
Some recent advances in microlocal analy-

sis

András Vasy∗

Mathematics Subject Classification (2010). Primary 35S05; Secondary 35A21,

35P25, 35L05, 58J47, 58J50.

Abstract. In this talk we describe some recent developments in microlocal analysis that
have led to advances in understanding problems such as wave propagation, the Laplacian
on asymptotically hyperbolic spaces and the meromorphic continuation of the dynamical
zeta function for Anosov flows.

1. Introduction

In this talk we describe some recent developments in microlocal analysis that have
led to advances in understanding problems such as wave propagation, the Lapla-
cian on asymptotically hyperbolic spaces and the meromorphic continuation of
the dynamical zeta function for Anosov flows. We state some of these results as
theorems directly, giving details in the body of the notes.

The first theorem concerns asymptotically hyperbolic spaces, which are n-
dimensional manifolds with boundary X0, with a preferred boundary defining
function x, with a complete Riemannian metric g0 on the interior of X0 such
that ĝ0 = x2g0 is Riemannian on X0 (i.e. up to the boundary) and |dx|ĝ0 = 1 at
∂X0. For such metrics the Laplacian is essentially self-adjoint on C∞c (X◦0 ), and is
positive, and thus the modified resolvent R(σ) = (∆g0 − (n− 1)2/4−σ2)−1 exists,
as a bounded operator on L2(dg0) for Imσ > 0, σ /∈ ı(0, (n− 1)/2].

Theorem 1.1. ([74, 73]) Let (X0, g0) be an even asymptotically hyperbolic space
(in the conformally compact sense) of dimension n. Then the (modified) resolvent
of the Laplacian on functions, R(σ) = (∆g0 − (n− 1)2/4−σ2)−1, continues mero-
morphically from Imσ > (n− 1)/2 to C with finite rank Laurent coefficients at the
poles (called resonances), and if the geodesic flow on (X, g) is non-trapping, i.e.
all geodesics escape to infinity, then in strips Imσ > s, R(σ) satisfies non-trapping
estimates ‖R(σ)‖L(Y,X ) ≤ C|σ|−1, Reσ > C1, for suitable Hilbert spaces X ,Y.

Analogous results hold on differential k-forms, with (n−1)2/4 replaced by (n−
2k±1)2/4, with the sign + corresponding to closed, and − corresponding to coclosed
forms.

∗The author gratefully acknowledges partial support from the NSF under grant number DMS-
1068742.
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The meromorphic extension was proved by Mazzeo and Melrose [48] and Guil-
larmou [29], using the 0-pseudodifferential algebra of Mazzeo and Melrose. In this
algebra the operator is elliptic in the principal symbol sense, but one also needs
to invert the normal operator. The latter is sufficiently difficult that (suboptimal,
but sufficient for some applications) estimates as Reσ → ∞ in strips were only
obtained recently by Melrose, Sá Barreto and Vasy [50] by a semiclassical con-
struction in special cases. Recently Vasy [75, 74] gave a new proof, and proved
the non-trapping estimates as well, using a new method, extending a renormalized
and conjugated version of the spectral family ∆g − (n− 1)2/4−σ2 across ∂X to a
new operator Pσ which can be thought of as being defined on a manifold without
boundary X, so only ‘standard’ microlocal analysis is needed. The extended op-
erator Pσ is no longer elliptic, but the additional phenomena are well-understood
from the point of view of microlocal analysis: real principal type propagation, ra-
dial points and complex absorption. This method also allows for a generalization
to differential forms; these were previously studied in the context of Hodge theory
by Mazzeo [47]. Also, as a byproduct, it gives a new approach for analyzing the
wave equation on asymptotically de Sitter spaces, on which wave propagation was
described earlier, without the evenness condition, by Vasy [81] and Baskin [6].

In addition to providing a new proof of the meromorphic continuation of the
resolvent, as well as the large σ estimates, this approach also allows for microlocal-
ization of the estimates which is crucial in many applications, such as in the gluing
work of Datchev and Vasy [16]. A nice application of this theory, in combination
with the exotic psedodifferential calculus/second microlocal machinery developed
by Sjöstrand and Zworski [63], is the work of Datchev and Dyatlov [15], which
gave a proof of fractal upper bounds, in terms of the upper Minkowski dimension
of the trapped set, for the resonance counting function on even asymptotically hy-
perbolic spaces with hyperbolic geodesic flow. This in particular applies for convex
cocompact quotients of hyperbolic space and gives analogous upper bounds for the
counting function of zeros of the Selberg zeta function then. (These quotients have
long been studied; see e.g. [58, 67].)

We also point out that the Euclidean analogue of the theorem has a long history
(with stronger restrictions at infinity needed). An effective meromorphic continu-
ation was obtained by complex scaling methods due to Aguilar, Balslev, Combes
and Simon, and other authors, including the microlocal perspective of Helffer and
Sjöstrand; see [62] and the references therein.

The second theorem concerns wave propagation on Kerr-de Sitter spaces. This
is particularly interesting since the asymptotic behavior of waves involves reso-
nances, which are poles of a family σ 7→ P−1

σ , where Pσ is very similar to the
Pσ in the asymptotically hyperbolic case; it is an operator on a manifold without
boundary. Concretely, Kerr-de Sitter space has a bordification, or partial com-
pactification, M , with a boundary defining function τ and Pσ is then an operator
on ∂M . The extra complication is that this operator is trapping, but the trapping
is of a relatively weak type, called normally hyperbolic trapping, which has been
analyzed by Wunsch and Zworski [83] and by Dyatlov [23] recently.

Theorem 1.2. (See [75, 41], and see [22] for exact Kerr-de Sitter space.) Let
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(M, g) be a Kerr-de Sitter type space with normally hyperbolic trapping. Then
there is κ > 0 such that solutions of (�g − λ)u = 0 have an asymptotic expansion
u ∼

∑
j

∑
k≤kj τ

ıσj (log |τ |)kajk + ũ, where ũ ∈ τκHs
b(M); here σj are resonances

of the associated normal operator. For λ = 0 on Kerr-de Sitter space, the unique
σj with Imσj ≥ 0 is 0, and the corresponding term is a constant, i.e. waves decay
to constants.

Further, this result is stable under b-perturbations of the metric, with the b-
structure understood in the sense of Melrose [54].

In spatially compact parts of Kerr-de Sitter space, τ = e−t for the usual time
function t, i.e. this decay is exponential.

In fact, in a slightly different way, the wave equation for Minkowski-type met-
rics, more specifically Lorentzian scattering metrics, can also be handled by similar
techniques, see [75, 5, 41], for both Cauchy problems and for the Feynman prop-
agator. In fact, Klein-Gordon type equations, even in ultrahyperbolic settings,
are also amenable to this type of analysis – in this case in Melrose’s scattering
framework [49].

A different direction of extending these results is to non-linear equations. In the
semilinear setting this was discussed by [41], and then extended to the quasilinear
case by Hintz [38]. We briefly discuss this direction at the end of these notes.

The third theorem concerns the dynamical zeta function. It was a conjecture
of Smale’s, proved by Giulietti, Liverani and Pollicott [26] recently by dynamical
systems techniques, but shortly afterwards Dyatlov and Zworski [20] gave a new
short proof using microlocal analysis, relying on ideas of Faure and Sjöstrand [24],
which are analogous to the setup involved in proving the above theorems, as well
as Guillemin’s approach to trace formulae [33].

Theorem 1.3. (See [20].) Let X be a compact manifold and φt : X → X a
C∞ Anosov flow with orientable stable and unstable bundles. Let {γ]} denote the
set of primitive orbits of φt, and T ]γ their periods. Then the Ruelle zeta function

ζR(λ) =
∏
γ](1 − e

ıλT ]γ ), which converges for Imλ � 0, extends meromorphically
to C.

