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ANDRÁS VASY

1. Introduction

LetX be a compact manifold with boundary, n = dimX , and let x be a boundary
defining function, i.e. x ∈ C∞(X), x ≥ 0, ∂X = {p ∈ X : x(p) = 0}, and dx is
not zero at ∂X . We consider the following class of asymptotically flat, complete
metrics onX which provide the background for a natural generalization of Euclidian
scattering theory, first discussed by Melrose in [13]. A Riemannian metric g in the
interior of X is called a long-range scattering metric if it can be brought to the

form g = adx
2

x4 + h′

x2 near ∂X for some choice of a boundary defining function x,
a−1 ∈ xC∞(X), and for some smooth symmetric 2-cotensor h′ on X which restricts
to a metric h on ∂X . Also, following [13], we say that g is a (short-range) scattering
metric if we can take a = 1 above.

A particular example of this setup is the radial compactification of Euclidian
space Rn to a hemisphere (i.e. a ball) X = Sn+ by a (non-standard) version of the
stereographic projection SP, see [13], and the corresponding lifting of the standard
Euclidian metric. More generally, near ∂X we can write X as [0, ε)x × ∂X . Intro-
ducing r = x−1 and thereby moving ∂X to ‘infinity’, this region can be regarded
as (ε−1,∞)r × ∂X . Then metrics of the form dr2 + r2h for large r, h a metric on
∂X , become (short-range) scattering metrics if we reintroduce x = r−1, i.e. we can
regard this region, when equipped with such a metric, as the ‘large end’ of a cone
(the tip would have been r = 0). Apart from the intrinsic geometric interest in the
study of scattering metrics on arbitrary manifolds with boundary, understanding
these can clarify Euclidian scattering theory by removing the special symmetries.
It can also provide the foundations for a more detailed description of such complex
subjects as many-body scattering (see [3, 18] and especially [16, 17]).

Let ∆ be the (positive) Laplacian of g, and let H = ∆+V , where V is a second-
order differential operator, be such that H is self-adjoint, satisfies non-degeneracy
(ellipticity) conditions and that the behavior of H at ∂X is dominated by that
of ∆ in a certain natural sense. If V is multiplication by a real-valued function,
these requirements amount to the statement that V ∈ xC∞(X), i.e. that V vanishes
at the boundary ∂X ; the general (and precise) setup is discussed in the following
section. We remark that V ∈ xC∞(Sn+) means that V is the pull back of a classical
(polyhomogeneous) symbol of order −1 from Rn, so Coulomb-type potentials on Rn

(without the singularity at the origin) fit into this framework. Such a perturbation
V is ‘long-range’ in the sense of [13]; an example of a ‘short-range’ V is V ∈
x2C∞(X).
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Thus, suppose that V ∈ xC∞(X), write V = xV ′, so V ′ ∈ C∞(X), and given
λ 6= 0 introduce α± = α±,λ ∈ C∞(∂X) which for short-range g is defined by

(1.1) α± = ±
V ′|∂X

2λ
;

the general definition (for long-range g and arbitrary V ) is given in the next section.
We sometimes extend α to a smooth function on X in an arbitrary fashion.

We can now define the scattering matrix, S(λ), of H , very easily via asymptotic
expansions of generalized eigenfunctions of H , i.e. ‘Sommerfeld patterns’. We first
note that for any λ ∈ R\{0} and a ∈ C∞(∂X) there is a unique u ∈ C−∞(X) which
satisfies (H − λ2)u = 0 and which is of the form

u = e−iλ/xxiα−+(n−1)/2v− + eiλ/xxiα++(n−1)/2v+ + u′,

u′ ∈ L2(X, dg), v± ∈ C∞(X), v−|∂X = a.
(1.2)

We define the Poisson operator P (λ) : C∞(∂X) → C−∞(X) as the map P (λ)a = u.
Moreover, the scattering matrix S(λ) : C∞(∂X) → C∞(∂X) is the map

(1.3) S(λ)a = v+|∂X .

Henceforth we take λ > 0 for definiteness. The structure of S(λ) is far from being
evident. Melrose and Zworski showed in [14] that in the short-range case, g a (short-
range) scattering metric and V a general second order ‘short-range’ perturbation,
S(λ) is a classical Fourier integral operator of order 0 which quantizes the geodesic
flow of the boundary metric h at distance π. An analogous result was proved by
Joshi [8] when g is still short-range, V ∈ xC∞(X), and α± (hence V ′|∂X) are
constant (‘strictly Coulomb’ case).

In this paper we generalize these results to the full long-range setting by using a
different and perhaps simpler method. To do that we define a class of Fourier inte-
gral operators (FIO’s) of orders whose imaginary part varies along the Lagrangian
to which the FIO is associated. These FIO’s will be in the classes Iρ of Hörmander
[4] for ρ < 1, with a behavior specified by the variable order. This allows us to
describe these FIO’s rather similarly to the standard treatment of classical (one-
step polyhomogeneous) ones. One of the main results of this paper is the following
theorem of which a precise version is stated in Section 5.

Theorem. For λ > 0 the scattering matrix, S(λ), is a Fourier integral operator
whose canonical relation is given by the (forward) geodesic flow of h on ∂X at
distance π; the imaginary part of the order of S(λ) varies and depends on α±.

As mentioned, this result was obtained in many special cases by Melrose, Zworski
and Joshi. Indeed, we would like to place at least as much (if not more) emphasis on
our methods and how they differ from those of these authors, as on the generaliza-
tion of their result. We also note that Yafaev gave a description of the S-matrix of
more general (very long-range) potential perturbations of the Euclidian Laplacian
in [20].

In this paper we also compute the principal symbol of S(λ) and describe the
structure of the Poisson operator. A combination of the methods of this paper
and those of Joshi and Sá Barreto could be used to analyze the inverse problem of
determining the asymptotics of V from the singularities of S(λ), as was done in the
short-range and constant coefficient leading term long-range cases by Joshi and Sá
Barreto [11, 10, 8].
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Without giving the specifics, we recall Melrose’s and Zworski’s WKB-type con-
struction for the kernel of the Poisson operator [14]. This construction proceeds
much as the usual FIO construction for hyperbolic equations, but the associated
Legendre submanifold (replacing the usual Lagrangians) has an ‘end’ (i.e. a bound-
ary) where it has a conic singularity. The singularities of the scattering matrix
can be deduced from the full symbol of P (λ) at the end of the Legendrian. The
crucial part of the construction is the understanding of these singular Legendre
submanifolds and distributions associated to them.

In this paper we approach the subject differently. We show how a pairing formula,
given here in the simple but central Proposition 5.1, can lead one to understand
S(λ) using only the construction of the kernel of P (±λ) at the smooth part of the
associated Legendre submanifold. As mentioned above, this is close to the standard
FIO constructions and hence relatively easy. Thus, the above theorem is proved
without having to resort to singular Legendre submanifolds. Indeed, this could be
expected since the S-matrix is a simpler object than the Poisson operator. How-
ever, having understood the S-matrix, we can use the formula P (λ) = P (−λ)S(λ)
to analyze the structure of P (λ) at the singularity of the Legendre submanifold; to
do so we only need to understand P (−λ) in the region where the standard FIO-type
construction works. Hence, we deduce the structure of P (λ) near the conic singu-
larity without the need for its a priori understanding. This is particularly useful
in the long-range problem described above where the structure is harder to de-
scribe. Once the structure of P (λ) has been completely understood, one may wish
to rewrite one’s results using singular Legendre distributions because the arguments
are ‘cleaner’ that way; indeed one should understand the singular Legendre geom-
etry underlying the analysis. In our long-range case this would include describing
the calculus for a generalization of classical FIO’s the order of whose symbols are
pure imaginary and vary along the Lagrangian (or Legendrian in our setting) and
related objects corresponding to the singular Legendre submanifold. Since this can
be avoided by our techniques, we will limit our discussion of such distributions to
the Lagrangian case and the description of the S-matrix.

The paper is organized as follows. In the next section we review some of the basic
properties of the ‘scattering geometry’ from [13, 14]. Then, in Section 3, we recall
from the papers of Melrose and Zworski [14], Joshi [8] and Vasy [17, Appendix A]
(see also [16]) the construction of the kernel of P (±λ) along the smooth part of the
Legendre submanifold. In Section 4 we give a brief description of polyhomogeneous
Lagrangian distributions of variable order. In Section 5 we prove that S(λ) is an
FIO, and in Section 6 we show how its principal symbol can be computed. Finally,
in Section 7 we analyze the kernel of P (±λ) near the singularity of the Legendrian.

We use this opportunity to remark that our normalization of P (λ) and S(λ) (vs.
P (−λ) and S(−λ)) follows [14] instead of [13, 8, 17].

I would like to thank Richard Melrose for our numerous very fruitful discussions
and for his comments on the manuscript. I am very grateful to Mark Joshi and
Maciej Zworski for their helpful comments which had a very welcome positive in-
fluence on this paper. Thanks are also due to Rafe Mazzeo, discussions with whom
furthered my research.
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2. Fundamentals of analysis in the setting of ‘scattering geometry’

We now very briefly review some basic properties of the ‘scattering geometry’
from Melrose’s paper [13]. First, Melrose defines the Lie algebra of ‘scattering
vector fields’ as Vsc(X) = xVb(X) where Vb(X) is the set of smooth vector fields
on X which are tangent to ∂X . If (x, y1, . . . , yn−1) are coordinates on X where x is
a boundary defining function, then locally a basis of Vsc(X) is given by x2∂x, x∂yj ,
j = 1, . . . , n−1. Correspondingly, there is a vector bundle scTX over X , called the
scattering tangent bundle of X , such that Vsc(X) is the set of all smooth sections
of scTX : Vsc(X) = C∞(X ; scTX). The dual bundle of scTX (called the scattering
cotangent bundle) is denoted by scT ∗X . Thus, covectors v ∈ scT ∗

pX , p near ∂X ,

can be written as v = τ dx
x2 +µ · dyx . Hence, we have local coordinates (x, y, τ, µ) on

scT ∗X near ∂X . Finally, Diffsc(X) is the algebra of differential operators generated
by the vector fields in Vsc(X); Diffmsc(X) stands for scattering differential operators
of order (at most) m.

