
DIFFRACTION OF SINGULARITIES FOR THE WAVE

EQUATION ON MANIFOLDS WITH CORNERS

RICHARD MELROSE, ANDRÁS VASY, AND JARED WUNSCH

Abstract. We consider the fundamental solution to the wave equation
on a manifold with corners of arbitrary codimension. If the initial pole
of the solution is appropriately situated, we show that the singularities
which are diffracted by the corners (i.e., loosely speaking, are not prop-
agated along limits of transversely reflected rays) are smoother than the
main singularities of the solution. More generally, we show that subject
to a hypothesis of nonfocusing, diffracted wavefronts of any solution to
the wave equation are smoother than the incident singularities. These
results extend our previous work on edge manifolds to a situation where
the fibers of the boundary fibration, obtained here by blowup of the
corner in question, are themselves manifolds with corners.
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1. Introduction

1.1. The problem and its history. Let X0 be a manifold with corners, of
dimension n, i.e., a manifold locally modeled on (R+)f+1×Rn−f−1, endowed
with an incomplete metric, smooth and non-degenerate up to the boundary.
We consider the wave equation

(1.1) �u ≡ D2
t u−∆u = 0 on M0 = R×X0,

where Dt = ı−1(∂/∂t) and ∆ is the nonnegative Laplace-Beltrami opera-
tor; we will impose either Dirichlet or Neumann conditions at ∂X0. As is
well known by the classic result of Duistermaat-Hörmander1 (see [4]), the
wavefront set of a solution u propagates along null-bicharacteristics in the
interior. However, the behavior of singularities striking the boundary and
corners of M0 is considerably subtler.

Indeed the propagation of singularities for the wave equation on mani-
folds with boundary is already a rather subtle problem owing the the dif-
ficulties posed by “glancing” bicharacteristics, those which are tangent to
the boundary. Chazarain [1] showed that singularities striking the bound-
ary transversely simply reflect according to the usual law of geometric optics
(conservation of energy and tangential momentum, hence “angle of incidence
equals angle of reflection”) for the reflection of bicharacteristics. This result
was extended in [23] and [24] by showing that, at glancing points, singu-
larities may only propagate along certain generalized bicharacteristics. The
continuation of these curves may fail to be unique at (non-analytic) points
of infinite-order tangency as shown by Taylor [31]. Whether all of these
branches of bicharacteristics can carry singularities is still not known.

As was shown initially in several special examples (namely those amenable
to separation of variables) the interaction of wavefront set with a corner
gives rise to new, diffractive phenomena, in which a single bicharacteristic
carrying a singularity into a corner produces singularities departing from
the corner along a whole family of bicharacteristics. For instance, a ray
carrying a singularity transversely into a codimension-two corner will in
general produce singularities on the entire cone of rays reflected in such
a way as to conserve both energy and momentum tangent to the corner
(see Figure 1) The first diffraction problem to be rigorously treated was
that of the exterior of a wedge,2 which was analyzed by Sommerfeld [30];
subsequently, many related examples were analyzed by Friedlander [5], and
more generally the case of exact cones was worked out explicitly by Cheeger-
Taylor [2], [3] in terms of the functional calculus for the Laplace operator
on the cross section of the cone. All of these explicit examples reveal that
generically a diffracted wave arises from the interaction of wavefront set
of the solution with singular strata of the boundary of the manifold; this

1This result, viewed in the context of hyperbolic equations, built on a considerable
body of work prior to the introduction of the wavefront set; see especially [12], [15].

2This is not in fact a manifold with corners, but is quite closely related.



4 RICHARD MELROSE, ANDRÁS VASY, AND JARED WUNSCH

Figure 1. A ray carrying a singularity may strike a corner of
codimension two and give rise to a whole family of diffracted
singularities, conserving both energy and momentum along
the corner.

has long been understood at a heuristic level, with the geometric theory of
diffraction of Keller [11] describing the classes of trajectories that ought to
contribute to the asymptotics of the solution in various regimes.

Subsequent work has been focused primarily on characterizing the bi-
characteristics on which singularities can propagate, and on describing the
strength and form of the singularities that arise. The propagation of sin-
gularities on manifolds with boundary was first understood in the analytic
case by Sjöstrand [27, 28, 29], and subsequently generalized to a very wide
class of manifolds, including manifolds with corners, by Lebeau [13, 14]. In
the C∞ setting employed here, the special case of manifolds with conic sin-
gularities was studied by Melrose-Wunsch [26] and edge manifolds (i.e., cone
bundles) were considered by Melrose-Vasy-Wunsch [25]. Vasy [34] obtained
results analogous to Lebeau’s in the case of manifolds with corners, and it
is the results of this work that directly bear on the situation studied here.

While the foregoing results characterize which bicharacteristics may carry
singularities for solutions to the wave equation, they ignore the question of
the regularity of the diffracted front. In general, a singularity in WFs (which
is to say, measured with respect to Hs) must propagate strongly in the sense
that some bicharacteristics through the point in question must also lie in
WFs . The general expectation is that these are certain “geometric” bichar-
acteristics; in simple cases, these are known to be those which are locally
approximable by bicharacteristics that miss the corners and reflect trans-
versely off boundary hypersurfaces. More generally, we can define geometric
bicharacteristics as follows: To begin, we blow up the corner, i.e. introduce
polar coordinates around it; this serves to replace the corner with its inward-
pointing normal bundle, which fibers over the corner with fiber given by one
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Figure 2. Geometric optic rays hitting a corner F , emanat-
ing from a point o. The rays labelled G are geometric at F ,
while those labelled NG are non-geometric at F . The left-
most geometric ray is a limit of rays like the unlabelled one
shown on the figure that just miss F . The blown up version
of the picture, i.e. where (r, θ) are introduced as coordinates
at the origin, is shown on the right. The front face (i.e., the
lift of the corner) is denoted ff . The reflecting line indicates
the broken geodesic of length π induced on ff given by r = 0,
θ ∈ [0, θ0]. The total length of the three segments shown
on ff is π; this can be thought of as the sum of three angles
on the picture on the left: namely the angles between the
incident ray and the right boundary (corresponding to the
first segment), the right and left boundaries, finally the left
boundary and the emanating reflected ray.

orthant of a sphere, Sf ∩(R+)f+1.We will define geometric broken bicharac-
teristics passing through the corner as those that lift to the blown-up space
to enter and leave the lift of the corner at points connected by generalized
broken geodesics of length π with respect to the naturally defined metric on
Sf ∩ (R+)f+1, undergoing specular reflection at its boundaries and corners.3

Bicharacteristics that enter and leave the corner at points in a fiber that are
not at distance-π in this sense are referred to as “diffractive.” See Figure 2.

It turns out that subject to certain hypotheses of nonfocusing, the singu-
larities propagating along diffractive bicharacteristics emanating from the
corner will be weaker than those on geometric bicharacteristics. In particu-
lar, the fundamental solution satisfies the nonfocusing condition, hence one
consequence of our main theorem is as follows:

Theorem 1.1. Consider the fundamental solution uo to the wave equation,
with pole o sufficiently close to a corner, Y, of codimension k. Assume that
o is sufficiently far from the boundary that every short geodesic from o to Y
is transverse to all boundary hypersurfaces intersecting at Y.

3The actual definition is considerably complicated by the existence of glancing rays,
and is discussed in detail in §3.4.
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While uo lies locally in H−n/2+1−0, it is less singular by (k− 1)/2 deriva-
tives along diffractive bicharacteristics emanating from Y, that is, it lies
microlocally in H(−n+k+1−0)/2 there. 4

A more precise version of this result (with “sufficiently close. . . ” elucidated)
appears in Corollary 9.8.

A more general theorem on regularity of the diffracted wave subject to
the nonfocusing condition is the central result of this paper. See §1.2 for a
rough statement of the nonfocusing condition and §6 for technical details;
the main theorem is stated and proved in §9.

There are a few related results known in special cases. Gérard-Lebeau
[7] explicitly analyzed the problem of an analytic conormal wave incident
on an analytic corner in R2, obtaining a 1/2-derivative improvement of the
diffracted wavefront over the incident one. The first and third authors [26]
obtained corresponding results for manifolds with conic singularities, which
the authors subsequently generalized to the case of edge manifolds [25].

We remark that our definition of geometric broken bicharacteristics in-
cludes those that interact with the boundaries and corners of the front face
of the blow-up, Sf ∩ (R+)f+1, according to the simplest laws of reflection
as described in [34]: we do not distinguish between “diffractive” and “geo-
metric” interactions within Sf ∩ (R+)f+1. We conjecture that a stronger
theorem than ours should hold in which, instead of simply blowing up the
highest-codimension corner, we might iteratively blow up the corners of
lower codimension as well. This would enable us to (iteratively) distinguish
bicharacteristics that undergo diffractive or geometric interaction inside the
faces of the blown-up space. For instance, in the case of a codimension-3 cor-
ner, such a method would distinguish among rays that are limits of families
of geodesics undergoing simple specular reflection with boundary hypersur-
faces (which we might continue to call geometric rays); limits of families
which undergo a single diffractive interaction with a codimension-2 corner
(partially diffractive rays) and all other generalized broken bicharacteristics
entering and leaving the codimension-3 corner (the completely diffractive
rays). Our Theorem 1.1 only deals with the regularity along the completely
diffractive rays, telling us that the fundamental solution is (3− 1)/2 deriva-
tives smoother along them than overall; the conjectural finer result would
also tell us about the partially diffractive rays, yielding an improvement of
(2 − 1)/2 derivatives there. More generally, such a result ought to yield
a stratification of the rays interacting with a corner of arbitrary codimen-
sion into pieces carrying different levels of differentiability according to the
degree of diffractive interaction.

1.2. The hypothesis. We now describe the nonfocusing hypothesis in more
detail, in the context of the simplest geometric situation to which our results
apply.

4Here and henceforth we emply the notation s− 0 to mean s− ǫ for all ǫ > 0.
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It is easily seen from the explicit form of the fundamental solution that
it is not in general true that diffracted rays are more regular than incident
singularities. For example, take∆ to be the Dirichlet Laplacian in a sectorial
domain {r ∈ [0,∞), θ ∈ [0, θ0]} in R2, and consider the solution

(1.2)
sin t

√
∆√

∆
φ(θ)δ(r − r0),

where φ ∈ C∞
c ((0, θ0)) is supported close to some value θ′. This solution is

manifestly locally in H1/2−0 by energy conservation. On the other hand one
may see from the explicit form of the propagator in [2], [3] after convolution
with φ(θ) that a spherical wave of singularities emanates from the corner at

time t = r0, with regularity H1/2−0, hence the same as the overall Sobolev
regularity of the solution. The bicharacteristics along which singularities
propagate are, for short time, just the lifts of the straight lines r = r0 ± t,
θ ∈ suppφ, hence travelling straight into or out of the vertex. Perturbing
these slightly to make them miss the vertex, we see that in fact there are two
“geometric” continuations5 for each bicharacteristic, depending on whether
we approximate it by geodesics passing to the left or to the right of the vertex
(see Figure 2). Thus, the geometric continuations of the rays on which
singularities strike the vertex are close to the two possible continuations
of the single ray θ = θ′, hence do not include all points on the outgoing
spherical wave. So we have an example in which there are “non-geometric”
singularities of full strength.

The nonfocusing condition serves exactly to rule out such situations. The
above example has the property that applying negative powers of (Id+D2

θ)
does not regularize the short-time solution (or the initial data) as it is already
C∞ in the θ direction. In this simple setting, the nonfocusing condition says
precisely that the solution is regularized by negative powers of (Id+D2

θ), or,
equivalently, that it can be written

(Id+D2
θ)

Nv, v ∈ Hs

for some s exceeding the overall Sobolev regularity. For instance, the fun-
damental solution

u =
sin t

√
∆√

∆
δ(r − r′)δ(θ − θ′)

looks, after application of a sufficiently negative power of (Id+D2
θ), like a

distribution of the form

sin t
√
∆√

∆
δ(r − r′)f(θ)

with f ∈ CM , M ≫ 0, hence we can write

u ∈ (Id+D2
θ)

NH1/2−0,

5What a geometric continuation of a bicharacteristic is in general will be elucidated in
§3.4.



8 RICHARD MELROSE, ANDRÁS VASY, AND JARED WUNSCH

for some N ≫ 0, at least locally, away from the boundary. We also observe
that the example (1.2) enjoys a property which is essential dual to the non-
focusing condition, to wit, fixed regularity under repeated application of Dθ.
We refer to this property as “coisotropic regularity” (the terminology will
be explained in §6) and it plays an essential role in our proof.

The nonfocusing condition and coisotropic regularity in a more general
setting are subtler owing to their irreducibly microlocal nature: the operator
Dθ has to be replaced by a family of operators characteristic along the flow-
out of the corner under consideration.

1.3. Structure of the proof. We now describe the logical structure of the
proof, as it is somewhat involved. The heart of the argument is a series of
results on the propagation of singularities, obtained by positive commutator
methods; these are sketched in detail in §1.4 below. In order to be able
to distinguish between “geometric” and “diffractive” bicharacteristics at a
corner of M0, we begin by performing a blow-up of the corner, i.e. introduc-
ing polar coordinates centered at it, to obtain a new manifold with corners
M. The commutants that we employ in our commutator argument almost
lie in a calculus of pseudodifferential operators, the edge-b calculus, that
behaves like Mazzeo’s edge calculus [16] near the new boundary face intro-
duced by the blow-up (henceforth, the edge) and like Melrose’s b calculus
[19, 21, 22] at the remaining boundary faces. The complication, as in the
previous work of Vasy [34] on propagation of singularities, is that in order
to control certain error terms we in fact must employ a hybrid differential-
pseudodifferential calculus, in which we keep track of certain terms involving
differential operators normal to the boundary faces other than W̃ .

Even this propagation result alone is insufficient to obtain our result, as
it does not allow regularity of greater than a certain degree to propagate out
of the edge, with the limitation in fact not exceeding the a priori regularity
of the solution. What it does allow for, however, is the propagation of
coisotropic regularity of arbitrarily high order, suitably microlocalized in
the edge-b sense. This allows us to conclude that given a ray γ leaving
the edge, if the solution enjoys coisotropic regularity along all rays incident
upon the edge that are geometrically related to γ, then we may conclude
coisotropic regularity along γ as well. (If some of these incident rays are
glancing, i.e. tangent to the boundary, we require as our hypothesis actual
differentiability globally at all incoming glancing rays rather than coisotropic
regularity, which no longer makes sense; the version of the commutator
argument that deals with these rays is the most technically difficult aspect
of the argument.) In particular, then, global coisotropic regularity together
with C∞ regularity at glancing rays implies global coisotropic regularity
leaving the edge away from glancing. We are then able to dualize this result
to show that the nonfocusing condition propagates as well.

Consequently, we show that subject to the nonfocusing condition, in the
model case of the sector considered above, if γ is an outgoing ray such that
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the solution is C∞ along all incoming rays geometrically related to it,

u ∈ (Id+Dθ)
NHs along γ for some N ∈ N,

where in general s = (−n+ k+1)/2− 0 for the fundamental solution near a
codimension-k corner on an n-manifold, hence s = 1/2−0 for the sector. On
the other hand the microlocal propagation of coisotropic regularity shows
that

Dk
θu ∈ Hs0 for all k along γ

where s0 is the overall regularity of the solution (−n/2 + 1 − 0 for the
fundamental solution). An interpolation argument then yields

u ∈ Hs−0 along γ,

proving the theorem.

1.4. Sketch of the propagation results. We now discuss the propa-
gation results in greater detail, focusing on the taxonomy of the various
spaces of operators that we employ. The basic propagation of singulari-
ties result on manifolds with corners M0 = Rt × X0, as on manifolds with
smooth boundaries, is in the setting of b-, or totally characteristic, opera-
tors. Let us choose local coordinates (x1, . . . , xf+1, y1, . . . , yn−f−1) on X0

with {x1 ≥ 0, . . . , xf+1 ≥ 0}; thus, Y = {x1 = . . . = xf+1 = 0} repre-
sents a corner of codimension f + 1. The b-vector fields Vb(X0) are the
linear combinations of xj∂xj and ∂yj with C∞ coefficients—these are exactly
the vector fields tangent to all boundary hypersurfaces. We can define an
associated notion of b-regularity by iterated regularity under repeated appli-
cation of such vector fields. In particular, for a distribution u, b-regularity

relative to a space, such as H1(X0), means that (x∂x)
α∂βy u ∈ H1(X0) for

all multiindices α, β (with (x∂x)
α = (x1∂x1)

α1 . . . (xf+1∂xf+1
)αf+1). Thus

u is b-regular if and only if u is a conormal distribution. Replacing X0

by M0 simply adds ∂t to the collection of b-vector fields, i.e. t behaves as
one of the y variables. The notion of b-regularity is microlocalized via the
b-pseudodifferential operators, which are roughly speaking operators of the
form a(x, y, t, xDx, Dy, Dt) where a is a symbol in the last three sets of vari-
ables. The calculus of these operators gives rise to a notion of b-wavefront
set, which is therefore a microlocal measure of conormality.

The wave operator itself is not a b-differential operator, rather a standard
differential operator: it is constructed out of the vector fields ∂xj rather than
xj∂xj . Thus, its principal symbol, hence its bicharacteristics, are curves in
the cotangent bundle T ∗M0, which is equipped with canonical coordinates
(x, y, t, ξs, ηs, τ s), corresponding to differential operators (x, y, t,Dx, Dy, Dt).
One cannot work with pseudodifferential operators based on these standard
differential operators, for they would usually not act on smooth functions in
x ≥ 0, and would not usually preserve the boundary conditions. Thus, one
works with b-operators, based on (x, y, t, xDx, Dy, Dt), which corresponds to
localizing in conic neighborhoods in the corresponding canonical coordinates
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(x, y, t, ξb, ηb, τb) in the cotangent bundle. These coordinates are related to
the original ones via

(x, y, t, ξb, ηb, τb) = (x, y, t, xξs, ηs, τ s).

In particular, at x = 0, passing to the b-coordinates identifies points with
different values of the normal momentum ξs. Continuous propagation in the
b-variables thus allows ξs to jump at the boundary, as occurs in specular re-
flection. It is the phenomenon of propagation along appropriate generalized
bicharacteristics in the b-variables that was studied in [34].

In order to have a more precise result, we need to be able to localize
within the fibers of the blow-up of the corner Y , and we also need to be
able to undo the compression of the dynamics implied by working in the b-
picture. It is only through these refinements that we are able to distinguish
microlocal behavior along different bicharacteristics hitting the corner Y
at the same point and with the same tangential momenta ηb, e.g. between
different geodesics in the conical spray shown leaving the corner in Figure 1.
Therefore we lift the Laplacian on X0 to the blow-up X of X0 at Y , denoted
X = [X0;Y ]. For simplicity of notation, assume that Y is a codimension
2 corner (cf. Figure 2 as well as Figure 3 below). Using polar coordinates
(r, θ) in the (x1, x2) we see that under this blow-up smooth vector fields on
X lift to vector fields of the form r−1V , where V is tangent to the fibers
of the blow-down map, i.e. is a linear combination of r∂r, ∂θ, r∂y with C∞

coefficients.6 The C∞ span of r∂r, ∂θ, r∂y are the so-called edge-smooth
vector fields defined below in Section 3. Away from the boundaries, θ =
0, π/2 in [0, π/2]θ, these are exactly the edge vector fields introduced by
Mazzeo [16] on manifolds with smooth boundaries. Here the fibers have
boundaries (in our example, the fibers are just the interval [0, π/2]θ), and
smoothness is required up to these boundaries. A key observation is that the
wave operator lifts to an edge-smooth differential operator on M = Rt ×X.

Propagation phenomena in the edge setting (when the fibers have no
boundaries) have been treated in [25], following [26]. We now recall these
results, as they apply in the setting discussed here, provided we stay away
from the fiber boundaries. We emphasize that in the edge picture both the
operator one studies (the wave operator) and the microlocalizers are edge
pseudodifferential operators, i.e. there is no need to use two different alge-
bras as in the manifolds with corners setting discussed above. In order to
avoid complicating the notation, we simply replace [0, π/2]θ by the circle;
edge operators are then formally of the form a(r, θ, y, t, rDr, Dθ, rDy, rDt).

Writing covectors as ξ dr
r + ζ dθ+ η dy

r + τ dt
r , their symbols are thus smooth

functions of (r, θ, y, t, ξ, ζ, η, τ); in the setting of classical operators they are
homogeneous in the last three sets of variables. In particular, the principal
symbol of the wave operator is such a symbol, and its Hamilton vector field

6In Figure 3 as well as in the main exposition, r and θ are denoted r, z; we preserve
the more usual radial coordinate notation here for purposes of exposition.
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is a smooth homogeneous vector field in these coordinates. Its dynamical
system in the characteristic set governs the analysis of solutions; by ho-
mogeneity, it is convenient to study these dynamics in the corresponding
cosphere bundle. Then there are two (incoming, resp. outgoing) sets of crit-
ical points over r = 0, corresponding to radial points of the Hamilton vector
field. These are both saddle manifolds, with either the stable or the unsta-
ble manifold for each of these contained in the boundary face r = 0, and
the other transversal to it. The Hamilton flow within r = 0 connects the
incoming and outgoing radial sets, and fixes the “slow variables” (y, t, η/τ)
(with the last variable projectivized to work on the cosphere bundle); the
projection of its integral curves to the base variables gives the distance π
propagation of the geometric theorem of [25]. One should thus picture sin-
gularities entering the boundary r = 0 along (say) the stable manifold of
one of these critical manifolds, propagating through the critical manifold
and out through its unstable manifold; propagating across the boundary to
the stable manifold of the other critical manifold; and then through it and
back out of the boundary along the corresponding unstable manifold. As
this whole process leaves the slow variables unaffected, we see that they are
preserved under the interaction with the boundary, leading to the law of
specular reflection.

To make sense of the propagation described above, one thus needs to
have a description of propagation at incoming and outgoing radial points,
as well as elsewhere within r = 0; this was accomplished in [25]. It is the
radial points that cause the most significant subtleties in the propagation
of singularities: at these points the relation generated by the flow becomes
multi-valued, as in general a singularity arriving at a critical point along
its stable manifold may produce singularities leaving along the whole un-
stable manifold. An important part of the analysis is to note that at the
radial points, coisotropy corresponding to the stable/unstable submanifold
transversal to r = 0 implies regularity (absence of edge wave front set) in
the unstable/stable manifold within r = 0, and conversely. In particular, an
incident wave coisotropic for the flow-in becomes edge-regular within r = 0
(away from the radial points) and then emerges to be coisotropic for the
flow-out. A slight complication is that coisotropy is relative to a function
space; there are losses in the background regularity space due to the radial
points.

The added difficulty in our setting relative to that of [25] is that the
fibers have boundaries, and indeed typically corners. We deal with this
by treating the propagation into and out of these corners inside r = 0
analogously to the propagation of b-regularity analyzed in [34]. We thus
compress the edge-smooth cotangent bundle, essentially by replacing the
“smooth” vector field ∂θ by one tangent to the boundaries of the fibers, i.e.,
using f(θ)∂θ instead, where f(θ) = sin θ cos θ has simple zeros at θ = 0,
θ = π/2 and is non-zero elsewhere in [0, π/2]. Note that r∂r, r∂y and r∂t
are already tangent to the boundary faces θ = 0, π/2, so they do not require
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any adjustments. The resulting vector fields are thus those tangent to the
fibers of the front face of the blow-up, as well as to all other boundary faces,
and we call these edge-b vector fields. We use a pseudodifferential algebra
Ψ∗

eb(M) microlocalizing these vector fields to prove our main results. In
addition to the already discussed results away from the boundaries of the
fibers, we thus need to analyze propagation at incoming and outgoing radial
points at the boundaries of the fibers, as well as the analogue of hyperbolic
and glancing points in the setting of M0. This is accomplished in Section 7.

Note that conormal regularity in X0 near a point is equivalent, after
blow-up, to conormal regularity near the corresponding fiber of the front
face. Explicitly, in our example of a codimension 2 corner, regularity with
respect to x1∂x1 , x2∂x2 and ∂y is equivalent to regularity with respect to
r∂r, f(θ)∂θ and ∂y, where f(θ) = sin θ cos θ. Thus, away from θ = 0, π/2,
i.e., in the interior of the front face, one has regularity with respect to r∂r,
∂θ and ∂y—where that this notion of regularity ignores the fibration. Edge
regularity in the same region is with respect to r∂r, ∂θ and r∂y, i.e., it is
a weaker notion than conormality. However, the ability to microlocalize
within the fibers depends on its use.

1.5. Organization of the paper. We start in Section 2 by describing the
blown-up space on which our analysis takes place. Then, in Section 3, we de-
scribe in detail the connection between both the smooth and b-structures on
M0, and between the edge-smooth and edge-b structures onM . In the same
section, we study the bicharacteristics in the edge-b setting, i.e. that of M ;
this is in many respects analogous to Lebeau’s work [14] in the blown-down
setting (e.g. on M0), though radial points are an important new feature.

In Section 4, with the operator algebra construction provided by Appen-
dix B, we describe edge-b pseudodifferential operators, and then in Section 5
the algebra of operators that are both edge-smooth-differential and edge-b-
pseudodifferential; these provide the link between the wave operator (which
is edge-smooth) and the microlocalizers (which are edge-b). The use of
this mixed differential-pseudodifferential calculus is analogous to the use
of (smooth-)differential, tangential-pseudodifferential operators by Melrose-
Sjöstrand [23, 24] in the smooth boundary setting, and (smooth-)differential,
b-pseudodifferential operators in [34] in the proof of the standard propaga-
tion result on manifolds with corners. This calculus provides the framework
for the positive commutator estimates proving the edge-b propagation re-
sults. In Section 6 we discuss coisotropic distributional, and their dual, non-
focusing, spaces. Section 7 proves the edge-b propagation of singularities.
In Section 8 we show how coisotropy propagates through the edge. Finally,
in Section 9 we prove the main theorem, Theorem 9.6, and its corollaries,
which in particular imply Theorem 1.1.

To ease the notational burden on the reader, an index of notation is pro-
vided at the end of the paper.



DIFFRACTION ON MANIFOLDS WITH CORNERS 13

1.6. Acknowledgements. The authors gladly acknowledge the support of
the National Science Foundation under grants DMS-0408993 (RM), DMS-
0733485 and DMS-0801226 (AV) and DMS-0700318 (JW). The second au-
thor was also supported by a Chambers Fellowship from Stanford University.
All three authors are grateful to MSRI for both support and hospitality in
the fall of 2008, during which the bulk of this manuscript was written. Two
anonymous referees contributed many helpful suggestions and corrections to
the exposition.

2. Geometry: metric and Laplacian

Let X0 be a connected n-dimensional manifold with corners. We work
locally, near a given point in the interior of a corner Y of codimension f +1.
Thus, we have local coordinates x1, . . . , xf+1, y1, . . . , yn−f−1 in which Y is
given by x1 = . . . = xf+1 = 0. Suppose that g0 is a smooth Riemannian
metric on X0, non-degenerate up to all boundary faces. We may always
choose local coordinates in which it takes the form

(2.1) g0 =
∑

aij dxi dxj +
∑

bij dyi dyj + 2
∑

cij dxi dyj

with cij |Y = 0. This can be arranged by changing the y variables to

yj = y′j +
∑

xkYjk(y
′)

while keeping the xj unchanged. The cross-terms then become

2
∑

cij dxi dy
′
j + 2

∑
bij Yjk dy

′
i dxk,

which can be made to vanish by making the appropriate choice of the Yjk,
using the invertibility of {bij}.

Let X = [X0;Y ], be the real blow-up of Y in X0 (see [21, 20]) and let Ỹ
denote the front face of the blow-up, which we also refer to as the edge face.
Recall that the blow-up arises by identifying a neigborhood of Y in X0 with
the inward-pointing normal bundle N+Y of Y in X0 and blowing up the
origin in the fibers of the normal bundle (i.e. introducing polar coordinates
in the fibers). Since the normal bundle is trivialized by the defining functions

of the boundary faces, a neighborhood of Ỹ in X is globally diffeomorphic
to

[0,∞)× Y × Z, where Z = Sf ∩ [0,∞)f+1.

We use coordinates z1, . . . , zf in Z; near a corner of Z of codimension k,
these are divided into z′1, . . . , z

′
k ∈ [0,∞) and z′′k+1, . . . , z

′′
f ∈ R. There is

significant freedom in choosing the identification of a neighborhood of Y
and the coordinates on the fibers of the normal bundle but the naturality
of the smooth structure on the blown up manifold, [X0;Y ], corresponds to
the fact that these are smoothly related.

The metric g0 identifies NY as a subbundle of TYX0. This corresponds
to coordinates (xi, yj) as above with the dyj orthogonal to dxi at Y. In
the blow-up polar coordinates are introduced in the xi but the yj are left
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x

z

y

Figure 3. A manifold X0 with corners of codimension two
(below) and its blow-up X (top). A geodesic hitting the
codimension-two corner is shown, together with its lift to the
blown-up space X, which then strikes the front “edge” face
of the blow-up.

unchanged. It is convenient to think of these as polar coordinates induced
by
∑

ij aij dxi dxj . In particular, we choose

x =
(∑

ij

aij(0, y)xixj

)1/2

as the ‘polar variable’ which is the defining function of the front face. With
this choice, the metric takes the form

(2.2) g = dx2 + h(y, dy) + x2k(x, y, z, dz) + xk′(x, y, z, dx, dy, x dz).

More generally, one can simply consider the wider class of manifolds with
corners with metrics of the form (2.2), we refer to these as ‘edge metrics’ for
brevity. Note, however, that there are no results currently available in this
wider setting that limit propagation of singularities to generalized broken
bicharacteristics. Despite this, the results in §7 remain valid in this more
general context.
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Now, set

M = Rt ×X, M0 = R×X0, W̃ = R× Ỹ , W = R× Y,

where W , resp. W̃ now represent the unresolved, resp. blown-up, version of
the space-time “edge.”

Let Diff∗
es(X) denote the filtered algebra of operators on C∞(X) generated

by those vector fields that are tangent to the fibers of the front face Ỹ
produced by the blow up; xDx, xDyj , Dzj form a local coordinate basis of
these vector fields. See §3 and §5 for further explanation of this algebra and
of our terminology. The same definition leads to the algebra of operators
Diff∗

es(M) on C∞(M) with local generating basis xDt, xDx, xDyj , Dzj .

Lemma 2.1. The Laplace operator ∆ ∈ x−2Diff2
es(X) on X is of the form

∆ ∈ D2
x +

f

ıx
Dx +

1

x2
∆Z +∆Y + x−1Diff2

es(X)

where ∆Z is the Laplace operator in Z with respect to the metric h (and
hence depends parametrically on x and y) and ∆Y is the Laplacian on Y
with respect to the metric k.

In particular, � = D2
t −∆X ∈ x−2Diff2

es(M).

3. Bundles and bicharacteristics

In this section, we discuss several different geometric settings in which
the propagation problem for � on M0 may be viewed. Somewhat loosely,
each of these corresponds to a choice of a Lie algebra of vector fields with
different boundary behavior; these then lead to distinct bundles of covectors,
with the corresponding descriptors used as section headings here. The first,
the “b”-bundle, can be considered either on M0 or M. Indeed, the bundle
of b-covectors on M0 is the setting for the propagation results of [34]: these
results are, as will be seen below, necessarily global in the corner, and do not
distinguish between general diffractive rays and the subset of geometric rays
(defined below). In order to discuss the improvement in regularity which
can occur for propagation along the geometric rays, two more bundles of
covectors, lying over the blown-up space M, are introduced. These, the
“edge-b” and “edge-smooth” bundles, keep track of local information in
the fibers of the blow-up W̃ of W in M0, and allow us to distinguish the
diffractive rays from geometric ones. The distinction between the edge-b and
edge-smooth bundles comes only at the boundary of W̃ , and the relationship
between the two bundles gives rise to reflection of singularities off boundary
faces, uniformly up to the edge W̃ .

In order to alleviate some of the notational burden on the reader, a table
is included in §3.5 in which the various bundles, their coordinates, their
sections, and some of the maps among them are reviewed. The standard
objects for a manifold with corners, Q, correspond to uniform smoothness
up to all boundary faces, so V(Q) denotes the Lie algebra of smooth vector
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fields, TQ, the tangent bundle, of which V(Q) forms all the smooth sections,
T ∗Q is its dual, etc.

3.1. b-Cotangent bundle. Let Vb(Q) ⊂ V(Q) denote the Lie subalgebra
of those smooth vector fields on the general manifold with corners Q, which
are tangent to each boundary face. If we choose coordinates as in §3, the
local vector fields

x1∂x1 , . . . , xf+1∂xf+1
, ∂y1 , . . . , ∂yn−f−1

;

form a basis over smooth functions. Hence Vb(Q) is the space of C∞-sections
of a vector bundle, denoted

bTQ.

The dual bundle bT ∗Q therefore has sections spanned by

dx1
x1

, . . . ,
dxf+1

xf+1
, dy1, . . . , dyn−f−1.

The natural map

(3.1) πs→b : T ∗Q −→ bT ∗Q

is the adjoint of the bundle map ι : bTQ → TQ corresponding to the
inclusion of Vb(Q) in V(Q).

Canonical local coordinates on T ∗M0 correspond to decomposing a cov-
ector in terms of the basis as

τ s dt+
∑

j

ηsj dyj +
∑

j

ξsj dxj ,

and elements of bT ∗M0 may be written

τb dt+
∑

j

ηbj dyj +
∑

j

ξbj
dxj
xj

,

so defining canonical coordinates. The map (3.1) then takes the form

πs→b(x, y, t, ξ
s, ηs, τ s) = (x, y, t, ξb, ηb, τb) = (x, y, t, xξs, ηs, τ s),

with xξs = (x1ξ
s
1, . . . , xf+1ξ

s
f+1).

The setting for the basic theorem on the propagation of singularities in [34]
is bT ∗M0. In particular, generalized broken bicharacteristics, or GBBs, are
curves in bT ∗M0. In order to analyze the geometric improvement, spaces that
will keep track of finer singularities are needed. Before introducing these,
we first recall the setup for GBBs. Note that at W, πs→b|W maps N∗W
onto the zero section over W, and is injective on complementary subspaces
of T ∗

WM0, so we may make the identification

πs→b|W (T ∗
WM0) ∼= T ∗W.

We also recall that it is convenient to work on cosphere bundles. Since it
is linear, πs→b intertwines the R+-actions, but it does not induce a map on
the corresponding cosphere bundles since it maps part of T ∗M0 \ o into the
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zero section of bT ∗M0. However, on the characteristic set of � this map is
better behaved. Let

p0 = σ2(�) ∈ C∞(T ∗M0 \ o)
be the standard principal symbol of � ∈ Diff2(M0); it is of the form

p0 = (τ s)2 −
(∑

Ajkξ
s
jξ

s
k +

∑
Bjkη

s
jη

s
k + 2

∑
Cjkξ

s
jη

s
k

)

with Ajk, Bjk, Cjk ∈ C∞(M0), Ajk = Akj and Bjk = Bkj , Cjk|x=0 = 0. Let

(3.2) sΣ0 = p−1
0 ({0})/R+ ⊂ S∗M0

be the spherical image of the characteristic set of �. This has two connected
components, sΣ0,±, corresponding to τ s ≷ 0 since {τ s = 0} ∩ sΣ0 = ∅. Now,
N∗W ⊂ {τ s = 0}, so N∗W ∩ p−1(0) = ∅, meaning W is non-characteristic
for �. Since N∗W is the null space of πs→b, there is an induced map on the
sphere bundles π̂s→b : sΣ0 −→ bS∗M0; the range is denoted

(3.3) bΣ0 = π̂s→b(p
−1
0 (0))/R+ ⊂ bS∗M0.