While of course this lecture cannot cover all of microlocal analysis, at this point
we need to point out a particularly glaring omission in the author’s opinion: anal-
ysis on singular spaces. This has been an extremely active area of study, both in
elliptic and non-elliptic settings. The former include for instance N -body scatter-
ing, see [72] and references therein for this very extensive topic connected to wave
propagation on manifolds with corners, the low energy description of the resolvent
of the Laplacian on asymptotically Euclidean spaces [30, 31, 60], scattering the-
ory on geometrically finite hyperbolic manifolds [35, 10, 32], index and K-theory
on manifolds with corners and stratified spaces [55, 1], and a general symbolic
pseudodifferential theory [2]. The latter include for instance wave propagation on
cones, edges, manifolds with corners, see e.g. [46, 52, 79, 80, 51, 7] and references
therein.

With these illustrations of the uses of microlocal analysis, we now explain the
new developments which facilitated these advances.
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2. Pseudodifferential operators

Microlocal, or phase space, analysis in its simplest form concerns itself with the
study of functions or distributions on manifolds by means with which one can
localize not only in the base manifold, but also conically in the fibers of its cotan-
gent bundle. This corresponds to a description of not only where a distribution
lies in, say, a Sobolev space locally, but in which (co)direction this happens. In
the most basic setting of Rn, it is closely related to the Fourier transform: one
localizes in the base space Rnz , as well as in conic (i.e. dilation invariant) subsets of
Rnζ . For instance, one says that a distribution u on Rn is in the Sobolev space Hs

microlocally near (z0, ζ0) ∈ Rn × (Rn \ {0}) = T ∗Rn \ o if there exists φ ∈ C∞c (Rn)
identically 1 near z0, and ψ ∈ C∞(Rn), homogeneous of degree 0 for |ζ| > 1, such
that ψ(tζ0) = 1 for all t� 1 sufficiently large, and

F−1ψFφu ∈ Hs,

or equivalently
F−1〈ζ〉sψFφu ∈ L2,

where F is the Fourier transform on Rn, and 〈ζ〉 = (1 + |ζ|2)1/2. The operator
A = F−1〈ζ〉sψFφ is a prime example of a pseudodifferential operator, a class of
operators which includes differential operators. In general, on Rn, a pseudodiffer-
ential operator has the form

Au(z) = (2π)−n
∫
eı(z−z

′)·ζa(z, z′, ζ)u(z′) dζ dz′,

with the integral understood as an oscillatory integral, where a satisfies appropri-
ate estimates. (For the example above, one can take a(z, z′, ζ) = 〈ζ〉sψ(ζ)φ(z′)
independent of z.) A typical class of estimates is

|Dα
zD

β
z′D

γ
ζ a(z, z′, ζ)| ≤ Cαβγ〈ζ〉m−|γ|; (2.1)

this gives Hörmander’s symbol class Sm∞, and the corresponding operators A ∈ Ψm
∞.

Another typical class is Sm,` given by the estimates

|Dα
zD

β
z′D

γ
ζ a(z, z′, ζ)| ≤ Cαβγ〈z〉`1−|α|〈z′〉`2−|β|〈ζ〉m−|γ|;

this gives rise to the operators A ∈ Ψm,` with ` = `1+`2. Both of these classes form
an algebra (with composition giving the ring multiplication) over C. An important
property is that composition is symbolic, i.e. one can compute AB modulo residual
operators, i.e. modulo Ψ−∞∞ , resp. Ψ−∞,−∞. Note that Ψm,0 ⊂ Ψm

∞, and elements
of Ψm

∞ are bounded maps between weighted Sobolev spaces Hs,r → Hs−m,r, where
Hs,r = 〈z〉−rHs, while those of Ψm,` are bounded Hs,r → Hs−m,r−`. This explains
the different properties of these algebras: the residual terms are non-compact on,
say, L2, for the first algebra, but they are compact for the second.

Another class of operators that plays a role below is the semiclassical family,
A = (Ah)h∈(0,1) of operators:

Ahu(z) = (2πh)−n
∫
eı(z−z

′)·ζ/ha(z, z′, ζ, h)u(z′) dζ dz′,
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where a satisfies estimates in one of the above cases, uniformly in h ∈ [0, 1);
indeed, we typically consider smooth h dependence with h-uniform bounds for
all derivatives. This gives rise to the operator algebras Ψm

∞,~ and Ψm,`
~ . Here

the residual terms (modulo which one can do calculations) are in h∞Ψm
∞,~, resp.

h∞Ψm,`
~ , i.e. one can do computations modulo rapidly vanishing, as h→ 0, errors,

not merely compact (in the case of Ψm,`
~ ) error terms.

Pseudodifferential operators can be transferred to compact manifolds without
boundary via local coordinate charts, requiring that the Schwartz kernel is C∞
away from the diagonal; one checks easily that for the class stated above on Rn,
the Schwartz kernel is indeed C∞ away from the diagonal z = z′ on Rn ×Rn. It is
worthwhile noticing that differential operators are of the form stated above with
polynomial behavior in ζ; the subclass of pseudodifferential operators for which a
as above has an asymptotic expansion in terms of homogeneous functions of degree
m− j, j ∈ N, is called classical or one-step polyhomogeneous. In this generality of
manifolds, pseudodifferential operators have a well-defined principal symbol [a] in
Sm∞/S

m−1
∞ ; in the case of classical operators, these can be regarded as homogeneous

degree m functions on T ∗M \ o.
Since T ∗M is not compact even if M is, and as the most interesting objects

are homogeneous, it is useful to work instead on the compact (if M is such) space
(T ∗M \o)/R+ = S∗M . However, it is even better to compactify the fibers of T ∗M

as balls to obtain T
∗
M ; this glues S∗M to T ∗M at fiber infinity using ‘reciprocal

polar coordinates’, so ∂T ∗M = S∗M . The principal symbol a of A ∈ Ψ0
cl, which

can be regarded as a homogeneous degree zero function, is then equivalently a
function on ∂T ∗M . If A ∈ Ψm

cl , then this principal symbol is homogeneous degree
m, or a section of a line bundle over ∂T ∗M , but it is also well-defined as a function
up to a positive multiplier, so e.g. its zero set, which is also called the characteristic
set Char(A) of A, is well-defined as a subset of ∂T ∗M . The complement of the
characteristic set is the elliptic set Ell(A); an operator is elliptic if it has empty
characteristic set, i.e if it is elliptic at every point. It also makes sense to talk of
the operator wave front set WF′(A); a point in ∂T ∗M is in the complement of
WF′(A) if it has a neighborhood on which A is given (say, in local coordinates) by
an order −∞, i.e. ‘really trivial’, symbol, as opposed to one of order m− 1, which
is what would be guaranteed by the vanishing of the principal symbol on such a
neighborhood. One thinks of operators A which have wave front set in some open
set U ⊂ ∂T ∗M as a microlocalizer to U (analogue of the multiplication operator
by a compactly supported function on an open set O in M localizing to O); one
can also construct microlocal partitions of unity, etc.

In the semiclassical version of this analysis, in addition to the behavior of a at
∂T ∗M for all h, one is also interested in the behavior of a on all of T

∗
M at h = 0.

This is geometrically encoded by working with the space [0, 1)h × T
∗
M , then the

boundary hypersurfaces are {0}h×T
∗
M and [0, 1)h×∂T

∗
M . We call the restriction

of a to the former the semiclassical principal symbol. If a is a classical, h-dependent,
order 0 family, then the joint principal symbol can be thought of as a function on
∂([0, 1)h×T

∗
M), consisting of the standard and the semiclassical principal symbol

as its two constituents. Correspondingly, the elliptic set, characteristic set and
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wave front sets are all subsets of ∂([0, 1)h × T
∗
M).