Before proceeding further, it should be emphasized that most local properties
of the scattering structure, and in particular of Diffsc(X), are very closely related
to traditional microlocal analysis. To establish the relationship, we introduce local
coordinates on X near p ∈ ∂X as above, and use these to identify the coordinate
neighborhood U of p with a coordinate patch U ′ on the closed upper hemisphere Sn+

(which is just a closed ball) near its boundary. Such an identification preserves the
scattering structure since this structure is completely natural. We further identify
Sn+ with Rn via the radial compactification SP mentioned in the introduction; recall
from [13] that SP : R

n → S
n
+ is given by

(2.1) SP(z) = (1/(1 + |z|2)1/2, z/(1 + |z|2)1/2) ∈ S
n
+ ⊂ R

n+1, z ∈ R
n.

The constant coefficent vector fields ∂zj on Rn lift under SP to give a basis of scTSn+.
Thus, V ∈ Vsc(S

n
+) can be expressed as (ignoring the lifting in the notation)

(2.2) V =

n
∑

j=1

aj∂zj , aj ∈ C∞(Sn+).

As mentioned in the introduction, aj ∈ C∞(Sn+) is equivalent to requiring that
SP∗ aj is a classical (i.e. one-step polyhomogeneous) symbol of order 0 on Rn. Thus,
conjugating V by the Fourier transform, F : S′(Rn) → S′(Rn), gives an operator
FVF−1u =

∑

j FajF
−1iξju, u ∈ S′(Rn), (the ξj denote the dual variables of the

zj), which is a pseudo-differential operator of order 0. The same conclusion holds
for scattering differential operators. In particular, for the Euclidian Laplacian, we
have F(∆ − λ2)F−1 = |ξ|2 − λ2, which is just a multiplication operator, with
characteristic variety in the cotangent bundle over the sphere of radius λ centered
at the origin.

Although in the following paragraphs we follow Melrose’s geometric approach, all
local (or microlocal) statements on scT ∗Sn+ (and hence on scT ∗X), such as principal
symbols, bicharacteristics, propagation of singularities, translate directly, via the
Fourier transform, to conventional microlocal analysis on T ∗Rn (or indeed on the
cotangent bundle over bounded subset of Rn), and the reader may want to provide
this translation at times. However, later the necessary passage from these local
properties to global ones would mean a significant loss of clarity. We also remark
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that some properties of this relationship are explored, for example, in [13] or in the
introduction of [17].

The joint symbol jsc,m,0(P ) of a scattering differential operator P of order m
consists of two parts. One (which we write as σsc,m(P )) is the extension of the usual
principal symbol from the interior of X ; this is a smooth homogeneous function on
scT ∗X \ 0 (just a polynomial in this case) which, after rescaling corresponding to
the homogeneity, can be thought of as a smooth function on the scattering cosphere
bundle scS∗X . The other part is a smooth function on scT ∗

∂XX ; in fact, a polynomial
of degree m which is not necessarily homogeneous. Namely, for p ∈ ∂X , v ∈ scT ∗

pX ,

P ∈ Diffmsc(X), jsc,m,0(P )(v) = P̂ (v) can be defined using the following oscillatory

testing description. If u ∈ C∞(X) and f ∈ C∞(X) then ũ = e−if/xPeif/xu ∈

C∞(X) and for p ∈ ∂X , ũ(p) = P̂ (v)u(p) where v ∈ scT ∗
pX is the covector given by

d(f/x).
We now give the definition of the class of metrics we are interested in in this

paper.

Definition 2.1. A Riemannian metric g in the interior of X is called a long-range

scattering metric if can be brought to the form g = adx
2

x4 + h′

x2 near ∂X for some
choice of a boundary defining function x, a − 1 ∈ xC∞(X), and for some smooth
symmetric 2-cotensor h′ on X which restricts to a metric h on ∂X .

We note that this fixes x up to x2C∞(X). Also, following [13], we say that g is
a (short-range) scattering metric if we can take a = 1 above. We remark that a
long-range scattering metric is simply a smooth fiber metric on scTX which is of a
product form at ∂X , i.e. the product condition is just on g modulo xC∞(X ; scT ∗X⊗
scT ∗X). In the following we let ∆ be the Laplacian of the long-range scattering
metric g, and assume that x is chosen as required by the definition. Then ∆ ∈
Diff2

sc(X). In fact, choosing a product decomposition [0, ε)x×∂X of a neighborhood
of ∂X in X , we have

(2.3) ∆ = (x2Dx)
2 + x2∆h + P, P ∈ xDiff2

sc(X).

Next we state the form of the operators that we analyze in this paper.

Definition 2.2. Let ∆ be the Laplacian of the long-range scattering metric g. A
self-adjoint smooth long-range perturbation V of ∆ is an operator V ∈ xDiff2

sc(X)
such that the principal symbol σsc,2(H) of H = ∆+V is invertible (i.e. H is elliptic
in the usual sense) and H is self-adjoint.

Thus, under this definition H is an unbounded self-adjoint operator on L2
sc(X) =

L2(X, dg) with domain the weighted Sobolev spaceH2,0
sc (X). We recall thatHr,s

sc (X)
is the same as the standard weighted Sobolev space if X = Sn+ is the radial com-
pactification of Rn; the standard space being 〈z〉−rHs(Rnz ); in general it can be
defined by locally identifying X with Sn+. Also, notice that this definition reduces
the assumptions on H to conditions on the joint symbol of H and self-adjointness;
the short-range conditions of [13] involve sub-leading terms.

Equation (2.3) shows that, in the coordinates discussed above, the joint symbol
of ∆ − λ2 at scT ∗

∂XX is

(2.4) jsc,2,0(∆ − λ2) = τ2 + |µ|2 − λ2,

so its characteristic manifold (and hence that of H − λ2) is

(2.5) Σ∆−λ2 = {(y, τ, µ) : τ2 + |µ|2 = λ2} ⊂ scT ∗
∂XX
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where |.| denotes the metric length with respect to the metric h on ∂X . Inside
Σ∆−λ2 , the (rescaled) Hamilton vector field of ∆ vanishes only at the radial surfaces

(2.6) R±
λ = {(y, τ, µ) : τ = ±λ, µ = 0}.

Correspondingly, we have real principal type propagation of singularities for gener-
alized eigenfunctions of H away from R±

λ . Of course, these are actually smooth in
the interior of X since H is elliptic in the usual sense (the part of jsc,2,0(H) over
scS∗X , i.e. σsc,2(H), is invertible). Thus, ‘singularities’ are understood in the sense
of the scattering wave front set, WFsc. Similarly to the joint symbol of scatter-
ing differential operators, this consists of two parts, one being an extension of the
usual wave front set, but for us only the part over the boundary matters (since the
other part is empty due to the ellipticity mentioned above). This part is a subset

of scT ∗
∂XX . It measures oscillations and lack of decay (modulo ˙C∞(X)) as we ap-

proach ∂X . In fact, under a local Fourier transform it is intimately related to the
usual wave front set via the Legendre diffeomorphism discussed here in (5.20). We
also use a weighted version, WFr,ssc which measures decay and oscillations modulo
the weighted Sobolev space Hr,s

sc (X).

We now mention how the long-range setting, g long-range and V ∈ xDiff2
sc(X),

differs from the short-range one, g a (short-range) scattering metric and V ∈
x2 Diffsc(X). First, the Riemannian density will have the same form as before-
hand since sub-leading terms from h′ are just as significant as sub-leading terms
from a, so there is no difference in the treatment of self-adjointness. Moreover, the
only interesting new terms in the operator H = ∆ + V are those of the form

(2.7) xb2(x
2Dx)

2 + xb1(x
2Dx) + xb0, bj ∈ C∞(X),

since terms of the form x(x2Dx)(xDyj ), x(xDyj )(xDyk
) arise already from the

Laplacian of a short-range metric (corresponding to h′), and the terms x(xDyj ) are
covered by the same type of estimates as the (partially) tangential second order
terms. In particular, no modifications are necessary for those arguments of Melrose
and Zworski [13, 14] which only use the principal symbol of H , and the treatment
of the second and first order terms in (2.7) parallels that of the zeroth order term
in [15], see also [17]. We also remark that if we define g′ = x−4 dx2 + x−2h′ near
∂X with h′ as discussed in the introduction, then g′ is a (short-range) scattering
metric, and

(2.8) ∆g′ + (a− 1)x(x2Dx)
2 − ∆g ∈ x2 Diff2

sc(X),

so the Laplacian of a long-range scattering metric can be considered a long-range
perturbation of a short-range one, though the L2 pairing (given by the Riemannian
densities) is of course different.

We now define the functions α± ∈ C∞(∂X ; R) by

(2.9) α±(y) = ±
jsc,2,1(V + (a− 1)x(x2Dx)

2)(y,∓λ, 0)

2λ

using the coordinates (y, τ, µ) discussed above; (2.8) is the reason for the appearance
of the second term. This definition agrees with (1.1) if V ∈ xC∞(X). Note that as
V is self-adjoint, α± are indeed real-valued. Again, we sometimes extend α± to a
smooth real-valued function on X in an arbitrary fashion. We have the following
three propositions.



GEOMETRIC SCATTERING THEORY FOR LONG-RANGE POTENTIALS AND METRICS 7

Proposition 2.3. [essentially in Melrose, [13]] Suppose that u ∈ C−∞(X) and
(H −λ2)u = 0. If WFr,ssc (u)∩R−

λ = ∅ for some s > − 1
2 and r ∈ R then u = 0. The

same conclusion holds if we replace R−
λ by R+

λ .

