (8.12) and (8.18). O
Choosing local coordinates z® on S? and letting % := 2% o = 2% + p}+b1_0H§°, we can
introduce the Bondi—Sachs coordinates

(u, 7, &2, &%) (8.22)

L simplify in this coordinate system since, by

on U; the metric g and its dual G = g~
construction,

G(du,du) =0, G(du,dz®) = (Vu)(z*) =0. (8.23)
Furthermore, using (8.16) and Lemma 8.7,

G(du,di) =1+ py " Hee,
3+b,—0

- (8.24)
G(di®, di’) = —i#2¢" — #73h® + pj HE®,
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where the leading term in the first expression comes from g% (9;u)(9p7). In order to calcu-
late G(dr,dr) to the same level of precision, we need to sharpen Lemma 8.7.

Lemma 8.9. Near (#1)°, we have

O = —3 4+ (m+ 3(hiy — 2ho1) + rdohiy — LV Vph®)r =t + pi 0O me,

Note that in (8.20), we already control g(V,,V,) modulo terms more than two orders
beyond the leading term, which suffices for present purposes. On the other hand, the
remainder term in (8.21) is not precise enough.

Proof of Lemma 8.9. Put A := [7*¢]~'[r~?g] € End(T'Cy/N), so (#/r)! = det A, and

Lemma 8.7 gives A% = 62 — rtha? + p}+b}_0H§O and (detA) —1 € p}+b}_OH§°. Sup-

pose now that
O1(det A) = 72+ o(r™2), (8.25)
then 81 ((# —r)/r) = X(det A)=3/49; (det A) = 172+ o(r=2), so expanding the left hand
side as r~1(O7 + % —mr~1) + o(r~2) implies that
i =—35+ r~Hm + Th) + o(r™1) (8.26)
Our calculations will imply that the o(r~!) remainder is of size O(r~!=%7+9) but we shall
stick to o(r~1) etc. for brevity. Trivializing TC,,/N locally using the frame {V,: a = 2,3},
with V, defined in (8.19), A becomes a 2 x 2 matrix-valued function. We can thus use
the formula 0;(det A) = (det A)tr(A~19;A4), so it suffices to determine the function p in
tr(A71014) = r~2p + o(r=2). One contribution comes from differentiating [r~2g], which
by (8.20) and Y(g); = 0 yields
tr([r=2g) ' on[r?g)) = (=g — R+ OO (@1 (r hy) + OO
= —T_la]_ t/i‘ h, - T_2ha581haj) + O(T_2) (827)
= 27"_2(h11 — 2h01) — 27“_2Y7dhlg + 47'_180h11 + 0(7"_2).
The remaining contribution to tr(A~18;A) is —tr([r*¢]~'01[7*¢]) (using the cyclicity of the

trace). Let us work near a point zy € R*, and suppose 22, 2> are normal coordinates on S?
centered at the point m(zp). Then

(O1(7*$) (Vas Vo)) |0 = D1 ((fea © ) (V) (1:V5) ) |20
= edlr(z0) (01 (1 Va) ) (Vo) 4 fledle(zg) (5 Va) (D1 (m:V5) ).
Now (m.V,)¢ = ¢ 4+ O(r~1=%+9) whose derivative along  is of size O(r~1=%10) so
(7 ) (Va, Vo) = 01 (V) + acOr (mV3)C + 0o(r™?)  at 2. (8.28)

Let us first calculate the contribution to this coming from the term 9, in V,. By (8.17) and
recalling the form of the map ® from (8.13) as well as its defining relation (8.14), we have

A1 (74:04)" = 0,0, (2" + U; 2°, 22, 2°) (8.29)
= —alc()a’ib(xl + ;2 — 4mlog 2° + &)0, 2+ &)2, >+ 53); .
—1-b7+0) 50 dropping ®2 and
, so replacing the second argument

now 7?, its z°-derivatives (c = 2,3), and ®P are of size O((z%)
@3 gives an o(r—2) error; likewise, 9,07° = O(r—2-t110)

by 2V gives another o(r—2) error.
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To analyze this further, we need to digress: consider the 1-parameter family w(s;e) :=
V(@ +en?,23)(8) of null-geodesics, with 22, 23 fixed, and let

Y (s) = 0cw(s;0) = 01Y(g1 22 23 (5)

denote the Jacobi field along v(s) := w(s;0). The asymptotics proved in Proposition 8.2
give the a priori information

Y(S) _ O(S—bI—FO)aO + (1 + O(s‘b'1+0))81 + Z O(S_l_b/1+0)ac,

, { , (8.30)
.Y (s) = O(s 1 0)gy + O(s 11109, + >~ O(s7 271100

We shall determine the component Y (s)? by solving the Jacobi equation

(V5V5Y (s) + R(Y,4)7)" = 0. (8.31)
Heuristically, it suffices to calculate this modulo o(s~*) errors, as the second integral of
such error terms (integrating from infinity) is o(s~2); we will verify this heuristic in the
course of our calculations. Using 4 = 1+ O(s71), 41 = O(s~17brt0) 3¢ = O(s727b1+0),

the a priori information (8.30), and the expressions for the curvature tensor in (A.7), one
finds

(R(Y.4)%)" = RO\ A5 = =RP01(1°)°Y " = RP00a(1°)*Y* + o(s ™).
Now, using the gauge condition Y(g)p = 0 and the expressions for Christoffel symbols
given in (A.3), one finds that in fact Rbgp, = o(s~3), rendering the second term size o(s~%).
Let us calculate RPo1 = 9oT%; — 01Ty, + Fglfgu - Fgof‘zl more accurately than in (A.7).
In the third term, the only contribution which is not o(r=*) comes from u = 2,3, giving
—ir_?’@lhob + %T_A‘thm; the fourth term is o(r~*). For the second term, we use

T8 = ¢™To00 + 9"T100 + 6™ Tao0 = (s ™) + o(s ™) — (r~28pho" — 5773 hoo),

exploiting Y(g)o = 0. In view of the leading order vanishing of ho® and hgy at .#+,
we have 81I‘80 = —r729y(01he®) + %7“_3Y7b81h00 + o(s7%); now O1ho® can be rewritten,
using Y(g), = 0, in terms of ho1, hj,, and hyj; since these have (size 1) leading terms at
7, subsequent differentiation along 9y only produces non-trivial terms (i.e. not of size
o(r~*)) when acting on the r-weights. On the other hand, d1hgo = —1r tho1 + o(r~!) from
Y(g)o = 0. Arguing similarly for the computation of 9I'};, one ultimately finds that all
non-trivial terms cancel, so
Rbo(n = 0(?”_4).