Much as we compactified the fibers of the cotangent bundle above, we can also
compactify the base space Rn for Ψm,`, we again do it as a ball. Then neigh-
borhoods of points at ∂Rn correspond to (cut off to the exterior of a compact
subset of Rn) conic regions in Rn. Much as transferring the definition of pseu-
dodifferential operators to manifolds is possible via local coordinate charts, we can
transfer Ψm,` to manifolds with boundary M , requiring smooth and rapidly (order
∞) decaying Schwartz kernel away from the diagonal in M ×M . The resulting
algebra of operators is Melrose’s scattering algebra Ψm,`

sc (M), see [49]. The natu-
ral place of microlocalization is a replacement for the standard cotangent bundle,
called the scattering cotangent bundle scT ∗M , which is naturally identified with
T ∗M over M◦. Since we transferred our pseudodifferential operators from Rn, the
smooth sections of this bundle are locally (near ∂M) of the form

∑
ζj(z) dzj , where

ζj ∈ C∞(Rn). It is more convenient to express this in polar coordinates on Rn and

then transfer to M : one then sees that these forms are τ dx
x2 +

∑
ηj

dyj
dx , with x a

boundary defining function, yj local coordinates on ∂M . Dually, the vector fields
in Ψsc(M) are the scattering vector fields, of the form V = a(x2∂x) +

∑
bj(x∂yj ),

with a, bj smooth. More invariantly, they are of the form ρVb(M), ρ now a global
boundary defining function, where Vb(M) is the Lie algebra of Melrose’s b-vector
fields, namely vector fields tangent to ∂M .

In fact, it is useful to compactify the fibers of scT ∗M to obtain the space
scT
∗
M . Now the joint principal symbol is an object (section of a line bundle, or

simply a function for order (0, 0)) on ∂scT
∗
M , and the elliptic, characteristic and

wave front sets are subsets of ∂scT
∗
M . There is even a semiclassical version of this,

in which case these objects ‘live on’ ∂([0, 1)h× scT
∗
M), which has three boundary

hypersurfaces: ‘fiber infinity’, ‘base infinity’ and h = 0.

Here we shall mostly consider applications of microlocal analysis to partial
differential equations. However, this is by no means the only application. For in-
stance, the field of inverse problems, such as determining a Riemannian metric on
a manifold with boundary M from its distance function restricted to the boundary,
called the boundary rigidity problem, has been using microlocal analysis, in par-
ticular the theory of Fourier integral operators, extensively. Such problems have
linearizations related to the geodesic X-ray transform (on tensors). By introducing
an artificial boundary, given by a level set of a convex function, and using Melrose’s
scattering pseudodifferential algebra let Stefanov, Uhlmann and Vasy [70, 66] show
that the local (in M) boundary rigidity problem is well-posed in a conformal class
under suitable conditions. Of course, there were many predecessors of this work
in inverse problems using microlocal analysis, see for instance works of Greenleaf,
Stefanov and Uhlmann [28, 27, 65, 64].

Returning to manifolds without boundary M , T ∗M being symplectic, there is a
vector field Ha corresponding to the principal symbol a of A, which is homogeneous
of degree m − 1. For m = 1, Ha can be regarded as a vector field on ∂T ∗M ; for
other a, we can multiply a by a positive homogeneous degree 1−m function b, then
Hba is well-defined, and as Hba = bHa + aHb, so in Char(A), Ha is well-defined
up to a positive multiple, in particular the integral curves of Ha are well-defined.
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A bit more precisely, not only is Ha well-defined as a vector field on ∂T ∗M , but
it is well defined as a vector field in Vb(T

∗
M) modulo ρfiberVb(T

∗
M), where on a

manifold X, Vb(X) is the Lie algebra of vector fields tangential to ∂X. Integral
curves of Ha inside the characteristic set are called (null)-bicharacteristics.

A useful extension of the setting discussed so far is to allow the operators to
have variable order. For instance, in the case of Ψm(M), one can allow m to be

a C∞ function on S∗M = ∂T
∗
M . For M compact, this is a subset Ψm0(M),

m0 > supm, but it allows for much finer control of regularity. Here one needs to
allow symbols which gain less than a full order upon differentiation, so e.g. in the
setting of (2.1) one would have, with δ ∈ (0, 1/2),

|Dα
zD

β
z′D

γ
ζ a(z, z′, ζ)| ≤ Cαβγ〈ζ〉m−|γ|+δ|(α,β,γ)|;

these are symbols in Sm∞,1−δ,δ in the standard notation, and one can take δ > 0
arbitrarily small. One can still talk about ellipticity (including microlocally) by
requiring the invertibility (by symbols of order −m) of the principal symbol modulo
symbols of order −1. In particular, the Sobolev space Hm(M) is defined, with
m̃ = inf m, by

Hm(M) = {u ∈ Hm̃(M) : Au ∈ L2},

where A is any elliptic element of Ψm(M). Such results appeared in the work
of Unterberger [71] (with order depending on the underlying space M) and Duis-
termaat [18]; a more complete discussion as needed for our purposes is given in
[5, Appendix A]. In the semiclassical version the order m can be a function on

∂([0, 1)h × T
∗
M). If the only place where it needs to vary is at h = 0, it can be

thought of as a function, constant outside a compact set, on T ∗M . In this case one
is considering a fixed Sobolev space, but with an h-dependent norm. Such microlo-
cal norms play a key role in the work of Faure and Sjöstrand [24]; see the Anosov
flow discussion below for an application. Similarly, in the scattering setting, one
can have an order that is a function on ∂scT

∗
M .

3. Elliptic and non-elliptic Fredholm theory

3.1. Elliptic theory. The basic results in microlocal analysis concern the
structures we have already introduced. In order to explain their significance
from the perspective of solving PDE, we remark that the Fredholm property of a
(pseudo)differential operator P acting between two Hilbert spaces X and Y, i.e. the
range being closed, the nullspace finite dimensional, the range finite codimensional,
is equivalent to estimates

‖u‖X ≤ C(‖Pu‖Y + ‖u‖X̃ ), ‖v‖Y∗ ≤ C(‖P ∗v‖X∗ + ‖v‖Z),

where the adjoints are taken relative to a fixed space, such as L2, and X̃ ,Z are
Hilbert spaces, with compact inclusion maps X → X̃ , Y∗ → Z. The simplest
example of such an estimate is an elliptic estimate, in which case one can take all
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the spaces to be standard Sobolev spaces. For instance if P ∈ Ψm(M) is elliptic

and M is compact then X = Hs, Y = Hs−m, X ∗ = H−s, Y∗ = H−s+m, X̃ = HÑ ,
Z = HN∗ work for any Ñ ,N∗, which are taken to satisfy Ñ < s, N∗ < −s+m for
the application (the compact inclusion map). Thus, elliptic operators are invertible
as maps between these Sobolev spaces, up to a finite dimensional obstruction.
The analytic version of the Fredholm theory can also be used to show that for
P ∈ Ψm(M) elliptic with m > 0, the resolvent family C 3 λ 7→ (P − λI)−1 is
meromorphic with finite rank smoothing (Ψ−∞(M)) Laurent coefficients if P−λ0I
is invertible for a single value, λ0, of λ. All of these have natural extension to
operators acting between sections of vector bundles E,F ; then the principal symbol
a(z, ζ) has values in bundle endomorphisms End(Ez, Fz), and ellipticity is the
invertibility of these endomorphisms between finite dimensional vector spaces.

The elliptic estimates can be proved by constructing an approximate inverse, or
parametrix, for P , which can be done by inverting the principal symbol (i.e. taking
its reciprocal in the scalar setting). They can also be microlocalized, namely for
any P ∈ Ψm(M) (not necessarily elliptic) one also has estimates of the form

‖Q1u‖Hs ≤ C(‖Q2Pu‖Hs−m + ‖u‖HÑ ),

Q1, Q2 ∈ Ψ0(M) with WF′(Q1) ⊂ Ell(Q2) ∩ Ell(P ), i.e. on the elliptic set of P ,
if one microlocalizes (via Q1 and Q2), the analogue of the global estimate holds.
Note that as the principal symbol of P ∗ is the complex conjugate of that of P , P ∗

is elliptic wherever P is. It is also useful to remark here that the elliptic estimates
are valid on variable order Sobolev spaces as well.