Though this proposition does not appear explicitly in [13], it follows easily from
the arguments given there. (We remark that some of the results of [13] are explicitly
stated for the Laplacian, but as noted in that paper, the proofs are valid for certain
perturbations of ∆ such as ours.) Namely, under these assumptions the results of
[13] allow one to conclude that WFsc(u) ⊂ R+

λ . As proved there (see also [15]),
this implies that u has an asymptotic expansion of the form stated in the next
proposition (with the − sign). (Actually, this is only proved for V ∈ xC∞(X)
in these papers but the proof given in [15] goes through unchanged.) Hence, the
boundary pairing lemma of [13] (see (5.3) of this paper) shows that u ∈ L2

sc(X)

which implies that u ∈ ˙C∞(X) by [13, Proposition 11].
At this point one has to use a unique continuation theorem at ‘infinity’ (i.e. at

∂X). For first order long-range perturbations V ∈ xDiff1
sc(X) (with g short-range)

we can quote Hörmander’s result [5, Theorem 17.2.8] directly as in Melrose’s proof.
Presumably that proof can be modified to accommodate the more general long-
range second order setting, but here we refer to the version of Froese’s and Herbst’s
proof in many-body scattering [2] which is described in [17, Appendix B] where
this extension certainly does not cause any problems. Indeed, [17, Equation (B.7)]
allows operators of the form H ; we just need to remove the ‘cross terms’ of the form
x(xDy)(x

2Dx) which can be done as in that Appendix by regarding the second
order terms as part of the Laplacian of (another) long-range metric (but leaving
the L2 pairing unchanged). Moreover, Equation (B.8) and hence Lemma B.1 hold
as well. Then we just need to note that the Mourre estimate only depends on
the joint symbol of H , so although this is not stated in [13], it is easy to show
it, and in any case the joint symbol statement shows that the proof given in [17]
can be copied verbatim thus completing the proof of unique continuation. We note
that Proposition 2.3 can also be proved more directly without using asymptotic
expansions, see [17, Section 17] (cf. Isozaki’s paper [7]).

Proposition 2.4. [essentially in Melrose, [13], see also [15]] For λ > 0, the resol-

vent R(λ2 ± it), t > 0, has a limit as t → 0 in B(Hr,s
sc (X), Hr+2,s′

sc (X)) whenever
s > 1

2 , s′ < − 1
2 , r ∈ R, and

(2.10) f ∈ Hr,s
sc (X) ⇒ WFr+2,s−1

sc (R(λ2 ± it)f) ⊂ R∓
λ .

Moreover, for f ∈ ˙C∞(X), R(λ2 ± i0)f has a full asymptotic expansion

(2.11) R(λ2 ± i0)f = e±iλ/xx(n−1)/2+iα±(y)v±, v± ∈ AK
phg(X),

where

(2.12) K = {(m, p) : m, p ∈ N, p ≤ 2m}

is the index set.

Recall that the above statement about R(λ2± i0)f , f ∈ ˙C∞(X), just means that

(2.13) R(λ2 ± i0)f ∼ e±iλ/xx(n−1)/2+iα±(y)
∞
∑

j=0

∑

r≤2j

xj(log x)raj,r,±(y).
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Proposition 2.5. [essentially in Melrose, [13]] The boundary value of the resolvent,

R(λ2 + i0), (resp. R(λ2 − i0)) extends by continuity (from ˙C∞(X)) to a map from
distributions u ∈ C−∞(X) satisfying WFsc(u)∩R

+
λ = ∅ (resp. WFsc(u)∩R

−
λ = ∅)

to distributions satisfying the same condition. In addition, with v = R(λ2 + i0)u
(resp. v = R(λ2 − i0)u), u satisfying the above condition, WFsc(v) is a subset of
the union of R−

λ (resp. R+
λ ) and the image of WFsc(u) under the forward (resp.

backward) bicharacteristic flow.

Remark 2.6. We can state this proposition with weighted Sobolev spaces as well:
we need to assume that WFr,ssc (u) ∩ R+

λ = ∅ for some s > 1
2 , and we conclude

that WFr+2,s−1
sc (v)∩R+

λ = ∅ as well as analogues of the propagation results stated
above.

This proposition is not stated explicitly in [13] either, but again it follows from
the arguments given there. Namely, 〈R(λ2 + it)u, f〉 = 〈u,R(λ2 − it)f〉 together
with the previous proposition show that R(λ2 + it)u has a limit as t ↓ 0 under the
conditions of the proposition. This also shows that WFr,ssc (R(λ2 + i0)u) ∩ R+

λ =

∅ if s < − 1
2 . The uniform propagation estimates of [13] then imply first that

WFsc(R(λ2 + i0)u) ∩ R+
λ = ∅, and then the real-principal type propagation result

of [13] (the uniform version) proves the proposition. Again, the fact that g and V
are long-range does not cause any problems. See [17] for a similar argument.

We also recall briefly the definition of Legendre distributions from [14]. We
write M in place of X for a manifold with boundary since we are particularly
interested in the case M = X × ∂X , X as above. Local coordinates (x, y) on X
near ∂X give coordinates (x, y, y′) = (x, ȳ) on M (near ∂M), and correspondingly
we have coordinates (x, y, y′; τ, µ, µ′) = (x, ȳ; τ, µ̄) on scT ∗M . Then the tautological
one-form, scα ∈ C∞(scT ∗M ; scT ∗(scT ∗M)), has the property that d scα = d(scχ̃/x)
where scχ̃ is a smooth 1-form on scT ∗M . Indeed, in the local coordinates discussed
above, near scT ∗

∂MM we can take scχ̃ = dτ + µ̄ · dȳ. The pull-back, scχ, of scχ̃ to
scT ∗

∂MM is a one-form which defines a contact structure on scT ∗
∂MM . A Legendre

submanifold of scT ∗
∂MM is just a smooth submanifold G of dimension dimM − 1

on which scχ vanishes identically.
Legendrian distributions are just non-degenerate superpositions of oscillatory

functions v = xqeiφ/xa, where φ, a ∈ C∞(M), q ∈ R. More precisely, one-step
polyhomogeneous Legendre distributions of order m associated to a Legendre sub-
manifold G are (modulo ˙C∞(M)) locally finite sums of oscillatory integrals of the
form

(2.14)

∫

Rk

eiφ(ȳ,u)/xa(x, ȳ, u)xm− k
2 + dim M

4 du, a ∈ C∞
c ([0, ε)x × Uȳ × R

k),

where φ parameterizes G via the map

(2.15) Cφ = {(ȳ, u) : duφ(ȳ, u) = 0} 3 (ȳ, u) 7→ (d(x,ȳ)(φ/x))(0, ȳ, u) ∈ G

in a non-degenerate way. The set of these distributions is denoted by Imsc,os(M,G);
unlike Melrose and Zworski we emphasize ‘one-step’ in the notation as we will have
the occasion to deal with different classes of such distributions. The reason for
the ‘one-step’ terminology may be clearer if we expand a in Taylor series in x:
a ∼

∑∞
j=0 x

jaj(ȳ, u), similarly to the expansion of polyhomogeneous symbols (in

fact, these two are the same if we introduce r = x−1 and think of (r, ȳ) as polar
coordinates. In fact, if we locally identify M with compactified Euclidian space
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then under the Fourier transform such distributions become one-step polyhomoge-
neous (classical) Lagrangian distributions, see [14, Proposition 10]. An important
property of distributions v ∈ Imsc,os(M,G) is that WFsc(v) ⊂ G. Now, if G is a
section of scT ∗

∂MM , as is often the case (at least locally), then we do not need
any parameters u, and Legendre distributions are just sums of oscillatory functions
xm+dimM/4 eiφ(ȳ)/xa(x, ȳ). In particular, such oscillatory functions are sufficient to
treat the Euclidian setting. We also remark that typically we shall deal with scatter-
ing half-density valued Legendre distributions, i.e. elements of Imsc,os(M,G; scΩ

1
2M);

scΩM is the density bundle induced by scT ∗M . Melrose and Zworski also define Leg-
endrian distributions associated to intersecting Legendre submanifolds with conic
points, see [14, Section 13], but instead of giving the definition here we postpone it
until the last section where it will naturally emerge from our construction of P (λ).

3. Poisson operators

First, we note that the Poisson operator P (λ) for H = ∆+V can be constructed
away from the ‘end’ of the smooth Legendre submanifold to which it is related much
as it was done by Melrose and Zworski [14]. We often make P (±λ) a map from
half-densities to half-densities to simplify some of the notation. The correspondence
between the smooth functions and half-densities is given by the trivialization of the
half-density bundles by the Riemannian densities; so for example we have

(3.1) P (±λ)(a|dh|1/2) = (P (±λ)a) |dg|1/2, a ∈ C∞(∂X).

With this normalization the kernel of P (±λ) will be a section of the kernel density
bundle

(3.2) KD
1
2
sc = π∗

L
scΩ

1
2X ⊗ π∗

R Ω
1
2 ∂X.

where πL : X × ∂X → X and πR : X × ∂X → ∂X are the projections. We remark
that

(3.3) C∞(X × ∂X ; KD
1
2
sc) = x(n−1)/2C∞(X × ∂X ; scΩ

1
2 (X × ∂X));

smooth sections of KD
1
2
sc are of the form a|dg|

1
2 |dh|

1
2 , a ∈ C∞(X × ∂X), while

smooth sections of scΩ
1
2 (X × ∂X) are of the form a|dg|

1
2

|dh|
1
2

x(n−1)/2 . Recall that in

[14] the kernel of P (λ) is constructed as a (distributional) section of scΩ
1
2 (X×∂X),

essentially by identifying KD
1
2
sc with scΩ

1
2 (X×∂X) (via the mapping a|dg|

1
2 |dh|

1
2 7→

a|dg|
1
2

|dh|
1
2

x(n−1)/2 ), given a choice of boundary defining function x. We also let α±,R =
π∗
Rα±. We introduce the following Legendre submanifolds of scT ∗

∂X×∂X(X × ∂X):

(3.4) G](σ) = {(y, y′, τ, µ, µ′) : µ = 0, µ′ = 0, τ = −σ},

and for λ > 0 let

G(λ) ={(y, y′, τ, µ, µ′) : (y, µ̂) = exp(sH 1
2h

)(y′, µ̂′), τ = λ cos s,

µ = λ(sin s)µ̂, µ′ = −λ(sin s)µ̂′, s ∈ (0, π), (y′, µ̂′) ∈ S∗∂X},
(3.5)

G(−λ) ={(y, y′, τ, µ, µ′) : (y, µ̂) = exp((s− π)H 1
2h

)(y′, µ̂′), τ = λ cos s,

µ = λ(sin s)µ̂, µ′ = −λ(sin s)µ̂′, s ∈ (0, π), (y′, µ̂′) ∈ S∗∂X}.
(3.6)
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Thus, given any neighborhood U+ of the outgoing radial set G](λ) in scT ∗
∂X×∂XX×

∂X , we can construct a parametrix K[
+ for the kernel of P (λ) such that

(3.7) x−iα−,RK[
+ ∈ I−(2n−1)/4

sc,os (X × ∂X,G(λ),KD
1
2
sc)

and

(3.8) WFsc((∆X + VX − λ2)K[
+) ⊂ U+

where the subscript X denotes that these operators act on the left factor.
In fact, the construction of K[

+ is very similar to the short-range construction
described by Melrose and Zworski [14]. It has been described in Appendix A of [17]

for V ∈ xC∞(X) (and V ∈ xDiff2
sc(X) does not require a special treatment) near

the incoming radial set G](−λ) (where the normalization was opposite of the one
used here), and it can be continued away from G](λ) just like in the short-range
case discussed in [14] by real principal type propagation arguments (i.e. it amounts
to solving the transport equations which are non-degenerate linear ODE’s). We
just cut off the solution before the smooth Legendrian G(λ) reaches G](λ), hence
the wave front set result (3.8).