Thus, the curvature term of the Jacobi equation (8.31) is of size o(s~*) simply. Regarding
the first term of (8.31), the information (8.30) and a brief calculation give (V;Y)? =
O(s170r10) (V5Y)! = O(s~17Y10) ) and, using r~! = 2571 + O(s 2 log ),

(V5Y)" = 0,Y? + 044y
=9,Y" + syl — 2$*3Y7dhw + 4s*3h16 + 0(373),
with non-trivial contributions only from (u, A) = (0,1), (0,¢). In particular, VY satisfies

the same rough asymptotics as d5Y in (8.30). Since differentiation of hb and Ry along ¥
gains a weight s'T7 due to these components having a leading term, this and (8.31) imply

o(s7) = (V4 V:Y)! = 05(VsY)? + 571V V) + o(s™)
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= 02V + 25710,V + 45 1Y gk — 85 hyl + o(s7Y)

= 5 2(05(s%05Y") — 2is 2 + o(s7?)),
where

f= lim (4h,® — 2¥ 4h%9)
5—00
is the value of this combination of metric coefficients at y(oc0) € £ . Since lims_, o0 s20,Y? =
0 due to (8.30), we find 9sY? = —2is™3 + o(s™3) and thus
Y =is™? + o(s7?) (8.32)

since lim,_,oo Y? = 0.

Returning to the expression (8.29), dropping @ gives an O(r~27%%0) error term by
Lemma 8.5; we thus conclude that

81(77*8a)b = —alaafyb(a:l;xo,mQ,m?’) +o(r?) = (—Wahlg—l— %Wavdhw)rfz—l—o(r’z). (8.33)

We have another term in (8.28) coming from the term f,0; in V;; but f, and its derivative
along z! being of size O(r~*110) (see the proof of Lemma 8.7), it suffices to show that

(m:01)¢ = O(r=2) in order to conclude that 0y (m.(f.01))¢ = o(r—2) is a lower order term.

But we can simplify (m.01)¢| (40 21 42 23) = 019¢ = —nFe(xt; 20 22 23) + o(r72) = O(r~2)

(using (8.32)) in the same manner as we simplified (8.29).
Finally then, plugging (8.33) into (8.28), and adding the result to (8.27) yields (8.25) for

p=2(h1y — 2ho1) + 4rdoha — YaVeh®,
which by (8.26) proves the lemma. O

We can also compute 012° = 9;m® modulo o(r~2), as this is given by the component Y

of the Jacobi vector field of the proof of Lemma 8.9, so 914> = (hy? — %Wdh?’”z)r*2 +o(r72).
In summary, we have shown that

du = o(r™")dz" + (1+2r "hot + o(r™))dz' + ) o(1)da",
di = (3 —mr~' +o(r71))da’
+ (=3 + (m+ (k11 — 2ho1) + rdoh11 — %WaVbhaB)T_l +o(r™))det  (8.34)
+ Zc o(1)dx",
di® = o(r~2)da® + ((h® = 3¥ah™)r=2 4+ o(r~2))da’ + da® + Zc o(r~1)dz®,

where the remainders are in fact more precise: o(r—*) can be replaced by p];+b’ _OHgo near

(#71)°, so a forteriori by O(r=*=%1+9), We can now supplement (8.23)—(8.24) by
G(d#, di) = =1 + 2mr~' 4 20phy; — 2r7 'V, Voh® + pi PP OH®,

L b b Ly g bdy.—2 , 2460 oo (8.35)

G(dr,dz’) = (h’ — 3V ah")r—> + p; Hpe.

(Note that in the first line, the logarithmically divergent terms hi; from g% (9p7)? and
g1 (0,7)? cancel.) Let us summarize the calculations (8.23)—(8.24) and (8.35):
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Proposition 8.10. In the Bondi—Sachs coordinates (8.22), the dual metric G = g~! is
G =2(1 4 o(F1))8u05 — (1 = 2m~" = 20phy + 37 VaVoh®™ + o(#~1)) 02
— (g R 4 0(F7)) (Dz0 + (Ua ™2 + 0(F72))05) (B3 + (Up ™2 + 0(72))85),
where U, = —%hm + %Vchc—u—;. The metric g itself takes the form
g = (1=2mi~" = 200h1s + L+ VaYoh® + o(# 1)) du? + 2(1 + o(# 1)) du di
— 72 (Jab — 7 LRy 4+ 0(F7 1)) (di® — (U2 + o(+2))du) (dz® — (U2 + o(#~2))du).

The o(#~*) remainders can be replaced by p];+bI_OH§° = O(r=F=b140) near (F)°. Fur-
thermore, the coordinate vector fields satisfy

By = (1= (h11 + 2rdohiy — AV Y5h™)r~ " + o(r 1)) 8
+ (1 = 2ho1r t + o(r~ 1)) + (—h1* + %thai’)r_g + O(T_Q))aaa
O = (24 4mr— + o(r~1))dy + o(r~1)0; + ZC o(r=?)0k,
Oza = 0(1)0p + 0(1)01 + 04 + ZC o(r~ ).

(8.36)

Proof. The statement (8.36) on the dual basis of (8.34) follows by matrix inversion. O

Remark 8.11. For comparison, the Bondi—Sachs coordinates on Schwarzschild are simply

w=z', # = r, and spherical coordinates £% = z%, and the metric takes the form

(g5) "t = 20,0y — (1 —2mi™ 102 —#2¢,  go = (1 — 2ma~)du® + 2du dri — 7.

Remark 8.12. Near (£7)° and relative to the smooth structure on M, the conformally
rescaled metric 7~2¢ is singular as an incomplete metric at #*: indeed, 20y is a non-
zero multiple of 9,, by (2.24), and r?g(r?dy, r?dy) = rhoo = O(p;HbI). On the other hand,
changing the smooth structure of M near (.#1)° by declaring (7!, u, #2, #3) to be a smooth
coordinate system, so pr := 7! is a defining function of .#%, we have #72g € CLbr=0,
Indeed, 95, = —720; is null, while (#72¢)(05,,0,) = 1 + (’)([’)}”Lbl_o) is 10170 and the
remaining metric coefficients have at least this amount of regularity. Since by Theorem 6.3
one can take by arbitrarily close to min(bg, 1), this gives

729 € CH*  Va < min(b, 1), (8.37)

relative to the new smooth structure. As mentioned in §1.3, smoothness properties of
conformal compactifications have been widely discussed, in particular from the point of view
of asymptotic simplicity [Pe65] and the decay properties of the curvature tensor [KINi03b,
Ch02]; see also [Fr04] for further references. Whether or not there exists a compactification
with smooth (or at least highly regular) .# ", meaning that the conformally rescaled metric
extends smoothly and non-degenerately across .# ", is a delicate issue as it depends very
sensitively on the precise choice of the conformal factor and the smooth structure near .#
and requires the identification of at least two ‘incommensurable’ geometric quantities.®’
The observation (8.37) shows that this cannot happen prior to the next-to-leading order
terms in the expansion of g at # . Work by Christodoulou [Ch02] on the other hand (see

35An example would be given by two metric components which have non-zero leading terms of size p;r
and prlog pr, respectively, though we reiterate that this depends on the choice of pr, i.e. of the smooth
structure.
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also [Dal2, §1.5.3]) strongly suggests that the conformal compactification is generically at
most of class C1@.