3.2. Real principal type propagation. While there are many inter-
esting elliptic operators, such as the Laplacian on functions or differential forms,
or the Dirac operator, there are even more non-elliptic problems of interest, and
it turns out that with a bit of effort they fit into similar Fredholm frameworks.
If P ∈ Ψm(M) is non-elliptic, it has a non-empty characteristic set. The non-
degenerate version of non-ellipticity is if the principal symbol p vanishes simply
there; then the characteristic set is smooth. There is a difference between the real
and complex valued cases; we are here most interested in the real valued one, then
Char(P ) has codimension one. The symplectic structure turns a non-degenerate
dp into a non-vanishing Hamilton vector Hp; however Hp may be radial, i.e. tan-
gent to the R+-orbits. Hörmander’s propagation of singularities theorem [42], see
also [19], is that one can propagate estimates along the bicharacteristic flow in
Char(P ); such a statement is meaningful where Hp is not radial. That is, one has
estimates

‖Q1u‖Hs ≤ C(‖Q2u‖Hs + ‖Q3Pu‖Hs−m+1 + ‖u‖HÑ ), (3.1)

where Q1, Q2, Q3 ∈ Ψ0(M), provided the elliptic set of Q3 contains WF′(Q1), and
the bicharacteristics through all points in WF′(Q1) ∩ Char(P ) reach the elliptic
set of Q2 while remaining in Ell(Q3). The more usual phrasing of this theorem is
that if u is in Hs microlocally at a point in Char(P ), then u ∈ Hs on the maximal
bicharacteristic segment through this point, with ‘maximal’ being with respect to
being contained in the complement of WFs−m+1(Pu), i.e. in the set where Pu is
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microlocally Hs−m+1. This theorem is proved by positive commutator estimates,
computing

〈ıPu,Au〉 − 〈ıAu, Pu〉 = 〈(ı[A,P ] + ı(P − P ∗)A)u, u〉, (3.2)

A = A∗ ∈ Ψm′(M), and the principal symbol of ı[A,P ]+ı(P−P ∗)A in Ψm+m′−1(M)
is −Hpa−2p̃a if p̃ is the principal symbol of 1

2ı (P−P
∗) ∈ Ψm−1(M). One arranges

that
−Hpa− 2p̃a = b2 + e, (3.3)

where e has support in the region where the a priori assumptions are imposed (such
as WF′(Q2) above). Taking B,E with principal symbols b, e, one has ı[A,P ]+ı(P−
P ∗)A = B∗B+E +F , with F lower order, so substituting into (3.2), one controls
Bu in terms of Eu as well as A∗Pu, proving a theorem after a regularization
argument.

This theorem, with the proof, is also valid on variable order Sobolev spaces, but
only in one direction of flow. Thus, if s is monotone along the Hamilton flow, say
s is increasing, then one can propagate Hs estimates in the backward direction,
while if s is decreasing, one can propagate Hs estimates in the forward direction.
In terms of the sketched proof, the reason for the restriction on the direction
is that the Hamilton derivative hitting the weight (giving the order) provides a
logarithmically larger term than the other ones, which thus must have a correct
sign for the argument to go through; see [71, 5].

We also remark that Hörmander’s theorem, with the positive commutator
proof, extends easily to systems whose principal symbol is real scalar (a multiple
of the identity operator on the vector bundle), and also extends to more general
real principal type systems, as shown by Dencker [17].

3.3. Complex absorption. Hörmander’s theorem, as well as its generaliza-
tions, had a key role in understanding propagation phenomena, such as waves. In
all these cases estimates propagate, i.e. if one a priori knows that u is well-behaved
somewhere (in this case on the wave front set of Q2) then one can conclude that u
is well-behaved somewhere else. From the perspective of Fredholm problems, the
problem with this is that the a priori hypothesis need not ever be fulfilled. One
way of dealing with this is called complex absorption, see [56]. This means that one
considers an artificial operator Q ∈ Ψm(M) with non-negative principal symbol,
and replaces P by P − ıQ. Then there is still an analogue of Hörmander’s theorem,
but one can only propagate estimates in the forward direction along Hp. Notice
that in the elliptic set of Q one has elliptic estimates even in Char(P ), so the point
is that one can propagate estimates from and to this elliptic set, in the forward
direction, along the Hp flow. Replacing P − ıQ by P + ıQ, but Q still having
non-negative principal symbol, the estimates can be propagated in the backward
direction. In particular, this works for (P − ıQ)∗ = P ∗ + ıQ∗, so estimates for the
adjoint can be propagated in the opposite direction as estimates for the operator.
As an example, if all bicharacteristics of P (in Char(P )) reach the elliptic set of Q
in both the forward and the backward direction, which we may call the simplest
non-trapping scenario, one can piece together elliptic and propagation estimates to
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conclude that
‖u‖Hs ≤ C(‖(P − ıQ)u‖Hs−m+1 + ‖u‖HÑ ),

and

‖v‖Hs′ ≤ C(‖(P ∗ + ıQ∗)v‖Hs′−m+1 + ‖v‖HN′ ), s′ = −s+m− 1.

This corresponds to Fredholm estimates, though one has to be a bit careful as
P − ıQ does not map Hs to Hs−m+1. So one lets

X = {u ∈ Hs : (P − ıQ)u ∈ Hs−m+1},

which is a Hilbert space in the natural norm; this is the simplest example of
a coisotropic space, see [51, Appendix A]. One also lets Y = Hs−m+1. Then
P − ıQ : X → Y is Fredholm, and indeed, if P depends on a parameter σ ∈ C,
with the principal symbol of P independent of σ, then this is an analytic Fredholm
family, with a meromorphic inverse if it is invertible at a single point.

3.4. Radial points. While complex absorption is artificial, though very use-
ful in eliminating dynamics in certain regions of ∂T ∗M by making the operator
elliptic there, it illustrates an important point: in order to have Fredholm prob-
lems, we need the bicharacteristics to reach regions in which we have good a priori
control, such as Ell(Q) above. The most natural setting is that of radial points,
which were already mentioned earlier as the points at which Hörmander’s propa-
gation theorem provides no extra information. Unlike in the settings considered
above, in which the Sobolev order s was arbitrary, here there are restrictions on
it because the positivity, corresponding to b2 in (3.3), can only be given by the

weight, ρ−m
′

fiber. Thus, it is useful to think of Hp, or rather ρm−1
fiberHp, as an element

of Vb(T
∗
M) modulo ρfiberVb(T

∗
M), since this encodes Hpρfiber modulo one order

additional vanishing. The results in this setting depend on the sign of the Hamil-
ton derivative of the weight relative to the sign of the Hamilton derivative of the
microlocalizer: if they have the same sign, one need not make an assumption like
Q2u ∈ Hs in the propagation estimates (3.1) to get a conclusion at the radial set
(set of radial points), but if they have the opposite sign, one does need to do this.

Since the sign of Hpρ
−m′
fiber depends on the sign of m′, this means that the kind of

results one gets in the high regularity (which needs m′ bigger than a threshold)
versus the low regularity (which needs m′ smaller than a threshold) are different.
Finally, we need to keep in mind the appearance of p̃ in (3.3), which shifts this
threshold value from being m′ = 0. Thus, the estimate in this setting has two parts.
We first make the non-degeneracy assumption that ρm−2

fiberHpρfiber = ∓β0 > 0 on

the radial set L ⊂ Char(P ) ⊂ ∂T ∗M , while Hpp̃ = ±β̃β0ρ̃
−m+1, where we assume

for simplicity that β̃ is constant on L, which is the case in many applications.
Further, assume that L acts as a sink (−) or source (+) in CharP ⊂ ∂T

∗
M , in

a non-degenerate sense; this basically means that there is a quadratic defining
function ρ1 of L in Char(P ) such that ρm−1

fiberHpρ1 is a positive definite. Then

(i) If s ≥ s0 > (m− 1)/2− β̃, then for u ∈ Hs0 one has estimates

‖Q1u‖Hs ≤ C(‖Q3Pu‖Hs−m+1 + ‖u‖HÑ ),
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with WF′(Q1) ⊂ Ell(Q3) and such that all bicharacteristics from points in
WF′(Q1) tend to L in either the forward (−) or the backward (+) direction,
while remaining in Ell(Q3).