A little more detailed picture is the following. We constructK[
+ as an asymptotic

sum

(3.9) K[
+ ∼

∞
∑

j=0

Kj , x−iα−,RKj ∈ I−(2n−1)/4+j
sc,os (X × ∂X,G(λ),KD

1
2
sc).

It is convenient to construct K[
+ near G](−λ) rather explicitly, so we write

(3.10) Kj = xj+iα−(y′)e−iλ cos dist(y,y′)/xaj(x, y, y
′)ν

where ν = |dg|
1
2 |dh|

1
2 ∈ C∞(X×∂X ; KD

1
2
sc) and dist is the metric distance given by

the metric h on ∂X . Note that G(λ) is a graph over ∂X near G](−λ). Regarding
y as a parameter and introducing Riemannian normal coordinates in y centered at
y′ we obtain transport equations for a′j = aj |x=0:

(3.11) (y · ∂y + j)a′j + (i(α−(0) + (2λ)−1V ′(y)) + bj)a
′
j = cj ∈ C∞(X × ∂X)

near y = 0 with bj vanishing at y = 0 and c0 ≡ 0. Here V ′(y) is the principal
symbol of V + (a− 1)x(x2Dx)

2 at the unique point of G(λ) which is near G](−λ)
and lies over y, and some terms arising from the action of V have been moved to
bj. Since

(3.12) 2λα−(0) + V ′(y)

vanishes at y = 0, the transport equation for a′0 has a unique smooth solution with
a′0(y, y) ∈ C∞(∂X) specified, and the equations for a′j , j ≥ 1, have unique smooth

solutions, just as in Hadamard’s parametrix construction, see e.g. [5, Lemma 17.4.1].
The specification of a′0(y, y) comes from the requirement that for v ∈ C∞(∂X)

P̃ (λ)(v|dh|
1
2 ) =

∫

∂X

K[
+v|dh|

1
2 = e−iλ/xx(n−1)/2+iα−(y)v(y)|dg|

1
2 + u′,

u′ ∈ L2
sc(X ; scΩ

1
2 ).

(3.13)

Writing out the oscillatory integral explicitly and using the stationary phase lemma
determines a′0(y, y). In fact, notice that the stationary phase lemma gives the full
asymptotic expansion of Proposition 2.4.
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Away from G](λ) ∪G](−λ) we can use the symbolic filtration and (3.9) to con-
tinue the solution just constructed microlocally near G](−λ), by solving transport

equations. The additional factor xiα−(y′) causes no complications since it can be
commuted through the operator ∆X+VX−λ2 thereby adding a term similar to the
ones that already exist. Indeed, since this operator contains no differentiation in
y′, no terms involving log x arise as they normally would if one acted on oscillatory
sections involving such a factor by a general differential operator. We refer to [14]
for further details. Finally, near G](λ) we cut off the solution K[

+ by simply multi-
plying the amplitudes by χ+(s), s the parameter given in (3.5), where χ+ ∈ C∞(R)
is identically 1 on [0, π− 2δ], vanishes on [π− δ, π], δ > 0 sufficiently small. This of
course introduces an error term for (∆X + VX − λ2)K[

+, exactly as in (3.8).

Let P̃ (λ) : C∞(∂X) → C−∞(X) denote the operator given by the kernel K[
+.

Then the actual Poisson operator is

(3.14) P (λ) = P̃ (λ) −R(λ2 + i0)(H − λ2)P̃ (λ).

The composition in this formula makes sense due to Proposition 2.5 and (3.8).
Namely, for a ∈ C−∞(∂X),

(3.15) WFsc((H − λ2)P̃ (λ)a) ⊂ π1(U+)

where π1 : scT ∗
∂X×∂XX × ∂X → scT ∗

∂XX is the projection (cf. (5.4)), and π1(U+)∩

R+
λ = ∅, so we can apply Proposition 2.5. Here (3.15) is a push-forward result;

its simplest proof is to employ a localized version of the Fourier transform F (use
a cut-off function and identify X locally with Sn+) and show the corresponding

statement for WF(F P̃ (λ)a) using the standard result on the wave front set of a
push forward, see [17, Appendix A] for a more detailed version of this argument
(and cf. the discussion after (5.18)).

Thus, P (λ) : C∞(∂X) → C−∞(X) extends to a continuous operator C−∞(∂X) →
C−∞(X), and if a ∈ C∞(∂X) then by Proposition 2.4, P (λ)a is indeed of the form
(1.2) (in fact, we have a full asymptotic expansion), and by Proposition 2.3 it is the
only generalized eigenfunction of H with eigenvalue λ2 which is of the form (1.2).
Hence, the operator P (λ) we have constructed is indeed the Poisson operator as
defined by asymptotic expansions in the introduction.

We also introduce the Poisson operator P (−λ) propagating from G](λ) and its

parametrix P̃ (−λ) with kernel K[
−. Thus,

(3.16) x−iα+,RK[
− ∈ I−(2n−1)/4

sc,os (X × ∂X,G(−λ),KD
1
2
sc)

and

(3.17) WFsc((∆X + VX − λ2)K[
−) ⊂ U−,

U− any prescribed neighborhood of G](−λ). The construction of P (−λ) is com-
pletely analogous to that of P (λ); we take the cut-off (as in the paragraph preceed-
ing (3.14)) to be a function χ− ∈ C∞(R) which is identically 1 on [2δ, π], 0 on [0, δ],
δ > 0 sufficiently small. In fact, for V ∈ xC∞(X ; R) (and more generally when

the operator V is real) we can deduce from (1.2) that P (λ) = P (−λ) (here P (±λ)
stands for the kernel of the corresponding operator). We also note that in addition
to (3.17) we have

(3.18) x−iα+,R(∆X + VX − λ2)K[
− ∈ I−(2n−1)/4+1

sc,os (X × ∂X,G(−λ),KD
1
2
sc),
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since the principal symbol of HX−λ2 vanishes on G(−λ) (see [14, Proposition 13]).

4. Variable order FIOs

In this section we give a brief description of polyhomogeneous Fourier integral
operators with an order whose imaginary part varies along the Lagrangian. All such
FIOs are in the class Iρ for ρ < 1, so the main issue is that of polyhomogeneity.
There are several possibilities to define these polyhomogeneous classes. We first
describe a geometrically very natural class that has good composition properties.
Then we define a smaller class which is not very natural from the geometric point
of view, but the scattering matrix will be in it (as well as in the bigger class), and
we can use this additional information to give a more precise description of the
Poisson operator near the ‘end’ of G(λ).

In fact, dealing with polyhomogeneity just amounts to checking the proofs given
in Hörmander’s paper [4] to see that allowing the additional logarithmic factors
discussed below takes care of the choices involved in defining these distributions.
We first introduce our ‘normalized’ symbol class; i.e. we take these symbols to
be order 0 and move the actual order in front of them in the oscillatory integral
representation of the Lagrangian distributions. This allows us to use Melrose’s
notation for polyhomogeneous symbols [12].

Let K be the index set

(4.1) K = {(m, p) : m, p ∈ N, p ≤ 2m}.

Let U ⊂ R
n be an open set. In Hörmander’s formulation of oscillatory integral

representations of Lagrangian distributions one considers symbols on U×RN . Here
we compactify RN to a ball, SN+ , and use the notation of [12] for conormal functions.
Recall that the space of polyhomogeneous function of index set K is denoted by
AK

phg(U×SN+ ); if they in addition have compact support (which is a statement about

their behavior in the U factor) then by AK
phg,c(U × SN+ ). Thus, a ∈ AK

phg(U × SN+ )

means that a has a complete asymptotic expansion at U × SN−1, SN−1 = ∂SN+ , i.e.
at infinity in the Euclidian picture, of the following kind:

(4.2) a(y, ω, s) ∼
∞
∑

j=0

∑

r≤2j

sj(log s)raj,r,±(y, ω, s).

Here y denotes the variable on U , s is a boundary defining function of SN+ and

(s, ω) are the (inverse) polar coordinates on SN+ , i.e. θ = s−1ω is the parameter on

RN in Hörmander’s notation. We can now define the spaces of polyhomogeneous
Lagrangian distributions of variable order.