Again, bΣ0 has two connected components corresponding to the sign of
τ s in sΣ0 and hence the sign of τb. These will be denoted bΣ0,±.

We use τ s, resp. τb, to obtain functions homogeneous of degree zero on
T ∗M0 \ o inducing coordinates on S∗M0 near sΣ0 :

x, y, t, ξ̂s = ξs/|τ s|, η̂s = ηs/|τ s|.
Note also that these coordinates are global in the fibers of S∗M0∩sΣ0,± →M0

for each choice of sign ±.
τ̂ s = sgn τ s

lifts to a constant function ±1 on sΣ0,±. There are similar coordinates on
bS∗M0 near bΣ0.

In these coordinates,
(3.4)
bΣ0 ∩ bS∗

WM0 = {(x, y, t, ξ̂b, η̂b) : x = 0, ξ̂b = 0,
∑

Bjkη̂
b
j η̂

b
k ≤ 1} ⊂ S∗W.

We also remark that with Hp0 denoting the Hamilton vector field of p0,

Hs = |τ s|−1
Hp0

is a homogeneous degree zero vector field near p−1
0 ({0}), thus can be regarded

as a vector field on S∗M0.
Now we define the b-hyperbolic and b-glancing sets by

(3.5) GW,b = {q ∈ bS∗
WM0 : |(πs→b)

−1(q) ∩ sΣ0| = 1}
and

(3.6) HW,b = {q ∈ bS∗
WM0 : |(πs→b)

−1(q) ∩ sΣ0| ≥ 2},
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These are thus also subsets of S∗W . In local coordinates7 they are given
by

GW,b = {(x, y, t, τ̂b, ξ̂b, η̂b) : x = 0, τ̂b ∈ {±1}, ξ̂b = 0,
∑

Bjkη̂
b
j η̂

b
k = 1}

HW,b = {(x, y, t, τ̂b, ξ̂b, η̂b) : x = 0, τ̂b ∈ {±1}, ξ̂b = 0,
∑

Bjkη̂
b
j η̂

b
k < 1}.

(3.7)

Note that for q ∈ bS∗
WM0, at the unique point q0 in (πs→b)

−1(q) ∩ sΣ0, we

have ξ̂s = 0, and correspondingly Hs(q0) is tangent to W , explaining the
“glancing” terminology.

Now we discuss bicharacteristics.

Definition 3.1. A generalized broken bicharacteristic, or GBB, is a continuous
map γ : I → bΣ0 such that for all f ∈ C∞(bS∗M0), real-valued,

lim inf
s→s0

(f ◦ γ)(s)− (f ◦ γ)(s0)
s− s0

(3.8)

≥ inf{Hs(π
∗
s→bf)(q) : q ∈ π−1

s→b(γ(s0)) ∩ sΣ0}.(3.9)

Remark 3.2. Replacing f by −f , we deduce that the inequality

lim sup
s→s0

(f ◦ γ)(s)− (f ◦ γ)(s0)
s− s0

(3.10)

≤ sup{Hs(π
∗
s→bf)(q) : q ∈ π−1

s→b(γ(s0)) ∩ sΣ0}.(3.11)

also holds.

We recall an alternative description of GBBs, which was in fact Lebeau’s
definition [14]. (One could use this lemma as the defining property of GBB;
the equivalence of these two possible definitions is proved in [32, Lemma 7].)

Lemma 3.3. (See [32, Lemma 7].) Suppose γ is a GBB. Then

(1) If γ(s0) ∈ GW,b, let q0 be the unique point in the preimage of γ(s0)

under π̂s→b = πs→b|sΣ0. Then for all f ∈ C∞(bS∗M0) real valued,
f ◦ γ is differentiable at s0, and

d(f ◦ γ)
ds

|s=s0 = Hsπ
∗
s→bf(q0).

(2) If γ(s0) ∈ HW,b, lying over a corner given in local coordinates by
xj = 0, j = 1, . . . , f + 1, there exists ǫ > 0 such that xj(γ(s)) = 0
for s ∈ (s0− ǫ, s0+ ǫ) if and only if s = s0. That is, γ does not meet
the corner {x1 = . . . = xf+1 = 0} in a punctured neighborhood of s0.

Remark 3.4. It also follows directly from the definition of GBB (by combin-
ing (3.8) and (3.10)) that, more generally, if the set

(3.12) {Hs(π
∗
s→bf)(q) : q ∈ π−1

s→b(γ(s0)) ∩ sΣ0}
7The discrete variable τ̂b is not, of course, part of the coordinate system, but serves to

identify which of two components of the characteristic set we are in.
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consists of a single value (for instance, if π−1
s→b(γ(s0))∩ sΣ0 is a single point),

then f ◦ γ must be differentiable at s0, with derivative given by this value.
This is indeed how Lemma 3.3 is proved. The first part of the lemma
follows because π−1

s→b(γ(s0)) ∩ sΣ0 is a single point, giving differentiability.

On the other hand, the second half follows using f =
∑
ξ̂bj , for which the

single value in (3.12) is −(1 −∑Bij η̂
b
i η̂

b
j ) < 0, for γ(s0) ∈ HW,b. Thus,

f is locally strictly decreasing. Since f(q′) = 0 if q′ ∈ bS∗
WM0 ∩ bΣ0, in

particular at γ(s0), it is non-zero at γ(s) for nearby but distinct values of
s—so in particular for such s, γ(s) /∈ bS∗

WM0 ∩ bΣ0, showing that γ leaves
W instantaneously. In fact, this argument also demonstrates the following
useful lemma.

Lemma 3.5. Let U be a coordinate neighborhood around some p ∈ W ,
K a compact subset of U . Let ǫ0 > 0. Then there exists an δ > 0 with
the following property. Suppose that γ is a GBB and γ(s0) ∈ bS∗

KM0. If∑f+1
j=1 ξ̂

b
j (γ(s0)) > 0 and 1 − h(y(γ(s0)), η̂

b(γ(s0))) > ǫ0 then γ|[s0,s0+δ] ∩
bS∗

WM0 = ∅, while if∑f+1
j=1 ξ̂

b
j (γ(s0)) < 0 and 1−h(y(γ(s0)), η̂b(γ(s0))) > ǫ0

then γ|[s0−δ,s0] ∩ bS∗
WM0 = ∅.

Proof. Let U1 ⊂ U be open such that K ⊂ U1, U1 ⊂ U . GBBs are uniformly
Lipschitz, i.e. with Lipschitz constant independent of the GBB, in compact
sets (thus are equicontinuous in compact sets), so it follows that there is
an δ1 > 0 such that γ(s0) ∈ bS∗

KM0 implies that γ(s) ∈ bS∗
U1
M0 for s ∈

[s0 − δ1, s0 + δ1]. Now the uniform Lipschitz nature of the function 1 −
h(y(γ(s)), η̂b(γ(s))) shows that there exists δ2 ∈ (0, δ1] such that for |s−s0| ≤
δ2, 1− h(y(γ(s)), η̂b(γ(s))) > ǫ0/2. Now let f =

∑
ξ̂bj . Then

Hs(π
∗
s→bf)|sΣ0 = −

∑
Aij ξ̂

b
i ξ̂

b
j +
∑

xjF1j = −(1−
∑

Bij ζ̂
b
i ζ̂

b
j )+

∑
xjF2j ,

with F1j , F2j ∈ C∞(S∗M0), so there exist δ3 > 0 and c > 0 such that if xj <
δ3 for j = 1, . . . , f + 1, then Hs(π

∗
s→bf)|sΣ0 ≤ −c. Now if xj(γ(s0)) > δ3/2

for some j, the uniform Lipschitz character of xj ◦ γ shows the existence
of δ′ > 0 (independent of γ) such that xj(γ(s0)) 6= 0 for |s − s0| < δ′.
On the other hand, if xj(γ(s0) ≤ δ3/2 for all j, then the uniform Lipschitz
character of xj ◦γ shows the existence of δ′′ ∈ (0, δ2] such that xj(γ(s0)) < δ3
for |s − s0| < δ′′, so f(γ(s)) is strictly decreasing on [s0 − δ′′, s0 + δ′′].
In particular, if f(γ(s0)) > 0, then f(γ(s)) > 0 for s ∈ [s0 − δ′′, s0], so
γ(s0) /∈ bS∗

WM0, and if f(γ(s0)) < 0, then f(γ(s)) < 0 for s ∈ [s0, s0 + δ′′],

so γ(s0) /∈ bS∗
WM0 again. This completes the proof of the lemma. �

We now recall the following statement, due to Lebeau.

Lemma 3.6. (Lebeau, [14, Proposition 1]) If γ is a generalized broken
bicharacteristic, s0 ∈ I, q0 = γ(s0), then there exist unique q̃+, q̃− ∈ sΣ0

satisfying πs→b(q̃±) = q0 and having the property that if f ∈ C∞(bS∗M0)
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then f ◦ γ is differentiable both from the left and from the right at s0 and
(
d

ds

)
(f ◦ γ)|s0± = Hsπ

∗
s→bf(q̃±).

Definition 3.7. A generalized broken bicharacteristic segment γ, defined on
[0, s0) or (−s0, 0], γ(0) = q ∈ HY,b is said to approach W normally as s→ 0
if for all j,

lim
s→0±

xj(γ(s))

s
6= 0;

this limit always exists by [14, Proposition 1].

Remark 3.8. If γ approaches W normally then there is s1 > 0 such that
γ(s) ∈ S∗M◦

0 for s ∈ (0, s1) or s ∈ (−s1, 0) since xj(γ(0)) = 0, and the
one-sided derivative of xj ◦ γ is non-zero.

While the actual derivatives depend on the choice of the defining functions
xj for the boundary hypersurfaces, the condition of normal incidence is
independent of these choices.

3.2. Edge-smooth cotangent bundle. We now discuss another bundle,
ultimately in order to discuss the refinement of GBBs that allows us to obtain
a diffractive improvement. Let β :M →M0 be the blow-down map.

Let Ves(M) denote the set of vector fields that are tangent to the fibers

of β|W̃ : W̃ → W (hence to W̃ ). This is a C∞(M)-module, with sections
locally spanned by

x∂x, x∂t, x∂yj , ∂z′j , ∂z′′j .

(In fact, one can always use local coordinate charts without the z′′ variables
in this setting.) Under the blow-down map β :M →M0, elements of V(M0)
lift to certain vector fields of the form x−1V , V ∈ Ves(M), where x is a

defining function of the front face, W̃ . Conversely, x−1Ves(M) is spanned
by the lift of elements of V(M0) over C∞(M), i.e.

(3.13) x−1Ves(M) = C∞(M)⊗C∞(M0) β
∗V(M).

Let esTM denote the “edge-smooth” tangent bundle of M, defined as the
bundle whose smooth sections are elements of Ves(M); such a bundle exists
by the above description of a local spanning set of sections. Let esT ∗M
denote the dual bundle. Thus in the coordinates of §2, sections of esT ∗M
are spanned by

(3.14) τ
dt

x
+ ξ

dx

x
+ η · dy

x
+ ζ ′ · dz′ + ζ ′′ · dz′′.

By (3.13), taking into account that dt2−g0 is a Lorentz metric onM0, we
deduce that its pull-back g to M is a Lorentzian metric on x−1esT ∗M , i.e.
that x−2g is a symmetric non-degenerate bilinear form on esTM with sig-
nature (+,−, . . . ,−). Correspondingly, the dual metric G has the property
that x2G is a Lorentzian metric on esT ∗M . Note that G is the pull-back of
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G0 = σ2(�) ∈ C∞(T ∗M0 \o). We thus conclude that σ2(�) ∈ C∞(T ∗M0 \o)
lifts to an element of x−2C∞(esT ∗M \ o); let

p = σes,2(x
2�) ∈ C∞(esT ∗M \ o)

be such that x−2p is this lift, so

p|x=0 = τ2 −
(
ξ2 + h(y, η) + k(y, z, ζ)

)
.

Let esΣ ⊂ esS∗M denote the characteristic set of x2�, i.e., the set
esΣ = p−1({0})/R+ = {σes,2(x2�) = 0}/R+.

Thus, using the coordinates

(3.15) x, y, t, z, ξ̂ = ξ/|τ |, η̂ = η/|τ |, ζ̂ = ζ/|τ |, σ = |τ |−1,

on esT ∗M , valid where τ 6= 0, hence (outside the zero section) near where
p = 0, and dropping σ to obtain coordinates on esS∗M ,

(3.16) esΣ∩esS∗
W̃
M = {(x = 0, t, y, z, ξ̂, η̂, ζ̂) : ξ̂

2
+h(y, η̂)+k(y, z, ζ̂) = 1}.

The rescaled Hamilton vector field

Hes = |τ |−1
Hp

is homogeneous of degree 0, and thus can be regarded as a vector field on
esS∗M which is tangent to esΣ. (Note that while Hes depends on the choice
of x, and the particular homogeneous degree −1 function, |τ |−1, used to
re-homogenize Hp, these choices only change Hes by a positive factor, so its
direction is independent of the choices—though our choices are in any case
canonical.)

With the notation of [25, Section 7] (where it is explained slightly dif-
ferently, as the underlying manifold is not a blow-up of another space),
corresponding to the edge fibration

β : W̃ →W = Y × Rt,

there is a natural map

̟es :
esT ∗

W̃
M → T ∗W.

In fact, in view of (3.13), the bundle x−1esTM (whose sections are x−1

times smooth sections of esTM) can be identified with β∗TM0, so one has
a natural map x−1esTM → TM0. Dually, xesT ∗M can be identified with
β∗T ∗M0, so one has a natural map xesT ∗M → T ∗M0. Multiplication by
x maps esT ∗M to xesT ∗M , and πs→b : T ∗M0 → bT ∗M0 restricts to the
quotient map T ∗

WM0 → T ∗W = T ∗M0/N
∗W over W , so ̟es is given by the

composite map
esT ∗

W̃
M ∋ α 7→ xα ∈ xesT ∗

W̃
M 7→ β∗(xα) ∈ T ∗

WM0

7→ [xα] ∈ T ∗W ⊂ bT ∗M0,

which in local coordinates (3.14) is given by

̟es(x = 0, y, t, z, ξ, η, τ , ζ) = (y, t, η, τ).
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The fibers can be identified with Rξ×T ∗Z. In view of the R+-action on esΣ,
this gives rise to a map ̟es : esΣ → S∗W , which is a fibration over HW,b

(where 1− h(y, η̂b) > 0) with fiber

̟−1
es (y, t, η̂b) = {(x = 0, y, t, z, ξ̂, η̂, ζ̂) : η̂ = η̂b,

|ξ̂|2 + k(y, z, ζ̂) = 1− h(y, η̂b)};
the fibers degenerate at GW,b. Then Hes is tangent to the fibers of ̟es. In
fact, as computed in [25, Proof of Lemma 2.3] (which is directly valid in our
setting), using coordinates (3.15) on esT ∗M ,

− 1

2
Hes = −1

2
σHp

= ξ̂
(
x∂x − σ∂σ − ζ̂ · ∂ζ̂

)
+Kij ζ̂

i
∂zj +Kij ζ̂

i
ζ̂
j
∂ξ̂ −

1

2

∂Kij

∂zk
ζ̂
i
ζ̂
j
∂ζ̂

k

+ xH ′,

(3.17)

withH ′ tangent to the boundary, hence as a vector field on esS∗M , restricted
to esS∗

W̃
M , Hes is given by

(3.18) −1

2
Hes = −ξ̂ζ̂∂ζ̂ +Kij ζ̂

i
∂zj +Kij ζ̂

i
ζ̂
j
∂ξ̂ −

1

2

∂Kij

∂zk
ζ̂
i
ζ̂
j
∂ζ̂

k

.

It is thus tangent to the fibers given by the constancy of y, t, η̂. Notice also
that Hes is indeed tangent to the characteristic set, given by (3.16), and in
esS∗

W̃
M , it vanishes exactly at ζ̂ = 0. We let

Res = {q ∈ esΣ ∩ esS∗
W̃
M : Hes(q) = 0} = {(t, y, z, ξ̂, η̂, ζ̂) ∈ esΣ : ζ̂ = 0}

be the es-radial set.

3.3. Edge-b cotangent bundle. Finally, we construct a bundle ebT ∗M
over M that behaves like bT ∗M away from W̃ , and behaves like eT ∗M near
the interior of W̃ . Before doing so, we remark that the pullback of bT ∗M0

to M is bT ∗M , so β :M →M0 induces a map

β♯ :
bT ∗M → bT ∗M0,

such that
β♯|bT ∗

wM → bT ∗
β(w)M0, w ∈M,

is an isomorphism. It commutes with the R+-action, hence induces a map

β̂♯ :
bS∗M → bS∗M0,

such that
β̂♯|bS∗

wM → bS∗
β(w)M0, w ∈M,

is an isomorphism.
More precisely, ebT ∗M arises from the lift of vector fields onM0 which are

tangent to all faces of M0 and vanish at W . (The set Ṽ of such vector fields
is a C∞(M0)-module, but is not all sections of a vector bundle over M0—
unlike its analogue, V(M0), in the construction of Ves(M); locally xj∂xj ,
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j = 1, . . . , f + 1, xi∂t, and xi∂yj , i = 1, . . . , f + 1, j = 1, . . . , n− f − 1, give
a spanning list.)

Definition 3.9. Let Veb(M) consist of vector fields tangent to all of ∂M and

to the fibers of W̃ .

This is again a C∞(M)-module, and locally x∂x, x∂t, x∂yj , z
′
j∂z′j , and ∂z′′j

give a spanning set; in fact

Veb(M) = C∞(M)⊗C∞(M0) β
∗Ṽ .

Thus, there is a vector bundle, called the “edge-b” tangent bundle of M,
denoted ebTM , whose sections are exactly elements of Veb(M). Let ebT ∗M
denote the dual bundle. Thus in the coordinates of §2, sections of ebT ∗M
are spanned by

τ
dt

x
+ ξ

dx

x
+ η · dy

x
+
∑

ζ ′i
dz′i
z′i

+ ζ ′′ · dz′′

In particular, we point out that the lift of
∑
xjDxj from M0 to M by β

is xDx, up to xVeb(M), hence considering their principal symbols gives
∑

j

β∗ξbj = ξ at x = 0.

Dividing by β∗|τb| = x−1|τ | yields

(3.19)
∑

j

β∗ξ̂bj = xξ̂ +O(x2), ξ̂ = ξ/|τ |.

There exists a natural bundle map

πes→eb : esT ∗M → ebT ∗M,

analogous to the bundle map πs→b : T ∗M0 → bT ∗M0 of (3.1). In canonical
coordinates, this maps

(τ , ξ, η, ζ ′, ζ ′′) 7→ (τ = τ , ξ = ξ, η = η, ζ ′i = ζ ′
i
z′i, ζ

′′ = ζ ′′).

This map commutes with the R+-action of dilations in the fibers, and maps
p−1({0}) ⊂ esT ∗M \ o into the complement of the zero section of ebT ∗M , so
it gives rise to a map

π̂es→eb : esΣ → ebS∗M.

Let
ebΣ = π̂es→eb(

esΣ) ⊂ ebS∗M.

In coordinates

x, y, t, z, ξ̂ = ξ/|τ |, η̂ = η/|τ |, ζ̂ = ζ/|τ |,
on ebS∗M , and analogously defined coordinates on esS∗M ,

π̂es→eb(x, y, t, z, ξ̂, η̂, ζ̂
′
, ζ̂

′′
) = (x, y, t, z, ξ̂ = ξ̂, η̂ = η̂, ζ̂ ′i = ζ̂

′

i
z′i, ζ̂

′′ = ζ̂
′′
),
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so for w ∈ W̃ , z′1(w) = . . . = z′p(w) = 0, z′p+1(w) 6= 0, . . . , z′k(w) 6= 0, with
p ≥ 1,

ebΣ ∩ ebS∗
wM = {(ξ̂,η̂, ζ̂) ∈ ebS∗

wM : ζ̂ ′1 = . . . = ζ̂ ′p = 0,

1 ≥ ξ̂2 + h(y, η̂) + k(y, z, (0, . . . , 0,
ζ̂ ′p+1

z′p+1

, . . . ,
ζ̂ ′k
z′k

), ζ̂ ′′)}.

We again also obtain a map ̟eb : ebΣ ∩ ebS∗
W̃
M → S∗W analogously to

̟es which is a fibration over HW,b; in local coordinates (on S∗W near the

projection of ebΣ, (y, t, η̂) are local coordinates, η̂ = η/|τ |)
(3.20) ̟eb(0, y, t, z, ξ̂, η̂, ζ̂) = (y, t, η̂ = η̂).

More invariantly we can see this as follows. As discussed in [25, Section 7]

in the setting where the fibers on W̃ have no boundaries, one considers the
map

x· : ebT ∗M → bT ∗M

given by multiplication of the covectors by x away from W̃ , which extends
to a C∞ map as indicated, namely

x· : τ dt
x

+ ξ
dx

x
+ η · dy

x
+
∑

ζ ′i
dz′i
z′i

+ ζ ′′ · dz′′

7→ τ dt+ xξ
dx

x
+ η dy +

∑
xζ ′i

dz′i
z′i

+ xζ ′′ · dz′′.

Note that at x = 0, this gives

x · (α) = τ dt+ η dy,

α = τ
dt

x
+ ξ

dx

x
+ η · dy

x
+
∑

ζ ′i
dz′i
z′i

+ ζ ′′ · dz′′ ∈ ebT ∗
wM, w ∈ W̃ .

(3.21)

In particular, as the image under (x·) ◦ πes→eb of p−1({0}) ⊂ esT ∗M \ o is
disjoint from the zero section, and since multiplication by x commutes with
the R+-action in the fibers, β̂♯ ◦ (x·) descends to a map

̟eb : ebΣ → bΣ0,

and away from W̃ it is given by the restriction of the natural identificantion
of ebS∗

M\W̃
M with bS∗

M0\W
M0, while at W̃ , as (3.21) shows, is given by

(3.20), where we consider S∗W ⊂ bS∗M0, cf. (3.4).
We now introduce sets of covectors that are respectively elliptic, glancing,

and hyperbolic with respect to the boundary faces of M0 meeting at the
corner W ; these sets are thus of covectors over the boundary of W̃ :

E = ebS∗
∂W̃

M \ ebΣ = {q ∈ ebS∗
∂W̃

M : (π̂es→eb)
−1(q) = ∅},

G = {q ∈ ebS∗
∂W̃

M : |π̂es→eb
−1

(q)| = 1},
H = {q ∈ ebS∗

∂W̃
: |π̂es→eb

−1
(q)| ≥ 2},
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so ebΣ ∩ ebS∗
∂W̃

M = G ∪ H.

In coordinates, note that, for instance, for

w ∈ W̃ , z′1(w) = . . . = z′p(w) = 0, z′p+1(w) 6= 0, . . . , z′k(w) 6= 0,

with p ≥ 1,
(3.22)

E ∩ ebS∗
wM

={∃j, 1 ≤ j ≤ p, ζ̂ ′j 6= 0}

∪
{
1 < ξ̂2 + h(y, η̂) + k

(
y, z,

(
0, . . . , 0,

ζ̂ ′p+1

z′p+1

, . . . ,
ζ̂ ′k
z′k

)
, ζ̂ ′′

)}
,

G ∩ ebS∗
wM =

{
ζ̂ ′1 = . . . = ζ̂ ′p = 0,

1 = ξ̂2 + h(y, η̂) + k

(
y, z,

(
0, . . . , 0,

ζ̂ ′p+1

z′p+1

, . . . ,
ζ̂ ′k
z′k

)
, ζ̂ ′′

)}
,

H ∩ ebS∗
wM =

{
ζ̂ ′1 = . . . = ζ̂ ′p = 0,

1 > ξ̂2 + h(y, η̂) + k

(
y, z,

(
0, . . . , 0,

ζ̂ ′p+1

z′p+1

, . . . ,
ζ̂ ′k
z′k

)
, ζ̂ ′′

)}
.

Remark 3.10. The set GW,b defined in (3.5) represents rays that are glancing
with respect to the corner W , i.e., are tangent to all boundary faces meeting
atW, while G defined above describes the rays that are glancing with respect
to one or more of the boundary faces meeting at W (see Figure 4). The
sets GW,b and HW,b live in S∗W ⊂ bS∗

WM0. This can be lifted to bS∗M by

β (since bT ∗M = β∗bT ∗M0), but in this picture GW,b and HW,b are global

in the fibers of β, i.e., live over all of W̃ , not merely over its boundary.

3.4. Bicharacteristics. We now turn to bicharacteristics in ebΣ, which will
be the dynamical locus of the geometric improvement for the propagation
result. Taking into account that Hes is tangent to the fibers of ̟es, one
expects that over W̃ , these bicharacteristics will lie in a single fiber of the
related map ̟eb, i.e. y, t, η̂ will be constant along these. The fibers of ̟es

and ̟eb have a rather different character depending on whether they are
over a point in GW,b or in HW,b. Namely, over GW,b the fibers of ̟es resp.

̟eb are ξ̂b = 0, ζ̂b = 0 resp. ξ = 0, ζ = 0 i.e. they are the zero section. By
contrast over α = (t, y, η̂) ∈ HW,b, the fiber of ̟es is

Hes→α,b =
{
(t, y, z, ξ̂, η̂ = η̂, ζ̂) ∈ esS∗M : ξ̂

2
+ k(y, z, ζ̂) = 1− h(y, η̂)

}
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Figure 4. Glancing rays. The ray depicted at top, in M
(projected down to X), terminates at a point in G. The ray
depicted at bottom, in M0 (projected down to X0), termi-
nates at a point in GW,b.

while that of ̟eb is

Heb→α,b =

{
(t, y, z, ξ̂, η̂, ζ̂) ∈ ebS∗M : ζ̂ ′1 = . . . = ζ̂ ′p = 0,

ξ̂2 + k

(
y, z,

(
0, . . . , 0,

ζ̂ ′p+1

z′p+1

, . . . ,
ζ̂ ′k
z′k

)
, ζ̂ ′′

)
≤ 1− h(y, η̂)

}
.

The geometric improvement will take place over HW,b, so from now on
we concentrate on this set. Now, for α = (t, y, η̂) ∈ HW,b

Res ∩Hes→α,b =
{
(t, y, z, ξ̂, η̂ = η̂, ζ̂ = 0) ∈ esS∗M : ξ̂

2
= 1− h(y, η̂)

}
,

hence has two connected components which we denote by

Res,α,I/O =
{
(t, y, z, ξ̂, η̂ = η̂, ζ̂ = 0) ∈ esS∗M : ξ̂ = ± sgn(τ)

√
1− h(y, η̂)

}
,

with sgn(τ) being the constant function ±1 on the two connected compo-
nents of esΣ.
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Here the labels “I/O”, stand for “incoming/outgoing.” This is explained
by

−1

2
Hest = −τ̂ , −1

2
Hesx = ξ̂x,

so in a neighborhood of Res,α,I , Hest and Hesx have the opposite signs, i.e.
if t is increasing, x is decreasing along Hes, just as one would expect an
‘incoming ray’ to do; at outgoing points the reverse is the case.

We also let

Reb,α,I/O = π̂es→eb(Res,α,I/O)

=
{
(t, y, z, ξ̂, η̂, ζ̂ = 0) ∈ ebS∗M : ξ̂ = ± sgn(τ)

√
1− h(y, η̂)

}
,

and

Reb,S,I/O = ∪α∈SReb,α,I/O

for S ⊂ HW,b.

Definition 3.11. An edge generalized broken bicharacteristic, or EGBB, is a
continuous map γ : I → ebΣ such that for all f ∈ C∞(ebS∗M), real-valued,

(3.23)
lim inf
s→s0

(f ◦ γ)(s)− (f ◦ γ)(s0)
s− s0

≥ inf
{
Hes(π̂es→eb

∗
f)(q) : q ∈ π̂es→eb

−1
(γ(s0)) ∩ esΣ

}
.

Lemma 3.12. (1) An EGBB outside ebS∗
W̃
M is a reparameterized GBB

(under the natural identification of bS∗
M0\W

M0 with
ebS∗

M\W̃
M), and

conversely.
(2) If a point q on an EGBB lies in ebS∗

W̃
M , then the whole EGBB lies

in ebS∗
W̃
M , in ̟−1

eb (̟eb(q)), i.e. in the fiber of ̟eb through q.

(3) The only EGBB through a point in Reb,α,I/O is the constant curve.
(4) For α ∈ HW,b, an EGBB in Heb→α,b \ Reb,α,I/O projects to a repa-

rameterized GBB in bT ∗Z, hence to geodesic of length π in Z.

Proof.

(1) As Hs and Hes differ by an overall factor under the natural identifi-
cation ι : S∗

M0\W
M0 → esS∗

M\W̃
M , namely

ι∗Hs = |τ s|−1 |τ |x−2
Hes = x−1

Hes,

we obtain this immediately.
(2) The tangency of Hes to the fibers of ̟es means that if we set f equal

to any of ±yj ,±t,±η̂bj , Hesf = 0. By (3.23), then (f ◦γ)′(s0) = 0 for
all s0, and for each of these choices. This ensures that γ remains in
the fiber.
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(3) Hes vanishes at the unique q ∈ π̂es→eb
−1

(γ(s0)) ∩ esΣ if γ(s0) ∈
Reb,α,I/O. Moreover, the function ξ̂ ◦ γ is in C1, as

Hesξ̂ = 2K(y, t, z, ζ̂) = 2
(
1− h(y, η̂)− ξ̂

2)

on esΣ. Thus, (3.23) entails that if ξ̂ = ±
√
1− h(y, η̂) at some point

on an EGBB, then it is constant.
(4) This follows from a reparameterization argument, as in [25], taking

into account that Hes is tangent to the fibers of esT ∗
W̃
M , hence can

be considered as a vector field on Rξ̂ × T ∗Z. (In fact, a completely

analogous argument takes place in [33, Section 6] in the setting of
N -body scattering.) �

Suppose now that γ : [0, δ0] → bΣ0 is a GBB with γ(0) = α ∈ HW,b. Thus,

assuming δ0 > 0 is sufficiently small, by Lemma 3.5, γ|(0,δ0] ∩ bS∗
WM0 = ∅.

Since bS∗
M0\W

M0 is naturally diffeomorphic to ebS∗
M\W̃

M , we can lift γ|(0,δ0]
to a curve γ̃ : (0, δ0] → ebS∗M in a unique fashion. It is natural to ask
whether this lifted curve extends continuously to 0, which is a question we
now address.

The following is easily deduced from Lebeau, [14, Proposition 1] (stated
here in Lemma 3.6) and its proof:

Lemma 3.13. Suppose that α ∈ HW,b. There exists δ0 > 0 with the follow-
ing property.

Suppose γ : [0, δ0] → bS∗M0 is a GBB with γ(0) = α. Let γ̃ : (0, δ0] →
ebS∗M be the unique lift of γ|(0,δ0] to ebS∗M . Then γ̃ (uniquely) extends to

a continuous map γ̃ : [0, δ0] → ebS∗M , with γ̃(0) ∈ Reb,α,O.
In addition, γ approaches W normally if and only if

γ̃(0) /∈ ebS∗
∂W̃

M ∩Reb,α,O = G ∩ Reb,α,O.

The analogous results hold if [0, δ0] is replaced by [−δ0, 0] and Reb,α,O is
replaced by Reb,α,I .

Remark 3.14. The proof in fact shows that δ0 can be chosen independent of
α as long as we fix some K ⊂ HW,b ⊂ bS∗

WM0 compact and require α ∈ K.

Remark 3.15. The special case of a normal GBB segment γ, which lifts
to a curve γ̃ : [0, δ0] → ebS∗M starting at W̃ ◦, follows directly by the
description of geodesic in edge metrics from [25], since normality implies
that for sufficiently small δ0 > 0, γ|(0,δ0] has image disjoint from xj = 0 for
all j, i.e. the boundaries can be ignored, and one is simply in the setting of
[25]. This argument also shows that given α ∈ HW,b and p ∈ Reb,α,O \ G,
for sufficiently small δ0 > 0, there is a unique GBB γ : [0, δ0] → bS∗M0 with
γ(0) = α such that the lift γ̃ of γ satisfies γ(0) = p.
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Proof. Let α = (y0, t0, η̂
b
0 ). First, by Lemma 3.5, γ|(0,δ0] ∩ bS∗

WM0 = ∅ for
δ0 > 0 sufficiently small, hence the lift γ̃|(0,δ0] exists and is unique. Lebeau
proves in [14, Proof of Proposition 1] (with our notation) that

lim
s→0

ξ̂(γ̃(s)) =
√
1− h(y0, η̂b0 ) and

dx(γ(s))

ds
|s=0 = 2

√
1− h(y0, η̂b0 ) > 0.

This implies that

sup{|ζ̂(q)| : q ∈ (π̂s→b)
−1(γ(s))} → 0 as s→ 0+,

since∑
Kij(y, z)ζ̂iζ̂j = 1− h(y, η̂)− ξ̂

2
+ xG ≤ 1− h(y, η̂)− ξ̂

2
+ Cx

on esΣ, and 1 − h(y(γ̃(s)), η̂(γ̃(s))) − ξ̂(γ̃(s))2 + Cx(γ̃(s)) → 0. It remains
to show that the coordinates zj have a limit as s → 0. But by Lemma 3.6,

(dxj ◦ γ/ds)|s=0 = 2ξ̂sj(0) exists, and
∑
Aij ξ̂

s
i (0)ξ̂

s
j(0) = 1 − h(y0, η̂

b
0 ) > 0.

Thus, considering zj(γ(s)) = xj(γ(s))/x(γ(s)), L’Hôpital’s rule shows that

lims→0+ zj(γ(s)) = ξ̂sj(0)/
√

1− h(y0, η̂b0 ) exists, finishing the proof of the

first claim. The second claim follows at once from the last observation
regarding lims→0+ zj(γ(s)). �

We also need the following result, which is a refinement of Lemma 3.13,
insofar as Lebeau’s result only deals with a single GBB emanating from the
corner W of M0 : the following lemma extends Lemma 3.13 uniformly to
GBBs starting close to but not at the corner. For simplicity of notation, we
only state the results for the outgoing direction.

Lemma 3.16. Suppose that α ∈ HW,b, p ∈ Reb,O,α, pn ∈ ebS∗
M\W̃

M ,

and pn → p in ebS∗M . Suppose δ0 > 0 is sufficiently small (see following
remark). Let γn : [0, δ0] → bS∗M0 be GBB such that γn(0) = pn. For n
sufficiently large, let γ̃n : [0, δ0] → ebS∗M be the unique lift of γn to a map
[0, δ0] → ebS∗M . Then for N sufficiently large, {γ̃n}n≥N is equicontinuous.