(ii) If s < (m− 1)/2− β̃, then one has estimates

‖Q1u‖Hs ≤ C(‖Q2u‖Hs + ‖Q3Pu‖Hs−m+1 + ‖u‖HÑ ),

with WF′(Q1) ⊂ Ell(Q3) and such that all bicharacteristics from points in
WF′(Q1)\L tend to Ell(Q2) (which is now typically disjoint from L) in either
the forward (+) or the backward (−) direction, while remaining in Ell(Q3).

Note that if P is replaced by P ∗, then P − P ∗ is replaced by its negative, so β̃
defined for P ∗ is the negative of that defined for P , which means that for P ∗

(keeping β̃ as defined for P ) one has

(i) If s′ ≥ s′0 > (m− 1)/2 + β̃, then for u ∈ Hs′0 one has estimates

‖Q1u‖Hs′ ≤ C(‖Q3P
∗u‖Hs′−m+1 + ‖u‖HN′ ),

with WF′(Q1) ⊂ Ell(Q3) and such that all bicharacteristics of p from points
in WF′(Q1) tend to L in either the forward (−) or the backward (+) direction,
while remaining in Ell(Q3).

(ii) If s′ < (m− 1)/2 + β̃, then one has estimates

‖Q1u‖Hs′ ≤ C(‖Q2u‖Hs′ + ‖Q3P
∗u‖Hs′−m+1 + ‖u‖HN′ ),

with WF′(Q1) ⊂ Ell(Q3) and such that all bicharacteristics from points in
WF′(Q1) \ L tend to Ell(Q2) in either the forward (+) or the backward (−)
direction, while remaining in Ell(Q3).

Substituting in s′ = −s+m− 1, one sees that the condition in (ii) for P ∗ is equiv-
alent to that in in condition (i) for P , and similarly with (i) and (ii) interchanged.
This means that if one has non-trapping in the sense that both in the forward and
in the backward direction the bicharacteristics escape to radial sets, one has Fred-
holm estimates, provided one can arrange that the Sobolev spaces are such that
one can propagate estimates away from a radial set (case (i)) for P from one of the
ends of the bicharacteristics, and for P ∗ from the other end (as this implies case
(ii) for P ). Often the numerology in (i) and (ii) is such that the Sobolev spaces
Hs must have variable order. One can also combine such a Fredholm setup with
complex absorption; in this case one can often work with constant order Sobolev
spaces.

Notice that radial points are in some sense the best thing that can happen to a
non-elliptic problem with real principal symbol: if one has a chaotic Hamilton flow,
there is no reason to think that one can propagate regularity from anywhere; radial
points provide just such a location. This being said, note that the requirements
above were weaker than L being radial: roughly speaking, there can still be non-
trivial Hamilton flow in L, and we care about the Hamilton dynamics normally to
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L. This turns out to be important in Kerr-de Sitter black holes, where the conormal
bundle of the event horizon at infinity has this kind of structure. (The non-rotating
black holes of de Sitter-Schwarzschild spaces give rise to actual radial sets.) Also
notice that the estimates we stated were global in a radial set (component) L; one
can in fact microlocalize if the set is actually radial, as shown by Haber and Vasy
[36], but this becomes impossible when there is a non-trivial Hamilton flow within
L, as in Kerr-de Sitter space. We finally remark that the radial point estimates
also hold for systems provided the principal symbol is real scalar (a multiple of the
identity operator on the fibers of the vector bundle).

3.5. Normally hyperbolic trapping. This lack of ability to microlo-
calize within a set Γ invariant under the Hamilton flow occurs also in a more
degenerate setting, that of normally hyperbolic trapped sets. After much earlier
work of Gérard and Sjöstrand [25] in the analytic setting, this was analyzed by
Wunsch and Zworski [83], to an extent which suffices for the problems we consider
here, with refinements by Hintz and Vasy [39], and in more detail by Nonnen-
macher and Zworski [57] and by Dyatlov [23, 21]. (The latter is sufficiently precise
to locate a sequence of resonances corresponding to Γ, while [57] allows for rather
irregular normal dynamics (stable and unstable distributions)!) For us these enter
in either the semiclassical, or in the b-settings, with Kerr-de Sitter spaces contain-
ing perhaps the prime examples. In the normally hyperbolic setting one drops the
non-degeneracy of ρm−2

fiberHpρfiber = ∓β0 > 0 of the radial setting; in fact, one has a
defining function of the boundary hypersurface at which one is doing analysis (so
h in the semiclassical setting) which, at L, has vanishing Hp-derivative. (This is
automatic in the semiclassical setting!) The subprincipal symbol (in the form of
p̃), which shifts the threshold in the radial setting via β̃, can still give positivity,
but it must have a definite sign to do so. However, one can extend a bit beyond
this strict threshold (which cannot be moved by changing the weight, such as h,
since Hp annihilates the latter), at the cost of losing powers of the weight relative
to the real principal type and radial point settings, provided that the Hamilton dy-
namics normally to Γ is well-behaved. Here, for brevity, we do not discuss details,
but the key feature is that, within the characteristic set, there are transversally
intersecting smooth codimension 1 manifolds Γ± with intersection Γ, with Γ− and
Γ+ the local stable, resp. unstable, manifolds along the flow. Then one can ar-
range defining functions φ± for these such that Hpφ± = ∓c±φ±, with c± > 0 and
Hφ+

φ− = {φ+, φ−} > 0; the latter positivity plays an important role in the control
of the subprincipal term in [83, 39]. The functions c± can be chosen in a manner
related to the normal hyperbolicity of the flow, namely bounded from below and
above, up to an ε loss, by the normal minimal and maximal expansion rates. They
dictate the size of the ‘gap’, i.e. the upper bound for the wrong-sign subprincipal
symbol, to be (up to an ε loss) half of the minimum expansion rate; see [57, 23, 21].

3.6. Semiclassical and scattering settings. These results have nat-
ural extensions to the other algebras considered above: Ψ~(M) and Ψsc(M) (as
well as its semiclassical version). A straightforward application of the results thus
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far then is the limiting absorption principle for scattering metrics, introduced by
Melrose, modelled on the large ends of cones, including non-trapping estimates if
the geodesic flow is non-trapping, i.e. all geodesics escape to infinity. (Indeed, this
setting is where Melrose started studying Lagrangian sets of radial points, see [49];
the earlier work of Guillemin and Schaeffer was on isolated radial points [34], see
also [37] and [36].) Concretely, a scattering metric is a Riemannian metric g on
M◦ of the form

g = x−4 dx2 + x−2h

near ∂M , where h is a smooth symmetric 2-cotensor which restricts to a Rieman-
nian metric on ∂M . This generalizes the Euclidean metric, where one would take
M to be the radial compactification of Rn, so ∂M = Sn−1 with the round metric
h. One then has the following result of Melrose, with the semiclassical version due
to Vasy and Zworski:

Theorem 3.1. ([49, 78]) The Laplacian ∆g of a scattering metric has spectrum
[0,∞), and for λ > 0 the limiting resolvents R(λ2 ± ı0) exist as bounded operators
Hs,r → Hs+2,r−1, provided the weight r satisfies r > 1/2 at the incoming radial
set, r < 1/2 on the outgoing radial set.

Further, if the manifold is non-trapping then one has non-trapping resolvent
estimates

‖R(λ2 ± ı0)‖L(Hs,r
|λ|−1 ,H

s+2,r−1

|λ|−1 ) ≤ C|λ|
−1, λ� 1.