Definition 4.1. Let Y be a smooth manifold, and let Λ be a conic Lagrangian sub-
manifold of T ∗Y \0. Suppose that α ∈ C∞(Λ) is real-valued and homogeneous of de-

gree 0. Then form ∈ R, Im+iα
phg (Y,Λ,Ω

1
2 ) denotes the subset of ∩ρ∈( 1

2 ,1)
Imρ (Y,Λ,Ω

1
2 )

which consists of distributions given by a locally finite sum of oscillatory integral
representations of the form

(4.3) (2π)−
n
4 −N

2

∫

eiψ(y,ω)/ss−m−iα̃(y,ω)−(n+2N−2)/4a(y, ω, s) dω ds |dy|
1
2



GEOMETRIC SCATTERING THEORY FOR LONG-RANGE POTENTIALS AND METRICS 13

where φ(y, ω, s) = ψ(y, ω)/s is a non-degenerate phase function parameterizing Λ,
a ∈ AK

phg,c(U × SN+ ), and the restriction of α̃ ∈ C∞(U × SN+ ) to the critical set

(4.4) Cφ = {(y, ω, s) : d(ω,s)φ(y, ω, s) = 0}

is the pull back of α by the diffeomorphism

(4.5) pφ : Cφ 3 (y, ω, s) 7→ (y, dyφ(y, ω, s)) ∈ Λ.

It is straightforward to check (following Hörmander’s proof in [4]) that the class
of distributions does not depend on the parametrization of Λ and the extension α̃
of α used above in the definition. In fact, the reason for allowing the additional
factors of log s in (4.2) is because such factors arise when changing parametriza-
tions (stationary phase in reducing the number of parameters, cf. [4, Section 3.2])
or the extension of α (an integration by parts argument as in the proof of [4,
Proposition 1.2.5]). We remark that it is not an accident that (2.12) and (4.1)

are the same; from the point of view of doing the push forward P̃ (λ)(v|dh|
1
2 ) as

discussed in (3.13), the logarithmic terms in (2.13) arise by stationary phase ar-
guments which is one of the reasons for their presence in (4.1). We note that the
proofs of other results, such as transversal composition of Lagrangian distributions,
go through without significant changes. We thus have the following analogue of [4,
Theorem 4.2.2].

Proposition 4.2. Suppose that C1 and C2 are homogeneous canonical relations
from T ∗Y to T ∗X and T ∗Z to T ∗Y respectively, αj are homogeneous functions of
degree 0 on C′

j, j = 1, 2, C1 ×C2 intersects the diagonal ∆ in T ∗X×T ∗Y ×T ∗Y ×
T ∗Z transversally and that the projection from the intersection to T ∗X × T ∗Z is
injective and proper, thus giving a homogeneous canonical relation C1 ◦ C2 from
T ∗Z to T ∗Y . If A1 ∈ Im1+iα1

phg (X × Y,C′
1,Ω

1
2 ), A2 ∈ Im2+iα2

phg (Y × Z,C′
2,Ω

1
2 ) are

properly supported, then

(4.6) A1A2 ∈ Im1+m2+iα
phg (X × Z, (C1 ◦ C2)

′,Ω
1
2 )

where α is the pullback of α1 +α2, defined on (C1×C2)∩∆, by the diffeomorphism
given by the projection to C1 ◦ C2.

In fact, clean composition also works the same way if we assume that α1 + α2

is constant along the fibers of the projection, i.e. that α1 + α2 (again, defined on
(C1×C2)∩∆) is the pull back of a function α on C1◦C2. The proof proceeds just as
in the standard case; see the paper of Duistermaat and Guillemin [1], Weinstein’s
paper [19], or [5, Chapter XXV].

Proposition 4.3. Suppose that C1 and C2 are as above, but the composition C1◦C2

is clean with excess e (instead of being transversal), and it is proper and connected.
Suppose that α1 + α2, regarded as a function on (C1 × C2) ∩ ∆, is the pull back of
a function α on C1 ◦ C2. Then

(4.7) A1A2 ∈ I
m1+m2+

e
2+iα

phg (X × Z, (C1 ◦ C2)
′,Ω

1
2 ).

We had to allow logarithmic terms in the polyhomogeneous expansions in Defini-
tion 4.1 to make sure that our definition is independent of the choice of parametriza-
tion of the Lagrangian and of the extension of α used to define the class. However,
under certain additional assumptions we can make sure that the logarithmic terms
do not arise. This is in fact the case if the variable order is given by a globally
defined function α on the base manifold.
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Definition 4.4. Let Y be a smooth manifold and let Λ be a conic Lagrangian
submanifold of T ∗Y \ 0. Suppose that α ∈ C∞(Y ) is real-valued. Then for m ∈

R, Im+iα
b,phg (Y,Λ,Ω

1
2 ) denotes the subset of ∩ρ∈( 1

2 ,1)
Imρ (Y,Λ,Ω

1
2 ) which consists of

distributions given by a locally finite sum of oscillatory integral representations of
the form

(4.8) (2π)−
n
4 −N

2

∫

eiψ(y,ω)/ss−m−iα(y)−(n+2N−2)/4a(y, ω, s) dω ds |dy|
1
2

where φ(y, ω, s) = ψ(y, ω)/s is a non-degenerate phase function parameterizing Λ
and a ∈ C∞

c (U × SN+ ).

Remark 4.5. Note that a ∈ C∞
c (U × SN+ ) means that it is a classical (one-step

polyhomogeneous) symbol of order 0 with compact cone support. Also, directly
from the definition, if α ∈ C∞(Y ) then

(4.9) Im+iα
b,phg (Y,Λ,Ω

1
2 ) ⊂ Im+iα′

phg (Y,Λ,Ω
1
2 )

where α′ is the restriction of π∗α to Λ; here π : T ∗Y → Y is the projection.

Again, this definition is independent of the parametrizations of Λ. In particular
the reduction of the number of parameters means that we have to use the stationary
phase lemma in the parameters to be eliminated, but the exponent in s−iα(y) does
not depend on the parameter variables, so the differentiations in the stationary
phase result (see [4, Equation 3.2.8]) do not give rise to logarithmic terms. Note,
however, that this class is geometrically less natural since the Lagrangian and the
projection T ∗Y → Y generally relate to each other in a fairly complicated way.
Also, in the composition formula for FIOs (see e.g. [4, Equation 4.2.8]) the base
variables become parameters, so this class is not, in general, closed under (transver-
sal) composition. However, the S-matrix discussed in the following section will be
in this class, and we can use the explicit composition formula in Section 7 to ob-
tain a sharp result for the structure of the Poisson operator near the end of the
Legendrian G(λ). Namely, there will be no logarithmic terms in the part of the
representation along G(λ) (we know this a priori, from the results of Section 3,
away from G](λ)), though they will appear on G](λ).

5. The scattering matrix

The scattering matrix of H can be calculated by the boundary pairing of [13] as
discussed in the following Proposition. This proposition and Equation (5.5) allow
us to analyze the structure of S(λ) using the results of Section 3, i.e. they eliminate
the necessity of knowing the precise structure of P (λ) at the ‘end’ of G(λ) (which
was crucial in the approach taken by Melrose and Zworski in [14]).

Proposition 5.1. The scattering matrix is given by

(5.1) S(λ) =
1

2iλ
((H − λ2)P̃ (−λ))∗P (λ).

Proof. The following pairing formula was proved by Melrose [13, Proposition 13]
for short-range g and V , but the same proof also applies when g is long-range and
V ∈ xDiff2

sc(X). We use the notation of Proposition 2.4. Suppose that

(5.2) uj = eiλ/xx(n−1)/2+iα+vj,+ + e−iλ/xx(n−1)/2+iα−vj,−, vj,± ∈ AK
phg(X),
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and fj = (H − λ2)uj ∈ ˙C∞(X). Let aj,± = vj,±|∂X . Then

(5.3) 2iλ

∫

∂X

(a1,+ a2,+ − a1,− a2,−) dh =

∫

X

(u1 f2 − f1 u2) dg.

We apply this result with u1 = P (λ)a1, u2 = P̃ (−λ)a2. By the construction of

P̃ (−λ) we conclude that a2,+ = a2, a2,− = 0, while for u1 we see directly from the
definition of S(λ) and P (λ) that a1,− = a1, a1,+ = S(λ)a1. Substitution into (5.3)
proves the proposition. �

We can even replace P (λ) by P̃ (λ) in the statement of this proposition if we
work modulo smoothing operators. To see this, let π1 : scT ∗(X × ∂X) → scT ∗X ,
π2 : scT ∗(X × ∂X) → T ∗∂X be the projections arising from the isomorphism

(5.4) scT ∗X×T ∗∂X → scT ∗(X×∂X), (µ′dy′, τ
dx

x2
+µ

dy

x
) 7→ τ

dx

x2
+µ

dy

x
+µ′ dy

′

x

given by a choice of x (restricting π1, π2, to the boundary we only need to specify x
modulo x2C∞(X)). Now suppose that U± are neighborhoods (in scT ∗

∂X×∂XX×∂X)

of G](±λ) respectively such that π1(U+) ∩ π1(U−) = ∅, and K[
± satisfy (3.8) and

(3.17) respectively. Then the assumptions on U± ensure that S(λ) is given by

(5.5) S̃(λ) =
1

2iλ
((H − λ2)P̃ (−λ))∗P̃ (λ)

modulo smoothing operators (i.e. S(λ) − S̃(λ) ∈ Ψ−∞(∂X)). In fact, for any
a, a′ ∈ C−∞(∂X) we have

(5.6) WFsc((P (λ) − P̃ (λ))a) ⊂ π1(U+), WFsc((H − λ2)P̃ (−λ)a′) ⊂ π1(U−),

see Proposition 2.5 and the discussion after (3.15), so under the assumptions on
U±, the complex pairing

(5.7) 〈(H − λ2)P̃ (−λ)a′, (P (λ) − P̃ (λ))a〉

is defined by continuity (from a, a′ ∈ C∞(∂X)), so

(5.8) ((H − λ2)P̃ (−λ))∗(P (λ) − P̃ (λ)) : C−∞(∂X) → C∞(∂X)

indeed.
Now, the composition of the Legendre distributions in (5.5) is clean in the sense

of Duistermaat and Guillemin [1], see also [5, Chapter XXV] and [19], and see
Joshi’s paper [9] for a geometric proof of clean composition. Namely, the excess is
1, coming from the fact that if a point on a bicharacteristic is in both Legendrians,
then so is the whole bicharacteristic through that point. In order to apply their
result, we use the localized partial Fourier transform in the ‘composition variables’,
i.e. on X , to translate our composition to that of Lagrangian distribution associated
to cleanly intersecting Lagrangians. However, we first discuss the Euclidian setting.