Remark 3.17. As pn → p, ξ̂(pn) → ξ̂(p) > 0, so there exists N > 0 such that

f+1∑

j=1

ξ̂bj (pn) = x(pn)ξ̂(pn) +O
(
x(pn)

2
)
> 0

for n ≥ N ; cf. (3.19). Thus, by Lemma 3.5, there exists δ0 > 0 such that
γn|[0,δ0] ∩ bS∗

WM0 = ∅ for n ≥ N—this is the δ0 in the statement of the

lemma. Hence, for n sufficiently large, γn has a unique lift γ̃n to ebS∗M ,

since ebS∗M and bS∗M0 are naturally diffeomorphic away from W̃ , resp. W
as previously noted.

Proof. Note first that {γn}n∈N is equicontinuous by Lebeau’s result [14,
Corollaire 2] (see also the proof of [14, Proposition 6])—indeed, this follows
directly from our definition of GBB. This implies that {γ̃n}n∈N is equicon-
tinuous at all s0 ∈ (0, δ0], for given such a s0, there exists K0 ⊂M0 compact
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disjoint from W such that γn|[s0,δ0] has image in bS∗
K0
M0, which is canoni-

cally diffeomorphic to ebS∗
β−1(K0)

M . Thus, it remains to consider equiconti-

nuity at 0.
For sufficiently large n, all γn have image in bS∗

KM0 where K is compact
and K ⊂ O for a coordinate chart O on M0. Thus, by the equicontinuity of
γn, the coordinate functions

xj ◦ γn, tj ◦ γn, yj ◦ γn, ξ̂bj ◦ γn, η̂bj ◦ γn
are equicontinuous. We need to show that for the lifted curves, γ̃n, the
coordinate functions

x ◦ γ̃n, tj ◦ γ̃n, yj ◦ γ̃n, zj ◦ γ̃n, ξ̂ ◦ γ̃n, η̂ ◦ γ̃n, ζ̂j ◦ γ̃n
are equicontinuous at 0. By the above description, and yj ◦ γ̃n = yj ◦ γn,
tj ◦ γ̃n = tj ◦ γn and η̂j ◦ γ̃n = η̂bj ◦ γn are equicontinuous, as is x ◦ γ̃n in view

of x = (
∑
aijxixj)

1/2. Thus, it remains to consider ξ̂ ◦ γ̃n, zj ◦ γ̃n and ζ̂j ◦ γ̃n.
Let p = (0, y0, z0, ξ̂0, η̂0, 0), and write µ = ξ̂0 > 0. Thus,

µ =
√
1− h(y0, η̂0).

Let ǫ1 > 0. One can show easily, as in the proof of Lebeau’s [14, Proposi-
tion 1], that for all n sufficiently large (so that pn sufficiently close to p) and
s0 > 0 sufficiently small,

(3.24) s ∈ [0, s0] =⇒ ξ̂ ◦ γ̃n(s) ∈ [µ− ǫ1, µ+ ǫ1].

Indeed, Hsξ̂ = 2x−1
∑
Kij ζ̂iζ̂j + F with F smooth, so Hsξ̂ ≥ −C0 over the

compact set K, hence

(3.25) ξ̂ ◦ γ̃n(s) ≥ ξ̂(pn)− C0s.

On the other hand, on esΣ,

ξ̂
2
= 1− h(y, η̂)−

∑
Kij(y, z)ζ̂iζ̂j + xG ≤ 1− h(y, η̂) + C1x,

hence on ebΣ,

ξ̂2 ≤ 1− h(y, η̂) + C1x.

Let

Φ(x, y, η̂b) =
√
1− h(y, η̂b) + C1x;

this is thus a Lipschitz function on a neighborhood of α in bS∗M0, hence
there is s′0 > 0 such that Φ ◦ γn|[0,s′0] is uniformly Lipschitz for n sufficiently
large. Thus,

|ξ̂(γ̃n(s))| ≤ Φ(γn(s)) ≤ Φ(α) + |Φ(pn)− Φ(α)|+ |Φ(γn(s))− Φ(pn)|
≤
√
1− h(y0, η̂0) + |Φ(pn)− Φ(α)|+ C ′s.

Thus, for sufficiently large n (so that pn is close to p),

(3.26) |ξ̂(γ̃n(s))| ≤
√
1− h(y0, η̂0) + ǫ1/2 + C ′s.

Combining (3.25) and (3.26) gives (3.24).
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Now consider the function

Θ = 1− h(y, η̂)− ξ̂2,

so π∗s→bΘ|sΣ0∩S∗M0 =
∑
Kij ζ̂iζ̂j . This satisfies

HsΘ = −2ξ̂Hsξ̂ + F1 = −4x−1ξ̂
∑

Kij ζ̂iζ̂j + F2 = −4x−1ξ̂Θ+ F3

with Fj smooth. Now,

x(pn) + (µ− ǫ1)s ≤ x ◦ γn(s) ≤ x(pn) + (µ+ ǫ1)s,

so
d

ds
Θ ◦ γn + 4x−1ξ̂Θ ≤ C

implies that
d

ds
Θn +

4(µ− ǫ1)

x(pn) + (µ+ ǫ1)s
Θn ≤ C,

where we write Θn = Θ ◦ γn. Multiplying through by
(
x(pn) + (µ+ ǫ1)s

)4(µ−ǫ1)/(µ+ǫ1)

gives

d

ds

((
x(pn) + (µ+ ǫ1)s

)4(µ−ǫ1)/(µ+ǫ1)Θn

)

≤ C
(
x(pn) + (µ+ ǫ1)s

)4(µ−ǫ1)/(µ+ǫ1).

(3.27)

Integration gives

(
x(pn) + (µ+ ǫ1)s

)4(µ−ǫ1)/(µ+ǫ1)Θn(s)− x(pn)
4(µ−ǫ1)/(µ+ǫ1)Θn(0)

≤ C ′
((
x(pn) + (µ+ ǫ1)s

)1+4(µ−ǫ1)/(µ+ǫ1) − x(pn)
1+4(µ−ǫ1)/(µ+ǫ1)

)
.

(3.28)

Thus,

(3.29) Θn(s) ≤
(
1 + (µ+ ǫ1)s/x(pn)

)−4(µ−ǫ1)/(µ+ǫ1)Θn(0)

+ C ′
((
x(pn) + (µ+ ǫ1)s

)
− x(pn)(1 + (µ+ ǫ1)s/x(pn)

)−4(µ−ǫ1)/(µ+ǫ1)
)
.

Since (
1 + (µ+ ǫ1)s/x(pn)

)−4(µ−ǫ1)/(µ+ǫ1) < 1,

this yields

(3.30) Θn(s) ≤ Θn(0) + C ′
(
x(pn) + (µ+ ǫ1)s

)

On the other hand, as on sΣ0, Θ =
∑
Kij ζ̂iζ̂j + xF , with F smooth, so

Θ ≥ −Cx, we deduce that

Θn(s) ≥ −C
(
x(pn) + (µ+ ǫ1)s

)
.

Thus,

−C
(
x(pn) + (µ+ ǫ1)s

)
≤ Θn(s) ≤ Θn(0) + C ′

(
x(pn) + (µ+ ǫ1)s

)
.
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Suppose now that ǫ > 0 is given. As pn → p, there is an N such that
for n ≥ N , Cx(pn) + Θn(0), C

′x(pn) ≤ ǫ/2. Moreover, let s0 > 0 such
that C(µ + ǫ1)s0, C

′(µ + ǫ1)s0 < ǫ/2. Then for n ≥ N , s ∈ [0, s0], −ǫ ≤
Θn(s)−Θn(0) ≤ ǫ, giving the equicontinuity of Θn at 0 for n ≥ N . In view
of the definition of Θn and the already known equicontinuity of y ◦ γ̃n and
η̂ ◦ γ̃n, it follows that (ξ ◦ γ̃n)2, hence ξ ◦ γ̃n are equicontinuous. As on esΣ,

|ζ̂|2 ≤ C|Θ|+ C ′x, we also have |ζ̂|2 ≤ C|Θ|+ C ′x there, so

|ζ̂ ◦ γ̃n(s)− ζ̂(pn)| ≤ |ζ̂(pn)|+ |ζ̂ ◦ γ̃n(s)| ≤ |ζ̂(pn)|+C|Θn(s)|+C ′x(γ̃n(s)).

Given ǫ > 0, by the equicontinuity of Θn and x◦ γ̃n, there is s0 such that for
s ∈ [0, s0], C|Θn(s)| + C ′x(γ̃n(s)) < ǫ/2. As ζ̂(pn) → 0 due to pn → p, for

n sufficiently large, |ζ̂(pn)| < ǫ/2, so for n sufficiently large and s ∈ [0, s0],

|ζ̂ ◦ γ̃n(s)− ζ̂(pn)| ≤ ǫ, giving the equicontinuity of ζ̂ ◦ γ̃n at 0.
It remains to check the equicontinuity of Zn = z ◦ γ̃n. But∣∣∣∣

dZn

ds

∣∣∣∣ ≤ C sup
{
x(q)−1|ζ̂(q)| : q ∈ sΣ0, πs→b(q) = γn(s)

}
,

and for such q, by (3.29),

x−2|ζ̂|2 ≤ Cx−2(|Θ|+ x)

≤ C
(
x(pn) + (µ− ǫ1)s

)−2(
1 + (µ+ ǫ1)s/x(pn)

)−4(µ−ǫ1)/(µ+ǫ1)Θn(0)

+ C
(
x(pn) + (µ+ ǫ1)s

)
,

so

x−1|ζ̂|
≤ C

(
x(pn) + (µ− ǫ1)s

)−1(
1 + (µ+ ǫ1)s/x(pn)

)−2(µ−ǫ1)/(µ+ǫ1)Θn(0)
1/2

+ C
√
x(pn) + (µ+ ǫ1)s

≤ Cx(pn)
−1
(
1 + (µ− ǫ1)s/x(pn)

)−1−2(µ−ǫ1)/(µ+ǫ1)Θn(0)
1/2

+ C
√
x(pn) + (µ+ ǫ1)s.

Thus, integrating the right hand side shows that

|Zn(s)− Zn(0)| ≤ C ′Θn(0)
1/2
((

1 + (µ− ǫ1)s/x(pn)
)−2(µ−ǫ1)/(µ+ǫ1) − 1

)

+ C ′s
√
x(pn) + (µ+ ǫ1)s

≤ C ′Θn(0)
1/2 + C ′s

√
x(pn) + (µ+ ǫ1)s.

An argument as above gives the desired equicontinuity for n sufficiently
large, completing the proof of the lemma. �

Corollary 3.18. Suppose that α ∈ HW,b, p ∈ Reb,O,α, pn ∈ ebS∗
M\W̃

M , and

pn → p in ebS∗M . Let γn : [0, δ0] → bS∗M0 be GBB such that γn(0) = pn.
Then there is a GBB γ : [0, δ0] → bS∗M0 and γn has a subsequence, {γnk

},
such that γnk

→ γ uniformly, the lift γ̃ : [0, δ0] → ebS∗M of γ satisfies
γ̃(0) = p, and the lift γ̃nk

of γnk
converges to γ̃ uniformly.
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Proof. As pn → p, it follows that there is a compact set K0 ⊂ M0 such
that γn(s) ∈ bS∗

K0
M0 for all n and all s ∈ [0, δ0]. Then by the compact-

ness of the set of GBBs with image in bS∗
KM0 in the topology of uni-

form convergence, [14, Proposition 6], γn has a subsequence, γnk
, uni-

formly converging to a GBB γ : [0, δ0] → bS∗M0. In particular, γ(0) =
limk γnk

(0) = limk̟eb(pnk
) = ̟eb(p) = α. By Lemma 3.13, γ lifts to a

curve γ̃ : [0, δ0] → ebS∗M . We claim that γ̃(0) = p—once we show this, the
corollary is proved.

Let γ̃n : [0, δ0] → ebS∗M be the lift of γn. By Lemma 3.16, {γ̃nk
}k∈N is

equicontinuous. Since for δ > 0 γnk
|[δ,δ0] → γ uniformly, and these curves

all have images in bS∗
K1
M0 for some K1 compact, disjoint from W , where

bS∗
K1
M0 and ebS∗

β−1(K1)
M are canonically diffeomorphic, we deduce that

γ̃nk
|[δ,δ0] → γ̃|[δ,δ0] uniformly; in particular {γ̃nk

|[δ,δ0]} is a Cauchy sequence
in the uniform topology.

Let d be a metric on ebS∗M giving rise to its topology. Given ǫ > 0 let
δ > 0 be such that for 0 ≤ s ≤ δ and for all n, one has d(γ̃n(s), γ̃n(0)) =
d(γ̃n(s), pn) < ǫ/3—this δ exists by equicontinuity. Next, let N be such
that for k,m ≥ N , d(pnk

, pnm) < ǫ/3 and for k,m ≥ N , δ ≤ s ≤ δ0,
d(γ̃nk

(s), γ̃nm(s)) ≤ ǫ/3; such a choice of N exists by the uniform Cauchy
statement above, and the convergence of {pn}. Thus, for k,m ≥ N and
0 ≤ s ≤ δ,

d(γ̃nk
(s), γ̃nm(s)) ≤ d(γ̃nk

(s), pnk
) + d(pnk

, pnm) + d(pnm , γ̃nm(s)) ≤ ǫ.

Since we already know the analogous claim for δ ≤ s ≤ δ0, it follows that
{γ̃nk

} is uniformly Cauchy, hence converges uniformly to a continuous map
γ̂ : [0, δ0] → ebS∗M . In particular, γ̂(0) = limk γ̃nk

(0) = limk pnk
= p. But

γ̃nk
|[δ,δ0] → γ̃|[δ,δ0] uniformly for δ > 0, so γ̃|[δ,δ0] = γ̂|[δ,δ0]. The continuity

of both γ̃ and γ̂ now shows that γ̃ = γ̂, and in particular γ̃(0) = p as
claimed. �

Now we are ready to introduce the bicharacteristics that turn out in
general to carry full-strength, rather than weaker, diffracted, singularities.

Definition 3.19. A geometric GBB is a GBB γ : (−s0, s0) → bΣ0 with q =
γ(0) ∈ HW,b such that there is an EGBB ρ : R → ebT ∗

W̃
M with

lim
s→−∞

ρ(s) = lim
t→0−

γ̃−(t),

lim
s→+∞

ρ(s) = lim
t→0+

γ̃+(t),

with γ̃+, resp. γ̃−, denoting the lifts γ|[0,δ0], resp. γ|[−δ0,0], δ0 > 0 sufficiently

small, to ebS∗M .
We say that two points w,w′ ∈ bΣ0 are geometrically related if they lie

along a single geometric GBB.

Let T be a large parameter, fixed for the duration of this paper.



34 RICHARD MELROSE, ANDRÁS VASY, AND JARED WUNSCH

Definition 3.20. For p ∈ HW,b the flow-out of p, denoted Fb
O,p, is the union

of images γ((0, T ]) of GBBs γ : [0, T ] → bΣ0 with γ(0) = p.
For p ∈ HW,b, the regular part of the flow-out of p, denoted Fb

O,p,reg, is

the union of images γ((0, s0)) of normally approaching (or regular) GBBs
γ : [0, s0) → bΣ0 with γ(0) = p and γ(s) ∈ T ∗M◦ for s ∈ (0, s0).

The regular part of the flow-out of a subset of HW,b is the union of the
regular parts of the flow-outs from the points in the set.

We let

Fb
O,p,sing

denote the union of images γ(0, T ] of non-normally-approaching GBBs γ, i.e.
those GBBs γ with γ(0) ∈ G ∩Reb.

The flow-in and its regular part are defined correspondingly and denoted

Fb
I,p,Fb

I,p,reg.

We let Fb
I/O denote the union of the flow-ins/flow-outs of all p ∈ HW,b.

We also need to define the flow-in/flow-out of a single hyperbolic point
q ∈ Reb,α,I/O\ebS∗

∂W̃
M (i.e. for p ∈ HW,b as above, we will consider the flow

in/out to a single point in a fiber q ∈ Reb,p,I/O). By Remark 3.15, given
such a q, there is a unique GBB γ(s), defined on [0, T ] (or [−T, 0], in case of
I), with lift γ̃ satisfying lims→0 γ̃(s) = q.

Definition 3.21. For q ∈ Reb,I/O\ebS∗
∂W̃

M, let Feb
I/O,q denote the image

γ̃((0, T ]) (or γ̃([−T, 0)) in case of I) where γ is the unique GBB with lift γ̃
satisfying lims→0 γ̃(s) = q. Let Feb

I/O,q,reg be defined as the union of γ̃((0, s0))

with γ̃(s) ∈ T ∗M◦ for all s ∈ (0, s0). Additionally, let Feb
I/O denote the union

of all flow-ins/flow-outs of q ∈ Reb,I/O\ebS∗
∂W̃

M, and let Feb = Feb
I ∪ Feb

O .

For brevity, we often use the word ‘flow-out’ to refer to both the flow-in
and the flow-out.

One needs some control over the intervals on which normally approaching
GBB do not hit the boundary of M :

Lemma 3.22. Suppose K ⊂ W̃ ◦ is compact, K ⊂ HW,b is compact, ǫ0 > 0.

Then there is δ0 > 0 such that if γ : [0, ǫ0] → bS∗M0 a GBB with lift γ̃,
γ̃(0) ∈ Reb,α,O ∩ ebS∗

KM for some α ∈ K, then γ̃((0, δ0)) ∩ ebS∗
∂MM = ∅.

Proof. First, by Lemma 3.5 there is a δ′0 > 0 such that any GBB γ with
γ(0) ∈ K satisfies γ|(0,δ′0] disjoint from

bS∗
WM0.

Suppose now that there is no δ0 > 0 as claimed. Then there exist GBBs
γj : [0, ǫ0] → bS∗M0, p

′
j ∈ ebS∗

KM ∩ Reb,αj ,O, αj ∈ K, and δj > 0, δj → 0,

such that γj(δj) ∈ bS∗
∂M0

M0, and the lift γ̃j of γj satisfies γ̃j(0) = p′j . We

may assume that δj < ǫ0/2 and δj < δ′0 for all j, hence γj(δj) /∈ bS∗
WM0. By

passing to a subsequence, using the compactness of K and of K, hence of
ebS∗

KM ∩Reb,K,O, we may assume that {αj} converges to some α ∈ K, and
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{p′j} converges to some p ∈ ebS∗
KM ∩ Reb,α,O. Using the continuity of γ̃j

for each j, we may then choose some 0 < ǫj < δj such that pj = γ̃j(ǫj) → p

as well; note that pj /∈ ebS∗
W̃
M . (We introduce ǫj to shift the argument of

γj by ǫj , namely to ensure that γj(. + ǫj) at s = 0 is outside bS∗
WM , so

Corollary 3.18 is applicable.) Thus, we can apply Corollary 3.18 to conclude
that γj(.+ǫj) : [0, ǫ0/2] → bS∗M0 has a subsequence γnj such that γnj (.+ǫnj )
converges uniformly to a GBB γ, the lifts γ̃nj (.+ǫnj ) also converge uniformly
to the lift γ̃, and γ̃(0) = p. Thus, γ̃nj ((δnj − ǫnj ) + ǫnj ) → γ̃(0) = p since

δnj − ǫnj → 0. As γ̃nj ((δnj − ǫnj ) + ǫnj ) ∈ ebS∗
∂M\W̃

M and ebS∗
∂M\W̃ ◦

M

is closed, it follows that p ∈ ebS∗
∂M\W̃ ◦

M , contradicting p ∈ ebS∗
KM . This

proves the lemma. �

Remark 3.23. Another proof could be given that uses the description of the
edge bicharacteristics in [25], since the GBB covered are normally incident.

Corollary 3.24. Suppose U ⊂ W̃ ◦ is open with Ū ⊂ W̃ ◦ compact, U ⊂
HW,b is open with Ū ⊂ HW,b compact. Then there is δ0 > 0 such that the

set O of points p ∈ ebS∗M for which there is a GBB γ with lift γ̃ such that
γ̃(0) ∈ ebS∗

UM∩Reb,U ,O and γ(s) = p for some s ∈ [0, δ0) is a C∞ coisotropic

submanifold of ebS∗M transversal to ebS∗
W̃
M.

Proof. By Lemma 3.22, with K = Ū , K = Ū , there is a δ0 > 0 as in the
lemma, hence the set O consists of points p for which the GBB γ only meet
∂M at s = 0, so (taking into account part (2) of Lemma 3.12 as well) O
is a subset of the edge flow-out studied in [25] (e.g. by extending the edge

metric g smoothly across the boundary hypersurfaces other than W̃ ). In
particular, the properties of the flow-out of such an open subset being C∞,
coisotropic8 and transversal to ebS∗

W̃
M follow from Theorem 4.1 of [25]. �

We now turn to properties of the singular flow-out.

Lemma 3.25. The singular flow-out, Feb
sing, is closed in ebS∗

M\W̃
M.

Proof. Suppose pn ∈ Feb
sing, and let γn be such that the lift γ̃n of γn satisfies

γ̃n(0) ∈ G ∩ Reb, and γn(sn) = pn, sn ∈ (0, T ]. Suppose that pn → p ∈
ebS∗

M\W̃
M. Then there exists a compact subset K of M such that γn(s) ∈

bS∗
KM for all n and all s ∈ [0, T ]. By passing to a subsequence we may

assume that sn → s; as p /∈ ebS∗
W̃
M , s 6= 0. By passing to yet another

subsequence we may also assume that γn(0) → q ∈ G ∩ Reb. Let ǫn > 0,

8In [25], being coisotropic is considered as a property of submanifolds of a symplectic
manifold, eT ∗M \ o, M being an edge manifold. Conic submanifolds of eT ∗M \ o can be
identified with submanifolds of eS∗M , and conversely, thus one can talk about subman-
ifolds of eS∗M being coisotropic. Alternatively, this notion could be defined using the
contact structure of eS∗M , but for the sake of simplicity, and due to the role of symplectic
structures in classical microlocal analysis, we did not follow this route in [25], necessitating
making the connection via homogeneity here.
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ǫn → 0, so γn(ǫn) /∈ ebS∗
W̃
M and γn(ǫn) → q. By Corollary 3.18 we conclude

that γn(.+ǫn) : [0, T ] → bS∗M0 has a subsequence γnj such that γnj (.+ǫnj )
converges uniformly to a GBB γ, the lifts γ̃nj (.+ǫnj ) also converge uniformly
to the lift γ̃, and γ̃(0) = q. In particular, as γnj ((snj−ǫnj )+ǫnj ) = γnj (snj ) =

pnj → p, and snj − ǫnj → s, γ(s) = p, so p ∈ Feb
sing as claimed. �

Lemma 3.26. Suppose K ⊂ W̃ ◦ is compact, K ⊂ HW,b is compact. Then
K has a neighborhood U in M and there is ǫ0 > 0 such that if γ : [0, ǫ0] →
bS∗M0 is a GBB with lift γ̃, γ̃(0) ∈ Reb,O ∩G, γ(0) ∈ K then γ̃(s) /∈ ebS∗

UM
for s ∈ (0, ǫ0].

Proof. Let ǫ0 > 0 be such that any GBB γ with γ(0) ∈ K satisfies γ|(0,ǫ0]
disjoint from bS∗

WM0; such ǫ0 exists by Lemma 3.5.
Now suppose that no U exists as stated. Then there exist GBB γn and

sn ∈ (0, ǫ0] such that the lifts γ̃n of γn satisfies γ̃n(0) ∈ Reb,O ∩G, γn(0) ∈ K
and π(γ̃n(sn)) → q, q ∈ K, where π : ebS∗M →M is the bundle projection.

By the compactness of K and the compactness of ∪α∈KReb,O,α ∩ G we
may pass to a subsequence (which we do not indicate in notation) such that
γn(0) converges to some α ∈ K and γ̃n(0) converges to some p ∈ Reb,O ∩ G.
We may further pass to a subsequence such that sn → s0 ∈ [0, ǫ0], and still
further (taking into account the compactness of the fibers of ebS∗M →M)
that γ̃n(sn) → p̃ ∈ ebS∗

KM . Choose9 ǫn ∈ (0, sn) sufficiently small such
that ǫn → 0 and γn(ǫn) → p. By Corollary 3.18 γn(.+ ǫn) has a convergent
subsequence γnk

such that γnk
(.+ ǫnk

) converge uniformly to a GBB γ and
the lifts γ̃nk

(. + ǫnk
) converge uniformly to the lift γ̃ and γ̃(0) = p. Thus,

γ̃nk
(snk

+ ǫnk
) → γ̃(s0), so γ̃(s0) = p̃ ∈ ebS∗

KM . But by the definition of ǫ0,

γ(s0) /∈ bS∗
WM0 if s0 > 0, while s0 = 0 is impossible as γ̃(0) = p ∈ ebS∗

∂W̃
M ,

while K ⊂ W̃ ◦. This contradiction shows that the claimed U exists, proving
the lemma. �

Corollary 3.27. Suppose K ⊂ W̃ ◦ is compact, K ⊂ HW,b is compact. Then

K has a neighborhood U in M and there is ǫ0 > 0 such that if o ∈ U \ W̃
and γ is a GBB with γ(0) ∈ bS∗

oM0 then for s ∈ [−ǫ0, 0], γ(s) ∈ K implies
γ is normally incident.

In particular, if q ∈ W̃ ◦, α ∈ HW,b and γ0 is a GBB with γ0(0) = α and

lift γ̃0(0) ∈ ebS∗
qM then there is δ0 > 0 such that s ∈ (0, δ0], γ0(s) ∈ bS∗

oM0

implies that every GBB γ with γ(0) ∈ bS∗
oM0, γ(s) = α, s ∈ [−ǫ0, 0], is

normally incident.

Proof. Let U and ǫ0 be as in Lemma 3.26. If o ∈ U , γ is a GBB with
γ(0) ∈ bS∗

oM0, s0 ∈ [−ǫ0, 0], γ(s0) ∈ K and γ is not normally incident,
then the lift γ̃ of γ satisfies γ̃(s0) ∈ Reb,O ∩ G by Lemma 3.13. Thus, with
γ0(s) = γ(s− s0), so γ̃0(0) ∈ Reb,O ∩ G, γ0(0) ∈ K, Lemma 3.26 shows that

γ̃0(s) /∈ ebS∗
UM for s ∈ (0, ǫ0], contradicting γ̃0(−s0) ∈ bS∗

oM0.

9Again, we do this so that Corollary 3.18 is applicable; cf. the proof of Lemma 3.22.
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The second half follows by taking K = {α}, K = {q}. �

3.5. A summary. The following table summarizes a number of the most
useful facts about the bundles that we have introduced above.

Manifold M0 M0 M M

Bundle b s eb es
Vector fields xi∂xi , ∂yk ∂xj , ∂yk x∂x, x∂y, z

′
i∂z′i , ∂z′′j x∂x, x∂y, ∂zi

Dual coords ξsj , η
s
j ξbj , η

b
j ξ, η, ζ ′, ζ ′′ ξ, η, ζ

Char. set bΣ0
sΣ0

ebΣ esΣ

(We have omitted time coordinates and their duals, as they behave just
like y variables, and the notation follows suit.)

We also employ a number of maps among these structures, the most
common being:

πs→b : T ∗M0 → bT ∗M0,

πes→eb : esT ∗M → ebT ∗M,

̟es :
esT ∗

W̃
M → T ∗W,

̟eb : ebT ∗
W̃
M → T ∗W.

Recall that hats over maps indicate their restrictions to the relevant char-
acteristic set.

4. Edge-b calculus

Recall from Definition 3.9 that Veb(M) is the space of smooth vector fields

that are tangent to all of ∂M and tangent to the fibration of W̃ ⊂ ∂M given
by blowdown. Thus, in local coordinates, Veb(M) is spanned over C∞(M)
by the vector fields

(4.1) x∂x, x∂t, x∂y, z
′
i∂z′i , ∂z′′

Definition 4.1. The space Diff∗
eb(M) is the filtered algebra of operators over

C∞(M) generated by Veb(M).

Recall also that Veb(M) = C∞(M ; ebTM), and ebT ∗M is the dual bundle
of ebTM. In Appendix B the corresponding pseudodifferential operators are
constructed.

Theorem 4.2. There exists a pseudodifferential calculus Ψ∗
eb(M) microlo-

calizing Diff∗
eb(M).

The double space M2
eb on which the kernels are defined is such that the

quotient x/x′ of the same boundary defining function on the left or right
factor, lifts to be smooth except near the ‘old’ boundaries at which the
kernels are required to vanish to infinite order. It follows that x/x′ is a
multiplier (and divider) on the space of kernels. This corresponds to the
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action by conjugation of these defining functions, so it is possible to define
a weighted version of the calculus. Set

Ψm,l
eb (M) = x−lΨm

eb(M).

Proposition 4.3. Ψ∗,∗
eb (M) is a bi-filtered calculus.

Now, Ψ∗
eb(M) has all the properties (I–VII) of [25, Section 3], where V in

[25, Section 3] is replaced by eb . Since the multiplier x/x′ is identically equal
to one on the lifted diagonal, the symbol is unaffected by this conjugation
and hence the principal symbol map extends to

σeb,m,l : Ψ
m,l
eb (M) → x−lSm

hom(
ebT ∗M),

with the standard short exact sequence—see properties (III–IV). There are
edge-b-Sobolev spaces, Hs

eb(M), defined via the elliptic elements of Ψs
eb(M),

and on which the elements define bounded maps

A ∈ Ψm
eb(M) =⇒ A : Hs

eb(M) → Hs−m
eb (M)

(see property (VII)).

The symbol of the commutator of A ∈ Ψm,l
eb (M) and B ∈ Ψm′,l′

eb (M) is
given by

σeb,m+m′−1,l+l′(ı[A,B]) = Heb,σeb,m,l(A)(σeb,m′,l′(B)).

In local coordinates the edge-b Hamilton vector field becomes

(4.2) Heb,f =
∂f

∂ξ
x∂x −

(
x
∂f

∂x
+ η · ∂f

∂η

)
∂ξ + x

∂f

∂η
∂y +

(∂f
∂ξ
η − x

∂f

∂y

)
· ∂η

+
∑( ∂f

∂ζ ′j
z′j∂z′j − z′j

∂f

∂z′j
∂ζ′j

)
+
∑( ∂f

∂ζ ′′j
∂z′′j − ∂f

∂z′′j
∂ζ′′j

)
.

In particular,

(4.3) x−k
Heb,xka = ka∂ξ + Heb,a.

In the space-time setting, where one of the y variables, t, is distinguished
(and we still write y for the rest of the base variables), it is useful to rewrite

this using the re-homogenized dual variables η̂ = η/|τ |, ξ̂ = ξ/|τ |, ζ̂ = ζ/|τ |,
σ = |τ |−1, valid near ebΣ, this becomes

(4.4) σ−1
Heb,f =

∂f

∂ξ̂
x∂x −

(
x
∂f

∂x
− σ

∂f

∂σ
− ζ̂ · ∂f

∂ζ̂

)
∂ξ̂ + x

∂f

∂η̂
∂y

− x
(
σ
∂f

∂σ
+ η̂ · ∂f

∂η̂
+ ξ̂

∂f

∂ξ̂
+ ζ̂ · ∂f

∂ζ̂

)
∂t −

∂f

∂ξ̂

(
σ∂σ + ζ̂ · ∂ζ̂

)

+ x
∂f

∂t
·
(
σ∂σ + η̂ · ∂η̂ + ξ̂∂ξ̂ + ζ̂ · ∂ζ̂

)
− x

∂f

∂y
· ∂η̂

+
∑( ∂f

∂ζ̂ ′j
z′j∂z′j − z′j

∂f

∂z′j
∂ζ̂′j

)
+
∑( ∂f

∂ζ̂ ′′j
∂z′′j − ∂f

∂z′′j
∂ζ̂′′j

)
.
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This is tangent to the fibers of ̟eb : ebΣ ∩ ebS∗
W̃
M → S∗W , in fact to

its natural extension to a neighborhood of ebΣ ∩ ebS∗
W̃
M in ebS∗

W̃
M , so if

b ∈ C∞(ebS∗
W̃
M) with b|ebS∗

W̃
M constant along the fibers of this extension,

then σµ−1
Heb,fb ∈ xC∞(ebS∗M) for f homogeneous degree µ.

The fact that the operators are defined by kernels which are conormal
means that there is an operator wave front set WF′

eb for the eb-calculus, i.e.
for A ∈ Ψ∗

eb(M), WF′
eb(A) ⊂ ebS∗M, with the properties (A)–(F) of [25,

Section 3], so in particular algebraic operations are microlocal, see proper-
ties (A)–(B), and there are microlocal parametrices at points at which the
principal symbol is elliptic (see property (E)). These parametrices have error
terms with which are smooth on the double space, but they are not compact.
We will abuse notation by writing

WF′ = WF′
eb

when there is no possibility of confusion (i.e., usually).
As is the case for the b-calculus, for each boundary face {z′j = 0} we may

define a normal operator Nj ; in the special case of a differential operator in
Diff∗

eb(M), written in the form

P =
∑

Pk(z
′
jDz′j

)k

where Pk ∈ Diff∗
eb(M) have no factors of (z′jDz′j

)k in terms of the local basis

(4.1), Nj(P ) is the family of operators on the face z′ = 0 given by

Nj(P )(ζ
′
j) =

∑
(Pk)|z′j=0(ζ

′
j)

k.

This map extends to a homomorphism on Ψ∗
eb(M), and its vanishing is the

obstruction to an operator lying in z′jΨ
∗
eb(M), i.e., enjoying extra vanishing

at the boundary face in question. (See [25, Section 3] for a brief discussion
of normal operators and [16] for further details.)

As a consequence of the normal operator homomorphisms, Ψ∗
eb(M) has

the additional property that the radial vector fields Vj for all boundary

hypersurfaces {z′j = 0}, i.e., all boundary hypersurfaces other than W̃ ,

[A, Vj ] ∈ z′jΨ
m
eb(M) if A ∈ Ψm

eb(M), i.e., there is a gain of z′j over the a priori

order. In local coordinates a radial vector field for z′j = 0 is given by z′j ∂z′j ;

Vj being a radial vector field for z′j = 0 means that Vj − z′j ∂z′j ∈ z′jVeb(M).

This latter requirement can easily be seen to be defined independently of
choices of coordinate systems. The fact that the normal operator of z′j∂z′j is

a scalar then proves the assertion.

5. Differential-pseudodifferential operators

5.1. The calculus. We start by defining an algebra of operators which
includes �. First, recall that Ves(M) is the Lie algebra of vector fields that
are tangent to the front face and to the fibers of the blow down map restricted
to the front face, β|W̃ : W̃ → W (but are not required to be tangent to
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other boundary faces). Thus, elements V of Ves(M) define operators V :

Ċ∞(M) → Ċ∞(M) and also V : C∞(M) → C∞(M).

Definition 5.1. Let Diffes(M) be the filtered algebra of operators (acting

either on Ċ∞(M) or C∞(M)) over C∞(M) generated by Ves(M).