Therefore, the mass aspect, see [MaWil6, Equation (37)], is —% times the ! coefficient
of the du? component,

Ma(p) = m + (rdoh1r — 1V aVoh™)lp, p e (F7)°, (8.38)
and the Bondi mass Mg(u) := fs(u) My dg is

1
MB(U) =m-+ — / rdoh11 dg, u € R, (8.39)
4 S(u)

where we exploited that the divergence in the expression (8.38) integrates to zero.

Remark 8.13. Recall that near (#1)°, hy; can be written as hgll) log pr + hg(i) + ,OI}IH]‘;O,

with hgjl €C®((F1)°), j =0,1, s0 rdohi1| s+ = —%hgll) picks out the logarithmic term.
Theorem 8.14. The Bondi mass (8.39) satisfies the mass loss formula

d 1 9 o )
—MB(U) — —% /;(u) ’N’g dg, Nab — auhab|j+. (840)

du
Moreover, Mg(—o0) = m is the ADM mass of the initial data, while Mg(+o00) = 0.

Proof. The formula (8.40) is an immediate consequence of Lemma 3.5, and Mp(—o00) =m
follows from the fact that rdghi; € pgopl_): H*(7) decays to 0 as pg — 0.

Let us fix the boundary defining function p to be equal to r~! near .# ¥, and fix p; and
p+ near it so that prpy = p. In order to prove Mp(+o00) = 0, we analyze the equation
satisfied by h* := h|;+. The existence of this leading term was proved in §7 starting
with equation (7.16) (in which we do not use constraint damping); that is, restricting
that equation to i+ and using the Mellin-transformed normal operators EB(O) = L(0) €
p; 'Difff(i*) at frequency 0 (so this is the action of Ly on 2-tensors smooth down to i+
followed by restriction to i), we have

L(0)h™ = —P(0)];+ = —p Ric(gm)|;+- (8.41)
Moreover, hﬁ has a logarithmic leading order term h; log pr,
ht — hflog pr (dxt)? € C® (i) + pY HE* (iT) € HY2Hor=0(+), (8.42)
where hz_ = (p]aplhn)bﬁ = (—2T80h11)8i+, SO by Lemma 3.5
1
B (0) = / NP dat, 6 € oit.
4 /510

Since L(0) is injective on HY2H0(; ), the tensor h™ on it is uniquely determined by
equation (8.41) and the ‘boundary condition’ (8.42). The strategy is to evaluate hdylai+
in two ways: one the one hand, this quantity vanishes identically by construction of the
metric h in our DeTurck gauge; on the other hand, we will show that solving (8.41) directly
yields the relation

1 . 1

+ _ 1 - +
E it h00|8i+ dg = §m — ZC’ C = E it h( dg, (843)
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which thus gives the desired conclusion. For the proof of (8.43), let us split h™ = b/ + b,
where

W e (it STTARY), 1" € hflog pr (dx')? + HY/?H0(iT; ST R¥) (8.44)

are the unique solutions with these properties solving the equations
L(0)W = —P(0)];+, (8.45)
L(0)h" = 0; (8.46)

the first equation is uniquely solvable in this regularity class due to P(0) € C°((i1)°). We
first solve (8.46) with the boundary condition (8.44), to the extent that we can determine
0o- This can be viewed as a calculation of (a part of) the ‘scattering matrix’ of the operator

E(O) on iT,% which can be done explicitly: writing points in i using spherical coordinates
as Z=RwcR3 R=r/tc|0,1], w € S?, we have

—2L(0) = R"2DpR*(1 — R?)Dg + R2A, + 2,

acting component-wise on the coordinate trivialization of *T*R%; see (4.61) and (4.64).
Since L(0) is SO(3)-invariant, it suffices to calculate ugo|g;+ for the solution of L(0)u = 0
for which u — clog pr(dazt)? € HY/?10(it); recall that ¢ was defined in (8.43). Now at it,

(do)? = dt* — 2 dt d; + £F du; da, (8.47)

where we write x; for the Euclidean coordinates on R?; observe then that if Y, € C*°(S?),
AYy = £(¢ + 1)y, denotes a spherical harmonic, then L(0)(u¢(R)Yy(w)) = 0 holds for

ug=R7! log(;—g), up = R72 log(;—g) +2R7Y, wuy = %log(;—g) +3R72%; (8.48)

Taylor expanding at R = 0, one sees that R~ ‘uy is a smooth function of R?, hence u,Y; is
smooth there; moreover, u, satisfies the boundary condition u, —log py = O(1), pr = 1—R,
at R =1. (In fact, uy is the unique solution with these two properties.) Using (8.47), we

find B = ¢+ (uo dt* — 2uy dt dr + uy dr?), so writing dt = (dz® + dz') /2, dr = %dazi, and
r = (dz® — dz')/2 near 9it within it, this gives

holor+ = ¢+ (Fuo — 3ur + Jug) |, = —%c (8.49)

In order to solve (8.45), note first that the map h € C*(i*) — p~3Ric(g+ ph)|;+ is linear
in h,%” hence writing g, =: g + ph, we have

P(0)];+ = p~3(Ric(g + ph) — Ric(g))|;+ = L(0)h — p~>630,Ggph;
for later use, we note that in a neighborhood of 9i™ in i,

h=—2mp lr71(dt* + dr?) = —m((dz")? + (dz')?). (8.50)

36Trivializing the 2-tensor bundle using coordinate differentials on R*, a conjugated version of E(O) acts
component-wise as the Laplacian of exact hyperbolic space with spectral parameter at the bottom of the
spectrum; see Equations (4.1), (6.11), and (6.13) in [HiZw17].

37This reflects the fact that the normal operator of the linearization of the Einstein equation around a
metric of the form g + ph only depends on the leading order part of the metric at it, i.e. on g; see also
Lemma 3.9.
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This suggests writing ph’ as the sum of —ph (to solve away the first term) and a pure gauge
term, so we make the ansatz

W= —h+p 6w+, (8.51)
where w € C((i%)°; T R?) solves™
p204Gyb,w =0 = p 264Gy (ph) € C(i*;* T/ RY), (8.52)

and ' is a solution of E(O)ﬁ’ = 0 which we will use to solve away any singular terms. We
compute 9 to leading order at 9i* by using r25g7“_1dt2 =0 and 1"2527“_1(17“2 =dr, so

¥ = —2mdr = —mda’ + mdz' + p; C=@").