Here we do not provide further detail, but in fact this scattering framework also
works directly for Klein-Gordon equations on non-trapping Lorentzian scattering
metrics in the sense of Baskin, Vasy and Wunsch [5]; see also [41, Section 5]. Both
of these discuss the actual wave equation, which requires b-methods described at
the end of these notes, but in fact the Klein-Gordon version is much easier (as
far as Fredholm analysis is concerned) as it can be done in the very amenable
scattering setting, see [77]. For �g − λ, λ > 0, and g of signature (1, n − 1), the
characteristic set has two components, and within each there are two components
of the radial set. One can thus choose the direction of propagation in either
component separately. Choosing forward propagation in the base ‘time’ variable,
this is the forward propagator; reversing it one gets the adjoint, the backward
propagator. These correspond to the Cauchy problem. However, choosing forward
propagation relative to the Hamilton flow, which means propagation in the opposite
directions in the two components of the characteristic set relative to the base
‘time’ variable, gives a Feynman propagator; similarly choosing the backward one
relative to the Hamilton flow gives another Feynman propagator. Indeed, even
ultrahyperbolic equations are perfectly well-behaved: e.g. if g is a non-degenerate
translation invariant metric, then for the corresponding d’Alembertian �g, �g−λ,
λ ∈ R \ {0}, fits into this framework. Here, in general, the radial set has two
components, and the Feynman propagator is the only reasonable option – this
corresponds to the Cauchy problem being ill-behaved.
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4. Applications

4.1. Anosov flows. One of the simplest kinds of differential operator is a vec-
tor field. Following earlier work of Faure and Sjöstrand [24], Dyatlov and Zworski
[20] adapted a PDE point of view to analyze C∞ Anosov flows ϕt : X → X on
a compact manifold X, φt = exp(tV ), from the perspective of the generator V .
Here the Anosov property means that the tangent space TX has a continuous
(in x) decomposition into a stable subspace Es(x), an unstable subspace Eu(x),
and the neutral direction of E0(x) = Span(V (x)). Then the differential operator
one studies is P = 1

ıLV on differential forms, which has scalar principal symbol
given by that of V . The key ingredient to the meromorphic continuation of the
dynamical zeta function, which can be expressed as a (regularized) trace, is the
analysis of (P − λ)−1 on appropriate function spaces. But with E∗s (x) and E∗u(x)
the dual bundles, they are sources/sinks for the Hamilton flow (which is just the
flow of V lifted to T ∗X \ o from the homogeneous perspective), and the microlocal
analysis we discussed yields the desired analytic Fredholm statement for the family
λ 7→ P −λ. A wave front set analysis then allows Dyatlov and Zworski to complete
the proof of Theorem 1.3.

4.2. Asymptotically hyperbolic and de Sitter spaces. As a more
involved application, the results discussed so far by themselves suffice to show the
meromorphic extension of the resolvent of an asymptotically hyperbolic Laplacian
together with high energy estimates using Ψ~(M). We start by recalling the defi-
nition of manifolds with even conformally compact metrics. These are Riemannian
metrics g0 on the interior of an n-dimensional compact manifold with boundary
X0 such that near the boundary Y , with a product decomposition [0, ε)x × Y of a
neighborhood U of Y and a boundary defining function x, they are of the form

g0 =
dx2 + h

x2

where h is a family of metrics on Y = ∂X0 depending on x in an even manner,
i.e. all odd derivatives of h with respect to x vanish at Y . (There is a much more
natural way to phrase the evenness condition due to Guillarmou [29].) Then the
dual metric is

G0 = x2(∂2
x +H),

with H the dual metric family of h (depending on x as a parameter), and so

∆g0 = (xDx)2 + ı(n− 1 + x2γ)(xDx) + x2∆h,

with γ even, and ∆h the x-dependent family of Laplacians of h on Y . We then
consider the spectral family

∆g0 −
(n− 1)2

4
− σ2

of the Laplacian. In addition to working with finite σ, or σ in a compact set, we
also want to consider σ →∞, mostly in strips, with | Imσ| bounded. In that case
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we should consider σ as a ‘large parameter’ in the sense of [61]. Such a setting can
be converted into a semiclassical one by writing σ = h−1z, where h ∼ |σ|−1 (one
can even take h = |σ|−1, but this is often not convenient); then the spectral family

becomes h−2(h2∆g0 − h2 (n−1)2

4 − z2).
We show now that if we change the smooth structure on X0 by declaring that

only even functions of x are smooth, i.e. introducing µ = x2 as the boundary
defining function, then after a suitable conjugation and division by a vanishing
factor the resulting operator smoothly and non-degenerately continues across the
boundary, i.e. continues to X−δ0 = (−δ0, 0)µ × Y t X0,even, where X0,even is the
manifold X0 with the new smooth structure. At the level of the principal symbol,
i.e. the dual metric, the conjugation is irrelevant, so we can easily see what happens:
changing to coordinates (µ, y), µ = x2, as x∂x = 2µ∂µ,

G0 = 4µ2∂2
µ + µH = µ(4µ∂2

µ +H),

so after dividing by µ, we obtain µ−1G0 = 4µ∂2
µ+H. This is a quadratic form that

is positive definite for µ > 0, is Lorentzian for µ < 0, and has a transition at µ = 0
that as we shall see involves radial points. In fact, a similar argument would show
that in µ < 0, this dual metric is obtained by similar manipulations performed on
the negative of a signature (1, n− 1) even asymptotically de Sitter metric, i.e. one
of the form x̃−2(dx̃2 − h), with x̃ the boundary defining function, and h positive
definite at x̃ = 0. Then µ = −x̃2 gives this form of the metric. Notice that
−x̃2 and x2 are formally the ‘same’, i.e. x̃ is formally like ıx, which means that
this extension across the boundary is a mathematically precise general realization
of a ‘Wick rotation’. Correspondingly, in addition to providing a new method
of analysis for asymptotically hyperbolic spaces, extension across the boundary
also provides a new approach to asymptotically de Sitter analysis, providing an
alternative to [81, 6].

To see that the full spectral family of the Laplacian is well behaved, first,
changing to coordinates (µ, y), µ = x2, we obtain

∆g0 = 4(µDµ)2 + 2ı(n− 1 + µγ)(µDµ) + µ∆h.

Now we conjugate by µ−ıσ/2+(n+1)/4, and multiply by µ−1/2 from both the left
and right

µ−1/2µıσ/2−(n+1)/4(∆g0 −
(n− 1)2

4
− σ2)µ−ıσ/2+(n+1)/4µ−1/2

= 4µD2
µ − 4σDµ + ∆h − 4ıDµ + 2ıγ(µDµ − σ/2− ı(n− 1)/4).

This operator is in Diff2(X0,even), and now it continues smoothly across the
boundary, by extending h and γ in an arbitrary smooth manner; it is now of the
form

Pσ = 4(1 + a1)µD2
µ − 4(1 + a2)σDµ − a3σ

2 + ∆h − 4ıDµ + b1µDµ + b2σ + c1

with aj smooth, real, vanishing at µ = 0, bj and c1 smooth. This form suffices for
analyzing the problem for σ in a compact set, or indeed for σ going to infinity in a
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strip near the reals. (In [74] a further modification is made to obtain semiclassical
ellipticity when σ leaves this strip in an appropriate manner.)

Writing covectors as ξ dµ + η dy , the principal symbol of Pσ ∈ Diff2(X−δ0),
including in the high energy sense (σ →∞), is

pfull = 4(1 + a1)µξ2 − 4(1 + a2)σξ − a3σ
2 + |η|2µ,y,

and is real for σ real. Correspondingly, the standard principal symbol is

p = σ2(Pσ) = 4(1 + a1)µξ2 + |η|2µ,y,

which is real, independent of σ, and elliptic for µ > 0.
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Figure 1. The cotangent bundle of X−δ0 near S = {µ = 0} in a fiber-radially compactified
view. The boundary of the fiber compactification is the cosphere bundle S∗X−δ0 ; it is
the surface of the cylinder shown. Σ± are the components of the (classical) characteristic
set containing L±. They lie in µ ≤ 0, only meeting S∗

SX−δ0 at L±. Semiclassically, i.e.
in the interior of T

∗
X−δ0 , for z = h−1σ > 0, only the component of the semiclassical

characteristic set containing L+ can enter µ > 0. This is reversed for z < 0.

Let

N∗S \ o = Λ+ ∪ Λ−, Λ± = N∗S ∩ {±ξ > 0}, S = {µ = 0};

thus S ⊂ X−δ0 can be identified with Y = ∂X0(= ∂X0,even). Note that p = 0 at
Λ± and Hp is radial there since

N∗S = {(µ, y, ξ, η) : µ = 0, η = 0}, so Hp|N∗S = −4ξ2∂ξ.

This corresponds to dp = 4ξ2 dµ at N∗S, so the characteristic set Σ = {p = 0} is
smooth at N∗S.