We also let Diffk,l
es (M) = x−l Diffk

es(M); this is an algebra of operators

acting on Ċ∞(M), and also on the space of functions classical conormal to

W̃ , ∪s∈Rx
−sC∞(M).

Remark 5.2. Note that the possibility of the appearance of boundary terms
requires care to be exercised with adjoints, as opposed to formal adjoints.
See for instance Lemma 5.18.

We also remark that Diffk
es(M), hence x−l Diffk

es(M), is closed under con-
jugation by x−r where x is a defining function for W. This follows from the
fact that Diff1

es(M) is so closed; the key property is that

xr(x∂x)x
−r = (x∂x)− r ∈ Diff1

es(M).

We will require, for commutator arguments that involve interaction of
singularities with ∂M\W̃ , a calculus of mixed differential-pseudodifferential
operators, mixing edge-b-pseudodifferential operators with these (more sin-
gular) edge-smooth differential operators.

Definition 5.3. Let

Diffk
esΨ

m
eb(M) =

{∑
AjBj : Aj ∈ Diffk

es(M), Bj ∈ Ψm
eb(M)

}

Proposition 5.4.
⋃

k,mDiffk
esΨ

m
eb(M) is a filtered C∞(M)-module, and an

algebra under composition; it is commutative to top eb-order, i.e. for P ∈
Diffk

esΨ
m
eb(M), Q ∈ Diffk′

es Ψ
m′

eb (M),

[P,Q] ∈ Diffk+k′

es Ψm+m′−1
eb (M).

The key is the following lemma.

Lemma 5.5. If A ∈ Ψm
eb(M) and Q ∈ Ves(M), then

(5.1) [A,Q] =
∑

QjAj +B, [A,Q] =
∑

A′
jQ

′
j +B′

where B, B′ ∈ Ψm
eb(M), Aj , A

′
j ∈ Ψm−1

eb (M) and Qj , Q
′
j ∈ Ves(M).

Proof. As both Ves(M) and Ψm
eb(M) are C∞(M)-modules, we can use a

partition of unity, and it suffices to work locally and with a spanning set of
vector fields. Since xDx, xDyj , Dz′′j

∈ Veb(M), the conclusion is automatic

forQ chosen from among these vector fields since then B = [A,Q] ∈ Ψm
eb(M).

Thus it only remains to consider the Q = Dz′j
where z′j is a defining function

for one of the other boundary faces. Then for Q̃ = z′jQ = z′jDz′j
∈ Diff1

eb(M),

[A, Q̃] ∈ Ψm
eb(M)). The normal operator at z′j = 0 satisfies Nj([A, Q̃]) =
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[Nj(A), Nj(Q̃)], and Nj(Q̃) is scalar, and hence commutes with Nj(A). Thus

Nj([A, Q̃]) = 0, so [A, Q̃] ∈ z′jΨ
m
eb(M). Consequently,

(5.2) −[A,Q] = [Q,A] = (z′j)
−1[Q̃, A] + ([(z′j)

−1, A]z′j)(z
′
j)

−1Q̃,

with the first term on the right hand side in Ψm
eb(M), the second of the form

ÃQ, Ã ∈ Ψm−1
eb (M). This proves the first half of the lemma. The other part

is similar. �

Proof of Proposition 5.4. The algebra properties follow immediately from
the lemma. It only remains to verify the leading order commutativity.

As the bracket is a derivation in each argument, it suffices to consider
P, Q lying in either Ves(M) or Ψ∗

eb(M). If both operators are in Ψ∗
eb(M),

the result follows from the symbol calculus. If P, Q ∈ Ves(M), we have
[P,Q] = R ∈ Ves(M). We need to write R as a sum of elements of Diff2

es(M)
times elements of Ψ−1

eb (M). To this end, let Λ be an elliptic element of
Ψ2

eb(M) given by a sum of square of vector fields in Veb(M), e.g. in local
coordinates

Λ = (x∂x)
2 + (x∂t)

2 +
∑

(x∂y)
2 +

∑
(z′i∂z′i)

2 +
∑

∂2z′′j
.

We write Λ =
∑
V 2
j for brevity. Let Υ ∈ Ψ−2

eb (M) be an elliptic parametrix
for Λ. Then we may write

Id =
∑

Vj(VjΥ) + E,

with E ∈ Ψ−∞
eb (M). Now since Veb(M) ⊂ Ves(M), we certainly have Vj ∈

Ves(M) for each j, hence RVj ∈ Diff2
es(M). Moreover VjΥ ∈ Ψ−1

eb (M). Thus,

R =
∑

(RVj)(VjΥ) +RE,

and we have shown that R ∈ Diff2
esΨ

−1
eb (M).

Finally, if P ∈ Ves(M) and Q ∈ Ψm
eb(M) (or vice-versa) then using the

lemma (and its notation) we may write

[P,Q] =
∑

QjAj +B.

Using the same method as above to write B =
∑
RVj(VjΥ) + BE we find

that [P,Q] ∈ Diff1
esΨ

m−1
eb (M). �

The above proof also yields the following useful consequence.

Lemma 5.6. For all m, l ∈ R, and k ∈ N,

Diffm
es Ψ

l
eb(M) ⊂ Diffm+k

es Ψl−k
eb (M).

We note the following consequence of (5.2):

Lemma 5.7. Let A ∈ Ψm
eb(M), a = σeb,m(A). Then

ı[x−1Dz′j
, A] = A1x

−1Dz′j
+ x−1A0
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where A0 ∈ Ψm
eb(M), A1 ∈ Ψm−1

eb (M),

σeb,m(A0) =
∂a

∂z′j
, σeb,m−1(A1) =

∂a

∂ζ ′j
+
∂a

∂ξ
.

Note that this is exactly what one would expect from computation at the
level of edge-b symbols: the Hamilton vector field of ζ ′i/(xz

′
i) is

(ζ ′i/(xz
′
i))(∂ζ′i + ∂ξ) + x−1∂z′i .

Proof. This follows immediately from writing

[x−1Dz′j
, A] = [x−1, A]Dz′j

+ x−1[Dz′j
, A].

We then use (5.2) together with the following principal symbol calculations
in Ψ∗

eb(M), see (4.2):

ıσeb,m([Q′, A]) = z′j∂z′ja,

ıσeb,m−1([(z
′
j)

−1, A]z′j) = ∂ζ′ja,

ıσeb,m−1([x
−1, A]) = x−1∂ξa,

as well as [xlΨk
eb(M), xl

′

Ψk′

eb(M)] ⊂ xl+l′Ψk+k′−1
eb (M), which allows one to

exchange factors after the previous steps without affecting the computed
principal symbols. �

We now define the edge-smooth Sobolev spaces. It is with respect to these
base spaces that we will measure regularity in proving propagation of edge-b
wavefront set.

Definition 5.8. For s ≥ 0 integer,

Hs,l−(f+1)/2
es (M) = {u ∈ xlL2

g(M) : A ∈ Diffs
es(M) ⇒ Au ∈ xlL2

g(M)}.

The norm in H
s,l−(f+1)/2
es (M), up to equivalence, is defined using any finite

number of generators Aj for the finitely generated C∞(M)-module Diffs
es(M)

by

‖u‖
H

s,l−(f+1)/2
es (M)

=


∑

j

‖x−lAju‖2L2
g(M)




1/2

.

The space H
s,l−(f+1)/2
es,0 (M) is the closure of Ċ∞(M) in H

s,l−(f+1)/2
es (M).

Remark 5.9. The orders above are chosen so that setting s = 0, l = 0, we

obtain L2
g(M) = H

0,−(f+1)/2
es (M). Thus x(f+1)/2L2

g(M) = L2(M,x−(f+1) dg)

is the L2-space corresponding to densities that are smooth up to all boundary
hypersurfaces of M except W̃ , and that are b-densities at the interior of W̃ ,
meaning that x(x−(f+1) dg) is actually a smooth non-degenerate density on
M . This convention keeps the weights consistent with [25].

Note also that the subspace C of C∞(M) given by

(5.3) C = x∞C∞(M)
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is dense in H
s,l−(f+1)/2
es (M) for all s and l; one could even require sup-

ports disjoint from W̃ . Thus, the difference between H
s,l−(f+1)/2
es,0 (M) and

H
s,l−(f+1)/2
es (M) corresponds to the behavior at the boundary hypersurfaces

of M other than W̃ , i.e. those arising from the boundary hypersurfaces of
M0, where the boundary conditions are imposed. Thus, this difference is
similar to the difference between Hs(Ω) and Hs

0(Ω) for domains Ω with
smooth boundary in a manifold.

The boundedness of Ψ0
eb(M) on H

1,1−(f+1)/2
es (M) is an immediate conse-

quence of the commutation property in Lemma 5.5.

Theorem 5.10. Ψ0
eb(M) is bounded on both H

1,1−(f+1)/2
es (M) and on the

closed subspace H
1,1−(f+1)/2
es,0 (M).

Remark 5.11. The more general case of H
1,l−(f+1)/2
es (M) with arbitrary l

follows from the case of l = 1 using x−lAxl ∈ Ψ0
eb(M) for A ∈ Ψ0

eb(M).
In fact, reduction to l = 0 would make the proof below even more trans-

parent.

The case of H
s,l−(f+1)/2
es (M) can be proved similarly, but we do not need

this here.

Proof. As Ψ0
eb(M) : Ċ∞(M) → Ċ∞(M), the second statement follows from

the first and the definition of H
1,1−(f+1)/2
es,0 (M).

As above, let C be the subspace of C∞(M) consisting of functions van-

ishing to infinite order at W̃ , which is thus dense in H
1,1−(f+1)/2
es (M). Let

A ∈ Ψ0
eb(M). As Ψ0

eb(M) : C → C, and A is bounded on L2
g(M), one merely

needs to check that for Q ∈ Diff1
es(M) there exists C > 0 such that for

u ∈ C,
‖x−1QAu‖L2

g
≤ C‖u‖

H
1,1−(f+1)/2
es (M)

.

But

x−1QAu = ([x−1, A]x)(x−1Qu) + x−1[Q,A]u+A(x−1Qu).

By Lemma 5.5, [Q,A] =
∑
AjQj + B, B ∈ Ψ0

eb(M), Aj ∈ Ψ−1
eb (M), Qj ∈

Diff1
es(M), hence x−1[Q,A] =

∑
(x−1Ajx)(x

−1Qj) + (x−1Bx)x−1,

x−1QAu = ([x−1, A]x)(x−1Qu) +
∑

(x−1Ajx)(x
−1Qju)

+ (x−1Bx)(x−1u) +A(x−1Qu),

so the desired conclusion follows from

‖x−1Qu‖L2
g(M), ‖x−1Qju‖L2

g(M), ‖x−1u‖L2
g(M) ≤ C‖u‖

H
1,1−(f+1)/2
es (M)

, u ∈ C,

and additionally [x−1, A]x, x−1Ajx ∈ Ψ−1
eb (M) ⊂ Ψ0

eb(M) (which are thus
bounded on L2

g(M), just as A, x−1Bx ∈ Ψ0
eb(M) are). �
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We can now define the eb-wave front set relative to a given Hilbert (or even
Banach) space, which in practice will be either the Dirichlet form domain or
a weighted edge-smooth Sobolev space serving as a stand-in for the Neumann
form domain. We also define the relevant Sobolev spaces with respect to
which these wavefronts sets measure regularity. For future reference, we also
include the analogous definitions with respect to the b-calculus.

Definition 5.12. Let X ⊂ C−∞(M) denote a Hilbert space on which, for each
K ⊂ M compact, operators in Ψ0

eb(M) with Schwartz kernel supported in
K ×K are bounded, with the operator norm of Op(a) depending on K and
a fixed seminorm of a. Let Xloc consist of distributions u such that φu ∈ X

for all φ ∈ C∞
c (M).

For m ≥ 0, r ≤ 0, let

Hm,r
eb,X,loc(M) =

{
u ∈ Xloc : Au ∈ Xloc for all A ∈ Ψm,r

eb (M)
}
.

Let q ∈ ebS∗M , u ∈ Xloc. For m ≥ 0, r ≤ 0, we say that q /∈ WFm,r
eb,X(u)

if there exists A ∈ Ψm,r
eb (M) elliptic at q such that Au ∈ Xloc. We define

q /∈ WF∞,r
eb,X(u) if there exists A ∈ Ψ0,r

eb (M) elliptic at q such that Au ∈
H∞,0

eb,X,loc(M).

There is an inclusion

WFm,r
eb,X u ⊂ WFm′,r′

eb,X u

if
m ≤ m′, r ≤ r′.

Remark 5.13. We could alter this definition to allow u a priori to lie in the
larger space ∑

Aj(X)

with Aj ∈ Ψ∞,0
eb (M); this would allow us to give a non-trivial definition of

WFm,r
eb,X u even for m < 0.

The restriction to r ≤ 0 is more serious: operators in Ψ∗,0
eb (M) would in

general fail to be microlocal with respect to a putative WFm,r
eb,X(M) with

r > 0, simply because such operators would fail to be bounded on X.
Note also that if X′ is a closed subspace of X, with the induced norm, and

if elements of Ψ0
eb(M) restrict to (necessarily bounded) maps X′ → X′, then

for u ∈ X′,

(5.4) WFm,r
eb,X(u) = WFm,r

eb,X′(u).

In particular, this holds with X = Hk,l
es (M) and X′ = Hk,l

es,0(M).

The eb-wave front set captures eb-regularity:

Lemma 5.14. If u ∈ X, r ≤ 0, m ≥ 0 and WFm,r
eb,X(u) = ∅, then u ∈

Hm,r
eb,X,loc(M), i.e. for all A ∈ Ψm,r

eb (M) with compactly supported kernel,
Au ∈ X.
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Proof. This is a standard argument (see e.g. [34, Lemma 3.10]): For each
q ∈ ebS∗M there is Bq ∈ Ψm,r

eb (M) elliptic at q such that Bqu ∈ X. By

compactness, ebS∗M can be covered by
⋃

j ell(Bqj ) for finitely many points

qj . Now choose Q ∈ Ψ−m,−r
eb (M) elliptic, and set B =

∑
QB∗

qjBqj . Then

B is elliptic and Bu ∈ X. As B has a parametrix G ∈ Ψ−m,−r
eb (M) with

GB − Id ∈ Ψ−∞,0
eb (M),

Au = AG(Bu) + (A(Id−GB))u, and A(Id−GB) ∈ Ψ−∞,r
eb (M) ⊂ Ψ0,0

eb (M),

shows the claim. �

Pseudodifferential operators are microlocal, as follows by a standard ar-
gument:

Lemma 5.15. (Microlocality) If B ∈ Ψs,l
eb(M) then for r, r − l ≤ 0, u ∈ X,

WFm−s,r−l
eb,X (Bu) ⊂ WF′(B) ∩WFm,r

eb,X(u).

In particular, if WF′(B) ∩WFm,r
eb,X(u) = ∅ then Bu ∈ Hm−s,r−l

eb,X,loc (M).

Proof. We assumem ≥ s andm ≥ 0 in accordance with the definition above;
but the general case is treated easily by the preceeding remarks.

If q ∈ ebS∗M , q /∈ WF′(B), let A ∈ Ψm−s,r−l
eb (M) be elliptic at q such that

WF′(A)∩WF′(B) = ∅. Thus AB ∈ Ψ−∞,r
eb (M) ⊂ Ψ0,0

eb (M), hence ABu ∈ X,

so q /∈ WFm−s,r−l
eb,X (Bu). (Note that we used r ≤ 0 here.)

On the other hand, if q ∈ ebS∗M , q /∈ WFm,r
eb,X(u), then there is C ∈

Ψm,r
eb (M) elliptic at q such that Cu ∈ X. Let G be a microlocal parametrix

for C, so G ∈ Ψ−m,−r
eb (M), and q /∈ WF′(GC − Id). Let A ∈ Ψm−s,r−l

eb be
elliptic at q and such that WF′(A) ∩WF′(GC − Id) = ∅. Then

ABu = ABGCu+AB(Id−GC)u,
and AB(Id−GC) ∈ Ψ−∞,r

eb (M) ⊂ Ψ0,0
eb (M) since WF′(A)∩WF′(Id−GC) =

∅, so the second term on the right hand side is in X. On the other hand,
Cu ∈ X and ABG ∈ Ψ0,0

eb (M), so ABG(Cu) ∈ X as well, proving the wave
front set containment.

The final claim follows immediately from this and Lemma 5.14. �

There is a quantitative version of the lemma as well. Since the proof is
similar, cf. [34, Lemma 3.13], we omit it.

Lemma 5.16. Suppose that K ⊂ ebS∗M is compact, U is a neighborhood

of K, K̃ ⊂M compact.

Let Q ∈ Ψs,l
eb(M) elliptic on K with WF′(Q) ⊂ U and the Schwartz kernel

of Q supported in K̃ × K̃.

If B is a bounded family in Ψs,l
eb(M) with Schwartz kernel supported in

K̃ × K̃ and with WF′(B) ⊂ K then for r, r− l ≤ 0, there is C > 0 such that
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for all u ∈ X with WFm,r
eb,X(u) ∩ U = ∅,

‖Bu‖X ≤ C(‖u‖X + ‖Qu‖X) for all B ∈ B.
5.2. Dual spaces and adjoints. We now discuss the dual spaces. For
simplicity of notation we suppress the loc and c subscripts for the local spaces
and compact supports. In principle this should only be done ifM is compact,
but, as this aspect of the material is standard, we feel that this would only
distract from the new aspects. See for instance [34, Section 3] for a treatment
where all the compact supports and local spaces are spelled out in full detail.

Recall now from Appendix A that if X is a dense subspace of L2
g, equipped

with an inner product 〈., .〉X in which it is a Hilbert space and the inclusion
map ι into L2

g is continuous, then there is a linear injective inclusion map

L2
g → X∗ with dense range, namely

ι∗ = ι† ◦ j ◦ c : L2
g → X∗

where ι† : (L2
g(M))∗ → X∗ is the standard adjoint map, j : L2

g(M) →
L2
g(M)∗ the standard conjugate-linear identification of a Hilbert space with

its dual, and c is pointwise complex conjugation of functions. In particular,
one has the chain of inclusions X ⊂ L2

g(M) ⊂ X∗, and one considers X∗,

together with these inclusions, as the dual space of X with respect to L2
g(M).

Definition 5.17. For s ≥ 0, the dual space of Hs,l
es (M) with respect to the

L2
g(M) inner product is denoted Ḣ

−s,−l−(f+1)
es (M).

For s ≥ 0, the dual space of the closed subspace

Hs,l
es,0(M) ≡ Ḣs,l

es (M)

is denoted H
−s,−l−(f+1)
es (M); this is a quotient space of Ḣ

−s,−l−(f+1)
es (M).

We denote the quotient map by

ρ : Ḣ−s,−l−(f+1)
es (M) → H−s,−l−(f+1)

es (M).

The standard characterization of these distribution spaces, by doubling
across all boundary faces of M except W̃ , is still valid—see [10, Appen-

dix B.2] and [34, §3]. Note that for all s, l, elements of Ḣ
−s,−l−(f+1)
es (M)

are in particular continuous linear functionals on C, which in turn is a dense

subspace of Hs,l
es (M). In particular, they can be identified as elements of the

dual C′ of C. Thus, were it not for the infinite order vanishing imposed at
W̃ for elements of C, these would be “supported distributions”—hence the

notation with the dot. On the other hand, elements of H
−s,−l−(f+1)
es (M) are

only continuous linear functionals on Ċ∞(M) (rather than on C), though by
the Hahn-Banach theorem can be extended to continuous linear functionals
on C in a non-unique fashion.

If P ∈ x−r Diffk
es(M), then it defines a continuous linear map

P : Hk,l
es (M) → H0,l−r

es (M).
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Thus, its Banach space adjoint (with respect to the sesquilinear dual pairing)
is a map

P ∗ : (H0,l−r
es (M))∗ = Ḣ0,r−l−(f+1)

es (M) → (Hk,l
es (M))∗ = Ḣ−k,−l−(f+1)

es (M),

〈P ∗u, v〉 = 〈u, Pv〉, u ∈ Ḣ0,r−l−(f+1)
es (M), v ∈ Hk,l

es (M).

(5.5)

In principle, P ∗ depends on l and r. However, the density of C in these
spaces shows that in fact it does not.

There is an important distinction here between considering P ∗ as stated,
or as composed with the quotient map, ρ ◦ P ∗.

Lemma 5.18. Suppose that P ∈ x−r Diffk
es(M). Then there exists a unique

Q ∈ x−r Diffk
es(M) such that ρ ◦ P ∗ = Q. However, in general, acting on C,

P ∗ 6= Q.
If, on the other hand, P ∈ x−r Diffk

eb(M), then there exists a unique

Q ∈ x−r Diffk
eb(M) such that P ∗ = Q.

Proof. For the first part we integrate by parts in 〈u, Pv〉 using u, v ∈ Ċ∞(M)

(noting that Ċ∞(M) is dense in Hk,l
es,0(M)). Thus, one can localize. In local

coordinates the density is dg = Jxf dx dy dz, with J ∈ C∞(M), so for a
vector field V ∈ Ves(M), noting the lack of boundary terms due to the
infinite order vanishing of u and v, one has (with the first equality being the
definition of V ∗)

〈V ∗u, v〉 = 〈u, V v〉 =
∫
uV v Jxf dx dy dz

=

∫ (
J−1x−fV †(Jxfu)

)
v Jxf dx dy dz,

where for V = a(xDx) +
∑
bj(xDyj ) +

∑
cjDzj , with a, bj , cj ∈ C∞(M),

V † = Dxxa+
∑

xDyjbj +
∑

Dzjcj ∈ Diff1
es(M).

Conjugation of V † by Jxf still yields an operator in Diff1
es(M). This shows

the existence (and uniqueness!) of the desired Q, namely

Q = J−1x−fV †Jxf .

The density of Ċ∞(M) in H
0,r−l−(f+1)
es (M) now finishes the proof of the

first claim when P = V ∈ Ves(M), since this means that 〈P ∗u, v〉 = 〈Qu, v〉
for all u ∈ H

0,r−l−(f+1)
es (M), v ∈ Hk,l

es,0(M). The general case follows by

induction and adding weight factors (recalling Remark 5.2).
The same calculation works even if u, v ∈ C provided that V ∈ Veb(M):

in this case Dzj is replaced by vector fields tangent to all boundary faces, i.e.
Dz′′j

and z′jDz′j
, for which there are no boundary terms—in the second case

due to the vanishing factor z′j . This proves the claim if P ∈ x−r Diffk
eb(M).
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Note, however, that this calculation breaks down if u, v ∈ C and V ∈
Ves(M): the Dz′j

terms gives rise to non-vanishing boundary terms in gen-

eral, namely

∑

j

∫

Hj

(−ı)cj u v Jxf dx dy dẑj =
∑

j

〈−ıσes,1(V )(dxj)u, v〉Hj ,

whereHj is the boundary hypersurface z′j = 0, dẑj shows that dz
′
j is dropped

from the density, and on Hj one uses the density induced by the Riemannian
density and dz′j . This completes the proof of the lemma. �

We now define an extension of Diffes(M) as follows.

Definition 5.19. Let x−r Diffk
es,†(M) denote the set of Banach space adjoints

of elements of x−r Diffk
es(M) in the sense of (5.5).

Also let x−2r Diff2k
es,♯(M) denote operators of the form

N∑

j=1

QjPj , Pj ∈ x−r Diffk
es(M), Qj ∈ x−r Diffk

es,†(M).

For M non-compact, the sum is taken to be locally finite.

Thus, if P ∈ x−2r Diff2k
es,♯(M), Pj , Qj as above, and Qj = R∗

j , Rj ∈
x−r Diffk

es(M), then

〈Pu, v〉 =
N∑

j=1

〈Pju,Rjv〉.

We are now ready to discuss Dirichlet and Neumann boundary conditions
for P ∈ x−2r Diff2k

es,♯(M).

Definition 5.20. Suppose P ∈ x−2r Diff2k
es,♯(M). By the Dirichlet operator

associated to P we mean the map

ρ ◦ P : Hk,l
es,0(M) → H−k,l−2r

es (M),

where ρ : Ḣ−k,l−2r
es (M) → H−k,l−2r

es (M) is the quotient map. For f ∈
H−k,l−2r

es (M) we say that u ∈ Hk,l
es,0(M) solves the Dirichlet problem for

Pu = f if ρ ◦ Pu = f . We also say in this case that Pu = f with Dirichlet
boundary conditions.

Similarly, for f ∈ Ḣ−k,l−2r
es (M) we say that u ∈ Hk,l

es (M) solves the Neu-
mann problem for Pu = f if Pu = f . We also say in this case that Pu = f
with Neumann boundary conditions. Correspondingly, for the sake of com-
pleteness, by the Neumann operator associated to P we mean P itself.

Remark 5.21. For the Lorentzian metric g̃ = dt2− g on M0 lifted to M , and
with P = d∗d, the equation

Pu = f, f ∈ Ḣ−1,l−1−(f+1)/2
es (M), u ∈ H1,l+1−(f+1)/2

es (M)
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with the Neumann boundary condition means 〈du, dv〉g̃ = 〈f, v〉g̃ for all

v ∈ H
1,−l+1−(f+1)/2
es (M), or equivalently for all v ∈ C. Away from W̃ , this

is the standard formulation of the Neumann problem on a manifold with
corners (or indeed on a Lipschitz domain): pairing with v vanishing at the
boundary and integrating by parts yields Pu = f in the interior; pairing
with v nonvanishing at boundary faces other than W̃ then yields vanishing
of normal derivatives at those faces.

Thus near W̃ , we impose the Neumann condition in the sense described
above on all other boundary hypersurfaces, uniformly up to W̃ , but there
is no condition associated to W̃ . In particular, a Neumann solution u (just
like a Dirichlet solution) on M need not solve the corresponding problem
on M0, where a condition is enforced even at W : u may blow up arbitrarily
fast at W̃ .

Remark 5.22. As noted in Lemma 5.18, when considering the action of
Diffes(M) on Ċ∞(M), Diffes(M) is closed under adjoints (which thus map
to C−∞(M), i.e. extendible distributions), so one can suppress the subscript
♯ on Diffes,♯(M). Thus, the subscript’s main role is to keep the treatment
of the Neumann problem clear—without such care, one would need to use
quadratic forms throughout, as was done in [34].

We now turn to the action of Ψm,l
eb (M) on the dual spaces. Note that any

A ∈ Ψm,l
eb (M) maps C to itself, and that Ψm,l

eb (M) is closed under formal

adjoints, i.e. if A ∈ Ψm,l
eb (M) then there is a unique A∗ ∈ Ψm,l

eb (M) such that
〈Au, v〉 = 〈u,A∗v〉 for all u, v ∈ C —cf. Diffeb(M) in Lemma 5.18. We thus
define A : C′ → C′ by 〈Au, v〉 = 〈u,A∗v〉, u ∈ C′, v ∈ C. Since C is (even
sequentially) dense in C′ endowed with the weak-* topology, this definition
is in fact the only reasonable one, and if u ∈ C, the element of C′ given by
this is the linear functional induced by Au on C.

Next, for subspaces of C′ we have improved statements. In particular,
most relevant here, dually to Theorem 5.10, any A ∈ Ψ0

eb(M) is bounded on

Ḣ−1,l
es (M) and on H−1,l

es (M).
We now turn to an extension of DiffesΨeb(M). First, taking adjoints in

Lemma 5.5, we deduce:

Lemma 5.23. If A ∈ Ψm
eb(M) and Q ∈ Diff1

es,†(M), then [A,Q] =
∑
QjAj+

B, B ∈ Ψm
eb(M), Aj ∈ Ψm−1

eb (M), Qj ∈ Diff1
es,†(M).

Similarly, [A,Q] =
∑
A′

jQ
′
j + B′

j, B
′ ∈ Ψm

eb(M), A′
j ∈ Ψm−1

eb (M), Q′
j ∈

Diff1
es,†(M).

Proof. The proof is an exercise in duality; we only spell it out to emphasize
our definitions. We have for u ∈ C′, v ∈ C,
〈[A,Q]u, v〉 = 〈(AQ−QA)u, v〉 = 〈u, (Q∗A∗ −A∗Q∗)v〉 = 〈u, [Q∗, A∗]v〉

where Q∗ ∈ Diff1
es(M), A∗ ∈ ΨM

eb . Thus, by Lemma 5.5 (applied with

Ves(M) replaced by Diff1
es(M)), there exist Ãj ∈ Ψm−1

eb (M), B̃ ∈ Ψm
eb(M),
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Q̃j ∈ Diff1
es(M) such that [Q∗, A∗] = −[A∗, Q∗] =

∑
Q̃jÃj + B̃. Thus,

〈[A,Q]u, v〉 =
〈
u,
(∑

j

Q̃jÃj + B̃
)
v
〉
=
〈(∑

j

Ã∗
j Q̃

∗
j + B̃∗

)
u, v
〉
,

with Ã∗
j ∈ Ψm−1

eb (M), B̃∗ ∈ Ψm
eb(M), Q̃∗

j ∈ Diff1
es,†(M). This proves the

second half of the lemma. The first half is proved similarly, using the second
half of the statement of Lemma 5.5 rather than its first half. �

In fact, the analogue of Lemma 5.7 also holds with Dz′j
replaced by D∗

z′j
∈

Diff1
es,†(M):

Lemma 5.24. Let A ∈ Ψm,l
eb (M), a = σeb,m(A). Then

ı[x−1D∗
z′j
, A] = A1x

−1D∗
z′j
+ x−1A0

where A0 ∈ Ψm,l
eb (M), A1 ∈ Ψm−1,l

eb (M),

σeb,m(A0) =
∂a

∂z′j
, σeb,m−1(A1) =

∂a

∂ζ ′j
+
∂a

∂ξ
.

We thus make the following definition:

Definition 5.25. Let

Diffk
es,♯Ψ

m
eb(M) =

{∑
AαBβ : Aα ∈ Diffk

es,♯(M), Bβ ∈ Ψm
eb(M)

}
.

Using Proposition 5.4 and duality, as in the previous lemma, we deduce
the following:

Proposition 5.26. Diffk
es,♯Ψ

m,l
eb (M) is a Ψ0

eb(M)-bimodule, and

P ∈ Diffk
es,♯Ψ

m,l
eb (M), A ∈ Ψs,r

eb (M) ⇒
PA,AP ∈ Diffk

es,♯Ψ
m+s,l+r
eb (M), [P,A] ∈ Diffk

es,♯Ψ
m+s−1,l+r
eb (M).

(5.6)

5.3. Domains. In this section, we discuss the relationship between Dirichlet
and Neumann form domains of ∆ and the scales of weighted Sobolev spaces
that we have introduced. First, we identify the Dirichlet quadratic form
domain in terms of the edge-smooth Sobolev spaces.

The Friedrichs form domain of ∆ with Dirichlet boundary conditions on
X0 is

H1
0 (X0),

also denoted by Ḣ1(X0) (see [10, Appendix B.2]); we may also view this
space as the completion of C∞

c (X0) in the H1(X0)-norm,

‖u‖H1(X0) = ‖u‖L2
g0

(X0) + ‖du‖L2
g0

(X0;T ∗X0).

Equivalently in terms of “doubling” X0 across all boundary hypersurfaces,
H1

0 (X0) consists of H
1-functions on the “double” supported in X0.



DIFFRACTION ON MANIFOLDS WITH CORNERS 51

Lemma 5.27. On Ċ∞(X) = β∗Ċ∞(X0), the norms

‖u‖H1(X0) =
(
‖u‖2L2

g0
+ ‖du‖2L2

g0

)1/2

and
‖u‖

H
1,1−(f+1)/2
es (X)

are equivalent.

Proof. Multiplication by elements of C∞(X0) is bounded with respect to

both norms (with respect to H
1,1−(f+1)/2
es (X) even C∞(X) is bounded), so

one can localize in X0, or equivalently in X near a fiber β−1(p), p ∈ W , of

W̃ , and assume that u is supported in such a region.
Elements of V(X0) lift under β to span x−1Ves(X) as a C∞(X)-module

by (3.13). In particular, merely since β∗V(X0) ⊂ x−1Ves(X), we obtain10

(5.7) ‖u‖H1
0 (X0) . ‖u‖

H
1,1−(f+1)/2
es (X)

, u ∈ Ċ∞(X).

We now prove the reverse inequality. By the spanning property, we have

(5.8) ‖x−1Au‖L2
g
. ‖u‖H1(X0)

for any A ∈ Ves(X) as C∞(X) is bounded acting by multiplication on
L2
g(X) = L2

g0(X0). As Ves(X) together with the identity operator gener-

ates Diff1
es(X), we only need to prove

‖x−1u‖L2
g(X) . ‖u‖H1(X0),

for u ∈ Ċ∞(X) supported near a fiber β−1(p), p ∈ Y , of Ỹ . However, this
follows easily from identifying a neighborhood of β−1(p) with [0, ǫ)x×Oy×Zz,

where O ⊂ Rn−f−1, and using the Poincaré inequality in Z, namely that

‖u(x, y, .)‖L2(Z) ≤ C‖(dZu)(x, y, .)‖L2(Z), u ∈ Ċ∞(X0).

Multiplying the square of both sides by x−2+f and integrating in x, y, yields

‖x−1u(x, y, .)‖L2
g(X) ≤ C‖(x−1dZu)(x, y, .)‖L2

g(X) ≤ C ′‖u‖H1
0 (X)

by (5.8). �

In view of the definition of H
1,1−(f+1)/2
es,0 (X) as the closure of Ċ∞(X) in

H
1,1−(f+1)/2
es (X), we immediately deduce:

Proposition 5.28. The Dirichlet form domain of ∆ is given by

(5.9) H1
0 (X0) = H

1,1−(f+1)/2
es,0 (X)

in the strong sense that the natural (up to equivalence) Hilbert space norms
on the two sides are equivalent. In particular, for u ∈ H1

0 (X0), we have

‖x−1Qu‖L2
g
≤ C‖u‖H1(X0)

10We use the notation that a . b if there exists C > 0 such that a ≤ Cb. Usually a

and b depend on various quantities, e.g. on u here, and C is understood to be independent
of these quantities.
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for all Q ∈ Diff1
es(X).

For Neumann boundary conditions the quadratic form domain is H1(X0),
whose lift is not quite so simple in terms of the edge-smooth spaces. How-
ever, we have the following lemma, which suffices for the edge-b propagation
results below (with a slight loss).

Lemma 5.29. We have H
1,1−(f+1)/2
es (X) ⊂ H1(X0) ⊂ H

1,−(f+1)/2
es (X), with

all inclusions being continuous.

Proof. The first inclusion is an immediate consequence of (5.7) holding for

u ∈ C, C as in Remark 5.9 (thus dense in H
1,l−(f+1)/2
es (X) for all l), using

again that elements of V(X0) lift under β to span (and in particular lie in)
x−1Ves(X) as a C∞(X)-module by (3.13).