Write p‘z(SgchS; = pDp~!, where D = p‘359G95;p is % times the wave operator on 1-forms

on Minkowski space, re-weighted to a b-operator as usual, then equation (8.52) becomes
D(i)(pr'w) = pr 0. (8.53)

Now p7 ' € H=1/27020(;+) while D(i)~*: H*12°(it) — H*>*°(iT) for s > —1, see (7.14).
Therefore, the solution satisfies w € py H/270°°(i+) C p; O H®(i*) (by Sobolev embedding
for functions of the single variable pr), which using the expression (A.1) implies that w does
not contribute to hjg|g;+, namely (p~'65w)oolgi+ = (p~ owo)|gi+ = 0, where we used that
p~ 10y is a multiple of the b-vector ﬁeldip 10,, at 9i.

A careful inspection of the solution of (8.53) shows that p_lé’;w is not smooth. Indeed,

in the bundle splitting (2.17), we have D € —2p~28y0; + Diff2(°M), as follows from the
same calculations as (B.13), so using the expression (7.19) for o = 4, we have D(i) €
0y (p10,; +1)+Difff (i), which implies that® w = p;log pr 9|g;+ + H?/2702°(iT); therefore

(pflégw)m = (—d2" dz' + (dz")*)mlog pr € H3/27020(3%),

Therefore, while we do have L(0)(—h + p~1ésw) = —P(0), we need to correct the 2-tensor
on the left by adding the unique solution 1 of
L)W =0, ' € (dz°da' — (dzh)?)mlog pr + HY/?HO(it)

in order for b’ in (8.51) to have regularity above H'/2(iT), which, as remarked before,
implies that it is the unique smooth solution of (8.45), as desired. Arguing similarly as

around (8.47)—(8.48) and noting that dz° dx! = dt? — dr? = dt? — %dml dxj, the solution

is given by h' = m(ug dt? — ug dr?) — m(ug di2 — 2uy dt dr + ug dr?). This gives
hiolai+ = 1m(uo — ug)|gir —m - (—3) = —3m.

In view of (8.50), we conclude that
hooloi = —hoolai+ + hoolair = gm.

38We abuse notation by using the same expression for a b-operator on R% and its Mellin-transformed
normal operator at 0 frequency. Note that for a b-differential operator A, the operator A\(O) is independent
of the choice of boundary defining function (unlike g(a) for o # 0); see also [Va08, p. 762].

39Using the arguments employed in the proof of Lemma 7.8, we in fact have pflw € logprC=(it) +
C>(it), as follows by constructing a formal solution at p; = 0, starting with the stated leading order term,

and solving away the remaining smooth error using @(i)*l.
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Adding this to (8.49) establishes the relation (8.43), and proves Mp(+00) = 0. O

Remark 8.15. The construction of Bondi-Sachs coordinates is local near (.#1)° and as such
did not rely on h being small. (The proof of Proposition 8.2 used the smallness of certain
Christoffel symbols in a weighted CY space, but this is automatic for any fixed h € X if
one relaxes the weights at .# T by a little and works in a sufficiently small neighborhood
of #*1.) Likewise, the proof of Theorem 8.14 did not require i to be small. Therefore,
we in fact conclude that any (large) solution of the Einstein vacuum equation of the form
g = gm + ph (with m possibly large), h € X**—which requires it to decay to the Minkowski
solution at iT—satisfies the conclusions of Theorem 8.14.

Let us connect this to the alternative definition of the Bondi mass and the mass loss
formula used in §1.3, which has a more geometric flavor [Ch91]. To describe this, consider
an outgoing null cone C, and let

Sui =CuyN{r=r}

denote the 2-sphere of constant area radius (which is a particular choice of transversal of
Cy). Let L € (TC,)* be a future-directed null normal vector field, i.e. a smooth positive
multiple of Vu; then the null second fundamental form is

XL(X,Y):=g(VxL)Y), X,Y €TS,:.

Note that x,; = axr for any function a. There exists a unique future-directed null vector
field
L€ (TS,z)" suchthat g(L,L)=2. (8.54)

Define TC,, := TS, 7 @ (L), which is the tangent space (at S, ;) of a null hypersurface C,,
which is the congruence of null-geodesics with initial condition on S, ; and initial velocity
L. (L and Cy, resp. L and C,,, are often called ‘outgoing’ and ‘ingoing,” respectively.) The
conjugate null second fundamental form is then

XL(X> Y) = Q(VXL, Y) = _g(vXY’L)v X,Y € TSufa

with the second expression showing that this depends only on L at S, ;. Letting g := g|s, .
denote the induced metric, the trace-free parts of x and y are

XL = xr — 39trg(xr), Xy = XL~ 3Gtrs(xL)
Rescaling L to aL, we must rescale L to a~'L, so the product tr x, trx is well-defined,

and we may drop the subscripts on x and x. The Hawking mass of S, ; is defined as

. r
My (u,7) == = (1 +—
2 167 S (u, )
where dS is the induced surface measure. For a 1-form, let us write its components w in
Bondi—Sachs coordinates as wy, wy, wg, a = 2,3, similarly for higher rank tensors.

Lemma 8.16. We have |My(u,) — Mg(u)| < #7%F°, hence

lim My (u,r) = Mp(u).
r—00

trxtrde), (8.55)

Proof. We work in Bondi-Sachs coordinates, so T'S,, ; = (932, 033), and

G = — gy + Phap + o), (71 = —#2g% — 73R 4 o(#73),
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Let us take L = 0y and write x = xr, then x; is the Christoffel symbol of the first kind,
L. = 9(Vo,a 07, 050). By Proposition 8.10, g(0za, d7a) = 0, therefore
Xaj = 307a; = —Tdap + Lhap + o(1), (8.56)

which due to th h = o(1) gives

trxy =2F"' +0o(F %), X, = —shap +o(1). (8.57)
Next, a simple calculation shows that the unique future-directed null vector field L defined
in (8.54) is given by

L=(2+0(F )0y — (1 — 2mi~" = 20011 + L# 'V, Yoh™ + o(7 1)) 0s
+ (= ® + LY,h™)#2 4 0(772)) 95

(The spherical component is determined by ¢(L,0:) = 0, ¢ = 2,3, the 9, component by
g(L,L) = 2, and the 0; component by g(L,L) = 0.) Working in normal coordinates on
S27 USing Fu&i) = _%;‘auhaé - %(Wahlg + thla) + %(Wavchf)c + vach&c) + 0(1)7 F,‘Z&E =
Tab — %hm—, +o(1), and I'y;; = o(7#?), the components of X = XL are

Xap = —Lapl! = (F = 2m — 27°0ph1y + LYV ah®)gab + 7 Ouhag (8.58)
ab + 5 (Wahlb + thla) - i(vavchl}é + vachﬁé) + 0(1)7

which gives
trx = —2F"1 4+ (Am + 47dph11 — SV aVoh™ — Vahi®)i™2 + o(772),
Xy = POuhp + 3V Y ah™ = 3V ehi®)gab + Shap (8.59)
+ 3(Vahig + Yohia) — $(VaYehi® + YoV cha©) + o(1).