As a simple but (in this respect) very illuminating example we now consider the
compactified Euclidian space X = Sn+ with its standard metric, and let H = ∆+V
as above. We trivialize all density bundles by the standard measures. The kernel
K± of the Poisson operator P (±λ) is a distribution on Sn+ × Sn−1. Since G(±λ)

is a global section of scT ∗
∂X×∂X(X × ∂X) (for either choice of the sign), K[

± is an
oscillatory function

(5.9) K[
± = e∓iλy

′·y/xxiα∓(y′)a±(x, y, y′), a ∈ C∞([0, 1) × S
n−1 × S

n−1),
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here supp a± are disjoint from [0, 1) × {(y,−y) : y ∈ Sn−1} (as that would corre-
spond to the end of the Legendrian).

To see how the composition in (5.5) works in this setting, note first that the kernel

of (H − λ2)P̃ (−λ) is also of the form (5.9) but its amplitude (corresponding to a±
above) is in xC∞(Sn+ × Sn−1) since H −λ2 is characteristic on G(λ) (corresponding
to the fact that the phase function in (5.9) solves the eikonal equation). Now we
write the variables on the composition space Sn−1 ×Sn+ ×Sn−1 as (y′, (x, y), y′′), so

the kernel of S̃(λ) takes the form

S̃(λ)(y′, y′′) =

∫

e−iλ(y′+y′′)·y/xb(x, y, y′, y′′)
dx dy

xn+1
,

xi(−α−(y′)+α+(y′′))b ∈ xC∞(Sn+ × S
n−1 × S

n−1).

(5.10)

We also note the support properties of b: as y′ and y′′ are both away from −y, and
when y′ is near y the phase function has no critical points (since y′′ is away from −y)
and a similar statement holds for y′′, we can take b to be supported away from y =
±y′, and away from y = ±y′′. Under these conditions this is a cleanly parameterized
oscillatory integral in the sense of [1, Lemma 7.1], so (uncompactifying the notation
and writing z = y/x as the Euclidian variable) φ(y′, y′′, z) = (y′ + y′′) · z satisfies
dφ 6= 0 (on supp b), φ defines a submanifold Cφ by dzφ = 0, namely

(5.11) Cφ = {(y′, y′′, z) : y′ = −y′′},

and the tangent space of Cφ is the space of vectors annihilated by d
(

∂φ
∂zj

)

, j =

1, . . . , n. In fact, a straightforward computation shows that n − 1 = codimCφ of
these differentials are linearly independent. Thus, the ‘excess’ of the parametriza-
tion is e = 1. As a symbol, b is in the class S−1

ρ = S−1
ρ,1−ρ for any ρ < 1;

due to the log x’s appearing after differentiating xiα+(y′) with respect to y′, b is
in S−1 = S−1

1,0 only if α± are constant. By Lemma 7.1 of [1] we conclude that

S̃(λ) ∈ I0
ρ(S

n−1 × Sn−1;N∗ graph(p); ΩR) for any ρ < 1 where p : Sn−1 → Sn−1

is the antipodal map. Strictly speaking, the proof of the above Lemma given in
that paper assumes polyhomogeneity, i.e. it only applies in the former case (and
shows that the result is polyhomogeneous), but it is easy to see that the lack of the
polyhomogeneity (or its variable order version in our setting) causes no additional
complications, see [5, Chapter XXV]. Of course, we also immediately see that this
integral is of the form (4.8) except that −λ(y′ + y′′) · y/x is a clean phase func-
tion, not a non-degenerate one, but the argument of Duistermaat and Guillemin

still applies and shows that S̃(λ) ∈ I
i(π∗

Lα+−π∗
Rα−)

b,phg (Sn−1 × Sn−1;N∗ graph(p); ΩR)

where πL, πR : Sn−1×Sn−1 → Sn−1 are the projections to the left and right factors
respectively.

Returning to the general geometric setting, we first remark that the kernel of
((H−λ2)P̃ (−λ))∗ is a Legendrian distribution associated to the Legendre subman-
ifold G(λ)† of scT ∗

∂X×∂X∂X ×X ; here † simply denotes that the factors X and ∂X
are interchanged (compared to the definition of G(λ)). In the following, as custom-
ary for Lagrangians, we use the notation G′ for the canonical relation corresponding
to a Legendre submanifold G ⊂ scT ∗

∂X×∂X(X × ∂X) (or of scT ∗
∂X×∂X(∂X ×X)),

i.e. the sign of the covector component in the second factor is switched. We next
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show that away from G](±λ) in both factors, the intersection of

(5.12) C = (G(λ)†)′ ×G(λ)′

with the (partial) diagonal ∆ in the X factors of

(5.13) Z = scT ∗
∂X×∂X(∂X ×X) × scT ∗

∂X×∂X(X × ∂X)

is clean. Note that Z is just a manifold without boundary.
Let

(5.14) Y = T ∗∂X × Σ∆−λ2 × Σ∆−λ2 × T ∗∂X.

Noting that C ⊂ Y , we actually show that C intersects ∆ ∩ Y transversally inside
Y from which the cleanness of the intersection of ∆ and C follows easily. We
also remark that the excess of the clean intersection will be e = 1 since Y has
codimension 2 in Z, and ∆∩ Y has codimension 1 in ∆. Then all we need to show
is that

(5.15) p ∈ G(λ)′ ⇒ (π1)∗TpG(λ)′ = Tπ1(p)Σ∆−λ2 ;

since for any (q, p) ∈ ∆ ∩ Y we have
(5.16)
Tq,p(∆ ∩ Y ) = Tπ2(q)T

∗∂X × T(π1(q),π1(p)) diag(Σ∆−λ2 × Σ∆−λ2) × Tπ2(p)T
∗∂X

and (5.15)-(5.16) imply that

(5.17) Tq,pC + Tq,p(∆ ∩ Y ) = Tq,pY.

But (5.15) can be seen directly from the parametrization of G(λ): instead of
the standard coordinates (y, τ, µ) on scT ∗

∂XX we can also use the coordinates ρ =
τ2 + |µ|2, s = arccos(τ/(τ2 + |µ|2)) and µ̂ = µ

|µ| on scT ∗
∂XX away from R±

λ and near

Σ∆−λ2 , so the invertibility of the push-forward by the exponential map in (3.5)
proves our claim.

Although we could prove a ‘clean composition’ theorem in this scattering setting
directly similarly to how it was done in [1], we simply reduce the proof to the
Lagrangian case by employing a localized version of the Fourier transform. Thus,
we rewrite the (5.5) by localizing the operator kernels in regions of the form U×∂X
where U ⊂ Sn+ and using the Fourier transform on Sn+, i.e. we take

(5.18) (Fu)(ξ, y′) =

∫

e−iξ·y/xu(x, y, y′)
dx dy

xn+1
.

This is a priori defined for, say, u ∈ ˙C∞
c(U × ∂X), but it extends to a map

C−∞
c (U × ∂X) → S′(Rn × ∂X) as usual. It maps Legendre distributions of order
m associated to a Legendre submanifold G to Lagrangian distributions of order
−m−n−1

2 and of compact singular support on Rn×∂X (cf. the completely analogous
result when there are no ‘parameters’ y′, discussed in [14]). The (homogeneous)
Lagrangian Λ to which the image is associated is given by

(5.19) Λ+(G) = {(rL(π1(p)), rπ2(p)) : p ∈ G, r > 0}

where L is the Legendre diffeomorphism

(5.20) L : scT ∗
Sn−1S

n
+ → S∗

R
n, L(y, τ, µ) = (µ− τy,−y)

of [14, Lemma 5]. In fact, if φ(y, y′, u)/x is a phase function which locally parame-
terizes G, then

(5.21) ψ(ξ, y′, y, u)/x = (−ξ · y + φ(y, y′, u))/x
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is a (non-degenerate) phase function which locally parameterizes Λ+(G). Note that
here ξ and y′ are the base variables, and x, y, u are the variables in the parameter
space of which x is homogeneous of degree −1 (recall that we have symbolic behavior
in x as x goes to 0!) but the others of degree 0, so the true phase function in the
sense of Hörmander [4] (see also [5, Chapter XXI]) is

(5.22) ψ̃(ξ, y′, Y, U, r) = ψ(ξ, y′,
Y

r
,
U

r
)r = −ξ · Y + rφ(

Y

r
, y′, u).

The corresponding change in the variables of integration and Hörmander’s order
convention [4] gives rise to the shift of orders to −m− (n− 1)/2.

If j : Rn → Rn denotes the map ξ 7→ −ξ, then F−1 = (2π)−nj∗F . Correspond-
ingly, F−1 maps Legendre distributions associated to G to Lagrangian distributions
associated to

(5.23) Λ−(G) = {(rj∗L(π1(p)), rπ2(p)) : p ∈ G, r > 0}

Now we insert F−1F between (localized versions of) the operators ((H−λ2)P̃ (−λ))∗

and P̃ (λ) in (5.5). The results of Section 3 show that the kernels of these op-

erators are in I
− 2n−1

4 +1
sc,ρ (∂X × X ;G(λ)†; KD

1
2
sc) and I

− 2n−1
4

sc,ρ (X × ∂X ;G(λ); KD
1
2
sc)

respectively with ρ = 1 if α± are a constant; if α± are not constant, we can
take any ρ ∈ (1

2 , 1). Thus, the corresponding (inverse) Fourier transformed op-

erators are in I
−3/4
ρ (∂X × Rn; Λ−(G(λ)†); Ω

1
2 ) and I

1/4
ρ (Rn × ∂X ; Λ+(G(λ)); Ω

1
2 )

respectively, with ρ = 1 or ρ < 1 as before. In fact, (5.18), together with the poly-

homogeneous description of P̃ (±λ), see (3.7) and (3.16), also shows the stronger
polyhomogeneous statement that we can replace the spaces mentioned above by

I
−3/4+iα+

b,phg (∂X×Rn; Λ−(G(λ)†); Ω
1
2 ) and I

1/4−iα−

b,phg (Rn×∂X ; Λ+(G(λ)); Ω
1
2 ) respec-

tively where α± are regarded as functions on Rn× ∂X using the projection to ∂X .
We also remark that Λ+(G(λ))′ = Λ+(G(λ)′) and Λ−(G(λ)†)′ = Λ+((G(λ)†)′)

(the difference between the two expressions is due to the fact that in one case
the (inverse) Fourier transform is in the primed factor, in the other it is not).
Therefore, as (G(λ)†)′ ×G(λ)′ intersects ∆ cleanly with excess 1, the same follows
for Λ−(G(λ)†)′×Λ+(G(λ))′ and ∆ (here ∆ is the partial diagonal in the new space
by an abuse of notation). Thus, the kernel of the composite operator, i.e. that of

S̃(λ), is a Lagrangian distribution. Since the excess of the intersection is 1, the

kernel of S̃(λ) (and hence of S(λ)) is a Lagrangian distribution of order 0 (of class
I0
ρ with ρ as above) associated to the Lagrangian

(5.24) Λ = (Λ−(G(λ)†)′ ◦ Λ+(G(λ))′)′.