For the second inclusion, we need to prove that ‖Au‖L2
g(X) ≤ C‖u‖H1(X0)

for A ∈ Diff1
es(X). As this is automatic for A ∈ C∞(X), we are reduced to

considering A ∈ Ves(X). But (5.8) still holds for u ∈ C, so ‖Au‖L2
g(X) ≤

C ′‖x−1Au‖L2
g
≤ C‖u‖H1(X0) for A ∈ Ves(X). This finishes the proof of the

lemma. �

5.4. The wave operator as an element of x−2Diff2
es,♯(M). For f ∈ C,

in local coordinates,

df = (x∂xf)
dx

x
+
∑

j

(x∂yjf)
dyj
x

+
∑

j

(∂zjf) dzj .

Thus, the exterior derivative satisfies

d ∈ Diff1
es(M ;C, esT ∗M),

with C denoting the trivial bundle. As the dual Riemannian metric is of
the form x−2G, where G is a smooth fiber metric on esT ∗X, and ∆ = d∗d,
we deduce that � ∈ x−2Diff2

es,♯(M). However, we need a more precise
description of � for our commutator calculations.

So suppose now that U is a coordinate chart near a point q at ∂W̃ with
coordinates (x, y, z′, z′′) centered at q, and recall from (2.2) that the Rie-
mannian metric has the form

(5.10) g = dx2 + h(y, dy) + x2k(x, y, z, dz) + xk′(x, y, z, dx, dy, x dz).

By changing z′′ if necessary (while keeping x, y, z′ fixed—cf. the argument
of §2 leading to (2.1), we can arrange that the dual metric K of k have the
form

K(0, y, z) =
k∑

i,j=1

k1,ij(0, y, z)ζ
′
i
ζ ′
j
+

k∑

i=1

f∑

j=k+1

k3,ij(0, y, z)ζ
′
i
ζ ′′
j

+

f∑

i,j=k+1

k2,ij(0, y, z)ζ
′′
i
ζ ′′
j
, k3|C = 0,

(5.11)
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where

C = {x = 0, z′ = 0}.
We deduce the following lemma:

Lemma 5.30. Let U be a coordinate chart near a point with x = 0 and
z′ = 0, and suppose that we have arranged that at

C = {x = 0, z′ = 0},
the vector spaces

sp{dz′i, i = 1, . . . , k} and sp{dz′′j , j = k + 1, . . . , f}
are orthogonal with respect to K. With Qi = x−1Dz′i

, the wave operator
satisfies

(5.12) � =
∑

i,j

Q∗
iκijQj +

∑

i

(x−1MiQi +Q∗
ix

−1M ′
i) + x−2H̃ on U

with

κij ∈ C∞(M), Mi,M
′
i ∈ Diff1

eb(M), H̃ ∈ Diff2
eb(M)

σeb,1(Mi) = mi = σeb,1(M
′
i), h̃ = σeb,2(H̃),

κij |W̃ = −k1,ij(y, z), mi|C = 0, mi|W̃ = −1

2

f∑

j=k+1

k3,ijζ
′′
j ,

h̃|W̃ = τ2 − ξ2 − h(y, η)−
f∑

i,j=k+1

k2,ij(y, z)ζ
′′
i ζ

′′
j .

(5.13)

We next note microlocal elliptic regularity.

Proposition 5.31. Let u ∈ X ≡ H1,l
es (M), and suppose that

�u ∈ Ḣ−1,l−2
es (M) = Y

with Dirichlet or Neumann boundary conditions. Then

WFm,0
eb,X(u) ⊂ ebΣ ∪WFm,0

eb,Y(�u).

In particular, if �u = 0, then WF∞,0
eb,X(u) ⊂ ebΣ.

Proof. The proof goes along the same lines as Proposition 4.6 of [34] and
Theorem 8.11 of [25]; we thus provide a sketch. An essential ingredient is
the top-order commutativity of xl Diff2

es,♯Ψ
m
eb(M), which allows us to treat

all commutators as error terms. The key estimate is stated in Lemma 5.32
below.

Given the lemma, one proceeds by an inductive argument, showing that if

WF
s−1/2,0
eb,X (u) ⊂ ebΣ ∪WF

s−1/2,0
eb,Y (�u) (which is a priori known for s = 1/2,

starting our inductive argument) then WFs,0
eb,X(u) ⊂ ebΣ ∪WFs,0

eb,Y(�u). In

order to show this, one takes A ∈ Ψ
s,l+(f−1)/2
eb (M), with WF′(A) ∩ ebΣ = ∅,
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WF′(A) ∩ WFs,0
eb,Y(�u) = ∅. Let Λγ be uniformly bounded in Ψ0,0

eb (M),

γ ∈ (0, 1], with Λγ ∈ Ψ−1,0
eb (M) for all γ,

σeb,0,0(Λγ) =
(
1 + γ(|ξ|2 + |τ |2 + |η|2 + |ζ|2)

)−1
,

so Aγ = ΛγA is uniformly bounded in Ψ
m,l+(f−1)/2
eb (M) and Aγ → A

in Ψ
m+δ,l+(f−1)/2
eb (M) (δ > 0 fixed) as γ → 0. One then concludes by

Lemma 5.32 that for all ǫ ∈ (0, 1],

(5.14) |〈∂tAγu, ∂tAγu〉−〈dXAγu, dXAγu〉| ≤ ǫ‖Aγu‖2
H

1,1−(f+1)/2
es (M)

+Cǫ−1,

with C uniformly bounded, independent of γ.
We now note that the Dirichlet form is microlocally elliptic for Dirichlet

boundary conditions, i.e.

‖Aγu‖2
H

1,1−(f+1)/2
es (M)

≤ C ′|〈∂tAγu, ∂tAγu〉 − 〈dXAγu, dXAγu〉|+ C ′‖u‖2
H

1,1−(f+1)/2
es (M)

.

For details, see the proof of Proposition 4.6 of [34], which can be followed
essentially verbatim11 since the non-trivial aspect is the b-behavior in the
fibers of the edge; the (x, y) variables here, as well as the z′′ variables, play
the role of the y variables in [34], the z′ variables here play the role of the
x variables in [34], and Ψeb(M) plays the role of Ψb(X) in [34] (where X
is spacetime). (Likewise is simple to modify the inductive arguments for

the Neumann condition as the H
0,1−(f+1)/2
es (M) norm of an additional eb-

derivative, which one would need to bound, can be bounded in terms of the

H
1,1−(f+1)/2
es (M) norm; this is the same process as in [34].)
Thus, for sufficently small ǫ ∈ (0, 1], ǫ‖Aγu‖2

H
1,1−(f+1)/2
es (M)

in (5.14) can

be absorbed in (C ′)−1‖Aγu‖2
H

1,1−(f+1)/2
es (M)

, and then one concludes that

‖Aγu‖H1,1−(f+1)/2
es (M)

is uniformly bounded independent of γ. As Aγ → A

strongly, one concludes by a standard argument Au ∈ H
1,1−(f+1)/2
es (M).

Thus, xl+(f−1)/2Au ∈ H1,l
es (M), hence (as X = H1,l

es (M))

ell(A) ∩WFs,0
eb,X(u) = ∅,

completing the iterative step. �

As mentioned above, the key ingredient in proving microlocal elliptic reg-
ularity is the following lemma.

11To give a rough idea, one distinguishes between the two components of the elliptic
set in terms of (3.22) and uses a square root construction in the edge-b algebra; in the
first component noting in addition that the Dirichlet form involves Dz′

j
u, so in z′j < δ,

one can estimate δ−1z′jDz′
j
u using this.
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Lemma 5.32. For Neumann boundary conditions, let X = H1,l+1
es (M), Y =

Ḣ−1,l−1
es (M); for Dirichlet boundary conditions let X = H1,l+1

es,0 (M), Y =

H−1,l−1
es (M). Let K ⊂ ebS∗M be compact, U ⊂ ebS∗M open, K ⊂ U .

Suppose that A is a bounded family of ps.d.o’s in Ψ
m,l+(f+1)/2
eb (M) with

WF′(A) ⊂ K, such that for A ∈ A, A ∈ Ψ
m−1,l+(f+1)/2
eb (M) (but the bounds

for A in Ψ
m−1,l+(f+1)/2
eb (M) are not necessarily uniform in A!). Then there

exist G ∈ Ψ
m−1/2,0
eb (M), G̃ ∈ Ψm,0

eb (M) with WF′G,WF′ G̃ ⊂ U and C0 > 0
such that for ǫ > 0, A ∈ A,

u ∈ X, WF
m−1/2,0
eb,X (u) ∩ U = ∅, WFm,0

eb,Y(�u) ∩ U = ∅ ⇒
|〈∂tAu,∂tAu〉 − 〈dXAu, dXAu〉|

≤ ǫ‖Au‖2
H

1,1−(f+1)/2
es (M)

+ C0

(
‖u‖2X + ‖Gu‖2X
+ ǫ−1‖�u‖2Y + ǫ−1‖G̃�u‖2Y

)
.

(5.15)

Remark 5.33. Recall that u ∈ H
1,1−(f+1)/2
es (M) is equivalent to dXu ∈

L2
g(M), ∂tu ∈ L2

g(M) and x−1u ∈ L2
g(M), so ǫ‖Au‖2

H
1,1−(f+1)/2
es (M)

on the

right hand side of (5.15) is comparable to the terms 〈∂tAu, ∂tAu〉 and
〈dXAu, dXAu〉. However, if A is supported away from ebΣ, the Dirichlet
form is microlocally elliptic, by the same arguments as those in the proof
of Proposition 4.6 of [34] and Theorem 8.11 of [25], so this term can be
absorbed into the left hand side, as was done in Proposition 5.31.

The hypotheses in (5.15) assure that the other terms on the right hand
side are finite, independent of A ∈ A.

Proof. Again, this follows the argument as Lemma 4.2 and 4.4 of [34] and
Lemma 8.8 and 8.9 of [25], so we only sketch the proof. We sketch the
Neumann argument; the Dirichlet case needs only simple changes. We have

〈∂tu, ∂tA∗Au〉 − 〈dXu, dXA∗Au〉 = 〈�u,A∗Au〉
for all u ∈ X and A ∈ Ψ

m−1,l+(f−1)/2
eb (M) since A∗Au ∈ H

1,−l−(f−1)
es (M),

which is mapped by � into Ḣ
−1,−l−(f+1)
es (M) = (H1,l

es (M))∗. Modulo com-
mutator terms, one can rewrite the left hand side as

〈∂tAu, ∂tAu〉 − 〈dXAu, dXAu〉,
which is the left hand side of (5.15). The commutator terms can be estimated
by the second and third terms (which do not depend on ǫ) on the right hand
side of (5.15). The other terms on the right hand side arise by estimating

(using that the dual of H1,l
es (M) is Ḣ

−1,−l−(f+1)
es (M))

|〈�u,A∗Au〉| ≤ ‖A�u‖
Ḣ

−1,−1−(f+1)/2
es (M)

‖Au‖
H

1,1−(f+1)/2
es (M)

≤ ǫ−1‖A�u‖2
Ḣ

−1,−1−(f+1)/2
es (M)

+ ǫ‖Au‖2
Ḣ

−1,−1−(f+1)/2
es (M)

= ǫ−1‖x−l−(f+1)/2A�u‖2
Ḣ−1,l−1

es (M)
+ ǫ‖Au‖2

Ḣ
−1,−1−(f+1)/2
es (M)

,
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and as x−l−(f+1)/2A is uniformly bounded in Ψm,0
eb (M), with wave front set in

K, ‖x−l−(f+1)/2A�u‖2Y can be estimated by a multiple of ‖�u‖2Y+‖G̃�u‖2Y
in view of Lemma 5.16. This completes the proof. �

The following is analogous to Lemma 7.1 of [34] and Lemma 9.8 of [25] and
states that near G the fiber derivatives x−1Dz′i

of microlocalized solutions
Au to the wave equation can be controlled by a small multiple of the time
derivative, modulo error terms (note that G is lower order than A by 1/2).
The theorem mentions a δ-neighborhood of a compact setK ⊂ G (for δ < 1);
by this we mean the set of points of distance < δ from K with respect to
the distance induced by some Riemannian metric on ebS∗M . Note that the
choice of the Riemannian metric is not important, and in particular, G is
defined by x = 0, z′ = 0, 1− h(y, η̂)− ξ̂2 − k(y, z, ζ̂ ′ = 0, ζ̂ ′′) = 0, so the set
given by

x < C ′δ, |z′| < C ′δ,
∣∣∣1− h(y, η̂)− ξ̂2 − k(y, z, ζ̂ ′ = 0, ζ̂ ′′)

∣∣∣ < C ′δ,

is contained in a C ′′δ-neighborhood of G for some C ′′ > 0, with C ′′ indepen-
dent of δ (as long as C ′ is bounded).

Lemma 5.34. For Dirichlet or Neumann boundary conditions let X and Y

be as in Lemma 5.32.
Let K ⋐ G. There exists δ0 ∈ (0, 1) and C0 > 0 with the following property.
Let 0 < δ < δ0, and δ > 0, and let U be a δ-neighborhood of K in

ebS∗M . Suppose A is a bounded family of ps.d.o’s in Ψ
m,l+(f+1)/2
eb (M) with

WF′(A) ⊂ U , such that for A ∈ A, A ∈ Ψ
m−1,l+(f+1)/2
eb (M). Then there

exist G ∈ Ψ
m−1/2,0
eb (M), G̃ ∈ Ψm,0

eb (M) with WF′G,WF′ G̃ ⊂ U and C̃ =

C̃(δ) > 0 such that for A ∈ A,

u ∈ X, WF
m−1/2,0
eb,X (u) ∩ U = ∅, WFm,0

eb,Y(�u) ∩ U = ∅
implies

∑∥∥∥x−1Dz′i
Au
∥∥∥
2

≤ C0δ‖DtAu‖2 + C̃
(
‖u‖2X + ‖Gu‖2X + ‖�u‖2Y + ‖G̃�u‖2Y

)
.

Proof. This is an analogue of Lemma 7.1 of [34] and Lemma 9.8 of [25],
so we only indicate the main idea. By Lemma 5.32 one has control of the
Dirichlet form in terms of the second through fifth terms on the right hand

side, so it suffices to check that
∑∥∥∥x−1Dz′i

Au
∥∥∥
2
can be controlled by the

Dirichlet form and δ‖DtAu‖2. This uses that K ⋐ G, Dt is elliptic on ebΣ,

and 〈H̃Au,Au〉 is small as WF′(A) ⊂ U ; see the aforementioned Lemma 7.1
of [34] and Lemma 9.8 of [25] for details. �

Corollary 5.35. For Dirichlet or Neumann boundary conditions let X and
Y be as in Lemma 5.32. Let K ⋐ G, δ > 0.
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Then there exists a neighborhood U of K in ebS∗M with the following

property. Suppose that A is a bounded family of ps.d.o’s in Ψ
m,l+(f+1)/2
eb (M)

with WF′(A) ⊂ U , such that for A ∈ A, A ∈ Ψ
m−1,l+(f+1)/2
eb (M). Then

there exist G ∈ Ψ
m−1/2,0
eb (M), G̃ ∈ Ψm,0

eb (M) with WF′G,WF′ G̃ ⊂ U and

C̃ = C̃(δ) > 0 such that for A ∈ A,

u ∈ X, WF
m−1/2,0
eb,X (u) ∩ U = ∅, WFm,0

eb,Y(�u) ∩ U = ∅

implies

∑∥∥∥x−1Dz′i
Au
∥∥∥
2

≤ δ‖DtAu‖2 + C
(
‖u‖2X + ‖Gu‖2X + ‖�u‖2Y + ‖G̃�u‖2Y

)
.

Proof. Fix a Riemannian metric on ebS∗M . Let δ0, C0 be as in Lemma 5.34,
and let δ′ = min(δ0/2, δ/C0). Applying Lemma 5.34 with δ′ in place of δ
gives the desired conclusion, if we let U be a δ′-neighborhood of K. �

Recall now that C = {x = 0, z′ = 0} denotes one boundary face of W̃ in

local coordinates, and that as a vector field on esT ∗M tangent to W̃ (but
not necessarily the other boundary faces), restricted to esT ∗

W̃
M , Hes is given

by

−1

2
Hes = ξ̂x∂x − ξ̂σ∂σ − ξ̂ζ̂∂ζ̂ +Kij ζ̂

i
∂zj +Kij ζ̂

i
ζ̂
j
∂ξ̂ −

1

2

∂Kij

∂zk
ζ̂
i
ζ̂
j
∂ζ̂

k

;

see (3.17)-(3.18). We can expand the Kij terms by breaking them up into z′

and z′′ components at C, using (5.11). This becomes particularly interesting
at a point q ∈ esΣ which is the unique point in the preimage of p ∈ ebS∗

CM∩G
under π̂es→eb. At such points ζ̂

′
= 0, so many terms vanish. One thus obtains

−1

2
Hes(q) = ξ̂x∂x−ξ̂σ∂σ−ξ̂ζ̂

′′
∂
ζ̂
′′+k2,ij ζ̂

′′

i
∂z′′j +k2,ij ζ̂

′′

i
ζ̂
′′

j
∂ξ̂−

1

2

∂k2,ij
∂z′′k

ζ̂
′′

i
ζ̂
′′

j
∂
ζ̂
′′

k

.

Pushing forward under π̂es→eb, we obtain

(π̂es→eb∗Hes)(p) =− 2ξ̂x∂x + 2ξ̂σ∂σ + 2ξ̂ζ̂ ′′∂ζ̂′′

− 2k2,ij ζ̂
′′
i ∂z′′j − 2k2,ij ζ̂

′′
i ζ̂

′′

j
∂ξ̂ +

∂k2,ij
∂z′′k

ζ̂ ′′i ζ̂
′′
j ∂ζ̂′′k

.

Below, this appears as the vector field |τ |V0, and will give the direction of
propagation at glancing points in Theorem 7.7.

Lemma 5.36. Let Qi = x−1Dz′i
, κij, mi, h be as in Lemma 5.30. For

A ∈ Ψm,l
eb (M),

(5.16) ı[�, A∗A] =
∑

Q∗
iLijQj +

∑
(x−1LiQi +Q∗

ix
−1L′

i) + x−2L0,
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with

Lij ∈ Ψ2m−1,2l
eb (M), Li, L

′
i ∈ Ψ2m,2l

eb (M), L0 ∈ Ψ2m+1,2l
eb (M),

σeb,2m−1(Lij) = 2aVija, where Vij = κij(∂ζ′i + ∂ζ′j + 2∂ξ) + Heb,κij ,

σeb,2m(Li) = σeb,2m(L′
i) = 2aVia, where

Vi =
∑

j

κij∂z′j +
1

2
(mi∂ξ + Heb,mi) +

1

2
mi(∂ξ + ∂ζ′i),

σeb,2m+1(L0) = 2aV0a, V0 = 2h̃∂ξ + Heb,h̃ +
∑

i

mi∂z′i ,

WF′
eb(Lij),WF′

eb(Li),WF′
eb(L

′
i),WF′

eb(L0) ⊂ WF′
eb(A).

(5.17)

In particular, for f ∈ C∞(ebS∗M) with f |W̃ = ̟∗
ebφ for some φ ∈ C∞(S∗W ),

(5.18) Vijf |W̃ = 0, Vif |W̃ = 0, V0f |W̃ = 0.

Moreover, as smooth vector fields tangent to ebT ∗
W̃
M (but not necessarily

tangent to the other boundaries),

V0|C = −2ξ x∂x − 2
(
ξ2 +

∑

ij

k2,ijζ
′′
i ζ

′′
j

)
∂ξ − 2ξ

(
τ ∂τ + η ∂η

)

− 2
∑

i,j

k2,ijζ
′′
i ∂z′′j +

∑

ℓ,i,j

(∂z′′ℓ k2,ij)ζ
′′
i ζ

′′
j ∂ζ′′ℓ ,

Vij |C = −k1,ij
(
∂ζ′i + ∂ζ′j + 2∂ξ

)
+
∑

ℓ

(∂z′′ℓ k1,ij)∂ζ
′′

ℓ
, Vi|C = −

∑

j

k1,ij∂z′j ,

(5.19)

and

(
|τ |V0ξ̂

)
|W̃ = −2

∑

ij

k2,ij(0, y, z)ζ
′′
i ζ

′′
j

(
|τ |Viξ̂

)
|W̃ = −

∑

j

k3,ij(0, y, z)ζ
′′
j ,
(
|τ |Vij ξ̂

)
|W̃ = −2k1,ij(0, y, z),

(
|τ |−s−1x−rV0(|τ |sxr)

)
|W̃ = −2(r + s)ξ̂,

(
|τ |−sx−rVi(|τ |sxr)

)
|W̃ = 0,

(
|τ |−s+1x−rVij(|τ |sxr)

)
|W̃ = 0,

(5.20)

Remark 5.37. This is the main commutator computation that we use in the
next section. We stated explicitly the results we need. First, equation (5.18)
shows that functions of the “slow variables” do not affect the commutator
to leading order at W̃ , hence they are negligible for all of our subsequent
calculations.

Next, (5.19) gives the form of the commutator explicitly at C; this is what

we need for hyperbolic or glancing propagation within W̃ , i.e. at points of
H, resp. G away from radial points. These are sufficiently local that we only
need the explicit calculation at C, rather than at all of W̃ .
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Finally, (5.20) contains the results we need at radial points in G: there

the construction is rather global in W̃ , so it would be insufficient to state
these results at C only. On the other hand, localization in ζ̂ is accomplished
by localizing in ξ̂, the “slow variables” and the characteristic set, so fewer
features of Vij , etc., are relevant.

Proof. By Lemma 5.30,

[�, A∗A] =
∑

i,j

(
[Q∗

i , A
∗A]κijQj +Q∗

iκij [Qj , A
∗A] +Q∗

i [κij , A
∗A]Qj

)

+
∑

i

(
x−1Mi[Qi, A

∗A] + [x−1Mi, A
∗A]Qi

+ [Q∗
i , A

∗A]x−1M ′
i +Q∗

i [x
−1M ′

i , A
∗A]
)

+ [x−2H̃, A∗A] on U.

The three terms on the first line of the right hand side are the only ones
contributing to Lij ; in the case of the third term, via

ıσeb,2m−1([κij , A
∗A]) = Heb,κija

2 = 2aHeb,κija,

while in the case of the first two terms by evaluating the commutators using
Lemma 5.7 and taking only the A1-terms, with the notation of the lemma.
The A0-terms of the first two commutators on the first line of the right
hand side (with the notation of Lemma 5.7) contribute to Li or L

′
i, as do

the second and fourth terms on the second line and the A1-term of the first
and third terms on the second line. Finally, the expression on the third
line, as well as the A0-term of the first and third terms on the second line
contribute to L0. We also use (4.3) to remove the weight from Heb,x−1mi

and Heb,x−2h̃, e.g. x
2
Heb,x−2h̃ = −2h̃∂ξ + Heb,h̃.

The computation of the Hamilton vector fields at C then follows from
Lemma 5.30 and (4.2) (recalling that t is one of the y-variables). �

6. Coisotropic regularity and non-focusing

In this section we recall from [25] the notion of coisotropic regularity
and, dually, that of nonfocusing. We will be working microlocally near Feb

reg

and in particular, away from the difficulties of the glancing rays in Feb
sing.

Consequently all the results in this section have proofs identical to those in
[25, Section 4], where the fiber Z is without boundary.

Let K be a compact set in R◦
eb. By Lemma 3.25, there exists an open set

U ⊂ ebS∗M such that K ⊂ U and U∩Feb ⊂ Feb
reg. Recall from Corollary 3.24

that in this case Feb∩U is a coisotropic submanifold of ebS∗M—recall from
Footnote 8 that a submanifold of ebS∗M is defined to be coisotropic if the
corresponding conic submanifold of ebT ∗M \ o is coisotropic.
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In what follows, we let U be an arbitrary open subset of ebS∗M satisfying
U ∩Feb ⊂ Feb

reg, thus U ∩Feb is a C∞ embedded coisotropic submanifold of
ebS∗M ; the foregoing remarks establish that such subsets are plentiful.

Definition 6.1. Given U as above, let M denote the module (over Ψ0,0
eb (M))

of operators A ∈ Ψ1,0
eb (M) such that

• WF′A ⊂ U,
• σeb,1(A)|Feb

reg
= 0.

Let A be the algebra generated by M with Ak = A ∩Ψk,0
eb (M).

As a consequence of coisotropy of Feb
reg, we have:

Lemma 6.2. The module M is closed under commutators, and is finitely
generated, i.e., there exist finitely many Ai ∈ Ψ1

eb with σeb,1(Ai)|Feb
reg

= 0

such that

M =
{
A ∈ Ψ1

eb(U) : ∃Qi ∈ Ψ0
e(U), A =

N∑

i=0

QiAi

}
.

Moreover we may take AN to have symbol |τ |−1σeb,2,0(x
2�) and A0 = Id.

We thus also obtain

(6.1) Ak =




∑

|α|≤k

Qα

N∏

i=1

Aαi
i , Qα ∈ Ψ0

eb(U)





where α runs over multiindices α : {1, . . . , N} → N0 and |α| = α1+· · ·+αN .

Definition 6.3. Let X be a Hilbert space on which Ψ0,0
eb (M) acts, and let

K ⊂ U. We say that12 u has coisotropic regularity of order k relative to X

in K if there exists Q ∈ Ψ0,0
eb (M), elliptic on K, such that

AkQu ∈ X.

We say that u satisfies the nonfocusing condition of order k relative to X

on K if there exists Q ∈ Ψ0,0
eb (M), elliptic on K, such that

Qu ∈ Ak(X).

We say that u is nonfocusing resp. coisotropic of order k relative to X

on an arbitrary open subset S of Feb if for every open O ⊂ S with closure
disjoint from Feb

sing, it is nonfocusing resp. coisotropic on O of order k with
respect to X.

We say that u satisfies the nonfocusing condition relative to X on K
(without specifying an order) if u satisfies the nonfocusing condition of some
order k ∈ N.

12Note that our choice of U containing K does not matter in the definition.
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Remark 6.4.
(1) u is coisotropic on K if and only if u is coisotropic at every p ∈ K,

i.e. on {p} for every p ∈ K. This can be seen by a partition of unity
and a microlocal elliptic parametrix construction, as usual.

(2) The conditions of coisotropic regularity and nonfocusing should be,
loosely speaking, considered to be dual to one another; a precise
statement to this effect appears in the proof of Theorem 9.6 below.

(3) Coisotropy and nonfocusing are only of interest on Feb
reg itself: away

from this set, to be coisotropic of order k with respect to X means
merely to be microlocally in Hk

eb,X while to be nonfocusing means to

be microlocally in H−k
eb,X.

(4) Certainly, away from W̃ , σ(�) vanishes on Feb
reg, as the latter lies in

the characteristic set Σ by definition. Splitting Σ into component
according to the sign of τ, and letting Π± be pseudodifferential op-
erators over M◦ microlocalizing near each of these components, we
thus have

�Π± = Q±A± +R

with A± in M, Q± elliptic of order 1, and R smoothing.

¿From Lemma 6.2, we obtain the following.

Corollary 6.5. If u is coisotropic of order k on K relative to X then there
exists U open, K ⊂ U such that for Q̃ ∈ Ψ0,0

eb (M), WF′(Q̃) ⊂ U implies

Q̃Aαu ∈ X for |α| ≤ k.

Conversely, suppose U is open and for Q̃ ∈ Ψ0,0
eb (M), WF′(Q̃) ⊂ U implies

Q̃Aαu ∈ X for |α| ≤ k. Then for K ⊂ U , u is coisotropic of order k on K
relative to X.

Proof. Suppose first that u is coisotropic of order k on K relative to X. By
definition, there exists Q elliptic on K such that AkQu ⊂ X. Let U be
such that Q is elliptic on U , K ⊂ U , and let S ∈ Ψ0,0

eb (M) be a microlocal

parametrix for Q, so WF′(R) ∩ U = ∅ where R = SQ− Id.
We prove the corollary by induction, with the case k = 0 being immediate

as one can write Q̃u = Q̃SQu + Q̃Ru, Q̃S ∈ Ψ0,0
eb (M) is bounded on X,

Qu ∈ X, Q̃R ∈ Ψ−∞,0
eb (M) (for they have disjoint WF′), so Q̃Ru ∈ X.

Suppose now that k ≥ 1, and the claim has been proved for k − 1. By
Lemma A.1, applied with Qn = Q (i.e. there is no need for the subscript n,
or for uniformity),

AαQ = QAα +
∑

|β|≤|α|−1

CβA
β .

Thus, for |α| = k,

Q̃Aαu = Q̃SQAα + Q̃RAαu
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and
Q̃SQAα = Q̃SAαQ−

∑

|β|≤|α|−1

Q̃SCβA
β

together with the induction hypothesis (due to which and to Q̃SCβ ∈
Ψ0,0

eb (M) with WF′(Q̃SCβ) ⊂ U , Q̃SCβA
βu ∈ X) and Q̃R ∈ Ψ−∞,0

eb (M)

imply Q̃Aαu ∈ X, providing the inductive step.
The proof of the converse statement is similar. �

We now set
H = L2

g(I ×X0)

where I is a compact interval. We additionally introduce another Hilbert
space X ⊂ H, given by H1

0 (I×X0) or H
1(I×X0) with I an interval and the

0 denoting vanishing at I × ∂X0. Note that Id+∆ : X → X∗ is an isometry.
Suppose K is compact. For N ≥ k+ r we let YK denote the subspace of

H

YK = {u ∈ X∗ : WFN
b,H∗(u) ⊂ K, u is coisotropic of order k w.r.t.

Hr
b,X∗ on K}.

Let

ZK = {φ ∈ X : u is coisotropic of order k w.r.t. Hr
b,X on K}.

Also, for ν ∈ R, we choose a family of operators for adjusting orders; we let

Tν ∈ Ψν,0
eb (M)

be (globally) elliptic of order ν. Thus, Tν are simply weights. Later, in
(7.11), we make a slightly more specific choice.

Lemma 6.6. Suppose that K ⊂ O, K compact, O open with compact clo-
sure, and Q ∈ Ψ0(M) such that WF′(Id−Q) ∩K = ∅, WF′(Q) ⊂ O. Let

(6.2) Y = {u ∈ X∗ : TN (Id−Q)u ∈ X∗, |α| ≤ k ⇒ TrA
αQu ∈ X∗}

and

(6.3) Z = {u ∈ X : |α| ≤ k ⇒ TrA
αQu ∈ X}

Then
YK ⊂ Y ⊂ YO.

and
ZK ⊂ Z ⊂ ZO.

Proof. If u ∈ YK , then WFN
b,H∗(u) ⊂ K implies that TN (Id−Q)u ∈ X∗.

Moreover, since u is coisotropic on K, it is coisotropic on a neighborhood
O′ of K; we construct Q′ ∈ Ψ0(M) with WFQ′ ⊂ O′, WF(Id−Q′)∩K = ∅.
Then

TrA
αQu = TrA

αQ′Qu+ TrA
α(Id−Q′)Qu,

and the first term is in X∗ by coisotropy of u on O′ while the latter is in X∗

by the wavefront condition on u.
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On the other hand, if u ∈ Y, we have TN (Id−Q)u ∈ X∗ hence WFN
b,H∗(u)∩

ell(Id−Q) = ∅, so in particular, WFN
b,H∗(u) ⊂ Oc, since Id−Q must be

elliptic on Oc. It remains, given p ∈ O, to check coisotropic regularity at p.
If p ∈ ell(Id−Q), it again follows from the wavefront set condition, hence
it suffices to consider p ∈ ellQ ⊃ [ell(Id−Q)]c; at such points coisotropic
regularity follows from TrA

αQu ∈ X∗.
The proof for Z works analogously. �

Corollary 6.7. Suppose K = ∩jOj, Oj open with compact closure, Oj+1 ⊂
Oj. Let Yj , Zj be given by (6.2), (6.3) where Qj satisfies WF′(Id−Qj)∩K =
∅, WF′(Qj) ⊂ O. Then YK = ∩jYj , ZK = ∩jZK .

In particular, YK and ZK become Fréchet spaces when equipped with the
Yj , Zj norms.

Remark 6.8. It is easy to see that the Fréchet topology is independent of
the choice of the particular Oj .

Proof. The fact that YK ⊂ ∩jYj follows from Lemma 6.6. For the reverse

inequality, note that u ∈ ∩Yj ⊂ ∩YOj
has WFb,H∗(u) ⊂ ∩Oj = K. On

the other hand, as u ∈ Y1, |α| ≤ k ⇒ AαQ1u ∈ X and Q1 is elliptic on K.
Thus, u ∈ YK .

The same holds for ZK . �

We now note the following functional-analytic facts:

Lemma 6.9. Let Q be as above, and again let

(6.4) Y = {u ∈ X∗ : TN (Id−Q)u ∈ X∗, |α| ≤ k ⇒ TrA
αQu ∈ X∗},

and

Z = {u ∈ X : |α| ≤ k ⇒ TrA
αQu ∈ X}

Then the dual of Y with respect to the space H (see Appendix A) is

Y∗ = {u : u = v0 + TN (Id−Q)v1 +
∑

|α|≤k

TrA
αQvα, v0, v1, vα ∈ X},

and the dual of Z with respect to H is

Z∗ = {u : u = v0 +
∑

|α|≤k

TrA
αQvα, v0, vα ∈ X∗},

Proof. First consider the dual of Z with respect to H. We apply the dis-
cussion of Appendix A leading to (A.7). More precisely, with the notation
of the Appendix, we take H = L2

g(I × X0), and X = H1(I × X0), resp.

X = H1
0 (I × X0), as set out earlier. We also let D = C∞(I × X0), resp.

D = Ċ∞(I×X0) (with the dot indicating infinite order vanishing at I×∂X0).
We define the operators Bk in (A.6) as follows: we take Bk, k = 1, . . . , N ,
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to be a collection of C∞ vector fields on X0 which span V(X) over C∞(X),
B0 = Id, and define the X-norm on D by

(6.5) ‖u‖2X = ‖B0u‖2H +
N∑

k=1

‖Bku‖2H,

cf. (A.4); then X is the completion of D. Then we take the collection of Aj

in defining the space Y in Appendix A, with the norm (A.3), to be TrAαQ,
|α| ≤ k. Then our claim about Z∗ follows from (A.7) and (A.1), taking into
account that the principal symbol of the conjugate of a pseudo-differential
operator by complex conjugation is the complex conjugate of the principal
symbol of the original operator, so its vanishing on Feb

reg is unaffected.
We now consider the dual ofY, withY given by (6.4). As Id+∆ : X → X∗

is an isomorphism, the norm on X∗ is given by

‖u‖X∗ = ‖(Id+∆)−1u‖X =
N∑

k=0

‖Bk(Id+∆)−1u‖2H,

with Bk as in (6.5), we are again in the setting leading to (A.7) with X in the
Appendix given by our X∗, the Bk in the Appendix given by Bk(Id+∆)−1,
the space Y in the Appendix being our space Y in (6.4), and the Aj in the
appendix given by TN (Id−Q) and TrA

αQ, |α| ≤ k. Then our claim about
Y∗ follows from (A.7) and (A.1). �

Now let

ỸK = {u ∈ TN (X) : u is nonfocusing of order k w.r.t. H−r
b,X on K},

Z̃K = {u ∈ X∗ : u is nonfocusing of order k w.r.t. H−r
b,X∗ on K}.