Finally, the surface measure on S, ; is \det g|Y?|die dib) = (+ gab + o(#))|dz® dz°|, hence
the Hawking mass is My (u, ) = m + ;- fs(u #0oh11dg + o(1) = Mp(u) + o(1). (As usual,

the o(1) remainder is really symbolic as #* — 0, namely of class S~%7+0.) O

With L and L defined as in the proof of the lemma, consider the conjugate null vectors
al and a~'L. By (8.57) and (8.59), there exists a unique a = 1 + O(#7!) such that
tr Xar +tT Xq-1 = @ H(a* trx + try) = 0; (8.60)
thus X, = TOuhgy + O(1) = x + O(1), hence to leading order, the normalization (8.60)
does not change k. We can now calculate the outgoing energy flur through S, 7,

o 1 12 1 2
= — dS = — N|%2dS + o(1
E(u,7) 3971 /S(uf) Ix|”dS 3971 /S(u) | |g S +o(1),

with Ny = Ouhgp is as in Theorem 8.14.%C Clearly, E has a limit F(u) = lim;_ E(u,)
at null infinity, and the Bondi mass loss formula (8.40) then takes the equivalent form

%MB(U) = —E(u).

40Using (8.59), we could compute a as well as E(u,#) to one more order, exhibiting a #~' term plus a
o(#71) remainder for both.
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APPENDIX A. CONNECTION COEFFICIENTS, CURVATURE COMPONENTS, AND NATURAL
OPERATORS

We list the results of calculations used in the main body of the paper: geometric quan-
tities and relevant differential operators for the exact Schwarzschild metric in §A.1, its
perturbations (as considered in §3.1) near null infinity in §A.2, and near the temporal face
of the Minkowski metric in §A.3.

A.1. Schwarzschild. In the notation of §2.1, in particular around (2.21), the Schwarz-
schild metric

9= gn = (1—2m)dgds —r’g

and the dual metric ¢~ have components

g0="0, gn=31-22), go=0, g11=0, g1p=0, gap = —12 b,
gll — 0, 901 — 74_212”m7 QOb — 07 gll — 07 glb — O7 gab — _T72gab_

The only non-zero Christoffel symbols in this frame are T'eqp = =12V cap, re, = sz, and
Tigo = %mr*?’(r —2m), D= —%(r —2m)gpe, Lo = —%mr*:”(r —2m),
I %(T - Qm)gbc, Loap = %(T - 2m)gaba Fhap = —%(7’ - 2m)gaba
[y = mr—2, TG, = 371 (1— 22)op, T = —mr?,

[f, = —gr (1= 22)6;, Tg= —Tfab Ll = 7 flab-

The only non-zero components of the Riemann curvature tensor (up to reordering the last
two indices) are R%.q = 2mr‘1(5ggbd — 6ggbe) and

ROOOl = _mri3(1 - QTm)a RObOd = _mrilgbd, R1101 = mri3(1 — QTm),

1 1 1, .3 2 1, .3 2
Rp1a = —mr™" gpa, R%1q = —5mr—>(1 — =7)63, R%0q = —gmr—>(1 — =7)47.

With respect to the rescaled bundle splittings (2.17) and (2.19), we have

ggl = (07%( - 27m)7070707 _g>T7 trg;cfL = (0 A 0,0,0,—‘[/[),

Y r—2m?
further
1 0 000 0 do—-% 0 0
0 0 000 (2-—m)4 01 oo 0
1,.— 1 —1/1
G s — 0 0 100 0 . 3T L4 0 560—7‘ 1(1_%)
gin 0 0 010 0 g 0 o1+ 0
1, .- 1 —1/1 m
0 Q‘Qg 0oL 0 o 57"7114 531““711(3—?)
04000 Gy rlg  —rly rg
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We also record dt = (3, 3,0)7, Vnt =
from (3.3), we have, near Sy,

(1,1,0), and, paralleling the definition of 5

r2m

dt=1)
—2m ®s () + VZ(LtV%L(t—l)('))gm

1 0 0 0 0 0

1 1 1 1

119 1 1 0

2 2 2 2 A2
1[0 0 A 1 0 0 0 (A-2)
-mn 01 0| 7 0 0 0

00 % 0 0 0

000 —=omfy —r=omd O

A.2. Perturbations of Schwarzschild near the light cone. We consider a metric g =
gm + ph = gf1 + 711, with the perturbation h € X107+ lying in the function space of
Definition 3.1, and continue using the splittings (2.21) of (S?)T*R*; however, we express the

components of h using the rescaled splitting (2.19), since for h € X all components hpp
o003bo,—€,b4

lie in the same space H, ; more precisely, they satisfy (3.4)—(3.6). The components
g and gM” were already computed, see (3.14) and (3.15). Recall also the observation (3.7)
and the memberships (2.26). We shall write b — 0 for weights which can be taken to be
b — € for any € > 0; any two choices of € are equivalent due to the assumption that all
components of h have leading terms (possibly with a factor log p; for hi1) at #+. The only
part of the analysis that relies on the precise structure of the gauged Einstein equation is
the analysis at .# 7, so in the calculations below, the weight at .#* is the most important
one. We compute:

Togp € Hoo 2+bo,2+b1,2+b+

_ ;2+bo,2+b1,24b
FlOO S 57‘ 2(m h01) — 57“ 81h00 + Hoo 0 1 +

FCOO c Hgo,l+bo71+bl,1+b+

)

00:24-b, 2+, 24D
Too1 € 7” 181h00 + H 1 +,

00:3+b0,3—0,3+b
Tho1 € §T 60h11 - 17“ h11 + H 0 +

_ A+bo,1+by,1+b
Teo1 € lalhof — 119 hot + Hgo 0 ! *,

I

Coop € Hoo 1+b071+b1,1+b+’

I € 57“_131,}101 — lalhm_) + hroo;l—&-bo,l-f—b[,1-~-bJr7

Leop € —%(7’ —2m)gpe + h’bc + HOO b07b17b+7

Fon € % (h01 m) 41" 81h01 — %T_laohll + %T_th + flgo;3—0,3—[),3-1—1;Jr7
INFERS %T Lo1h1 + r 2hi1 + HOO 13+b0,3— 03+b+7