In fact, S(λ) is even in the class I
i(α+−α−)
b,phg since α± do not depend on the composi-

tion variable y
x in Rn. Unraveling the Fourier transform we see that the associated

Lagrangian is

(5.25) Λ = ((G(λ)†)′ ◦G(λ)′)′hom

where hom denotes that we have to homogenize the submanifold we obtain by the
composition ◦, i.e. make it invariant under the R+ action on T ∗(∂X×∂X)\0. This
homogenization simply corresponds to the presence of r > 0 in Equations (5.19)
and (5.23). As (G(λ)†)′ is the same as (G(−λ)′)† (i.e. the sign of ∂X component
of the covectors in G(−λ) is switched and the order of the variables is reversed),
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from (3.5)-(3.6) we conclude that

Λ = {(y′, y′′, µ′, µ′′) ∈ T ∗(∂X × ∂X) \ 0 : µ′ = r′λ(sin s′)µ̂′, µ′′ = −rλ(sin s)µ̂′′,

rλ sin s exp(sH 1
2h

)(y′′, µ̂′′) = r′λ sin s′ exp((s′ − π)H 1
2h

)(y′, µ̂′),

rλ cos s = r′λ cos s′, r, r′ > 0, s, s′ ∈ (0, π), (y′, µ̂′), (y′′, µ̂′′) ∈ S∗∂X}.

(5.26)

This implies that r = r′, s = s′, so we deduce that (y′, µ̂′) = exp(πH 1
2h

)(y′′, µ̂′′)

and

Λ = {(y′,y′′, µ′, µ′′) ∈ T ∗(∂X × ∂X) \ 0 : (y′, µ̂′) = exp(πH 1
2h

)(y′′, µ̂′′),

µ′ = ρµ̂′, µ′′ = −ρµ̂′′, ρ > 0, (y′, µ̂′), (y′′, µ̂′′) ∈ S∗∂X}.
(5.27)

This is exactly the Lagrangian associated to the (forward) geodesic flow at distance
π. We can know use the Riemannian density on X and ∂X to regard S(λ) as an
operator on C−∞(∂X). We have thus shown the following theorem.

Theorem 5.2. Let Λ be the Lagrangian associated to the (forward) geodesic flow
of h on ∂X at distance π. Then for λ > 0, S(λ) is a Fourier integral operator
with kernel in I0

ρ (∂X × ∂X ; Λ; ΩR) with ρ = 1 if α± are constant on ∂X and with

ρ ∈ (1
2 , 1) arbitrary in general. More precisely, the kernel is in the polyhomogeneous

space I
i(π∗

Lα+−π∗
Rα−)

b,phg (∂X × ∂X ; Λ; ΩR) where πL, πR : ∂X × ∂X → ∂X are the
projections.

Remark 5.3. For λ < 0, S(λ) is associated to the backward geodesic flow at distance
π by a similar argument, and it has order i(π∗

Lα− − π∗
Rα+). Also note that S(λ) =

S(−λ)−1 for any λ ∈ R \ {0} directly from the definition.

6. The principal symbol calculation

In this section we briefly outline how the principal symbol of S(λ) can be calcu-
lated using the clean composition formulae of [1] and the calculations of Joshi and
Sá Barreto for the principal symbol of the Poisson operator away from the ‘end’
of the Legendrian. This and other similar calculations can be used to analyze the
inverse problem of reconstructing the asymptotics of V (i.e. its Taylor series at ∂X)
as done by Joshi and Sá Barreto [11] for short-range potentials and by Joshi [8] in
the constant α± case. We, however, shall not analyze this problem in this paper.
For this reason, and also since the Poisson operator construction gives a better way
of calculating the principal symbol, exactly as was done by Joshi and Sá Barreto,
the following discussion will be kept brief. In particular, we drop all Maslov factors.

First we remark that the principal symbol of K[
± can be computed just as it was

done by the aforementioned authors; we just need to solve a transport equation,
i.e. a first order ODE. Let

(6.1) γ+ : (0, π)s × S∗∂X(y′,µ̂′) →
scT ∗

∂XX

be the map given by the composition of the parametrization of G(λ) in terms of
these coordinates with projection to scT ∗

∂XX (i.e. π1); define γ− similarly with
G(−λ) in place of G(λ). We remark that

(6.2) (y′, µ̂′) = exp(πH 1
2h

)(y′′, µ̂′′) ⇒ γ+(s, y′′, µ̂′′) = γ−(s, y′, µ̂′)
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directly from (3.5)-(3.6). Using the coordinates (s, y′, µ̂′) and (s, y′′, µ̂′′) (given in
(3.5)-(3.6)) on G(λ) and G(−λ) respectively, the result of solving the transport
equations is that away from U± (respectively) the principal symbol is given by

σsc,−(2n−1)/4(x
−iα−,R P̃ (λ))(s, y′′, µ̂′′)

= (sin s)(n−2)/2ei
R s
0
f+(γ+(s′,y′′,µ̂′′)) ds′ |ds|

1
2 |dy′′|

1
2 |dµ̂′′|

1
2 |dx|−n/2,

(6.3)

σsc,−(2n−1)/4(x
−iα+,R P̃ (−λ))(s, y′, µ̂′)

= (sin s)(n−2)/2ei
R s

π
f−(γ−(s′,y′,µ̂′)) ds′ |ds|

1
2 |dy′|

1
2 |dµ̂′|

1
2 |dx|−n/2;

(6.4)

here f+ ∈ C∞([0, π) × S∗∂X), f− ∈ C∞((0, π] × S∗∂X) are real-valued functions
(cf. Joshi’s and Sá Barreto’s paper [11]). We remark that the factors of x that one
might expect, appear as a density (see the power of |dx|) since these distributions
are associated to Legendre submanifolds, i.e. there is no radial factor as in the conic
Lagrangians. The functions f± are of the form

(6.5) f+(γ+(s, y′′, µ̂′′)) = −(cot s)α−(y′′) + f(γ+(s, y′′, µ̂′′))

(6.6) f−(γ−(s, y′, µ̂′)) = (cot s)α+(y′) + f(γ−(s, y′, µ̂′))

where f is still real-valued and it is the same in the previous two equations, but it
is not smooth down to s = 0 or up to s = π corresponding to the appearance of
the term with cot s. Since the (rescaled) Hamilton vector-field scHg is 2λ sin s ∂s at
G(±λ), Proposition 13 of [14] shows that we have

σsc,−(2n−1)/4+1(x
−iα+,R(H − λ2)P̃ (−λ))(s, y′, µ̂′)

= −2λi(∂sχ−)(sin s)n/2ei
R

s
π
f−(γ−(s′,y′,µ̂′)) ds′ |ds|

1
2 |dy′|

1
2 |dµ̂′|

1
2 |dx|1−n/2.

(6.7)

The principal symbol of (x−iα+,R(H −λ2)P̃ (−λ))∗ is the complex conjugate of this
expression.

The fibers of Λ′ over Λ−(G(λ)†)′×Λ+(G(λ))′∩∆ are given by (y′, y′′, µ′, µ′′) being
constant, so from (5.26) this implies that r sin s is constant. In our notation x = r−1,
so the fibers of the composition are given by ρ = x−1 sin s is constant, (y′, y′′, µ̂′, µ̂′′)
constant, (y′, µ̂′) = exp(πH 1

2h
)(y′′, µ̂′′). Thus, we change coordinates, we replace

x by ρ. By the clean composition theorem, the principal symbol of the composite
operator, S̃(λ), is given by the integral in s (keeping ρ, (y′, y′′, µ̂′, µ̂′′) constant,
(y′, µ̂′) = exp(πH 1

2h
)(y′′, µ̂′′)) of the product of (6.3) with the complex conjugate

of (6.7) and with the factors x−iα+(y′)+iα−(y′′) which have been omitted from the
principal symbols. The product of the two exponential factors is

(6.8) exp(i(

∫ s

0

f+(γ+(s′, y′, µ̂′)) ds′ −

∫ s

π

f−(γ−(s′, y′′, µ̂′′)) ds′)).

Taking into account (6.2), (6.5)-(6.6), this becomes

(6.9) exp(i

∫ π

0

f(γ+(s′, y′′, µ̂′′)) ds′)(sin s)i(α+(y′)−α−(y′′));

notice that the first factor is independent of s, so it is constant over the fibers of
integration.

Instead of the standard coordinates (x, y, τ, µ) on scT ∗X , near Σ∆−λ2 \(R−
λ ∪R

+
λ )

we can use the following coordinates (x, y, p, µ̂, s):

(6.10) τ = λ cos s, µ = (p− λ2 cos2 s)1/2µ̂,
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so p = τ2 + |µ|2 restricted to scT ∗
∂XX is the principal symbol of ∆; it is equal to λ2

on Σ∆−λ2 . The symplectic form on scT ∗X gives a trivialization (via the induced
volume form)

(6.11)
1

2
(λ sin s)(p− λ2(cos s)2)

n−3
2 x−(n+1)|dx| |dy| |dp| |dµ̂| |ds| = 1;

on Σ∆−λ2 , as ρ = x−1 sin s, this takes the form

(6.12) C1(λ)(sin s)
−2ρn−1|dρ| |dy| |dp| |dµ̂| |ds| = 1

where C1(λ) is a ‘constant’, depending only on λ. Moreover, dp is identified with the
Hamilton vector-field Hp via the symplectic form. As Hp = x scHg (this being the
rescaling factor of scHg, see [13]), the identification becomes that of 2λρ−1(sin s)2 ∂s
with dp, so we have the identification

(6.13) C2(λ)ρ
n−2|dρ| |dy| |dµ̂| = 1.