Lemma 6.10. Define Y, Z as above. Then

ỸK ⊂ Y∗ ⊂ ỸO.

and

Z̃K ⊂ Z∗ ⊂ Z̃O.

The proof follows that of Lemma 6.6 closely, using the characterization
of Y∗ and Z∗ from Lemma 6.9.

We remark that away from W̃ , we may always (locally) conjugate by an
FIO to a convenient normal form: being coisotropic, locally Feb can be
put in a model form ζ = 0 by a symplectomorphism Φ in some canonical
coordinates (y, z, η, ζ), see [10, Theorem 21.2.4] (for coisotropic submani-
folds one has k = n − l, dimS = 2n, in the theorem). We may moreover
arrange the (z, ζ) coordinates (i.e. apply a further symplectomorphism) so
that σ(�) ◦Φ = qζ1 for some symbol q elliptic in a small open set. We now
quantize Φ to a FIO T, elliptic on some small neighborhood of a w ∈ Feb

reg,
which can be arranged to have the following properties:
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• T� = QDz1T +R where Q ∈ Ψ1(M◦) is elliptic near Φ(w) and R is
a smoothing operator.

• u has coisotropic regularity of order k (near w) with respect to Hs

if and only if Dα
z Tu ∈ Hs whenever |α| < k.

• u is nonfocusing of order k (near w) with respect to Hs if and only
if Tu ∈∑|α|≤kD

α
zH

s.

Let G ∈ Ψ−1(M◦) be a parametrix for Q. As a consequence of the above
observation, �u = f implies that Dz1Tu − GTf ∈ C∞ microlocally near
Φ(w), and if f is coisotropic of order k relative to Hs−1, then Dα

zGTf ∈ Hs

for |α| ≤ k (with an analogous statement for non-focusing) hence we have
now sketched the proof of the following:

Proposition 6.11. Suppose u is a distribution on M◦, �u = f . If f is
coisotropic of order k, resp. nonfocusing of order k, with respect to Hs−1

then the coisotropic regularity of order k, resp. non-focusing regularity of
order k, with respect to Hs, is invariant under the Hamilton flow over M◦.

In particular, for a solution to the wave equation, coisotropic regularity
of order k with respect to Hs and nonfocusing of order k with respect to Hs

are invariant under the Hamilton flow over M◦.

(We remark that one could certainly give an alternative proof of this
proposition by positive commutator arguments similar to, but much easier
than, those used for propagation of edge regularity in the following section.)

Corollary 6.12. Suppose that f is coisotropic, resp. non-focusing, of order
k relative to Hm−1, supported in t > T . Let u be the unique solution of
�u = f with Dirichlet or Neumann boundary conditions, supported in t >
T . Then u is coisotropic, resp. non-focusing, of order k relative to Hm at
p ∈ S∗M◦ provided every13 GBB γ with γ(0) = p has the property that there
exists s0 such that t(γ(s0)) < T , and for s ∈ [0, s0] (or s ∈ [s0, 0], if s0 < 0),
γ(s) ∈ S∗M◦.

The analogous statements hold if f is supported in t < T , and u is the
unique solution of �u = f supported in t < T , provided we replace t(γ(s0)) <
T by t(γ(s0)) > T .

Proof. This is an immediate consequence of Proposition 6.11, taking into
account that u is coisotropic, resp. non-focusing, in t < T , by virtue of
vanishing there. �

If K ⊂M◦ is compact, then there is δ > 0 such that if p ∈ S∗
KM

◦ and γ
is a GBB with γ(0) = p, then for s ∈ (−δ, δ), γ(s) ∈M◦. As s is equivalent
to t as a parameter along GBB, we deduce the following result.

Corollary 6.13. Suppose K ⊂ M◦ is compact. Suppose that f is co-
isotropic, resp. non-focusing, of order k relative to Hm−1, supported in

13The restriction of this GBB to [0, s0], if s0 ≥ 0, or [s0, 0] if s0 < 0, is unique under
these assumptions.
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t > T . Let u be the unique solution of �u = f with Dirichlet or Neu-
mann boundary conditions, supported in t > T . Then there exists δ0 > 0
such that u is coisotropic, resp. non-focusing, of order k relative to Hm at
p ∈ S∗

KM
◦ if t(p) < T + δ0.

Of course, what happens to coisotropic regularity and nonfocusing when
bicharacteristics reach W̃ is of considerable interest, and will be discussed
below.

7. Edge propagation

This section contains a series of theorems that will enable us to track
propagation of regularity into and back out of the edge. They are as follows:

• Theorem 7.1, which governs propagation of regularity into and out of
the interior or W̃ as well as the microlocal propagation of coisotropic
regularity there (i.e. iterated regularity under application of opera-
tors in A).

• Theorem 7.3, which governs propagation of regularity into W̃ along
glancing rays, tangent to one or more of the boundary faces meeting
at R× Y (in the blown-down picture).

• Theorem 7.6, which governs the propagation of edge regularity at
non-radial hyperbolic points at the boundary of the edge W̃ .

• Theorem 7.7, which governs the propagation of edge regularity at
glancing points at the boundary of the edge W̃ .

These theorems will then be assembled (together with the propagation over
the interior of the edge, which we may simply quote from [25]) to yield the
propagation of coisotropic regularity into and out of the edge in Theorem 8.1,
and this result is the key ingredient in proving the “geometric” improvement
in regularity on the diffracted wave.

7.1. Radial points in the interior of the edge. The following theorem
enables us to track edge wavefront set entering and leaving the edge at radial
points over its interior. Since we are working locally (even within the fibers!)

over the interior of the edge, i.e. over W̃ ◦, we can use edge, edge-b and edge-
smooth objects interchangably, for the only boundary in this region is the
edge itself.

Theorem 7.1 (Propagation at radial points in the interior of the edge).

(See [25, Theorem 11.1]) Let u ∈ H1,l
es (M) solve �u = 0 with Dirichlet or

Neumann boundary conditions.

(1) Let m > l + f/2. Given α ∈ HW,b, and p ∈ R◦
eb,α,I , if (Feb

I,p\∂M) ∩
WFmAu = ∅, for all A ∈ Ak then p /∈ WFe

m,l′ Bu for all l′ < l and
all B ∈ Ak.

(2) Let m < l + f/2. Given α ∈ HW,b, p ∈ R◦
eb,α,O, if a neighborhood

U of p in eS∗|∂MM is such that WFe
m,l(Au) ∩ U ⊂ ∂Feb

O for all

A ∈ Ak then p /∈ WFe
m,l(Bu) for all B ∈ Ak.
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This theorem is literally the same theorem as [25, Theorem 11.1] as we
are restricting our attention to the interior of the fibers, hence the presence
of a fiber boundary in our setting is irrelevant. We thus refer the reader to
[25] for the proof.

Remark 7.2. In fact, we could take u ∈ H−∞,l
es (M) here, but the restriction

on regularity will be necessary in later theorems to maintain the boundary
condition at the side faces z′i = 0, and we prefer to keep a uniform hypothesis.
The boundary conditions are irrelevant here; again, they are stated for the
sake of uniformization.

7.2. Propagation into radial points over the boundary of the edge.

We now turn to the question of propagation into the edge at glancing points,
i.e. at points over the boundary of the fibers ofM. Note that the hypotheses
of this theorem are global in the boundary of the fiber: we do not attempt
to distinguish different points in the fiber boundary.

Theorem 7.3 (Propagation into radial points over the boundary of the

edge). Let u ∈ X ≡ H1,l
es (M) solve �u = 0 with Dirichlet or Neumann

boundary conditions (see Definition 5.20).
Let m > l + f/2− 1 with m ≥ 0. Suppose that q ∈ HW,b and there exists

a neighborhood U of

Reb,q,I ∩ ebS∗
∂W̃

M = Reb,q,I ∩ G
in ebS∗M such that {x > 0} ∩ U ∩WFm,∗

eb,X u = ∅. Then

Reb,q,I ∩ ebS∗
∂W̃

M ∩WFm,l′

eb,X u = ∅
for all l′ < 0.

Proof. Choose local coordinates on W , and let q = (y0, t0, τ̂0 ∈ {±1}, η̂0) ∈
HW,b. Choose ξ0 such that ξ̂20 = 1− h(y, η̂0) with sgn ξ̂0 = sgn τ0 (this is the
incoming point).

One of the central issues in proving the theorem is to construct a symbol
that is localized in the hypothesis region that is sufficiently close to being
flow-invariant. To begin, we will need a localizer in the fiber variables. Fix
any K ⋐ W̃ ◦ and fix a small number ǫK > 0. Let

Υ : eS∗
K(M) ∩ {

∣∣ζ
∣∣/
∣∣ξ
∣∣ < ǫK} → Z

be locally defined by

Υ(q′) = z(expz,ζ̂ s∞Hes), s∞ =
sgn ξ̂∣∣∣ζ̂
∣∣∣
Kq

arctan

∣∣∣ζ̂
∣∣∣
ξ̂
.

where q′ ∈ esS∗
K(M) has “edge-smooth” coordinates (t, y, z, τ, ξ, η, ζ) (we are

using the canonical identification of eS∗M with esS∗M away from ∂M\W̃ ).
This map is well-defined provided ǫK is chosen sufficiently small (so that the
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flow stays away from ∂W̃ ). The map simply takes a point over the boundary
to its limit point in the fiber variables along the forward bicharacteristic flow,
hence on W̃ , we certainly have Υ∗(Hes) = 0.

We now employ Υ to create a localizer away from ∂W̃ . Fix

K ′′ ⊂ U ′ ⊂ K ′ ⊂ U ⊂ K ⊂ W̃ ◦

with K ′′,K ′,K compact and U ′, U open such that

(1) α ∈ esS∗
K\UM and

∣∣∣ζ̂(α)/ξ̂(α)
∣∣∣ < ǫK imply ΥK(α) ∈ W̃ \K ′,

(2) α ∈ esS∗
K′′M and

∣∣∣ζ̂(α)/ξ̂(α)
∣∣∣ < ǫK imply ΥK(α) ∈ U ′.

Now let χ ∈ C∞(W̃ ) be equal to 0 on W̃\K ′ and 1 on U ′. For ǫK sufficiently
small, χ◦ΥK vanishes on esS∗

K\UM , hence can be extended as 0 to esS∗
W̃\U

M

to define a C∞ function. Thus, this extension of χ ◦ΥK is well defined and
smooth on {∣∣∣ζ̂/ξ̂

∣∣∣ < ǫK , x < ǫK

}
∪ esS∗

W̃\U
M ⊂ esS∗M ;

it equals 0 on the fibers over W̃\U and 1 on those over K ′′. But
{∣∣∣ζ̂/ξ̂

∣∣∣ < ǫ′K , x < ǫ′K

}
∪ esS∗

W̃\U
M ⊂

{∣∣∣ζ̂/ξ̂
∣∣∣ < ǫK , x < ǫK

}
∪ esS∗

W̃\U
M

for ǫ′K > 0 sufficiently small as on U ,
∣∣∣ζ̂/ξ̂

∣∣∣ .
∣∣∣ζ̂/ξ̂

∣∣∣, since |z′i| are all bounded
away from 0 there. Due to the vanishing near ∂W̃ , we can equivalently
regard this extension of χ ◦ΥK as a C∞ function ρ on the following subset
of the edge-b cosphere bundle:

{∣∣∣ζ̂/ξ̂
∣∣∣ < ǫ′K , x < ǫ′K

}
∪ ebS∗

W̃\U
M.

The resulting function satisfies

(7.1) Hes(ρ) = O(x) on
{∣∣∣ζ̂/ξ̂

∣∣∣ < ǫ′K , x < ǫ′K

}
∪ ebS∗

W̃\U
M.

and

(7.2) ρ = 0 on ebS∗
W̃\U

M.

It is convenient to extend ρ to all of ebS∗M by defining it to be an arbitrary
fixed positive constant, say 1, where it is not previously defined. Note
that by (7.2), when we need to calculate derivatives of ρ in a commutator

calculation, we may always assume that we are away from ∂W̃ , hence use
the edge-calculus Hamilton vector field result.

Now consider the function

ω = |η̂ − η̂0|2 + |y − y0|2 + ρ2 + |t− t0|2.
(Note that keeping ω, |ξ − ξ0| and x sufficiently small on Σeb automatically

means that ζ̂ is small as well.)
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We now identify some appropriate neighborhoods in which to localize.
First, choose ǫ0, ǫ1 < 1 such that

|ζ̂|2 < ǫ0, x < ǫ1, ω < ǫ1, |ξ − ξ0|2 < ǫ1 =⇒ |ζ̂/ξ̂| < ǫ′K/2.

Second, choose ǫ2 < ǫ1 such that

Σeb ∩ {x < ǫ2} ∩ {ω < ǫ2} ∩
{
|ξ̂ − ξ̂0|2 < ǫ2

}
⊂
{
|ζ̂|2 < ǫ0

2

}
.

Let

K̃ = {x ≤ ǫ2} ∩ {ω ≤ ǫ2} ∩
{
|ξ̂ − ξ̂0|2 ≤ ǫ2

}
∩
{
|ζ̂|2 ≤ ǫ0

2

}
.

Next, given δ > 0, which will depend on K̃, let U = Uδ be as in Corol-
lary 5.35. Finally, given any β > 0 (to be specified below) we will choose
ǫ = ǫ(β, δ) so that

(7.3) ǫ, ǫ(1 + β) < ǫ2,

and so that

Kǫ =
{
x ≤ ǫ, ω ≤ ǫ(1 + β), |ξ̂ − ξ̂0|2 ≤ ǫ, |ζ̂|2 ≤ ǫ0

}
⊂ U = Uδ.

(Note that Kǫ ⊂ K̃ by (7.3).)
Let φ ∈ C∞

c ([0, ǫ)), ψ0 ∈ C∞
c ([0, ǫ0)), identically 1 on [0, ǫ0/2], ψ1 ∈

C∞
c ([0, ǫ)), identically 1 on [0, ǫ/2], ψ ∈ C∞

c ((−∞, ǫ)), all non-increasing,

a = aǫ = |τ |sx−rψ(ω − βx)ψ1(|ξ̂ − ξ̂0|2)φ(x)ψ0(|ζ̂|2)
Thus,

x ≤ ǫ, ω ≤ ǫ(1 + β), |ξ̂ − ξ̂0|2 ≤ ǫ, |ζ̂|2 ≤ ǫ0 on supp aǫ.

We usually suppress the ǫ-dependence of a below in our notation. Equa-
tion (7.3) ensures that ǫ(1 + β) < 1 on supp a, so ρ < 1, and thus (7.1)
holds. We have also arranged that

∣∣∣ζ̂/ξ̂
∣∣∣ < ǫ′K/2 on supp a

and that ψ0(|ζ̂|2) = 1 on supp(ψ(ω−βx)φ(x)ψ1(|ξ̂− ξ̂0|2))∩Σeb. This latter
observation means that we need never consider derivatives falling on the ψ0

term when computing the action of the Hamilton vector field on a. (The

cutoff ψ0(ζ̂) is therefore not necessary for correct localization of a, as that is

achieved by the cutoffs in ω, ξ̂ and x if we restrict our attention to Σeb; rather
this is necessary to make a a symbol, which it would not be if independent
of ζ.)

We quantize a to A ∈ Ψs,r
eb (M), i.e. take any A with σeb,s(A) = a. By

Lemma 5.36,

(7.4) ı[�, A∗A] =
∑

Q∗
iLijQj +

∑
(x−1LiQi +Q∗

ix
−1L′

i) + x−2L0,



70 RICHARD MELROSE, ANDRÁS VASY, AND JARED WUNSCH

with

Lij ∈ Ψ2s−1,2r
eb (M), Li ∈ Ψ2s,2r

eb (M), L0 ∈ Ψ2s+1,2r
eb (M),

σeb,2s−1(Lij) = 2aVija, σeb,2s(Li) = 2aVia, σeb,2s+1(L0) = 2aV0a,

WF′
eb(Lij),WF′

eb(Li),WF′
eb(L

′
i),WF′

eb(L0) ⊂ WF′
eb(A),

(7.5)

with Vij , Vi and V0 smooth vector fields tangent on ebT ∗M tangent to W̃

and such that for f ∈ C∞(ebS∗M) with f |W̃ = ̟∗
ebφ for some φ ∈ S∗W ,

(7.6) Vijf |W̃ = 0, Vif |W̃ = 0, V0f |W̃ = 0.

In view of Corollary 5.35, we are led to regard the Lij and Li terms as negli-
gible, provided that their principal symbol is bounded by a constant multiple
of σeb,s+1(L0) times the appropriate power of |τ | (to arrange homogeneity
of the same degree). Also by Lemma 5.36,

(
|τ |V0ξ̂

)
|W̃ = −2

∑

ij

k2,ij(0, y, z)ζ
′′
i ζ

′′
j

(
|τ |Viξ̂

)
|W̃ = −

∑

j

k3,ij(0, y, z)ζ
′′
j ,
(
|τ |Vij ξ̂

)
|W̃ = −2k1,ij(0, y, z),

(
|τ |−s′−1x−r′V0(|τ |s

′

xr
′

)
)
|W̃ = −2(r′ + s′)ξ̂,

(
|τ |−s′x−r′Vi(|τ |s

′

xr
′

)
)
|W̃ = 0,

(
|τ |−s′+1x−r′Vij(|τ |s

′

xr
′

)
)
|W̃ = 0,

(7.7)

In particular, with s′ = 0, r′ = 1, |τ |−1V0x = −2ξ̂x, while Vix, Vijx are
O(x2).

In computing V a for various homogeneous degree µ − 1 vector fields V
on ebT ∗M , we will employ the following arrangement of terms:

V a =ψ(ω − βx)φ(x)ψ0(|ζ̂|2)ψ1(|ξ̂ − ξ̂0|2)V (|τ |sx−r)

+ |τ |sx−rψ0(|ζ̂|2)φ(x)ψ1(|ξ̂ − ξ̂0|2)ψ′(ω − βx)(V ω − βV x)

+ |τ |sx−rψ(ω − βx)ψ0(|ζ̂|2)ψ1(|ξ̂ − ξ̂0|2)V (φ(x))

+ |τ |sx−rψ(ω − βx)ψ0(|ζ̂|2)φ(x)V (ψ1(|ξ̂ − ξ̂0|2))
+ |τ |sx−rψ(ω − βx)φ(x)ψ1(|ξ̂ − ξ̂0|2)V (ψ0(|ζ̂|2)).

As |τ |−1V0x = −2ξ̂x while |τ |−1V0ω = xf for some f ∈ C∞(ebS∗X), and

|ξ̂| is bounded below on K̃ (which is a compact subset of ebS∗M), it follows

that there exists β > 0 such that −(sgn τ0)|τ |−1(V0ω−βV0x) ≥ x on K̃, and
thus

(7.8) −(sgn τ0)|τ |−1(V0ω − βV0x) = xc22

for some smooth positive function c2 defined on K̃, hence on a neighborhood
of supp a in ebS∗M . Moreover,

V0ψ1(|ξ̂ − ξ̂0|2) = −4(ξ̂ − ξ̂0)ψ
′
1(|ξ̂ − ξ̂0|2)

∑

ij

k2,ij(0, y, z)ζ
′′
i ζ

′′
j .
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Similar computations hold for the Vi and Vij terms, with result shown below
in (7.9).

We start by discussing the terms in (7.4)-(7.5) in which the vector fields

V0, Vi, Vij differentiate ψ1(|ξ̂ − ξ̂0|2). These terms altogether have the form

(7.9)
∑

Q∗
iLij,1Qj +

∑
(x−1Li,1Qi +Q∗

ix
−1L′

i,1) + x−2L0,1, where

σeb,2s−1(Lij,1)|W̃ = −(sgn τ0)a1k1,ij(0, y, z),

σeb,2s(Li,1)|W̃ = σeb,2s(L
′
i,1)|W̃ = −1

2
(sgn τ0)a1

∑

j

k3,ij(0, y, z)ζ
′′
j ,

σeb,2s+1(L0,1)|W̃ = −(sgn τ0)a1
∑

ij

k2,ij(0, y, z)ζ
′′
i ζ

′′
j ,

with a1 = 8a(sgn τ0)(ξ̂ − ξ̂0)|τ |sx−rψ(ω − βx)ψ0(|ζ̂|2)φ(x)ψ′
1(|ξ̂ − ξ̂0|2).

On K̃ ∩ suppψ′
1(|ξ̂ − ξ̂0|2) ∩ ebΣ, ξ̂ − ξ̂0 has sign − sgn ξ̂0 = − sgn τ0, so

(sgn τ0)(ξ̂− ξ̂0) < 0 there. Thus, noting that the right hand side on the last

line is a square for x sufficiently small in view of ψ′
1 ≤ 0 when (sgn τ0)(ξ̂0 −

ξ̂) > 0, it has the form

(7.10) (− sgn τ0)d
∗
Zx

−1C∗
0C0x

−1dZ + E0 + E′
0 + F0,

C0 ∈ Ψ
s−1/2,r
eb (M), E0, E

′
0 ∈ Diff2

es,♯Ψ
2s−1,2r+2
eb (M)

σeb,s−1/2(C0) =
(
H((sgn τ0)(ξ0 − ξ))φ̃(x)a1

)1/2
,

WF′
eb(E

′
0) ∩ ebΣ = ∅, WF′

eb(E0) ⊂ {x > 0} ∩ supp a,

F0 ∈ Diff2
es,♯Ψ

2s−2,2r+2
eb (M), WF′

eb(E
′
0), WF′

eb(F0) ⊂ supp a,

where H is the Heaviside step function (recall that ψ′
1 = 0 near the origin,

and ψ′ ≤ 0) and φ̃ ∈ C∞
c ([0, ǫ2)) is identically 1 near 0 and has sufficiently

small support.
Next, the terms in (7.4)-(7.5) in which the vector fields V0, Vi, Vij differ-

entiate ψ(ω − βx) have the form
∑

Q∗
iLij,2Qj +

∑
(x−1Li,2Qi +Q∗

ix
−1L′

i,2) + x−2L0,2, where

σeb,s−1(Lij,2) = a22fij,2, σeb,s(Li,2) = σeb,s(L
′
i,2) = a22fi,2,

σeb,s+1(L0,2) = −(sgn τ0)a
2
2c

2
2, c2 as in (7.8)

a22 = −2xa|τ |s+1x−rψ′(ω − βx)ψ0(|ζ̂|2)φ(x)ψ1(|ξ̂ − ξ̂0|2),
with fij,2, fi,2 smooth. Moreover, terms in (7.4)–(7.5) in which the vector

fields V0, Vi, Vij differentiate ψ0(|ζ̂|2) have wave front set disjoint from ebΣ as
already discussed, while the terms in which these vector fields differentiate
φ(x) are supported in supp a ∩ {x > 0}, where we will assume the absence

of WFs−1,∗
eb,X u (the weight is indicated by an asterisk as we are away from

x = 0, so it is irrelevant).
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Finally, the terms in (7.4)–(7.5) in which the vector fields V0, Vi, Vij
differentiate |τ |sx−r have the form

∑
Q∗

iLij,3Qj +
∑

(x−1Li,3Qi +Q∗
ix

−1L′
i,3) + x−2L0,2, where

σeb,s−1(Lij,3) = a2xfij,3, σeb,s(Li,3) = σeb,s(L
′
i,3) = a2xfi,3,

σeb,s+1(L0,3) = −a2(sgn τ0)|τ |2(s− r)c23,

where c23|W̃ = 4(sgn τ0)ξ̂ > 0.
Finally, recall that terms with ψ0 derivatives are supported in the elliptic

set of �.
We are now ready to piece together the above information to compute

the commutator [�, A∗A]. First we choose a family of operators convenient
for adjusting orders: pick

(7.11) Tν ∈ Ψν,0
eb (M), σeb,ν(Tν) = |τ |ν near K̃.

Thus, Tν are simply weights, for |τ |ν is elliptic of order ν on a neighborhood

of K̃.
Adding all the terms computed above, and rearranging them as needed,

noting the top order commutativity in eb-order of Diffes,♯Ψeb(M), we finally
deduce that

−ı(sgn τ0)[�, A∗A]

=A∗
2

(
C∗
2x

−2C2 +
∑

i

(x−1Fi,2Qi +Q∗
ix

−1F ′
i,2) +

∑

ij

Q∗
iFij,2Qj

)
A2

+A∗T ∗
1/2

(
C∗
32(s− r)x−2C3 +

∑

i

(x−1Fi,3Qi +Q∗
ix

−1F ′
i,3)

+
∑

ij

Q∗
iFij,3Qj

)
T1/2A

+ d∗Zx
−1C∗

0C0x
−1dZ + E + E′ +R′′

(7.12)

with

(1) A2 ∈ Ψ
s+1/2,r−1/2
eb (M), σeb,s+1/2(A2) = a2, WF′

eb(A2) ⊂ supp a

(2) C2, C3 ∈ Ψ0,0
eb (M); Fi,2, F

′
i,2, Fi,3, F

′
i,3 ∈ Ψ−1,0

eb (M) and Fij,2, Fij,3 ∈
Ψ−2,0

eb (M);

(3) On K̃, σeb,0(C2) 6= 0 and σeb,0(C3) = (sgn τ0)ξ̂ 6= 0,

(4) C0 ∈ Ψ
s−1/2,r
eb (M), WF′

eb(C0) ⊂ supp a,

(5) E,E′ ∈ Diff2
es,♯Ψ

2s−1,2r+2
eb (M),

(6) R′′ ∈ Diff2
es,♯Ψ

2s−2,2r+2
eb (M) (i.e. is lower order), WF′

eb(R
′′) ⊂ supp a,

(7) WF′
ebE ⊂ {x > 0} ∩ supp a (our hypothesis region),

(8) WF′
ebE

′ ∩ ebΣ = ∅, WF′
eb(E

′) ⊂ supp a.

When we pair both sides of this equation (suitably regularized) with a solu-
tion to the wave equation the terms E, E′ and R′′ will be controlled respec-
tively by the hypothesis on u in x > 0, microlocal elliptic regularity, and
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an inductive hypothesis in the iterative argument in which we improve the
order by 1/2 (or less) in each step. The remaining terms on the right hand
side are either positive, or involve Qi, and the latter terms are controlled by
the former, by Corollary 5.35. Thus, save for the need to mollify to make
sure that we can actually apply this commutator to u and pair it with u,
and also be able to rewrite the commutator as the difference of products,
this would give our positive commutator result, controlling ‖x−1T1/2C3Au‖.

We do, however, need to mollify. Let σ > 0 (typically we take σ = 1/2,
always σ ∈ (0, 1/2]) Λγ ∈ Ψ−σ

eb (M) for γ > 0, such that {Λγ : γ ∈ (0, 1]}
is a bounded family in Ψ0

eb(M), and Λγ → Id as γ ↓ 0 in Ψǫ̃
eb(M), for

all ǫ̃ > 0. Let the principal symbol of Λγ , considered a bounded family in

Ψ0
eb(M), be (1+γ|τ |2)−σ/2 on a neighborhood of K̃. Let Aγ = ΛγA. We now

have Aγ ∈ Ψs−σ,r
eb (M) for γ > 0, and Aγ is uniformly bounded in Ψs,r

eb (M),

Aγ → A in Ψs+ǫ̃,r
eb (M). Moreover,

(7.13) ı[�, A∗
γAγ ] = Λ∗

γı[�, A
∗A]Λγ +A∗ı[�,Λ∗

γΛγ ]A+ R̃,

with R̃ uniformly bounded in Diff2
es,♯Ψ

2s−2,2r+2
eb (M) (hence lower order).

Now, for a vector field V on ebT ∗M ,

V (1 + γ|τ |2)−σ/2 = −(σ/2)γ(1 + γ|τ |2)−σ/2−1V |τ |2.

Applying this, the general formula (7.4)–(7.5) with Λγ in place of A and
(7.7) with r′ = 0, s′ = 2, we deduce that

−(sgn τ0)A
∗ı[�,Λ∗

γΛγ ]A

= A∗Λ∗
γT

∗
1/2Λ̃

∗
γ

(
− 2σC∗

3x
−2C3 +

∑

i

(x−1Fi,4Qi +Q∗
ix

−1F ′
i,4)

+
∑

ij

Q∗
iFij,4Qj

)
T1/2Λ̃γΛγA+R′

γ ,

(7.14)

with Fij,4 ∈ Ψ−2,0
eb (M), Fi,4, F

′
i,4 ∈ Ψ−1,0

eb (M), Λ̃γ uniformly bounded in

Ψ0,0
eb (M) with principal symbol

σeb(Λ̃γ) =
(
γ|τ |2(1 + γ|τ |2)−1

)1/2
≤ 1,

C3 ∈ Ψ0,0
eb (M) and T1/2 ∈ Ψ

1/2,0
eb (M) as in (7.12) and R′

γ uniformly bounded

in Diff2
es,♯Ψ

2s−2,2r+2
eb (M), hence lower order. Note that this commutator has

the opposite sign from (7.12), which limits our ability to regularize. However,
as long as σ′ − σ > 0, we can write

2σ′ Id−2σΛ̃∗
γΛ̃γ = B∗

γBγ
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with Bγ uniformly bounded in Ψ0,0
eb (M). Thus, if s− r > σ, taking σ′ such

that σ < σ′ < s− r, we deduce that

−ı(sgn τ0)[�, A∗
γAγ ]

=A∗
2,γ

(
C∗
2x

−2C2 +
∑

i

(x−1Fi,2T1QiT−1 + T−1Q
∗
iT1x

−1F ′
i,2)

+
∑

ij

T−1Q
∗
iQjFij,2T1

)
A2,γ

+A∗
γT

∗
1/2

(
C∗
32(s− r − σ′)x−2C3

+
∑

i

(x−1Fi,5T1QiT−1 + T−1Q∗
iT1x

−1F ′
i,5)

+
∑

ij

T−1Q
∗
iQjFij,5T1

)
T1/2Aγ

+A∗
γT

∗
1/2C

∗
3B

∗
γBγC3T1/2Aγ

+ d∗Zx
−1Λ∗

γC
∗
0C0Λγx

−1dZ + Eγ + E′
γ +R′′

γ ,

(7.15)

with the terms as in (7.12), in particular Fij,5, F
′
ij,5 as Fij,3, etc., there, and

A2,γ = A2Λγ , etc. Here we rewrote the terms in (7.12) somewhat, inserting
T1 and T−1 in places (recall that T1T−1 differs from Id by an element of

Ψ−1,0
eb (M) on K̃, and this difference can be absorbed in R′′

γ) in order to be
able to use Corollary 5.35 directly below. Applying both sides of (7.15) to
u and pairing with u, we claim we may integrate by parts for any γ > 0 on
the right hand side of the resulting expression to obtain

−ı(sgn τ0)〈[�, A∗
γAγ ]u, u〉

=‖x−1C2A2,γu‖2 + 2(s− r − σ′)‖x−1C3T1/2Aγu‖2

+
∑

ij

〈QjFij,2T1A2,γu,QiT
∗
−1A2,γu〉

+
∑

i

(
〈QiT−1A2,γu, x

−1T ∗
1F

∗
i,2A2,γu〉+ 〈x−1T1F

′
i,2A2,γu,QiT−1A2,γu〉

)

+
∑

i

(
〈QiT−1T1/2Aγu, x

−1T ∗
1F

∗
i,5T1/2Aγu〉

+ 〈x−1T1F
′
i,5T1/2Aγu,QiT−1T1/2Aγu〉

)

+
∑

ij

〈QjT1Fij,5T1/2Aγu,QiT
∗
−1T1/2Aγu〉

+ ‖BγC3T1/2Au‖2 + ‖C0Λγx
−1dZu‖2 + 〈(Eγ + E′

γ +R′′
γ)u, u〉,

(7.16)
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and that we may similarly expand the left side by using

(7.17) 〈[�, A∗
γAγ ]u, u〉 = 〈A∗

γAγu,�u〉 − 〈�u,A∗
γAγu〉,

so that pairing with a solution to the wave equation yields identically zero.
We begin by justifying these two integrations by parts, after which we

will read off the consequences. We start with the Dirichlet case. Note that

the L2
g-dual of Y = H1,l

es,0(M) is H
−1,−l−(f+1)
es (M) (where as usual the xf+1

factor derives from the difference between the metric density used in the
pairing and the “edge-density” used to define the norm on H ·,·

es,0(M)). We
have

x−2Diff2
es,♯(M) ∋ � : Y → H−1,l−2

es (M) = x2l+(f+1)−2(Y)∗.

Here we suppressed the quotient map ρ : Ḣ−1,l−2
es (M) → H−1,l−2

es (M), i.e.
the stated mapping property is, strictly speaking, for ρ ◦ �. Furthermore,

the dual of Hs′,r′

eb,Y(M) is

(
Hs′,r′

eb,Y(M)
)∗

= H−s′,−r′

eb,(Y)∗ (M).

Equation (7.17) makes sense directly and naively for γ > 0 if the products

of � with A∗
γAγ ∈ Ψ2s−2σ,2r

eb (M) map Hs′,r′

eb,Y(M) to its dual, H−s′,−r′

eb,(Y)∗ (M).

We thus require

A∗
γAγ : Hs′,r′

eb,Y(M) → H
−s′,−r′−2l−(f+1)+2
eb,Y (M)

which holds if

(7.18)
s− σ ≤ s′,

r ≤ r′ + l + (f + 1)/2− 1.

Following the same line of reasoning shows that if we are willing to settle
for just (7.16), by contrast, we only require the milder hypotheses

(7.19)
s− σ ≤ s′ + 1/2,

r ≤ r′ + l + (f + 1)/2− 1.

In fact, we claim that (7.19) suffices for both (7.16) and (7.17), with the
latter being obtained via the following subtler regularization.

This is best done by replacing u in the second slot of the pairing by a
separate factor Λ̃γ′u, where Λ̃γ is constructed just as Λγ , but with the greater
degree of regularization σ = 1. Thus we have a replaced the lost half of an
edge derivative (on each factor) which obtains from assuming (7.19) instead
of (7.18) and may again integrate by parts to obtain, for γ, γ′ > 0,

〈[�, A∗
γAγ ]u,Λγ′u〉 = 〈A∗

γAγu,�Λγ′u〉 − 〈�u,A∗
γAγΛγ′u〉

= 〈A∗
γAγu,Λγ′�u〉+ 〈A∗

γAγu, [�,Λγ′ ]u〉 − 〈�u,A∗
γAγΛγ′u〉(7.20)

Now, Λγ′ → Id strongly (but not in norm) on Hs′,r′

eb,Y(M) and on Hs′,r′

eb,Y∗ for all

s′, r′; this takes care of the first and third terms. Furthermore, [�,Λγ′ ] → 0
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strongly (but not in norm) as a map from Hs′,r′

eb,Y(M) to Hs′+1,r′

eb,H−1,l
es (M)

(M).

Thus, letting γ′ → 0 shows (7.17) just under the assumption s−σ ≤ s′+1/2,
r ≤ r′ − 1 + l + (f + 1)/2.

The Neumann case is completely analogous, except that then L2
g-dual of

X = H1,l
es (M) is Ḣ

−1,−l−(f+1)
es (M). We have

x−2Diff2
es,♯(M) ∋ � : X → Ḣ−1,l−2

es (M) = x2l+(f+1)−2X∗.