Tenn = O1hiz — 517 Oehan,
Tow € lﬁlhog + l?”_labhm I Hgo;1+bo,1+b1,1+b+’
57 O,

Lot € 5(r — 2m)goe + 5r01hye — 1y,

C

;14-b9,1—0,1+b
+ %(3bh15 — 3ch15) + Hgo too + *,
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:bo,br,b
Coas € l(7’ — 2m)gab — ihaz +HO° 0,515+

Diah € —5(r = 2m)gap — 5701 hgg + 5(Bahip + Ohia) + jhap + Hy' 1+00,1-0,14b4

I\cab = —-T Fcab + §T(aah1;5 + 8bh(_u_: - acha5)~
The Christoffel symbols of the second kind are therefore

1“80 € r—2(m — ho1) — r_lalhoo + H?;2+b°’2+bf’2+b+’ (A.3)

1 00;2+4bo,2+b7,2+b4
Loo € Hy ,

00;3+bo,3-+b7,3+b
FOO c H 0 T +’

00;3+4bo,2+b7—0,3+2b 1

i

I € r~'hu — §r~*hu + Hy

00;2-+bg,2+4b,2+b
T4y € r~'01hoo + H, 0,30 240+

h - ;3+b0,3+b1,34b
Doy € —3r20uh” + 3r W hoy + Ho oot ors e,
0 -1 -1 00;1+bo,1+by,14+b
FOb S _alhol_) +r abh()l —r hll_) + Hb 0 I +7
14bo,14-b7,14-b
Ty, € HY oo I b
B —2p ¢ i24bo,2+b7,2+b
6y € 2r71(1 — 2myop 4 Lpm2pyC 4 PSP TIOROLE
IY € r7101hiy + 37 2hat + 2r 2 (m — ho1)O1hi
- —2p, d :3+b0,3—0,3+2b
— 47 2h1101hor + 21 2h1d51h1J+H§°73+ 0,3-03+2by
iy € v %(hor —m) + 2r~'dthor — " 8ohn
00;3—0,24b,—0,3+2b4

)

+ %T_thl + 4r~2 (m — ho1)01ho1 + H,
1€ =1 201h "+ $r3VChay + 2r 2 hi“01hon
00;d-+bo,3-+b), —0,442b

Y
00;24-bo,14-b7—0,24-2b+

Y

o 4 HY

19 € r ' 9hyy + 1 Yhyy + 1 %01 hyy + H
F%b € dhgp + T_labhm + HOO;1+bo,l+b1,1+b+
¢ € —Irl(1 = 2myge _ Lyl e 12

4
00;3+bo,2+b7,3+2b4+

)

+ %ngm(adhlb Ohyg) — §T72h0d<91hbd + H,
Loy € (=7 + 2ho1 — 2h11)gap — (r + 2m — 2h01)O1hg

+ (Wahlg + th'lﬁ) —+ %hag + HOO;17071*071+217+’
Flb S (T — 2h01)gab Qhab + HOO bO7bI,b+

TS, € VS + 1 oy — 517 (Valy® + Voha® — Yehgy) + Hyo oo niete,
We can then calculate T(g)” = g"*(T'(9)%, — I'(gm)%,), see (3.1), to wit
T(g)o € T7181 t/[‘h + 27‘72(h11 — 2h01) — 27‘72Wdh1(i (A4)

+ 4r 9ohyy + 12D by, + HE TR0 e

Y(g)' € 4r '01hoo + 4r%ho1 + H§°’2+5072+b1,2+b+’
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T(g)c c _2T—281h05 + 27”_3W0h01 + T—3Wdhéci o 2T—3h15 + H§0§3+b013+b173+b+’
and therefore
T(g)o € 2r‘181h00 + 27“_2h01 + H?;2+b0’2+b172+b+, (A5)
T(g)1 (S %7’_181 f/l"h + T_g(hn — 2h01) — T_dehld
+ 27 phay + Lr2n%e 0, hy, + HOP OO
Y(g)e € 201hoe — 2r 0chor — 1~ W hag + 20 Lhy + HYS OO

Using (A.1), this gives

* 00;3+bo,2+b%,3+b
(65,, X(9))oo € Hy, 00,20 S0 )
(6;mT(g))01 € r_lalalhoo + T_281h01 + H§O§3+bo,2+b173+b+’

* 00;3+4bg,2+b",3+b
(6% T(g))g € Heo o2 bndthe
(05 T(g)n € 3r 000y thh + 207201 Bphnr — r20,Vahn® + Lr=2h%0,01hg,

417 2(Ohy — 200hoy) + Sr200h 0 hg, + HYOO TR0

(5;mT(g))1g € 7“_181(91]105 — r‘28b81h01 — %T_dealhl;g + 7“_2(91]115 + HEO;3+bO’2+b/I73+b+,

(33, 0@y € Hy P05
gm a :

Next, we calculate the curvature components; as explained in §5, we shall need to know
the components Riczz modulo terms decaying faster than ng’O, p§+bl, and pier* at 7Y,
7+, and i, respectively, in order to control each step in our iteration scheme. At i?, the
leading contribution to the curvature components will come from the Schwarzschild part of

g; cf. the calculations in §A.1. Thus, we compute

_ _ _ :3++bo,24+b7,3+b

R0001 e —mr 3 +r 18181h00 —+r 2811101 + HEO 0 ! +, (A7)
0 00;2+bo,1+b%,2+b4+

R"g0q € Hy, ! :

- - :24bo,14b7,2+b
R4 € —0101hog + 1 L0401 hor — 131h1(i+ HEO ot *,

0 00;1+bo,b%,1+b4
Rocq € Hy ! ;

0 0033+b0,2+br,3+b
R™01 € Hy Do

0 00;2+4bo,1+b7,2+by
R"10q € Hy, ;

0 1, & 00;2+bo, 140 ,2+b4
Ryiqg€er hlealalhgé + Hb 1 s

Rolcd c H§O;1+b071_071+b+

I

Rob()l S a1a1h05 — r*18b81h01 + T7181h15 + H?;2+b0’l+bl’2+b+,
R4 € —mr_lgbd + H?;1+b°’b”1+b+,
Robld S —(T +2m — 2h01)8161h,;g+ (281h01 — 81h11)gbd

+ 01(Bphyg + Dahyy) + 201ho1d1hyg — L01hydrhg + HS =010
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bo,—1+b, b
RO € 101(Yahye — Yehgg) + Hy ' o

00;3+bo,2-+b,,3+b1
Rloo1 € H, ;

00;2+bo,2+b, 2+by
Rloq € Hy, ;

00;2+bo, 14+, 2+by
Rl € H, ,

Rly c Hoo 1+b0,1+b1,1+b+

00:34b0,24, ,3+b
Rllol emr ° —1r 8181}7,00 —r 81h01 + H 0 1 +,

00;2+bo, 14+, 2+by
R'yoq € H, ;