Let L± be the image of Λ± in S∗X−δ0 . Then L− is a sink and L+ is a source in
the sense that all bicharacteristics nearby converge to L± as the parameter goes to
∓∞. Further, one computes that β̃|L± = Imσ. In the other direction, all bicharac-
teristics reach µ = −ε0, ε0 > 0 small, so adding complex absorption there assures
that we have a Fredholm problem if we make the choice of propagating all estimates
away from L+ and L− for Pσ, and towards L+ and L− in P ∗σ . To be precise, we
take two copies of X−δ0 , smoothly glued at µ = −ε0, where complex absorption is
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introduced, to obtain a compact manifold without boundary X; alternatively, one
can work with a single copy, and replace the complex absorption by a boundary
working with spaces of extendible distributions for Pσ, and supported distributions
for P ∗σ , see [41, Section 2]. This requires that the order of the Sobolev space (for
Pσ) be sufficiently high, namely the more negative Imσ becomes, the more positive
the Sobolev order must be. Indeed, if f̃ ∈ C∞(X), then (Pσ − ıQσ)−1f̃ ∈ C∞(X)
as well (away from poles of this operator). If the geodesic flow is non-trapping
then in fact we have semiclassical propagation/radial point estimates, which in
turn imply the non-trapping statement of Theorem 1.1.

While this explains why (Pσ− ıQσ)−1 is a well-behaved operator, it may not be
obvious how this helps with understanding the resolvent of the Laplacian, R(σ).
However, this is not hard to see. To make the extension from X0,even to X more
systematic, let Es : Hs(X0,even) → Hs(X) be a continuous extension operator,
Rs : Hs(X)→ Hs(X0,even) the restriction map. Then in Imσ > 0, when σ is not

a pole of either R(σ) or (Pσ − ıQσ)−1, we have for f ∈ Ċ∞(X0),

R(σ)f = x(n+1)/2−iσx−1Rs(Pσ − ıQσ)−1Es−1x
−(n+1)/2+iσx−1f, (4.1)

since a simple computation shows that the right hand side is an element of L2(X0, dg)
(indeed, it is of the form x(n−1)/2−ıσC∞(X0,even), since after the application of
(Pσ − ıQσ)−1 in the formula, the result is in C∞(X)) with ∆g0 − (n− 1)2/4− σ2

applied to it yielding f , so by the self-adjointness of ∆g0 , it is indeed R(σ)f . No-
tice that this uses very strongly that Qσ has Schwartz kernel supported away from
X0,even ×X0,even (i.e. more than just WF′(Q) ∩ S∗X0,even = ∅).

In fact, in this unified treatment of asymptotically hyperbolic and de Sitter
spaces one can even arrange a set up which does not need complex absorption at
all, and does not need an artificially added boundary. To do so, given an asymptot-
ically hyperbolic space (X0, g0), one can construct a compact manifold X without
boundary containing two (disjoint) copies of X0, connected by an asymptotically
de Sitter space; one may call the two copies the ‘future’ and ‘past’ copies. (Vice
versa, given an asymptotically de Sitter space, one can cap it off by two asymptot-
ically hyperbolic spaces; one may need to take two copies of the de Sitter space,
however, for topological reasons.) This is motivated by the structure of the bound-
ary of radially compactified Minkowski space, which has two copies of hyperbolic
space in the interior of the future and past light cones at infinity, and a copy of de
Sitter space outside these light cones. However, the construction can be made in
full generality, see [76, Section 3]. In this case one propagates estimates from the
conormal bundle of the boundary of one of the copies of X0,even (say, the past one)
to the other one; for the adjoint the estimates propagate in the opposite direction.
Since the threshold regularity for the radial points is the same for both the future
and the past copies, this requires variable order Sobolev space; in this case one can
actually arrange that the order varies only in the interior of the asymptotically de
Sitter space, and depends only on the base, X (not on the location within the fiber
of S∗X).
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4.3. Kerr-de Sitter spaces. Next we turn to Kerr-de Sitter spaces, which
are 4-dimensional Lorentzian space-times. Here an appropriate bordification of the
space-time is

Mδ = Xδ × [0,∞)τ , Xδ = (r− − δ, r+ + δ)r × S2,

where r± are specified later, and where τ = e−t in τ > 0 for a more conventional
‘time’ variable t (that is essentially equivalent to the usual time far from r± in
(r−, r+)). On this the signature (1, 3) dual metric G has the form

G = −ρ−2
(
µ
(
∂r ± cτ∂τ

)2 ± 2(1 + γ)(r2 + a2)
(
∂r ± cτ∂τ

)
τ∂τ

∓ 2(1 + γ)a
(
∂r ± cτ∂τ

)
∂φ + κ∂2

θ +
(1 + γ)2

κ sin2 θ
(−a sin2 θτ∂τ + ∂φ)2

)
,

where rs,Λ, a constants, rs,Λ ≥ 0, κ = 1 + γ cos2 θ, γ = Λa2

3 ,

ρ2 = r2 + a2 cos2 θ, µ = (r2 + a2)(1− Λr2

3
)− rsr,

and µ(r) = 0 has two positive roots r = r±, r+ > r−, with z± = ∓∂µ∂r |r=r± > 0;
r+ is the de Sitter end (cosmological horizon), r− is the Kerr end (event horizon).
Physically, rs is twice the black hole mass, Λ is the cosmological constant, a is
the angular momentum of the black hole. Thus, de Sitter space is the case a = 0,
rs = 0, and Λ can be normalized to be 3; in this case r− = 0 can be removed,
and the space-time becomes Mδ = Xδ × [0,∞)τ , Xδ = Br++δ, with Br++δ the
ball of radius r+ + δ. If a = 0 still, but rs > 0, then one obtains non-rotating de
Sitter-Schwarzschild black holes.
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Figure 2. The fiber-radially compactified cotangent bundle near the event horizon S =
{µ = 0}. Σ± are the components of the (classical) characteristic set containing L±. The
characteristic set crosses the event horizon on both components; here the part near L+

is hidden from view. The projection of this region to the base space is the ergoregion.
Semiclassically, i.e. the interior of T

∗
Xδ, for z = h−1σ > 0, only Σ~,+ can enter µ > a2.

Mellin transforming �g in τ (i.e. Fourier transforming in e−t), with dual pa-
rameter σ, one obtains a family of operators Pσ, whose principal symbol in the
large parameter sense is given by this dual metric function. One can now check
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that Pσ almost has the same structure as the conjugated extended asymptotically
hyperbolic case. Most importantly, if a = 0, N∗{r = r±} in Xδ consists of radial
points which are sources or sinks; if a 6= 0, then instead N∗{r = r±} are still ‘nor-
mally source/sink bundles’, as required for our generalized radial points results, but
there is non-trivial dynamics within N∗{r = r±} corresponding to the black hole
rotation (closed orbits, along which φ varies and θ is fixed). Further, if one adds
complex absorption where µ is small and negative, i.e. just outside [r−, r+] × S2,
then all classical bicharacteristics reach N∗{r = r±} or the elliptic set of the com-
plex absorption in both the forward and backward direction, i.e. the problem is
classically non-trapping, and thus one can make it Fredholm by capping off the
space Xδ (e.g. by working with two copies of the space, glued via complex absorp-
tion, so the problem is elliptic). Again a useful, but less microlocal, alternative
is to add a boundary at µ = −δ0, and set up appropriate Fredholm Cauchy-type
problems. Although it does not play a role in our analysis, one interesting feature
of Kerr-de Sitter wave operators with a 6= 0 is that the projection of the charac-
teristic set of Pσ to the base space enters (r−, r+); this is called the ergoregion –
the operator is thus not elliptic everywhere between the event horizons. This was
considered a major difficulty for the analysis, and was first overcome by Dyatlov
[22] by a separation of variables argument; the microlocal analysis described here
achieves a similar result in a systematic manner.However, the operator is semiclassically trapping due to the photon sphere in the
de Sitter-Schwarzschild case, and its no longer spherically symmetric replacement
in general. This trapped set is, however, normally hyperbolic. The works of Wunsch
and Zworski [83], Hintz and Vasy [39] and Dyatlov [23, 21] give microlocal control
at this trapped set, which, combined with gluing constructions of Datchev and
Vasy [16], suffices to prove Theorem 1.2.While Kerr-de Sitter space had not been intensively studied, though there have
been works on de Sitter-Schwarzschild space (a = 0) [4, 59, 9] and further references
in [75], we mention that Kerr space-time has been the subject of intensive research.
For instance, polynomial decay on Kerr space was shown recently by Tataru and
Tohaneanu [69, 68] and Dafermos, Rodnianski and Shlapentokh [13, 12, 14], while
electromagnetic waves were studied by Andersson and Blue [3], after pioneering
work of Kay and Wald in [43] and [82] in the Schwarzschild setting. While some of
these papers employ microlocal methods at the trapped set, they are mostly based
on physical space where the phenomena are less clear than in phase space (unstable
tools, such as separation of variables, are often used in phase space though). Kerr
space is less amenable to immediate microlocal analysis to attack the decay of
solutions of the wave equation due to the singular/degenerate behavior at zero
frequency; in some sense it combines the scattering and b-analysis.