Furthermore, the dual of Hs′,r′

eb,X(M) is

(
Hs′,r′

eb,X(M)
)∗

= H−s′,−r′

eb,X∗ (M).

The rest of the argument proceeds unchanged.
Having justified our integrations by parts, we now show that we can ab-

sorb the Qi-terms in (7.16) in the positive terms (uniformly as γ ↓ 0) by
using Corollary 5.35. Thus, given δ > 0, let U be as in Corollary 5.35; for
sufficiently small ǫ > 0, supp a ⊂ U . For instance, by Cauchy-Schwarz,

|〈QjFij,2T1A2,γu,QiT
∗
−1A2,γu〉| ≤ ‖QiT

∗
−1A2,γu‖2 + ‖QjFij,2T1A2,γu‖2

≤ δ
(
‖DtT

∗
−1A2,γu‖2 + ‖DtFij,2T1A2,γu‖2

)

+̥(‖u‖2
H

1,r+1/2−(f+1)/2
es (M)

+ ‖Gu‖2
H

1,r+1/2−(f+1)/2
es (M)

),

where G ∈ Ψs−1,0
eb (M). The the ‖Gu‖2

H
1,r+1/2−(f+1)/2
es (M)

term can be esti-

mated as 〈R′′
γu, u〉 since

(7.21) ‖Gu‖2
H

1,r+1/2−(f+1)/2
es (M)

= ‖x−r+1/2dMGu‖2L2
g(M ;ΛM),

and (x−r+1/2dMG)
∗(x−r+1/2dMG) ∈ Diff2

esΨ
2s−2,2r+1
eb (M), hence in fact a

little better than R′′
γ , which has weight 2r + 2. Now, for ̥0 > 0 sufficiently

large, depending on K̃ but not on ǫ > 0 (as long as ǫ satisfies (7.3) and
supp a ⊂ U , i.e. ǫ > 0 is sufficiently small), we have

σeb,0,1(DtFij,2T1) ≤ ̥0σeb,0,1(x
−1C2)

on a neighborhood of K̃. Thus,

‖DtFij,2T1A2,γu‖2

≤ 2̥0‖x−1C2A2,γu‖2

+̥′(‖x−r−1u‖2
H

1,r+1/2−(f+1)/2
es (M)

+ ‖G′u‖2
H

1,r+1/2−(f+1)/2
es (M)

),

with G′ ∈ Ψs−1,0
eb (M) (so the last term behaves like (7.21)). Thus, if we

choose δ > 0 such that 8̥0n
2δ < 1, the first term (for all i, j) can be ab-

sorbed in ‖x−1C2A2,γu‖2, while the last two terms are estimated as 〈R′′
γu, u〉.

Essentially identical arguments deal with all the other terms with Qi and
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Qj . In the case where Qi is present on one side of the pairing only, we write,
for instance,

|〈QiT−1A2,γu, x
−1T ∗

1F
∗
i,2A2,γu〉|

≤ δ−1/2‖QiT−1A2,γu‖2 + δ1/2‖x−1T ∗
1F

∗
i,2A2,γu‖2.

Using Corollary 5.35 on the first term, we have an estimate as above after
possibly reducing δ > 0.

Recall that uniform finiteness of
∥∥x−1C3T1/2Aγu

∥∥ as γ ↓ 0 will give ab-

sence of WF
s−1/2,r−l−(f+1)/2
eb,X u ∩ ellA (as always the contribution to the

weight of (f + 1)/2 comes from the metric weight while l comes from the
weight in the definition of the base space, X). Similarly evaluating the other
terms in the pairing, we take the extreme values of s′, r′ allowed by (7.19)
to obtain

(7.22)

WF
s−1/2−σ,r+1−l−(f+1)/2
eb,X u ∩WF′A = ∅,

and WF
s−1/2,r+1−l−(f+1)/2
eb,X u ∩WF′A ∩ {x > 0} = ∅,

and s > r + σ, σ ∈ (0, 1/2]

=⇒ WF
s−1/2,r+1−l−(f+1)/2
eb,X u ∩ ellA = ∅,

or, relabeling,

(7.23)

WFs,r
eb,X u ∩WF′A = ∅, WFs+σ,r

eb,X u ∩WF′A ∩ {x > 0} = ∅,
s > r + l + f/2− 1,

=⇒ WFs+σ,r
eb,X u ∩ ellA = ∅.

Recall here that a = aǫ, and

(7.24) 0 < ǫ < ǫ′ ⇒ WF′(Aǫ) ∩ ebΣ ⊂ ellAǫ′ ∩ ebΣ.

Finally, we show how to use (7.23) iteratively, together with an interpo-
lation argument, to finish the proof of the theorem. A priori we have u ∈ X,
i.e.

WF0,0
eb,X u = ∅,

If 0 > l + f/2 − 1, we may iteratively apply (7.23) (shrinking ǫ > 0 by an
arbitrarily small amount, using (7.24) to estimate the lower order error terms
R′′

γ) starting with s = 0 and always keeping r = 0, to obtain the conclusion
of the theorem. (We choose σ = 1/2 at every stage in this process, until we
are applying (7.23) with s such that s+ 1/2 > m, at which point we finish
the iteration by choosing σ = m − s so as to retain our estimates on the
wavefront set in the hypothesis region.)

However if 0 ≤ l+ f/2− 1, we may not apply (7.23) directly owing to the
lack of positivity of the commutator, and we must employ an interpolation
argument as follows. Applying (7.23) iteratively, this time with r = r0 < 0
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chosen sufficiently negative that we recover 0 > r0 + l+ f/2− 1, shows that
we obtain

(7.25) WFm,r0
eb,X u ∩ S = ∅,

with S = WF′Aǫ for some ǫ > 0, Aǫ constructed as above. Let

L = sup{r′ : WFm,r′

eb,X u ∩ S = ∅, r′ ≤ 0}.
Note that the set on the right hand side is non-empty by (7.25). We aim to
show that L = 0. To this end, note that if L < 0, then for any r′ < L

WFm,r′

eb,X u ∩ S = WF0,0
eb,X ∩S = ∅.

An interpolation then yields, for δ ∈ (0, 1),

WFmδ,r′δ
eb,X u ∩ S = ∅.

Note that for any δ ∈ (0, 1) fixed, the compactness of S implies that for
some ǫ′ > ǫ,

WFmδ,r′δ
eb,X u ∩WF′Aǫ′ = ∅

still holds. If δ ∈ (0, 1) in addition satisfies

(7.26) mδ > r′δ + l + f/2− 1

then by iterating (7.23), shrinking ǫ′ in each step (but keeping it larger than
ǫ), we conclude that

WFm,r′δ
eb,X u ∩ S = ∅,

providing a contradiction with the definition of L if

(7.27) r′δ > L.

It remains to check whether δ ∈ (0, 1) satisfying both (7.26) and (7.27)
exists. This is evident from Figure 5, but a proof is as follows: we have
l + f/2 − 1 ≥ 0 by assumption (otherwise we are in the preceding case);
moreover m > 0 (so that the theorem is not vacuous), and l+ f/2− 1 < m
by hypothesis. Thus, for any r′ < 0,

0 ≤ l + f/2− 1

m− r′
<

m

m− r′
< 1.

Setting

δ0(r
′) =

l + f/2− 1

m− r′
∈ [0, 1)

we see that (7.26) is an equality with δ = δ0(r) and that taking δ ∈ (δ0(r
′), 1)

yields (7.26). In particular, (7.26) is satisfied by δ = δ(r′, λ) = δ0(r
′)(1 + λ)

for any λ > 0 sufficiently small. If L < 0, we have δ0(L) < 1, hence the
function of r′ and λ given by

r′δ(r′, λ) = r′δ0(r
′)(1 + λ)

is strictly greater than L for r′ = L, λ = 0. Hence increasing λ slightly and
decreasing r′ slightly preserves this relationship by continuity, and these
choice of r′ and δ yield r′δ > L as desired. �
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s

r

(m, r′)

(m, 0)(0, 0)

s = r + l + f/2− 1

(mδ, r′δ) (m, r′δ)

1

Figure 5. The interpolation argument. The figure shows
the (s, r) plane, where we plot the values for which there is no
WFm,r

eb,X(u) (i.e. microlocal regularity of this order holds). We

have a priori regularity of order (0, 0) and wish to conclude
regularity of order (m, l′) with l′ < 0. By (7.23) we may
take a step to the right of length σ for any σ ∈ (0, 1/2]
provided that our starting regularity is below the line s =
r + l + f/2 − 1 and that our endpoint is on s ≤ m. If we
know (m, r′) regularity, we know regularity by interpolation
on the whole line connecting this point to the origin; then
starting on the interpolation line just below its intersection
with s = r+l+f/2−1 allows us to achieve (m, r′δ) regularity
by moving to the right, thus improving the optimal weight
for which we have our estimate.

In order to verify the hypotheses of Theorem 7.3, which are stated at
points over the edge, we will employ the following geometric result.

First note that if q ∈ HW,b then Reb,q,I has a neighborhood O1 in ebS∗M
and there is a δ0 > 0 such that any GBB γ with γ(0) ∈ O1 ∩ {x > 0}
satisfies γ|[−δ0,0]∩ bS∗

WM0 = ∅. Indeed, we simply need to take a coordinate
neighborhood

O1 = {p ∈ ebS∗M : ξ̂(p) < −
√
1− h(q)/2, x(p) < ǫ1, |y(p)− y(q)| < ǫ1,

|t(p)− t(q)| < ǫ1, |η̂(p)− η̂b(q)| < ǫ1},
ǫ1 > 0 sufficiently small, since on its intersection with {x > 0} (where ebS∗M

is naturally identified with bS∗M0),
∑
ξ̂bj < 0, hence Lemma 3.5 gives the

desired δ0 (cf. the argument of Remark 3.17). Thus, such GBB γ can be
uniquely lifted to curves γ̃ in ebS∗M .

Lemma 7.4. Suppose that q ∈ HW,b. There exists ǫ0 > 0 with the following
property.

Suppose that 0 < ǫ1 ≤ ǫ0, and U is a neighborhood of Fb
I,q,sing ∩ {t =

t(q) − ǫ1}. Then there is a neighborhood O of Reb,q,I ∩ G in ebS∗M such
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that for every maximally backward extended GBB γ with γ(0) ∈ O∩{x > 0}
there is an s0 < 0 such that γ(s0) ∈ U , γ(s) /∈ bS∗

WM0 for s ∈ [s0, 0].

Proof. It follows from the discussion preceeding the statement of the lemma
that there is a neighborhood O1 of Reb,q,I and δ0 > 0 such that every GBB

γ defined on [−δ0, 0], with γ(0) ∈ O1 ∩ {x > 0} satisfies γ(s) /∈ bS∗
WM0 for

s ∈ [−δ0, 0]. As t(γ(s))− t(γ(0)) = 2τ̂b(γ(0))s, this implies that there is an
ǫ0 > 0 such that for t(γ(s)) ∈ [t(q)− ǫ0, t(q)], γ(s) /∈ bS∗

WM0.
Suppose now for the sake of contradiction that there is no neighborhood O

of Reb,q,I ∩G in ebS∗M such that for every (maximally extended) backward
GBB γ with γ(0) ∈ O ∩ {x > 0}, there exists s0 < 0 with γ(s0) ∈ U .
As Reb,q,I ∩ G is compact, we conclude that there is a sequence of points

pn ∈ O1 ⊂ ebS∗M with x(pn) > 0 (so pn can be regarded as a point in
bS∗M0) and GBB γn such that

• γn(0) = pn,
• the image of γn disjoint from U ,
• pn → p ∈ Reb,q,I ∩ G.

By Corollary 3.18, {γn} has a subsequence {γnk
} converging uniformly to

a GBB γ such that the lift γ̃ of γ to ebS∗M satisfies γ̃(0) = p. Thus, by
Lemma 3.13, γ is not normally incident, so the image of γ is in Fb

I,q,sing, and

thus intersects Fb
I,q,sing∩{t = ǫ1}. As γnk

→ γ uniformly, for large enough k,
γnk

intersects U , providing a contradiction. Thus, there exists O such that
for every (maximally extended) backward GBB γ with γ(0) ∈ O ∩ {x > 0},
there exists s0 < 0 with γ(s0) ∈ U . We may assume that O ⊂ O1 by
replacing O by O ∩O1 if needed.

To finish the proof, we note that, provided ǫ0 > 0 is sufficiently small, if
γ(0) ∈ O ⊂ O1, t(γ(s)) ∈ [t(q)− ǫ0, t(q)] implies γ(s) /∈ bS∗

WM0. �

Theorem 7.3 and this lemma immediately give the following Corollary.

Corollary 7.5. Let u ∈ X ≡ H1,l
es (M) solve �u = 0 with Dirichlet or

Neumann boundary conditions.
Let m > l + f/2 − 1 with m ≥ 0. Suppose that q ∈ HW,b and Fb

I,q,sing ∩
WFm,∗

eb,X u = ∅. Then ebS∗
∂W̃

M ∩WFm,l′

eb,X u = ∅ for all l′ < 0.

Proof. Let ǫ0 > 0 be as in Lemma 7.4. As WFm,∗
eb,X u is closed, Fb

I,q,sing∩{t =
t(q)− ǫ0/2} has a neighborhood U disjoint from WFm,∗

eb,X u. By Lemma 7.4,

Reb,q,I ∩ G has a neighborhood O such that every backward GBB γ with

γ(0) ∈ O ∩ {x > 0} intersects U and is disjoint from bS∗
WM0. By the

propagation of singularities, [34], WFm,∗
eb,X(u) ∩ O ∩ {x > 0} = WFm,∗

b,X (u) ∩
O ∩ {x > 0} = ∅. Note that this uses the fact that every backward GBB γ
with γ(0) ∈ O∩{x > 0} intersects U and is disjoint from bS∗

WM0, for we do
not assume that u lies in a b-derivative of X as we allow arbitrary weights

at W̃ . Thus, by Theorem 7.3, ebS∗
∂W̃

M ∩WFm,l′

eb,X u = ∅ for all l′ < 0. �
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7.3. Propagation at hyperbolic points within the edge. Now we con-
sider propagation within ebS∗

W̃
M, away from the radial points. The propa-

gation away from ∂W̃ is given by the results in [25]: on the edge cosphere

bundle over W̃ ◦, we find that WFeb u = WFeb,X u (with, say, X = H1,l
es (M),

for Dirichlet boundary conditions, X = H1,l
es,0(M) for Neumann boundary

conditions—though this is irrelevant since we are working away from ∂W̃ )
given by is a union of integral curves of Hes|esS∗

W̃
M , given by (3.18), i.e.

1

2
Hes = −ξ̂ζ̂∂ζ̂ +Kij ζ̂

i
∂zj +Kij ζ̂

i
ζ̂
j
∂ξ̂ −

1

2

∂Kij

∂zk
ζ̂
i
ζ̂
j
∂ζ̂

k

,

where, as before, hats denote variables divided by |τ |, hence coordinates in

the edge-smooth cosphere bundle (which over W̃ ◦ is canonically identified
with the edge cotangent bundle). This leaves open only the question of how
bicharacteristics reaching z′ = 0 interact with those leaving z′ = 0, i.e. the
problem of reflection/diffraction from the boundary faces and corners of Z.

Since the propagation over the interior of W̃ can be considered as a special
case of propagation at G \ Reb (see Theorem 7.7, with no z′ variables, i.e.
with k = 0 in the notation of the theorem), we do not state the interior
propagation result of [25] here explicitly.

Let us thus begin by considering a hyperbolic point q ∈ H given by

(7.28) x = 0, t = t0, y = y0, z
′ = 0, z′′ = z′′0 , ξ̂ = ξ̂0, η̂ = η̂0, ζ̂

′ = 0, ζ̂ ′′0 ,

in edge-b canonical coordinates. Thus, in addition to ζ ′ = 0, we have

1 > ξ̂2 + h(y0, η̂0) + k(y0, z
′ = 0, z′′0 , ζ̂

′ = 0, ζ̂ ′′0 ).

In the special case that z′ is a variable in R1, i.e. if q lies on a codimension-
one boundary face of eb, then two points in ebS∗

W̃
(M) lie above q and two

edge bicharacteristics in ebS∗
W̃ ◦

(M) contain q in their closures; we denote

them γ± with the ± given by sgn(ζs′ · z′); we will take γ± to be only the
segments of these bicharacteristics in |z′| < ǫ≪ 1 in order not to enter into
global considerations. Our sign convention is such that γ± tends toward q
under the forward resp. backward bicharacteristic flow. What we will show

in this case is that if u ∈ X ≡ H1,l
es (M) and �u = 0 with Dirichlet or

Neumann boundary conditions then

γ− ∩WFm,0
eb,X u = ∅ =⇒ γ+ ∩WFm,0

eb,X u = ∅ for any m.

More generally, we have the following result, which via standard geometric
arguments (see [24]) implies the propagation along EGBBs through p :

Theorem 7.6. For Neumann boundary conditions, let X = H1,l
es (M), Y =

Ḣ−1,l−2
es (M); for Dirichlet boundary conditions let X = H1,l

es,0(M), Y =

H−1,l−2
es (M).
Let u ∈ X solve �u = f , f ∈ Y. Let p ∈ H be given by (7.28). Let U be

an open neighborhood of p in ebS∗
W̃
(M), let m ∈ R, l′ ≤ 0, and suppose that
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WFm+1,l′

eb,Y (f) ∩ U = ∅. Then

U ∩
{∑

ζ̂ ′i > 0
}
∩WFm,l′

eb,X(u) = ∅ =⇒ p /∈ WFm,l′

eb,X(u).

Thus, the hypothesis region of the theorem, in which we make a wavefront
assumption lies within the points with at least one z′i non-zero, i.e. away from
ebS∗

CM , where C = {x = 0, z′ = 0}, and with momenta directed toward
the boundary z′ = 0.

Proof. As usual, one needs to prove that if in addition to the hypotheses

above p /∈ WF
m−1/2,l′

eb,X (u) then p /∈ WFm,l′

eb,X(u), with a slightly more con-

trolled (but standard) version if m = ∞. So we assume p /∈ WF
m−1/2,l′

eb,X (u)

from now on.
For a constant β to be determined later, let

(7.29) φ =
∑

ζ̂ ′i + βω

where

ω =
∣∣z′
∣∣2+
∣∣z′′ − z′′0

∣∣2+
∣∣∣ζ̂ ′′ − ζ̂ ′′0

∣∣∣
2
+|y − y0|2+|t− t0|2+x2+|η̂ − η̂0|+

∣∣∣ξ̂ − ξ̂0

∣∣∣
2

Then for β sufficiently small, we have

|τ |−1
Hpφ > 0.

Now let χ0 ∈ C∞(R) with support in [0,∞) and χ0(s) = exp(−1/s) for
s > 0. Thus, χ′

0(s) = s−2χ0(s). Take χ1 ∈ C∞(R) to have support in [0,∞),
to be equal to 1 on [1,∞) and to have χ′

1 ≥ 0 with χ′
1 ∈ C∞

c ((0, 1)). Finally,
let χ2 ∈ C∞

c (R) be supported in [−2c1, 2c1] and be identically equal to 1 on
[−c1, c1]. Pick δ < 1. Set

a = |τ |sx−rχ0(M(1− φ/δ))χ1

(∑
ζ̂ ′j/δ + 1

)
χ2

(
|ζ̂ ′|2

)
.

Note that on the support of a, we have

(7.30)
∑

ζ ′j > −δ,
hence we also obtain

(7.31) 0 ≤ ω < 2
δ

β
.

Thus, by keeping δ and δ/β both small, we can keep the support of a within
any desired neighborhood of ζ ′ = 0, ω = 0.

We now quantize a to A ∈ Ψs,r
eb (M). We claim that

(7.32) ı[�, A∗A]

= B∗
(∑

D∗
z′i
CijDz′j

+R0 +
∑

(RiDz′i
+D∗

z′i
R′

i) +
∑

Dz′i
RijDz′j

)
B

+A∗WA+R′′ + E + E′

where
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(1) B ∈ Ψ
s+1/2,r+1
eb (M) has symbol

M
1/2τ s+1/2x−r−1δ−1/2χ1χ2

√
χ0χ′

0

(2) Cij ∈ Ψ−2,0
eb (M), and the symbol-valued quadratic form σ(Cij) is

strictly positive definite on a neighborhood of WF′
ebB,

(3) R,Ri, R
′
i, Rij are in Ψ0,0

eb (M), Ψ−1,0
eb (M), Ψ−1,0

eb (M), and Ψ−2,0
eb (M)

respectively and have (unweighted) symbols bounded by multiples

of
√
δ(
√
β + 1/

√
β).

(4) R′′ ∈ Diff2
es,♯Ψ

−2,0
eb (M), E,E′ ∈ Diff2

es,♯Ψ
−1,0
eb (M),

(5) E is microsupported where we have assumed regularity,

(6) W ∈ Diff2
es,♯Ψ

−1,2
eb (M),

(7) E′ is supported off the characteristic set.

These terms arise as follows. Applying Lemma 5.36, we have (with Qi =
x−1Dz′i

)

(7.33) ı[�, A∗A] =
∑

Q∗
iLijQj +

∑
(x−1LiQi +Q∗

ix
−1L′

i) + x−2L0,

with

Lij ∈ Ψ2s−1,2r
eb (M), Li, L

′
i ∈ Ψ2s,2r

eb (M), L0 ∈ Ψ2s+1,2r
eb (M),

σeb,2m−1(Lij) = 2aVija, Vij = κij(∂ζ′i + ∂ζ′j + 2∂ξ) + Heb,κij ,

σeb,2m(Li) = σeb,2m(L′
i) = 2aVia,

Vi =
∑

j

κij∂z′j +
1

2
(mi∂ξ + Heb,mi) +

1

2
mi(∂ξ + ∂ζ′i),

σeb,2m+1(L0) = 2aV0a, V0 = 2h̃∂ξ + Heb,h̃ +
∑

i

mi∂z′i ,

WF′
eb(Lij),WF′

eb(Li),WF′
eb(L

′
i),WF′

eb(L0) ⊂ WF′
eb(A).

(7.34)

with

V0|C = −2ξ x∂x − 2
(
ξ2 +

∑

ij

k2,ijζ
′′
i ζ

′′
j

)
∂ξ − 2ξ(τ ∂τ + η ∂η)

− 2
∑

i,j

k2,ijζ
′′
i ∂z′′j +

∑

ℓ,i,j

(∂z′′ℓ k2,ij)ζ
′′
i ζ

′′
j ∂ζ′′ℓ ,

Vij |C = −k1,ij(∂ζ′i + ∂ζ′j + 2∂ξ) +
∑

ℓ

(∂z′′ℓ k1,ij)∂ζ
′′

ℓ
, Vi|C = −

∑

j

k1,ij∂z′j ,

(7.35)

First we evaluate the terms in Lij coming from terms in which Vij hits
χ0(M(1 − φ/δ)). The main contribution will be from the derivatives falling

on ζ̂ ′, with the rest controlled by shrinking β; in particular,

Vij(φ/δ) = −2k1,ij + rij
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with

|rij | ≤ const(β
√
ω +

√
ω);

on the support of a, this is in turn controlled by a multiple of

β
√
δ/β +

√
δ/β.

Thus, from these two terms, we obtain corresponding terms in ı[�, A∗A] of
the forms

B∗
(∑

D∗
z′i
CijDz′j

)
B

and

B∗
(∑

D∗
z′i
RijDz′j

)
B

respectively.
Similarly, terms with Vi and V0 hitting χ0 go into the Ri and R0 terms

in (7.32) respectively.
The terms arising from

V•

(
χ1

(∑
ζ̂ ′j/δ + 1

))

are supported on the hypothesis region, {∑ ζ̂ ′j < 0}, hence give commutator

terms of the form x−2E above.
The terms arising from

V•

(
χ2

(
|ζ̂ ′|2

))

lie off of the characteristic set, hence give commutator terms of the form
x−2E′ above.

The term arising from differentiating |τ |sx−r gives the commutator term
A∗WA.

As we are interested in edge-b wavefront set, the termD∗
z′i
CijDz′j

is slightly

inconvenient, but we note that owing to strict positivity of Cij we may
replace it by a multiple of ∆z′/x

2 plus another positive term. Rewriting
∆z′/x

2 = (∆z′/x
2 + �) − �, and noting that the first of these terms is in

x−2Diff2
eb(M) and elliptic on the hyperbolic set, we see that we in fact have

(7.36) ı[A∗A,�] = R′′′�+B∗
(
C∗C +

∑
D∗

z′i
C̃ijDz′j

+R0

+
∑

D∗
z′i
R′

i +RiDz′i
+A∗WA+

∑
D∗

z′i
RijDz′j

)
B +R′′ + E + E′

where C̃ij ∈ Ψ0,2
eb (M) is a positive matrix of operators (this is a priori true

only at the symbolic level, but we may absorb lower-order terms in Rij).
Following [34], we find that for any ̥ > 0,

(7.37) |〈R0w,w〉| ≤ C(
√
δ)
(√

β + 1/
√
β
)
‖w‖2 +̥−1

∥∥R′
0w
∥∥2 +̥‖w‖2,

where R′
0 ∈ Ψ−1

eb has the same microsupport as R0, and is one order lower.

Here we have employed L2 boundedness of Ψ0,0
eb (M), or more specifically,
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the square-root argument used to prove it (cf. [34] for details, specifically
the treatment following (6.18)). By the same token, we can estimate

(7.38)
〈
RiDz′i

w,w
〉
≤ C(

√
δ)
(√

β + 1/
√
β
)(∥∥∥T−1Dz′i

w
∥∥∥
2
+ ‖w‖2

)

+ 2̥‖w‖2 +̥−1
∥∥∥R̃iDz′i

w
∥∥∥
2
,

where R̃i ∈ Ψ−2,0
eb (M) has the same microsupport as Ri, and is one order

lower. We also compute

(7.39)
∣∣∣
〈
RijDz′i

w,Dz′j
w
〉∣∣∣ ≤ C(

√
δ)
(√

β+1/
√
β
)(∥∥∥T−1Dz′i

w
∥∥∥
2
+
∥∥∥T−1Dz′j

w
∥∥∥
2
)

+ 2̥

(∥∥∥T−1Dz′j
w
∥∥∥
2
+
∥∥∥T−1Dz′j

w
∥∥∥
2
)
+ 2̥‖w‖2

+̥−1
∥∥∥R̃ijDz′i

w
∥∥∥
2
+̥−1

∥∥∥R̃′
ijDz′j

w
∥∥∥
2
,

where R̃ij , R̃
′
ij ∈ Ψ−3

eb (M) have the same microsupport as Rij , and are one

order lower. Although the argument is identical to that in [34], [25], we
reproduce the derivation of (7.39) for the convenience of the reader; (7.37)
and (7.38) follow by similar (easier) arguments. To begin, we note that

T ∗
1Rij ∈ Ψ−1

eb (M) has symbol bounded by C(
√
δ)(

√
β+1/

√
β), hence by the

Hörmander square-root argument

(7.40) ‖T ∗
1Riju‖2 ≤ C(

√
δ)
(√

β + 1/
√
β
)
‖u‖2 +

∥∥∥R̃iju
∥∥∥
2

with R̃ij as described above. Now write Dz′j
w = T1T−1Dz′j

w − FDz′j
w; this

permits us to expand
〈
RijDz′i

w,Dz′j
w
〉
=
〈
T ∗
1RijDz′i

w, T−1Dz′j
w
〉
−
〈
RijDz′i

w,FDz′j
w
〉
.

The first term on the right may be controlled, using (7.40) and Cauchy-
Schwarz, by the RHS of (7.39); the second term may also be so estimated

by again applying Cauchy-Schwarz and absorbing
∥∥∥FDz′j

w
∥∥∥
2
into a term

∥∥∥R̃′
ijDz′j

w
∥∥∥
2
with appropriately enlarged R̃′

ij .

Now we turn to making our commutator argument. Let u be a solution
to

�u = f

with Dirichlet or Neumann boundary conditions. Choose Λγ ∈ Ψ−1
eb (M)

converging to the identity as γ ↓ 0 as in §7.2. Note that by making Λγ ∈
Ψ−1

eb (M), we are combining the roles of the regularizer Λγ ∈ Ψ−σ
eb (M) in

§7.2, required for obtaining an improvement over the a priori assumptions,
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and the regularizer Λ̃γ′ used to justify the pairing argument, see (7.20). Let
Aγ = ΛγA with A constructed as above. As before, we have

(7.41) ı[�, A∗
γAγ ] = Λ∗

γı[�, A
∗A]Λγ +A∗ı[�,Λ∗

γΛγ ]A+ R̃,

with R̃ uniformly bounded in Diff2
es,♯Ψ

2s−2,2r+2
eb (M) (hence lower order), and

where

[�,Λ∗
γΛγ ] ∈ Diff2

es,♯Ψ
−1,2
eb (M)

is uniformly bounded, and in fact

[�,Λ∗
γΛγ ] = Λ∗

γW̃γΛγ ,

with W̃γ uniformly bounded in Diff2
es,♯Ψ

−1,2
eb (M), cf. (7.14).

Now we pair A∗
γAγ with u. Letting Bγ = BΛγ , provided integrations by

parts can be justified, we have

(7.42) 〈Aγ�u,Aγu〉 − 〈Aγ , Aγ�u〉

=
〈
ı[A∗

γAγ ,�]u, u
〉
= ‖CBγu‖2 +

∑〈
C̃ijDz′j

Bγu,Dz′i
Bγu

〉

+ 〈R0Bγu,Bγu〉+
∑〈

Dz′i
Bγu,RiBγu

〉
+
〈
R′

iBγu,Dz′i
Bγu

〉

+
∑〈

Dz′j
RijBγu,Dz′i

Bγu
〉
+ 〈WγAγu,Aγu〉+

〈
(R′′

γ + Eγ + E′
γ)u, u

〉

whereWγ is uniformly bounded in Diff2
es,♯Ψ

−1,2
eb (M) and comprises both the

W term from above and the term containing [�,Λ∗
γΛγ ]. The integrations by

parts may by justified, for any γ > 0, if

(7.43) WFs′,l′

eb,X u ∩WF′A = ∅

whenever

s− 1 ≤ s′, r ≤ l′ + l +
(f + 1)

2
− 1

since then the products of � with A∗
γAγ map Hs′,l′

eb,X(M) to its dual (as

required in the Neumann setting), as well as mapping Hs′,l′

eb,Y(M), Y =

H1,l
es,0(M), to its dual (as required in the Dirichlet setting). We take s′ =

m− 1/2, hence s = m+1/2, and r = l′+ l+ (f+1)
2 − 1 here, and note that it

suffices to have the microlocal assumptions (7.43) rather than global assump-

tions in view the microlocality of Ψ
(
ebM), see Lemma 5.15 and Lemma 5.16.

We now examine the terms on the RHS. The first two are positive. To the
third, we apply (7.37), with w = Bγu: if δ, δ/β, and ̥ are sufficiently small,
we may absorb the first and third terms on the RHS of (7.37) in ‖CBγu‖,
while the lower-order second is uniformly bounded by our wavefront as-
sumptions. Likewise, applying (7.38) and (7.39), we may choose ̥, δ, β so

as to absorb terms involving ̥ and (
√
δ)(

√
β + 1/

√
β) in

∥∥x−1CBγu
∥∥2;
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the ̥−1 terms, as they are lower order, remain bounded. Moreover, as
χ′
0(s) = s−2e−1/s for s > 0 and vanishes for s ≤ 0,

M
2(1− φ/δ)2χ′

0(M(1− φ/δ)) = χ0(M(1− φ/δ)).

Thus,

|τ |1/2x−1a

= |τ |s+1/2x−r−1
M(1− φ/δ)

√
χ0(M(1− φ/δ))χ′

0(M(1− φ/δ))

χ1

(∑
ζ̂ ′j/δ + 1

)
χ2

(
|ζ̂ ′|2

)

= M
1/2δ1/2(1− φ/δ)b ≤ 2M1/2δ1/2b

as φ ≥ ∑
ζ̂ ′i ≥ −δ on supp a. We deduce that ‖T1/2x−1Aγu‖ can be esti-

mated by 4M1/2δ1/2‖CBγu‖ plus lower order terms, and hence, for M chosen

sufficently small, we may absorb the Wγ term in ‖CBγu‖2.
Finally we consider the LHS of (7.42). We have

(7.44)

|〈Aγ�u,Aγu〉| ≤ ‖(T−1/2)
∗xAγ�u‖ ‖T1/2x−1Aγu‖+ |〈xAγ�u, x

−1FAγu‖
≤ ̥−1

1 ‖(T−1/2)
∗xAγ�u‖2 +̥1‖T1/2x−1Aγu‖2 + |〈xAγ�u, x

−1FAγu‖

with F ∈ Ψ−1,0
eb (X), hence x−1FAγ uniformly bounded in Ψs−1,r+1

eb (M),

xAγ uniformly bounded in Ψs,r−1
eb (M), so as s = m + 1/2, and r = l′ + l +

(f+1)
2 − 1, the last term is uniformly bounded by the a priori assumptions.

Similarly, ‖(T−1/2)
∗xAγ�u‖ is uniformly bounded, as (T−1/2)∗xAγ is uni-

formly bounded in Ψ
s−1/2,r−1
eb (M), while ‖T1/2x−1Aγu‖2 can be absorbed in

‖CBγu‖2 (for ̥1 sufficiently small) as discussed above.
The net result is that ∥∥x−1CBuγ

∥∥2

remains uniformly bounded as γ ↓ 0. Noting that CBγ → CB strongly (cf.

the proof of Lemma A.3), CB ∈ Ψ
s+1/2,r+1
eb (M) is elliptic at q, s = m+1/2,

and r = l′ + l + (f+1)
2 − 1, X = H1,l

es (M), we can complete the proof in the
standard manner. �

7.4. Propagation at glancing points within the edge. Let q ∈ G\Reb

be given by

x = 0, t = t0, y = y0, z
′ = 0, z′′ = z′′0 , ξ̂ = ξ̂0, η̂ = η̂0, ζ̂

′ = 0, ζ̂ ′′ = ζ̂ ′′0 .

As q ∈ G,
ξ̂20 + h(y0, η̂0) + k(y, z, ζ̂ ′ = 0, ζ̂ ′′0 ) = 1.

As q /∈ Reb,

ξ̂20 + h(y0, η̂0) < 1,
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so ζ̂ ′′0 6= 0, and h(y0, η̂0) < 1, so ̟eb(q) ∈ HW,b. We will let Π locally denote
the coordinate projection onto the variables

(ξ̂, z′′, ζ̂ ′′);

Let W be a homogeneous vector field equal to V0 (from (5.19)) at q, and

extended in local coordinates to a constant vector field in (ξ̂, z′′, ζ̂ ′′), i.e., to
be a vector field in these variables only, with constant coefficients.

Theorem 7.7. For Neumann boundary conditions, let X = H1,l
es (M), Y =

Ḣ−1,l−2
es (M); for Dirichlet boundary conditions let X = H1,l

es,0(M), Y =

H−1,l−2
es (M).
Let u ∈ X solve �u = f , f ∈ Y. Let q ∈ G\Reb be as above, and suppose

that m ∈ R, l′ ≤ 0, and q /∈ WFm+1,l′

eb,Y (f).