_ _ 2+bo, 14by,24b
R'114 € 0101hog — 17 1010qho1 + v~ 101y g+ HY oo B2

00;1+4bg b, 1+by
R led € H ! ;

00;2+bo, 14+, 2+b1
Ry € Hy ;

o001 1+bo,b)  14+bs
Rlyq € Hy, ! ,

1 [e o 1+b0,b ,1+b+
Rpig € —mr™ gbd + H, I ,
o0ibo,—1-4b" b
R bed € H 0 1 +

0034+bo, 3+, 4+b+
R%01 € Hy ,

00;3+b0,24+b} ,3+b1
R%0q € Hy ;

-3 00;3+bg, 2+ ,3+by
R 01d€—§mr 5d+H 4 5

00;2+4bo,1+b7,2+b+
R Ocd € H )

R%101 € 57“7 8181h0 — f’r’ 3Y7a81h01 + 7” 381h1 +HOO 4+b0’3+b1’4+b+

00;34+b9g,24+by,3+b
R 10d€—§mT 3(5d+H 0 1 +,

R 1g € —3r710100h" + Lr7201(Y g+ Yaha®) — 3r 210101 hg

r~2(O1hor — 201h11)05 + 17201 ho101 h"
7"_281h“681hd6 + HOO 3+b0,2+b1,3+b+7
Rcq € 3r7 00 (Wahe® — Vehg®) + Hyo 2ot eos,
R%01 € L]<>O;3—|—bg,24-1;1,,?)_H,Jr

12+bo,1+b] 2+b+
R® bod € HOO ’ ’

_ 21 b, 148,24
Ry1q € 3772 00(Yhyg — Yohg™) + Hy RO

Rabcd € QmTfl((S]%gbd — 5dgb6>

+ $(O1hge0] — Orhpgdy + Orhy"gue — Orhe” goa) + Hyo T =00

and the Ricci tensor

. 00;3+bg,2+b ,3+b4
RIC( )00 S H 1 R

109
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Ric(g)o1 € 7~ '9101hoo + 1~ 201ho1 + HyOP P02 Hon3 s

. 00;3+bo,2+b%,3+b4+
Rlc(g)OE € Hb ! )

Ric(g)ll S %T718181 ‘(/f h — ?“7281Y7dh15 + %Tﬁ2h(zéala1hjé (A.S)
+ T_z(alhn — 261h01) + ir‘281hg581hdfé + HSO;3+b0’2+bI’3+b+,
Ric(g)u; € T‘_lalalhog - r‘2818bh01 — %T‘_281Y7dhgg + T‘_zalhlg + HEO;3+bO’2+bI’3+b+,

Rlc(g) Ee H0073+b072+b/113+b+
a b :

A.3. Perturbations of Minkowski space near the temporal face. We work on R* =
R; x R3, equipped with the Minkowski metric g= dt?> — dz?, and consider the linearization

of Py(g) := Ric(g) — 3" X (),

(8% = 0y )us=2mt ™" dt @5 u— ot (tysu)g, Y(g) = 99~ '54Gyy,
around g = g; concretely, let L := B_SDQBOB’ where p := t—1
function of °R% in t > er, € > 0. We have

L=t*(30,+ (8" - 03)89Gg)t ™.

is a boundary defining

Splitting
T*R* = (dt) @ T*R3, S?*T*R* = (dt?) ® (2dt ®, T*R3) @ S?°T*R3, (A.9)
and writing e = daz? for the Euclidean metric on R?, we have g = (1,0, —e)T, try =
(1,0, —tre),
- 271 - 72 0 % 0 %tre -9 -5 0
by =t"" 0 nl, Go=(0 1 0 , 5g:<0t —ae _5>.
B o€ 0 B %e 0 1—%61’1’6 B t €

Moreover, [, is diagonal using the standard trivialization of T*R3, and the scalar wave
operator is t3Dgt_l = —(td — 3)> — A, + 1, hence
2 42
L= (-0 -7 - P8+ )

(11— 372)(t0 — 1) (271 —72)t0e (71— 572)(t0r — 1) tre
- —371td, (o —1) t(6e + Ld, tre)
%72 (toy — 1)e Yatede %’Yg (t0y — 1)etr,

APPENDIX B. PROOFS OF LEMMAS 3.7 AND 3.8

We perform the necessary calculations using the results in §A.2.

Proof of Lemma 3.7. We use the invariance properties of the conformal wave operator,
A= p72(0y = §Ry)p = Uy, — g Ry,

HEO;1+bo7—1+b’171+b+

Here, the scalar curvature satisfies p 2R, € in view of (A.8). Moreover,

Ogu = —r_s(“’”)gﬂpﬁﬂ&,u + r_s(“)gwfg,jﬁ,{;
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in the first term, when p = 0, the terms with v # 1 contribute H§°;3+b°’3_0’3+b+ Diff]%7 while

v =1 gives —49901 + (p* + H§°;3+b°’270’3+b+)Diﬁ%. For u =1, v = 1 produces a term in

:3+bo,1+b],3+b . . .
HYEPTP0 P30 12 que to the decay of hgg at £+, while v spherical gives an element of

b
H§°;3+b°’2_0’3+b+Diff%. Lastly, x and v both spherical give (p

For the second summand, recall (B.12), while for xk # 1, gWI‘“ 6 pC>= + HOO 2+00,1-0,24b

by (B.8). Thus, Oy = —4800; — 2r~'9; modulo a term lying in p* times the error space in
(3.23). Since Oy, = A — A(1), the claim follows. O

2000 +HOO'3+IJ(),3—O 3+b+)D.H2

Proof of Lemma 3.8. We consider each of the terms in (3.21) separately. The contribution
from
(Pfgﬁgpu)uﬁ = 072(39)%175\9)‘&“%6 + 2/? ZQAU(RiC(g)ﬁZ\uaﬁ + Ric(g)yxuap)

to terms of size at least p; ! at .#* comes from those components of R, and Ric(g) of size
at least p;. The only such components of R, are

;:3+b0,2—0,3+b ;3+b0,2—0,3+b.
R bldE _T' alalhbd+Hoo +oo, ++, RandG lalalhd +HOO +07 ++,

while all other components lie in H ooi3=0.1+b ’3+b+; the decay order at i® is due to the

contributions from the asymptotic Schwarzschlld metric, as e.g. in R%;. On the other
hand, (A.8) shows that Ric(g) € HOo S0 10y S by Using the form (3.15) of g~!, this gives

0 0 0 000 0
0 0 0 000 0
0 0 0 000 0
p 2R, € 0 0 0 000 3pto101h%
0 0 p~1818:h% 0 0 0 0 (B.1)
0 0 0 000 0
20 10101hgg 0 0 000 0
_|_IOCOO+HOO 1+bg,— 1+b,,1+bJr