4.4. Melrose’s b-analysis. While here we used the dilation invariance to
reduce to a problem on Xδ, this is easily eliminated. The framework then is
Melrose’s b-pseudodifferential operator algebra Ψb(M), introduced in [53] to study
hyperbolic boundary value problems; see [54] for a general setup. On a general
manifold M , this microlocalizes the earlier mentioned Lie algebra Vb(M) of vector
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fields tangent to the boundary, which are locally of the form a(x∂x) +
∑
bj∂yj .

These are the smooth sections of a vector bundle; the dual bundle bT ∗M has
a local basis dx

x , dyj over C∞(M). Now from the homogeneous perspective the
(standard) principal symbol is a homogeneous function on bT ∗M \ o; for 0th order
operators, it can be considered as a function on bS∗M = (bT ∗M \ o)/R+.

Much like for Ψsc(M), the standard principal symbol does not capture operators
modulo (relatively) compact ones. However, unlike the scattering case, there is no
other function making up for this deficit (in the case of the scattering algebra,
the symbol on scT ∗∂MM), rather it is an operator, called the normal operator.
This is obtained by ‘freezing coefficients’ at ∂M to obtain a dilation invariant
operator. Together the principal symbol and the Mellin transformed (as it is
dilation invariant!) normal operator L̂(σ) do allow for a development of Fredholm
theory. However, this is a bit more intricate: one has to work with b-Sobolev
spaces Hs,r

b (M) which have constant weights r, which on the Mellin transform
side corresponds to working on the line Imσ = −r, but s variable for many non-
elliptic problems of interest (though Kerr-de Sitter allows for constant s). Now, at
the principal symbol level there are analogues of all of the microlocal ingredients
described above; indeed, one also has to allow L± to have a ‘normally saddle’
structure for Kerr-de Sitter type settings, see [41]. This allows one to conclude
that L̂(σ) is a Fredholm family on induced spaces. However, in order to have
a Fredholm problem on M , one needs that L̂(σ) is invertible for Imσ = −r, so
non-symbolic, or ‘quantum’ objects determine Fredholm properties of L. On the
other hand, under this assumption, one indeed has a Fredholm problem, which is
perturbation stable in the appropriate sense. This gives the stability of the Kerr-
de Sitter problem. In fact, the earlier mentioned Lorentzian scattering metrics,
studied by Baskin, Vasy and Wunsch [5], fit into the same general framework.

4.5. Non-linear equations. The final topic we discuss is non-linear PDE.
Small data semilinear problems in either non-trapping or, with lower order semi-
linear terms, normally hyperbolic Kerr-de Sitter type settings can be easily solved
by the contraction mapping principle as long as one can work with Sobolev spaces
with non-growing weights (i.e. one can choose such a weight r with no resonances
σ with Imσ = −r), or one has special properties of the resonances for Sobolev
spaces Hs,0

b (M). In this case, for instance polynomial semilinear terms (for sec-

ond order equations, to be definite) map Hs,r
b to Hs−1,r

b for s > n/2 + 1, and
thus the Fredholm structure we discussed provides for a Picard iteration for small
data; see [41]. The same setting for Lorentzian scattering metrics, generalizing
results of Klainerman [44, 45] and Christodoulou [11] is more delicate, both be-
cause unlike the saddle points of Kerr-de Sitter space, the radial source/sinks in
Minkowski space limit regularity when one is propagating estimates towards them,
and also because the reduction to a b-problem involves weights, so there is a more
complicated numerology, and rely on additional microlocal regularity relative to a
pseudodifferential module (which generalizes Klainerman’s vector fields), see [41].

While the linear setting of asymptotically Minkowski spaces had well-behaved
global dynamics and thus no artificial tools such as complex absorption was needed
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(we only needed variable order Sobolev spaces), in the Kerr-de Sitter, and indeed
localized de Sitter, type settings one needs to ‘cut off’ the problem. Such a cut
off is possible due to the hyperbolic nature of the equations. From the perspective
of microlocal analysis it is most conveniently done via complex absorption as dis-
cussed above, but this may not provide complete control: one only gets the exact
solution operator one wants (with supports) if each bicharacteristic is controlled at
least at one end by other means, such as radial points or a boundary. Thus, in the
non-dilation invariant de Sitter and Kerr-de Sitter type setting it is convenient to
consider domains Ω in the manifold M whose (artificial) boundary hypersurfaces
(other than those of M , that is) are space-like. (Note that such a Cauchy hyper-
surface is just as artificial as complex absorption, is less well-behaved microlocally,
but has the advantage of giving the supports one wants for time-oriented problems
by standard local energy estimates!) As all the complicated phenomena, such as
radial points or trapping, or indeed even variable orders of Sobolev spaces, are
located away from these artificial boundaries, including these artificial boundaries
(as done in [41]) in the framework does not pose significant complications. One ob-
tains, for instance, the small data (here f) well-posedness, with vanishing Cauchy
data at the appropriate boundary hypersurface, of Klein-Gordon equations

(�g −m2)u = f + q(u, bdu),

where q is a polynomial with second order vanishing at (0, 0) (so quadratic terms
are allowed) if m > 0 and the metric g is non-trapping, such as perturbations of
asymptotically de Sitter type spaces. Here bdu denotes derivatives relative to the
b-structure, i.e. the derivatives are given by b-vector fields. If the metric has nor-
mally hyperbolic trapping such as Kerr-de Sitter metrics, the losses in derivatives
provided by the normally hyperbolic estimates only allow for general non-linearities
independent of bdu for the contraction mapping argument to go through, though
non-linearities depending on derivatives with a particular structure are allowed as
well since the loss of derivatives is only microlocally at the trapped set. If m = 0
the issue is the 0-resonance, which has resonant state 1, and thus non-linearities q
which only contain derivatives, and thus annihilate the resonant state, are allowed
in the non-trapping asymptotically de Sitter type settings. In either case, one also
obtains an expansion at infinity which is generated by the resonances of the Mellin
transformed normal operator of the linear problem.

Quasilinear problems require more work. Hintz [38] has developed a frame-
work for b-pseudodifferential operators with Sobolev coefficients, modeled on the
Sobolev pseudodifferential operators of Beals and Reed [8]. This framework is suf-
ficient in non-trapping settings, such as perturbations of de Sitter space, to achieve
this. More recently, Hintz and Vasy [40] extended this analysis even to normally
hyperbolic problems. In this case the contraction mapping is replaced by a use
of the Nash-Moser iteration due to the losses in derivatives; the conclusion is a
small data global well-posedness and decay result for quasilinear wave equations
on Kerr-de Sitter space: for the small mass Klein-Gordon equation without further
restrictions (since there is no 0-resonance), while for the actual wave equation for
non-linearities containing derivatives (due to the 0-resonance).
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sets. Ann. Henri Poincaré, 12(7):1349–1385, 2011.

Department of Mathematics, Stanford University, CA 94305-2125, USA

E-mail: andras@math.stanford.edu