The factors of powers of sin s cancel each other in the product of the two principal
symbols when we replace x by ρ, and we can use (6.9) and (6.13). Thus,

σ0(S̃(λ)) = C3(λ) exp(i(

∫ π

0

f(γ+(s′, y′′, µ̂′′)) ds′)

(

∫ π

0

∂sχ− |ds|)ρiα+(y′)−iα−(y′′)ρ(n−2)/2 |dµ̂′′|1/2|dy′′|1/2|dρ|1/2,

(6.14)

so introducing µ′′ = ρµ̂′′, and noting that the integral is 1 by the fundamental
theorem of calculus and the required properties of χ− (χ−(s) is 1 near s = π, 0
near s = 0),

σ0(S̃(λ))

= C4(λ) exp(i(

∫ π

0

f(γ+(s′, y′′, µ̂′′)) ds′)|µ′′|iα+(y′)−iα−(y′′) |dµ′′|1/2|dy′′|1/2.

(6.15)

7. Poisson operators: analysis at the end of the Legendrians

We now show how the kernel of the Poisson operator P (λ) can be analyzed near
G](λ) using S(λ). Directly from the definition of these operators,

(7.1) P (λ) = P (−λ)S(λ),

so the understanding of S(λ) together with that of P (−λ) near G](λ) gives the
desired description of P (λ) there. More precisely, choosing Q ∈ Ψ0,0

sc (X) such that
WFsc(Q) ∩ R−

λ = ∅, WFsc(Id−Q) ∩ R+
λ = ∅, it follows from (3.14) and Proposi-

tion 2.5 that (if U+ is small enough) Q(P (λ)− P̃ (λ)) maps C−∞(∂X) to ˙C∞(X), so

its kernel is in ˙C∞(X×∂X ; KD
1
2
sc). Similarly, the kernel of (Id−Q)(P (−λ)−P̃ (−λ))

is in ˙C∞(X × ∂X ; KD
1
2
sc) (if U− is sufficiently small). Thus, near G](λ) the kernel

of P (λ) is given by (Id−Q)P̃ (−λ)S(λ), and the kernel of (Id−Q)P̃ (−λ) has the

same form as that of P̃ (−λ) in this region. Again, this is a composition result,

and the easiest way to see it is to consider F−1(F(Id−Q)F−1)(F P̃ (−λ)), use the
invariance of Ψ0,0

sc (X) under conjugation by the Fourier transform, and that (the
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kernel of) F P̃ (−λ) is a Lagrangian distribution. Hence, (Id−Q)P̃ (−λ) is given by
an oscillatory function in this region; namely it is of the form

(7.2) K[
− = eiλ cos dist(y,y′)/xxiα+(y′)a(x, y, y′)ν, a ∈ C∞(X × ∂X),

microlocally near G](λ) (ν = |dg|
1
2 |dh|

1
2 ).

We also write out the oscillatory integral representation of S(λ) in local co-
ordinates. We write the parameters in inverse polar coordinates, so t−1u is the
Euclidian variable, so (modulo half-density factors)

(7.3) S(λ)(y′, y′′) =

∫

eiφ(y′,y′′,u)/tb(y′, y′′, t, u)t(k−n+1)/2 dt du

tk+1
,

(7.4) ti(α+(y′)−α−(y′′))b ∈ C∞
c (∂Xy′ × ∂Xy′′ × [0, 1)t × R

k−1
u ).

In particular, b is a symbol of order 0 in t (in class Sρ with ρ = 1 if α± are constant,
and with any ρ < 1 otherwise). We thus obtain the following oscillatory integral
representation of the kernel of P (λ):

(7.5)

∫

ei(φ(y′,y′′,u)/t+λ cos dist(y,y′)/x)c(x, y, y′, y′′, t, u) t−(k+n+1)/2 dt du dy′,

where c is still a symbol of order 0 in t (as well as in x). Now we let s = x
t , so this

integral becomes
(7.6)

∫

ei(φ(y′,y′′,u)s+λ cos dist(y,y′))/xc(x, y, y′, y′′,
x

s
, u)

(x

s

)−(k+n−1)/2

s−1 ds du dy′.

Here the s integral is from 0 to ∞, but φ and d(y′,u)φ never vanish at the same
time (due to (5.27), φ = 0 and duφ = 0 imply that dy′φ 6= 0), so for large s we have
d(y′,u,s)(φ(y′, y′′, u)s+ λ cos dist(y, y′)) 6= 0, so integration by parts shows that the

region where s > 2λ contributes only a function in ˙C∞(X × ∂X), so we can replace
c by c′(x, y, y′, y′′, s, xs , u) = χ(s)c where χ ∈ C∞

c (R) is identically 1 on [−2λ, 2λ]:
(7.7)
∫

ei(φ(y′,y′′,u)s+λ cos dist(y,y′))/xc′(x, y, y′, y′′, s,
x

s
, u)

(x

s

)−(k+n−1)/2

s−1 ds du dy′,

x−iα−(y′′)s−i(α+(y′)−α−(y′′))c′

∈ C∞
c ([0,∞)x × ∂Xy × ∂Xy′ × ∂Xy′′ × [0,∞)s × [0,∞)x/s × R

k−1
u ).

(7.8)

We recall from [14] that G̃(λ) = (G(λ), G](λ)) is an intersecting pair of Legendre
submanifolds with conic points. Equation (7.7) is nearly of the form of Melrose’s

and Zworski’s parametrization of conic Legendrian G̃(λ); for their formula we need a
phase function of the form ψ(y, y′′, s, u′)s+λ, i.e. we need to replace λ cos dist(y, y′)
in the phase function by λ at the cost of modifying the factor in front of s and
changing the parameters. Of course, away from s = 0 our phase function is already
of the correct form, so in the following we may assume that s is sufficiently small.
We proceed by remarking that when s = 0 then the y′ derivative of the phase
function is nonzero except when y = y′ where it (the phase function) has a non-
degenerate critical point with respect to y′ (since cos dist(y, y′) has this property).
Hence, for small s the phase function has non-degenerate critical points with respect
to y′ which, by the implicit function theorem, are given by y′ = f(y, y′′, s, u) where
f is smooth, also note that f(y, y′′, 0, u) = y. We can carry out the y′ integral by
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the stationary phase lemma; this introduces an additional factor of x(n−1)/2 and
factors of log s due to the exponent siα+(y′). Therefore, (7.7) becomes

(7.9)

∫

ei(φ(f(y,y′′,s,u),y′′,u)s+λ)/xc[(x, y, y′′, s,
x

s
, u)

(x

s

)−k/2

s(n−3)/2 ds du.

x−iα−(y′′)s−i(α+(y)−α−(y′′))c[

∈ AK′

phg,c([0,∞)x × ∂Xy × ∂Xy′′ × [0,∞)s × [0,∞)x/s × R
k−1
u );

(7.10)

here AK′

phg,c stands for polyhomogeneous functions of compact support with index

family K′ given by N for the hypersurfaces x = 0 and x/s = 0, and by K for s = 0.
Thus, we allow logarithmic terms in s just as in (4.2) but we demand smoothness
in the variables x and x/s down to 0. This is exactly of the form of Melrose’s and
Zworski’s definition of Legendrian distributions with conic singularities (though of
course they did not have the variable order and the logarithmic terms). Note that
the phase function is indeed non-degenerate in the sense defined in their paper
[14], namely with ψ(y, y′′, s, u) = φ(f(y, y′′, s, u), y′′, u) we have that d(y,y′′,u)ψ and
d(y,y′′,u)∂ujψ are linearly independent at (y, y′′, 0, u) if this point is in the critical
set since f(y, y′′, 0, u) = y reduces this to the assumption that φ is non-degenerate.
Matching the orders with their definition we have deduced the following theorem.

Theorem 7.1. The kernel of P (λ) (which we also denote by P (λ)) satisfies

(7.11) P (λ) ∈ I−(2n−1)/4,−1/4
sc,ρ (X × ∂X, G̃(λ),KD

1
2
sc)

with ρ = 1 if α± are constant and with any ρ ∈ (1
2 , 1) otherwise. More precisely,

P (λ) is in a polyhomogeneous space defined, modulo ˙C∞(X×∂X ; KD
1
2
sc), by a locally

finite sum of oscillatory integral representations of the form (7.9)-(7.10).

We note that the exponent of x in (7.10) matches that in (3.7) as it must. The
logarithmic terms in (7.10) just correspond to the logarithmic terms in (2.13) as
discussed after Definition 4.1 for the behavior of P (λ) near the incoming radial set.
Also, the polyhomogeneous space defined in the theorem is indeed independent of
the choices made, in particular of the extension of α to X (used to define siα+(y)),
by the arguments of Section 4.

Our argument also shows that near the singularity, G(λ) ∩ G](λ), the space

Im,psc,os(X × ∂X, G̃(λ),KD
1
2
sc) consists of distributions which arise as the composi-

tion of eiλ cos dist(y,y′)/xa(x, y, y′), a ∈ C∞(X × ∂X ; KD
1
2
sc), supported near x = 0,

y = y′, non-zero on a smaller set near x = 0, y = y′, with classical Fourier in-
tegral operators on ∂X associated to Λ, and similar statements are true for the
non-polyhomogeneous (or other polyhomogeneous) spaces. In addition, the non-

vanishing of the principal symbol of P̃ (−λ) in this region also shows that the prin-
cipal symbol of S(λ) can be recovered from the asymptotics of the principal symbol
of P (λ) on approaching G](λ); this was the method used by Joshi and Sá Barreto
in their computations in [11].
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