Next, we have (Zyu)z = T(g)j‘ukj\, with Y(g)* € oY b0, 17,244 by (A.4). Now, equa-
tion (3.3) implies

5" — 8% € pC>=(M;Hom(B" *“T*R4, 5*S%)), (B.2)
so the expression for 6* obtained from (A.1) and the inclusions (2.39) show that
0" € Pop+ Mg sepei gege + p Difff (M; B* S°T*R4, 8*S?), (B.3)

and therefore

o0;14-bg,— 00;1+bg,

P35 Wyp € H, B VIS - st s oY1 (B.4)

The only terms of 4, which will contribute leading terms come from the components Cxz»

which are of size at least pr at .#7; these are, modulo Hy 00;2-+bo,2-0, 2+b+,

Cot1 =7 '01ho1, Ciin = 3r7'01hi1, Can =1 '01hie, C;

C

5= —Cig = 207 O1hy,, (B.5)

C
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. .. 00;2+bg,1+b,
while all other components lie in Hy, O

in terms of the splitting (2.17), we have

2+b . . =1
o+ Therefore, writing sections of 5* S¢T*R4

4r=Y01he1 0 0 000 0 )
ng c 27'_181]7,11 0 0 00 0 7%T—181h6b + H§0§2+b071+b172+b+’
4r=tothyy 0 —2r71ohg® 0 0 0 0
and then (A.1), (B.2), and (B.3) give
O 0 0 000 0
20thgy 0 0 0 0 0 0
B O 0 0 000 0
p i Cp e p 0o |20h 0 0 0 0 0 —3Oh% (B.6)
201hyy; 0 —01hg® 0 0 0O 0
0O 0 0 000 0
O 0 0 000 0

14bo,— 148, ,14b : - .
T N R VRS - Aot R VYT 2

the only terms of &* which contribute leading terms to this operator are the 9; derivatives
in gy .

For the second summand in (3.21), we note that Gy, € C>®°(R4, End(S?*°T*R%)), while
equation (3.16) gives G4 € Gy, +H§°;1+b°’170’1+b+(6*52). Further, using the notation (2.22)
and setting I, := p*(\)=s(LV)1% we have

(5gu)ﬂ _ _T—s(u,l/,)\)gﬂj\aA(TS(M,V)ul_uj) + ng(nguFﬂ_/ 4 ng\uﬂﬁ); (B7)
now r Mg, p Vo (M) unless A\ = 1, and moreover
%, € pC 4 HYTZHom =02+ (B.8)

for all indices, and ¢°! —2 € pC>® + HEO;HbO’l*O’Hb*, hence only the terms with ¢°'9;
survive to leading order:

20, 0 0 0
S|l 0 —200 0 0
0 0 —20, 0 0 0 0

000
0 0 0+ (pC™ 4 HX?Ho =020 il

Since ((07 — 9 Ju)pr = —C ppus € HEO;Q%O’I_O’HZ’* from the calculations around (B.5),

we can now use the precise forms (A.1) and (A.2) of G, and o — d,,, to obtain

29 0 0 00 0 0

M=720 0 00 5(y1—12) 0

N 0 07 00 0 0

p~3 (0" = 63)0,Ggp € —p 'O 0 0000 o 0
0 07 00 0 0 (B.9)

2% 0000 4 0

0 0000 0 0

+ (€ 4 HLTO T D]
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Finally, we determine the leading terms of
(Ogt) i = —r‘s(“’””‘“)‘)g’_‘j‘a\(rs(“’“”)uﬂl—,ﬁ)

FAT? o AT g Tty (B-10)
+9 (ﬂ)\uau;n_‘_ l;,\“;tcr;n"i_ R)\u;w;a)~

Consider uppr = r5E»R Y, (rsWV)y,,) — r) r) For k = 0, all Christoffel
symbols except for those with x, A both spherical lie in p?C>® + H, 00i2+bo, 1+b7,2+b+ , while
FSB € 51"_1512 +p?C> + H}C;O 2+b°’2 . 2+b+, the contributions of the latter cancel the leading
part of the term coming from differentiating the weight r=5¢*) gy (rs)) = Ls(p,v)r=t +
r~2C%. For k # 0, we use the rough estimate (B.8), and obtain

;mu)\u m/uu)\

0] 2+b0,1+b ,2+b+
Um0 € Oy + (p° C° + H, ! Ju

C (pC> + H 2+b0,1+b1,2+b+)Diffll)u’

00;24-bg,1—0,2+b (B‘ll)
(pCOO+H 5 0, s +)u

Upp;1 S a1u,;p +

Uape € (pC® + HXOPHO =020y pigl )

)

In the second line of (B.10) then, the only relevant terms (namely, with coefficients not
decaying faster than p;) are those with u differentiated along 9; and the corresponding
prefactor being of size at least pr; using

gL € —2r 4 p2 o0 P HIOIAAE (B.12)

this leaves us with
5 5 5\ :34b0,2—0,3+b .
9" T %5uara + 9" TSz + g™ T ksupm + (p° C + Hy W 702703 0 ) Diff |
_ b b b : — .
C (s(p,v) — 2)r  orugs + H§+ A VT (p?C>® + Hgo’3+b°’2 0’3+b+)D1ﬁ11)u.

Turning to the first line of (B.10), for A = 0, indices k # 1 contrlbute terms of the form
H i3+b0,3= 03+b+D1ffbu due to (B.11) and the decay of g™, while x = 1 gives a term
— 2= s() G s (v )81uﬂ17 + (p?C>® + Hgo i3+bo,2— 03+b+)D1ﬁ‘bu. For A = 1, the term with

(p2 oo 4 Hg0;3+b0,2*073+b+)

k = 0 is equal to —2010pups + Diﬂ?%u; k = 1 produces (due to

the decay of the long range component hgg)

_ :3+bo,14b,3+b
r S(/%V)gllal(rs(uv )u_l_/ 1) € HOO Foo, 1407340+ 42,

and spherical x give H 00;3+b0,2-0,3+b+ lef u. Lastly, if A is a spherical index and k =0, 1,
o 3+b°’2 0:3+b+ Diff2u, while for spherical , we use (3.16) to deduce that

the non-trivial spherical components of g~! give a term in (p2C*> +H§°;3+b°’270’3+b+ )Diffu.
Putting everything together, and conjugating by weights, we obtain

we get a term in Hy

p30,p € —Ap~2090y + HL TP TR g2 (oo ool mOtby g2 (g3

(Note that due to the discussion after (2.39), the first term here is well-defined modulo
Diff{ (M; 8*S?).) Together with the expressions (B.1), (B.4), (B.6), and (B.9), this proves
the lemma. 0
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