There exists δ0 > 0 and C0 > 0 such that for all δ ∈ (0, δ0) and β ∈
(C0δ, 1),

(7.45)

Σeb ∩
{
q′ : |Π(q′)−Π(q)− δW| < δβ, |z′(q′)| < δβ

}
∩WFm,l′

eb,X u = ∅
=⇒ q /∈ WFm,l′

eb,X u

Remark 7.8. Here the interesting case is taking β as small as possible, i.e.
O(δ), to localize in a O(δ2)-ball around Π(q)+δW, which is what makes the
proof of propagation of singularities result possible (by eventually letting
δ → 0). The statement of the theorem may be vacuous for β large.

Proof. Below we will choose δ0 > 0 sufficiently small so that WFm+1,l′

eb,Y (f) is

disjoint from a δ0-neighborhood of q (see the discussion before Lemma 5.34).
Let k be the codimension of the face over which q lies. Let ρ2n−2k be the

degree-zero homogeneous function with

ρ2n−2k|W̃ = τ−2h̃|W̃ ,
with h̃ as in Lemma 5.30; note that ρ2n−2k(q) = 0 by (3.22) and dρ2n−2k(q) 6=
0 since at least one of the dζ̂ ′′k+1(q), . . . , dζ̂

′′
f (q) components of dρ2n−2k(q) is

non-zero, in view of the quadratic nature of τ2(1 − ρ2n−2k) in the fibers of

the cotangent bundle and (3.22) and ζ̂ ′′0 6= 0 as observed above. We remark
that, with V0 as in (5.19),

V0ρ2n−2k|W̃ = 0.

Note that ebS∗M has dimension 2(n+1)− 1 = 2n+1, thus, with C = {x =
0, z′ = 0}, G ∩ ebS∗

CM has dimension 2n+ 1− 2k − 2 = 2n− 2k − 1 in view
of (3.22). We proceed by remarking that

(Wx)|W̃ = 0, (Wyj)|W̃ = 0, (Wt)|W̃ = 0, (Wη̂j)|W̃ = 0,

so t, yj , η̂j give 1 + 2(n − f − 1) = 2(n − f) − 1 homogeneous degree

zero functions on ebT ∗M (or equivalently C∞ functions on ebS∗M) whose
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restrictions to G∩ebS∗
CM have linearly independent differentials at q. We let

ρ2, . . . , ρ2n−2f be given by these functions, and let ρ1 = x. We next remark
that, in the notation of (5.11),

Wξ̂(q) = −2k2(x = 0, y0, z
′ = 0, z′′0 ), ζ̂

′′
0 ) < 0

as ζ̂0 6= 0, hence W(q) 6= 0. Further, we let ρj , j = 2n − 2f + 1, . . . , 2n −
2k − 1, be degree-zero homogeneous functions on ebT ∗M (or equivalently
C∞ functions on ebS∗M) such that d(ρ2|G), . . . , d(ρ2n−2k−1|G) have linearly
independent differentials at q, and such that

Wρj(q) = 0.

Such functions ρj exist as G ∩ ebS∗
CM has dimension 2n + 1 − 2k − 2 =

2n−2k−1, so the 2n−2f−1 functions ρ2, . . . , ρ2n−2f can be complemented
by some functions ρ2n−2f+1, . . . , ρ2n−2k−1 to obtain 2n − 2k − 1 functions

whose pullbacks to G ∩ ebS∗
CM have linearly independent differentials and

which are annihilated by W at q, for the space of such one-forms is 2n −
2k − 2 dimensional. Thus, by dimensional considerations (using W(q) 6= 0),
{dρj |G(q) : j = 2, . . . , 2n − 2k − 1} spans the space of one-forms on G
annihilated by W(q), and dρ2, . . . , dρ2n−2k−1 together with d(ξ̂|G − ξ̂0) span
T ∗G. Let

ω0 =

2n−2k−1∑

j=1

ρ2j ;

then keeping in mind that |x| ≤ ω
1/2
0 , and with V0, Vi, Vij as in (5.19),

|τ |−1|V0ω0| .
√
ω0(

√
ω0 + |ξ̂ − ξ̂0|+ |z′|),

|Viω0| .
√
ω0 x ≤ ω0, |τ | |Vijω0| .

√
ω0,

by (5.19) and (5.17). Note also that
∣∣τ |−1|V0|z′|2

∣∣ . |z′|(|z′|+ x)
∣∣Vi|z′|2

∣∣ . |z′|, |τ |
∣∣Vij |z′|2

∣∣ . |z′|2.
Let ω = ω0 + |z′|2. Then

|τ |−1|V0ω| .
√
ω(

√
ω + |ξ̂ − ξ̂0|), |Viω| .

√
ω, |τ | |Vijω| .

√
ω.

(7.46)

Let

φ = ξ̂ − ξ̂0 +
1

β2δ
ω

By (5.20),
∣∣|τ |−1 V0ξ̂ + 2

∑

ij

k2,ij ζ̂
′′
i ζ̂

′′
j

∣∣ . x ≤ ω1/2,

|Viξ̂| . (|z′|+ x) . ω1/2, |τ | |Vij ξ̂| . 1.

(7.47)
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In particular, as ζ̂ ′′0 6= 0,

|τ |−1 V0ξ̂ ≤ −c0 + C ′
1ω

1/2,

for some c0 > 0, C ′
1 > 0.

Set

a = |τ |sx−rχ0(M(2− φ/δ))χ1

(
(ξ̂ − ξ̂0 + δ)/βδ + 1

)
χ2

(
|ζ̂ ′|2

)
.

We always assume for this argument that β < 1, so on supp a we have

φ ≤ 2δ and ξ̂ − ξ̂0 ≥ −βδ − δ ≥ −2δ.

Since ω ≥ 0, the first of these inequalities implies that ξ̂ − ξ̂0 ≤ 2δ, so on
supp a

(7.48) |ξ̂ − ξ̂0| ≤ 2δ.

Hence,

(7.49) ω ≤ β2δ(2δ − (ξ̂ − ξ̂0)) ≤ 4δ2β2.

Moreover, on supp dχ1,

(7.50) ξ̂ − ξ̂0 ∈ [−δ − βδ,−δ], ω1/2 ≤ 2βδ,

so this region lies in the hypothesis region of (7.45) after β and δ are both
replaced by appropriate constant multiples.

We now quantize a to A ∈ Ψs,r
eb (M). By Lemma 5.36,

(7.51) ı[�, A∗A] =
∑

Q∗
iLijQj +

∑
(x−1LiQi +Q∗

ix
−1L′

i) + x−2L0,

with

Lij ∈ Ψ2s−1,2r
eb (M), Li, L

′
i ∈ Ψ2s,2r

eb (M), L0 ∈ Ψ2s+1,2r
eb (M),

σeb,2s−1(Lij) = 2aVija,

σeb,2s(Li) = σeb,2s(L
′
i) = 2aVia, σeb,2s+1(L0) = 2aV0a,

WF′
eb(Lij),WF′

eb(Li),WF′
eb(L

′
i),WF′

eb(L0) ⊂ WF′
eb(A),

(7.52)

with Vij , Vi and V0 as above, given by (5.19). Thus, we obtain

(7.53) ı[�, A∗A]

= B∗
(
C∗C +

∑
D∗

z′i
CijDz′j

+
∑(

RiDz′i
+D∗

z′i
R′

i

)
+
∑

D∗
z′i
RijDz′j

)
B

+A∗WA+R′′ + E + E′

where

(1) B ∈ Ψ
s+1/2,r+1
eb (M) has symbol

M
1/2|τ |s+1/2x−r−1δ−1/2χ1χ2

√
χ0χ′

0

(2) C ∈ Ψ0,0
eb (M), has strictly positive symbol on a neighborhood of

WF′
ebB, given by (−V0φ)1/2 near WF′

ebB,

(3) Cij ∈ Ψ−2,0
eb (M), (Cij) positive semidefinite,
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(4) Ri, R
′
i, Rij are in Ψ−1,0

eb (M), Ψ−1,0
eb (M), and Ψ−2,0

eb (M) respectively
and have (unweighted) symbols ri, r

′
i, rij with

(7.54) |τ | |ri|, |τ | |r′i|, |τ |2 |rij | . 1/β,

(5) W ∈ Diff2
es,♯Ψ

−1,−2
eb (M),

(6) R′′ ∈ Diff2
es,♯Ψ

−2,0
eb (M), E,E′ ∈ Diff2

es,♯Ψ
−1,0
eb (M),

(7) E is microsupported where we have assumed regularity,
(8) E′ is supported off the characteristic set.

These terms arise as follows. By (7.46), (7.47), (7.48), and (7.50),

V0φ = V0
(
ξ̂ − ξ̂0

)
+

1

β2δ
V0ω

≤ −c0 + C ′
1ω

1/2 +
1

β2δ
C ′′
1ω

1/2
(
ω1/2 + |ξ̂ − ξ̂0|

)

≤ −c0 + 2(C ′
1 + C ′′

1 )
(
δ +

δ

β

)
≤ −c0/4 < 0.

provided that δ < 2
16(C′

1+C′′

1 )
, β

δ >
16(C′

1+C′′

1 )
2 , i.e. that δ is small, but β/δ is

not too small—roughly, β can go to 0 at most as a multiple of δ (with an
appropriate constant) as δ → 0. Recall also that β < 1, so there is an upper
bound as well for β, but this is of no significance as we let δ → 0. Thus,
we define C to have principal symbol equal to the product of (−V0φ)1/2
times a cutoff function identically 1 in a neighborhood of supp a, but with
sufficiently small support so that −V0φ > 0 on it. Thus, the L0-term of
(7.51) gives rise to the C∗C term of (7.53), as well as contributing to the
E and E′ terms (where χ1 and χ2 are differentiated), W (where the weight
|τ |sx−r is differentiated) and the lower order term R′′.

Similarly, the Li, L
′
i and Lij terms in which Vi or Vij differentiates χ1 or

χ2 contribute to the E and E′ terms, while those in which they differentiate
the weight contributes to theW term, so it remains to consider when Vi and
Vij differentiate χ0. As we keep β < 1,

|Viφ| ≤ |Viξ̂|+ |Viω| . 1 + (β2δ)−1ω1/2 . 1 + β−1 . β−1, |Vijφ| . β−1,

which thus proves the estimates on the terms arise this way, namely Ri, R
′
i,

Rij , above.
We now employ Lemma 5.34 to estimate the Dz′i

terms as in the proof of
Theorem 7.3. Note that we are using the finer result, Lemma 5.34, rather
than its corollary here (unlike in Theorem 7.3), to obtain better control over
the constant in front of the Dz′i

terms as we shrink δ and β. The important

fact is that G ∩ ebS∗
CM is defined by ρ2n−2k = 0, x = 0, z′ = 0, and

ρ2n−2k, x, |z′| . ω1/2 ≤ 2δβ

on the wave front set of Cij , Ri, R
′
i, Rij . Thus, we can apply Lemma 5.34

for a C1βδ-neighborhood of a compact subset of G. Noting that xDtT−1 ∈
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Ψ0,0
eb (M), we conclude that, with Bγ = BΛγ , and for Neumann boundary

conditions,
∑∥∥∥Dz′i

T−1Bγu
∥∥∥
2
≤ C0C1βδ‖Bγu‖2 + C̃Q(u,Gu, G̃u)

Q(u,Gu, G̃u) = ‖u‖2
H

1,r−(f−1)/2
es (M)

+ ‖Gu‖2
H

1,r−(f−1)/2
es (M)

+ ‖�u‖2
Ḣ

−1,r−(f+3)/2
es

+ ‖G̃�u‖2
Ḣ

−1,r−(f+3)/2
es

,

(7.55)

where G ∈ Ψs,0
eb (M), G̃ ∈ Ψ

s+1/2,0
eb (M) (independent of γ) with wave front

set in a neighborhood of supp a. For Dirichlet conditions we simply replace

H1,r−(f−1)/2
es (M) by H

1,r−(f−1)/2
es,0 (M)

and

Ḣ−1,r−(f+3)/2
es (M) by H−1,r−(f+3)/2

es (M).

Note that by (7.54) we have for all w ∈ L2,

‖T ∗
1R

∗
iw‖ ≤ C2β

−1‖w‖+ ‖R̃iw‖, R̃i ∈ Ψ−1,0
eb (M),

with R̃i having the same microsupport as Ri. But

|〈RiDz′i
Bγu,Bγu〉|

≤ |〈RiT1Dz′i
T−1Bγu,Bγu〉|+ |〈Ri[T1, Dz′i

]T−1Bγu,Bγu〉|
≤ ‖Dz′i

T−1Bγu‖ ‖T ∗
1R

∗
iBγu‖+ |〈R̂iBγu,Bγu〉|, R̂i ∈ Diff1

esΨ
−2,0
eb (M),

and |〈R̂iBγu,Bγu〉| can be estimated by the inductive hypothesis, while

‖Dz′i
T−1Bγu‖ ‖T ∗

1R
∗
iBγu‖

≤ (C0C1βδ)
1/2C2β

−1‖Bγu‖2 + C̃1/2Q(u,Gu, G̃u)1/2‖Bγu‖
≤ C2(C0C1δ/β)

1/2‖Bγu‖2 +̥−1C̃Q(u,Gu, G̃u) +̥‖Bγu‖2.
As ̥ > 0 is freely chosen, the main point is that if δ/β is sufficiently small,
the first term can be absorbed into ‖CBγu‖2, for the principal symbol of C is

bounded below by (c0/4)
1/2 on supp a. Since the R′

i term is analogous, and
the Rij term satisfies better estimates (for one uses (7.55) directly, rather
than its square root, as for Ri), the proof can be finished as in Theorem 7.6.

�

Finally, applying arguments that go back to [24, Section 3 and Proof
of Theorem 5.10], see [14, Proof of Proposition VII.1] and [34, Proof of
Theorem 8.1] for the setting of manifolds with corners, we may put together
Theorems 7.6 and 7.7 to obtain propagation of edge-b wavefront set along
EGBBs over the edge face:

Theorem 7.9. For Neumann boundary conditions, let X = H1,l
es (M), Y =

Ḣ−1,l−2
es (M); for Dirichlet boundary conditions let X = H1,l

es,0(M), Y =

H−1,l−2
es (M).



DIFFRACTION ON MANIFOLDS WITH CORNERS 93

Let u ∈ X solve �u = f , f ∈ Y. Then for all s ∈ R ∪ {∞}, l′ ≤ 0,
(
(WFs,l′

eb,X(u) \WFs+1,l′

eb,Y (f)) ∩ ebS∗
W̃
M
)
⊂ ebΣ

is a union of maximally extended EGBBs in ebΣ \WFs+1,l′

eb,Y (f).

8. Propagation of fiber-global coisotropic regularity

We now state a microlocal result on the propagation of coisotropy. The
result says that coisotropic regularity propagates along EGBBs provided that
we also have infinite order regularity along all rays arriving at radial points
in G.
Theorem 8.1 (Microlocal propagation of coisotropy). Suppose that u ∈
H1,l

es (M), �u = 0, with Dirichlet or Neumann boundary conditions (see
Definition 5.20), p ∈ HW,b. Suppose also that

(i) q ∈ (Heb→p,b ∩Reb,O) \ ebS∗
∂W̃

M ,

(ii) u has coisotropic regularity of order k ∈ N relative to Hm on the
coisotropic Fb

I,reg in an open set containing all points in Fb
I,p,reg∩{0 <

x < δ} that are geometrically related to Feb
O,q.

(iii) WFb(u) ∩ Fb
p,I,sing = ∅.

Then u has coisotropic regularity of order k relative to Hm′

for all

m′ < min(m, l + f/2)

on Fb
O,reg, in a neighborhood of Feb

O,q,reg.

Proof. The second numbered assumption and propagation of WFe through
incoming radial points, Theorem 7.1 part (1), implies that along EGBBs in

the backward flow of q which pass through Reb,I\G there is no WFm,l̃
eb , with

l̃ = min(l,m− f/2− 0).

In view of Theorem 7.3, the third assumption gives the same along EGBBs
in the backward flow of q which pass through Reb,I ∩G. Thus, near q, but on
the EGBBs in the backward flow of q, there is no WFm,l̃

eb at all. Propagation

of singularities through q (Theorem 7.1 part (2)) then gives no WFe
m̃,l̃,

m̃ = min(m, l̃ + f/2 − 0), on the flow-out. Substituting in l̃, we see that

m̃ = min(m, l + f/2 − 0), giving no WFm′,l̃
eb . Thus in x > 0, near the flow

out, there is no WFm′

, which gives the case k = 0.
We now turn to the general case, k 6= 0. To begin, note that assumption ii

and Theorem 7.1 imply that in fact we have coisotropic regularity of order

k relative to Hm,l̃
eb at all q′ ∈ Reb,p,I that are connected to q by an EGBB.

This in turn yields absence of WFm+k,l̃
eb in a neighborhood of each such q in

ebS∗
W̃
M, as the operators in A are all characteristic only at the radial points

over W̃ . By Theorem 7.9 followed by the second part of Theorem 7.1, we
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then achieve coisotropic regularity of order k relative to Hm′,l̃
e at q, hence in

a neighborhood as well. �

Corollary 8.2. Suppose that u ∈ H1,l
es (M), �u = 0, with Dirichlet or Neu-

mann boundary conditions, p ∈ HW,b, k ∈ N. Suppose also that

(i) u has coisotropic regularity of order k relative to Hm on the co-
isotropic Fb

I,reg in a neighborhood of Feb
I,p,reg,

(ii) WFb(u) ∩ Fb
p,I,sing = ∅.

Then u has coisotropic regularity of order k relative to Hm′

for all

m′ < min(m, l + f/2)

on Fb
O,reg in a neighborhood of Fb

O,p,reg.

Finally, we prove that the regularity with respect to which coisotropic
regularity is gained in the above results is not, in fact, dependent on the
weight l :

Corollary 8.3. Suppose that u ∈ H1(M0), �u = 0, with Dirichlet or Neu-
mann boundary conditions, p ∈ HW,b, k ∈ N, ǫ > 0. There exists k′ (de-
pending on k and ǫ) such that if

(i) u has coisotropic regularity of order k′ relative to Hs on the co-
isotropic Fb

I,reg in a neighborhood of Fb
I,p,reg, and

(ii) WFb(u) ∩ Fb
p,I,sing = ∅,

then u has coisotropic regularity of order k relative to Hs−ǫ on Fb
O,reg in a

neighborhood of Fb
O,p,reg.

Proof. Consider Dirichlet boundary conditions first. Then

u ∈ H
1,1−(f+1)/2
es,0 (M).

Thus, by Corollary 8.2, u has coisotropic regularity of order k′ relative to14

Hm−ǫ, m < min(s, 1/2) on Feb
O,reg near Feb

O,p,reg, strictly away from ∂M .

On the other hand, by the propagation of singularities, [34, Corollary 8.4],
u is in Hs along Fb

O,p. Hence the theorem follows by the interpolation result
of the following lemma, Lemma 8.4.

Consider Neumann boundary conditions next. Then u ∈ H
1,−(f+1)/2
es (M),

so by Corollary 8.2, u has coisotropic regularity of order k′ relative to Hm−ǫ,
m < min(s,−1/2) on Fb

O,reg near Fb
O,p,reg, strictly away from ∂M .

Proceeding now as in the Dirichlet case, using [34, Corollary 8.4], we
complete the proof. �

Lemma 8.4. Suppose that u is in Hs microlocally near some point q away
from ∂M , and it is coisotropic of order N relative to Hm near q with s > m.

14An improved version of the argument, using powers of ∂t to shift among Sobolev
spaces, gives coisotropy of order k′ relative to Hs−1/2−ǫ.
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Then for ǫ > 0 and k < (ǫN)/(s−m), u is coisotropic of order k relative to
Hs−ǫ near q.

In particular, if u is in Hs microlocally near some point q away from ∂M
and u is coisotropic (of order ∞) relative to Hm near q with s > m, then u
is coisotropic relative to Hs−ǫ for all ǫ > 0.

Proof. If Q ∈ Ψ0(M) and WF′(Q) lies sufficiently close to q, then the hy-
potheses are globally satisfied by u′ = Qu. Moreover, being coisotropic,
locally Feb can be put in a model form ζ = 0 by a symplectomorphism
Φ in some canonical coordinates (y, z, η, ζ), by [10, Theorem 21.2.4] (for
coisotropic submanifolds one has k = n− l, dimS = 2n, in the theorem).15

Further reducing WF′(Q) if needed, and using an elliptic 0th order Fourier
integral operator F with canonical relation given by Φ to consider the in-
duced problem for v = Fu′ = FQu, we may thus assume that v ∈ Hs, and
Dα

z v ∈ Hm for all α, i.e. 〈Dz〉Nv ∈ Hm. Considering the Fourier transform
v̂ of v, we then have 〈η, ζ〉sv̂ ∈ L2, 〈η, ζ〉m〈ζ〉N v̂ ∈ L2. But this implies

〈η, ζ〉mθ+s(1−θ)〈ζ〉Nθv̂ ∈ L2 for all θ ∈ [0, 1] by interpolation (indeed, in
this case by Hölder’s inequality). In particular, taking θ = (ǫ)/(s − m),
〈η, ζ〉s−ǫ〈ζ〉kv̂ ∈ L2 if k < (Nǫ)/(s−m), and the lemma follows. �

9. Geometric theorem

The final essential ingredient in the proof of the geometric theorem is
the dualization of the coisotropic propagation result, Corollary 8.3. Before
proving such a result, we first make a definition analogous to Definition 5.12,
but for the b-wave front set. This relative b-wave front set was used in [34]
to describe the propagation of singularities on M0.

Definition 9.1. Let X ⊂ C−∞(M0) denote a Hilbert space on which, for each
K ⊂ M0 compact, operators in Ψ0

b(M0) with Schwartz kernel supported in
K ×K are bounded, with the operator norm of Op(a) depending on K and
a fixed seminorm of a.

For m ≥ 0, let

Hm
b,X,loc(M0) =

{
u ∈ Xloc : Au ∈ Xloc for all A ∈ Ψm

b (M0)
}
.

Let q ∈ bS∗M0, u ∈ Xloc. For m ≥ 0, we say that q /∈ WFm
b,X(u) if

there exists A ∈ Ψm
b (M) elliptic at q such that Au ∈ Xloc. We also define

q /∈ WF∞
b,X(u) if there exists A ∈ Ψ0

b(M0) elliptic at q such that Au ∈
H∞

b,X,loc(M0).

Theorem 9.2. Let u ∈ H−∞
b,H1

loc

(M0) satisfy the wave equation with Dirichlet

or Neumann boundary conditions. Let p ∈ HW,b, and w ∈ Fb
O,p,reg.

Suppose k ∈ N and ǫ > 0. Then there is k′ ∈ N (depending on k and ǫ)
such that if WFb(u)∩Fb

I,p,sing = ∅ and u is non-focusing of order k relative

15Roughly speaking, y would correspond to the coordinates (x, y, t) on M , while z

correspond to the fiber variables z on M ; this is literally true in a model setting.
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to Hs on a neighborhood of Fb
I,p,reg in Fb

I,reg then u is non-focusing of order

k′ relative to Hs−ǫ at w.

Remark 9.3. The essential idea of the proof is as follows. Our results on
propagation of coisotropic regularity show that coisotropic regularity en-
tering the corner along Fb

I,p,reg, together with smoothness at Fb
I,sing, imply

coisotropic regularity along Fb
O,p,reg. In other words, regularity under appli-

cation of Aα (in the notation of §6) along Fb
I,p,reg together with smooth-

ness along singular incoming rays, yields regularity under Aα along Fb
O,p,reg.

Heuristically speaking, the dual condition to our incoming regularity hypoth-
esis is that of lying in the sum of the ranges of the operators Aα, R, where R
is an operator of high order microsupported near Fb

I,p,sing. By time reversal

and duality, we thus find that the condition of nonfocusing along Fb
I,p,reg,

i.e. lying in the sum of the ranges of the Aα’s microlocalized there, plus
arbitrary bad regularity near Fb

I,p,sing, leads to nonfocusing along Fb
O,p,reg.

The difficulty in implementing this plan is primarily in rigorously making
the duality arguments on spaces of coisotropic wave equation solutions. The
reader familiar with [25] will note that the arguments used here are consid-
erably more intricate than those in Section 13 of [25]. The reason for this is
two-fold. First, the identification of the dual spaces, denoted Hi

∗ in [25], was
not fully explained and indeed somewhat flawed. (In particular, we note that
the identification of the dual space of coisotropic distributions that are also
wave equation solutions requires some effort.) These defects are remedied in
the current treatment, in which we use the results on duality from Appen-
dix A to identify the duals of coisotropic distributions, together with results
on the inhomogeneous wave equation. Second, difficulties are present in the
corners setting that did not arise in [25]; in particular, we must identify ad-
joints with respect to the elliptic Dirichlet form of operators microsupported
on Feb

I,p,sing. This requires some functional analytic care.

Proof. We assume s ≤ 0 to simplify notation; we return to the general case
at the end of the argument.

Let T = t(p), and choose T0 < T < T1 sufficiently close to T . Let χ
be smooth step function such that χ ≡ 1 on a neighborhood of [T,∞] and
χ ≡ 0 on a neighborhood of (−∞, T0]. We find that

v ≡ χu

satisfies �v = f with f = [�, χ]u, and v vanishes on a neighborhood of
(−∞, T0]×X. Thus, we write

�−1
+ f = v.

By propagation of singularities, [34], only singularities of f on Fb
I,p affect

regularity at w, i.e. if Fb
I,p ∩WFs+1

b,Ḣ−1(M0)
(f) = ∅ then w /∈ WFs

b,H1(M0)
(u),
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hence in particular w is non-focusing of order 0 relative to Hs+1. Thus,

Q0 ∈ Ψ0
b(M0), WF′(Id−Q0) ∩ Fb

I,p ∩ bS∗
supp dχM0 = ∅

=⇒ w /∈ WFb,H1(M0)(�
−1
+ ((Id−Q0)f)),

so it suffices to analyze �−1
+ (Q0f). We choose WF′(Q0) sufficiently small

such that

q ∈ WF′(Q0) ⇒ either q /∈ WFb(f) or

f is non-focusing of order k at q relative to Hs−1;

this is possible by our hypotheses. We may thus replace f by f0 = Q0f ,
assume that f0 is the sum of a distribution that is non-focusing of order
k relative to Hs−1 and is supported in M◦

0 plus an element of H∞
b,H1(M0)

,

and show that �−1
+ f0 is non-focusing at w of order k′ (for some k′ to be

determined) relative to Hs−ǫ.
Let

T ′
0 < T0 < T1 < T ′

1.

We regard [T0, T1] as the time interval for analysis, but we enlarge it to
[T ′

0, T
′
1] in order to be able to apply some b-ps.d.o’s with symbol elliptic for

t ∈ [T0, T1] to elements of our function spaces. (The ends of the interval
would be slightly troublesome.) We define a Hilbert space X to be

X = H1([T ′
0, T

′
1]×X0)

in the case of Neumann conditions, or

X = H1
0 ([T

′
0, T

′
1]×X0)

in the case of Dirichlet conditions, where 0 indicates vanishing enforced at
[T ′

0, T
′
1]×∂X0 (but not at the endpoints of the time interval). Let X∗ be the

L2
g-dual of X.
We further let

(i)

T0 < T̃0 < t′0 < t0 < T < t1 < t′1 < T1

such that supp dχ ⊂ (t0, T ).

(ii) χ0 ∈ C∞(R) such that supp(1−χ0) ⊂ (T̃0,+∞), suppχ0 ⊂ (−∞, t′0).
(iii) U0 be an open set with U0 ⊂ {t ∈ (t′0, T )}, U0 ∩ Fb

I,sing = ∅ and

WFb,X∗(f0) ⊂ U0.

(iv) U1 be a neighborhood of w with U1 ⊂ {t ∈ (T, t′1)} and U1∩Fb
O,sing =

∅.
(v) B0, B1 ∈ Ψ0

b(M) with

WF′(Bj) ⊂ Uj , w /∈ WF′(Id−B1), WF′(Id−B0) ∩WFb,X∗(f0) = ∅,
and with Schwartz kernel supported in (t′0, t

′
1)

2 ×X2.
(vi) Ai, i = 1, . . . , N, denote first-order pseudodifferential operators, gen-

erating M as defined in §6, but now locally over a neighborhood of
U0 ∪ U1 in M◦, and with kernels compactly supported in M◦.
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(vii) Tν ∈ Ψν
b(M) with elliptic principal symbol on [T0, T1] × X0 with

Schwartz kernel supported in (T ′
0, T

′
1)

2 × (X0)
2. Thus, Tν can be

applied to elements of X and X∗.

Now suppose that we are given r and ǫ > 0. Then, with k as in the
statement of the Theorem, Corollary 8.3 gives a k′ = k′(r, ǫ, k) using s = r in
the notation of that corollary. We letY be a space of microlocally coisotropic
functions on ell(B1) relative to X∗ which are in addition extremely well-
behaved elsewhere (they will be finite-order conormal to the boundary) in
{t ≥ t′0}, but are merely in H1

b,X∗ for t near T0: Let N > r > 1 + ǫ and set

Y = {ψ ∈ X∗ :

‖TN (Id−B1 − χ0)ψ‖2X∗ + ‖T1χ0ψ‖2X∗ +
∑

|α|≤k′

‖TrAαB1ψ‖2X∗ <∞}.

Thus,

ψ ∈ Y ⇒ WFN
b,X∗(ψ) ⊂ WF′(B1) ∪ bS∗

suppχ0
M0,

and

(9.1) ‖ψ‖H1
b,X∗

. ‖ψ‖Y
for ψ supported in [T0, T1]×X0 (where the Ts are elliptic).

Also, let Z be the space of microlocally coisotropic functions on ell(B0)
relative to X (and just in X elsewhere):

Z = {φ ∈ X :
∑

|α|≤k

‖Tr−1−ǫA
αB0φ‖2X <∞}.

Note that as discussed in Section 6 (in particular, Lemma 6.9)

Z∗ = X∗ +
∑

|α|≤k

Tr−1−ǫA
αB0X

∗,

so by our assumption on f0, f0 ∈ Z∗, provided −(r − 1− ǫ)− 1 ≤ s− 1, i.e.
provided16 r ≥ −s+ 1 + ǫ. Moreover, if v0 ∈ Y∗, then

(9.2) v0 ∈ X+ TN (Id−B1 − χ0)X+ T1χ0X+
∑

|α|≤k′

TrA
αB1X.

In particular, as w /∈ WF′(Id−B1 − χ0) ∪ bS∗
suppχ0

M0, v0 is non-focusing

at w of order k′ relative to H−r+1, hence relative to Hs−ǫ, if we actually
choose r = −s+ 1 + ǫ.

For I ⊂ [T0, T1], let ḊI denote the subspace of H
∞
b,X consisting of functions

supported in I × X, ĖI denote the subspace H∞
b,X∗ consisting of functions

supported in I × X, so � : ḊI → ĖI is continuous, ḊI ⊂ Z, ĖI ⊂ Y are
dense with continuous inclusions. Also let Ḋ = ḊI , Ė = ĖI for I = (T0, T1).
Finally we also let ZI be space of restrictions of elements of Z to I, and

16Note that for such r, r ≥ 1 + ǫ as required above, since s ≤ 0.
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analogously for YI . Then, as we will prove in Lemma 9.417, Corollary 8.3
implies that

(9.3) φ ∈ Ḋ ⇒ ‖φ‖Z ≤ C‖�φ‖Y,
where vanishing for t near T1 is used. In fact, we prove a somewhat more
precise statement:18

Lemma 9.4. For τ ∈ [T0, T1), τ
′ > τ ,

(9.4) φ ∈ Ḋ =⇒ ‖φ‖Z[τ ′,T1]
≤ C‖�φ‖Y[τ,T1]

.

Proof of Lemma: Recall first that by standard energy estimates (taking
into account the vanishing of φ near T1)

(9.5) φ ∈ Ḋ =⇒ ‖φ‖X[τ,T1]
. ‖�φ‖X∗

[τ,T1]
+ ‖Dt�φ‖X∗

[τ,T1]
. ‖�φ‖Y[τ,T1]

.

Thus, we only need to prove that for |α| ≤ k′,

‖Tr−1−ǫA
αB0φ‖X[τ ′,T1]

. ‖�φ‖Y[τ,T1]
.

If �φ is supported away from ∂M , then this follows from Corollary 6.12
and Corollary 8.3. In general, let Q ∈ Ψ0(M) be such that WF′(B1) ∩
WF′(Id−Q) = ∅, and Q has compactly supported Schwartz kernel in (M◦)2.
Then Q�φ has support away from ∂M , so

(9.6) ‖Tr−1−ǫA
αB0�

−1
− (Q�φ)‖X[τ ′,T1]

. ‖Q�φ‖Y[τ,T1]
. ‖�φ‖Y[τ,T1]

,

where �−1
− denotes the backward solution of the inhomogeneous wave equa-

tion. On the other hand,

‖(Id−Q)�φ‖HN
b,X∗ (M0)

. ‖�φ‖Y[τ,T1]
,

so by propagation of b-regularity [34],

‖�−1
− ((Id−Q)�φ)‖HN−1

b,X (M0)
. ‖�φ‖Y[τ,T1]

,

hence the much weaker statement

(9.7) ‖Tr−1−ǫA
αB0�

−1
− ((Id−Q)�φ)‖X[τ ′,T1]

. ‖�φ‖Y[τ,T1]
,

also holds. Combining (9.6) and (9.7) proves (9.4). This concludes the proof
of Lemma 9.4, and hence of (9.3) as well.

In particular, recalling that Ḋ = Ḋ(T0,T1), (9.3) shows that for ψ ∈ RanḊ �

there is a unique φ ∈ Ḋ such that ψ = �φ; we denote this by φ = �−1ψ.
Thus,

‖�−1ψ‖Z ≤ C‖ψ‖Y, ψ ∈ RanḊ �.

17The only reason for Corollary 8.3 combined with Corollary 6.12 not yielding the
result immediately is that Corollary 8.3 is stated for the homogeneous wave equation.
This suffices for our purposes as we only require inhomogeneities that are very regular
near the boundary, hence the propagation result of [34] is adequate.

18Notice that φ is merely supported in (T0, T1) here; not in (τ, T1), which would be
(9.3) on [τ, T1], except for the loss of going from τ ′ to τ .
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Now consider the linear functional on RanḊ � given by

ψ 7→ 〈f0,�−1ψ〉, ψ ∈ RanḊ �,

which satisfies

|〈f0,�−1ψ〉| ≤ ‖f0‖Z∗‖�−1ψ‖Z ≤ C‖f0‖Z∗‖ψ‖Y, ψ ∈ RanḊ �.

This has a unique extension to a continuous linear functional ℓ on RanḊ �,
the closure of RanḊ � in Y.

If we used the Hahn-Banach theorem at this point to extend the linear
functional ℓ further to a linear functional v0 on all of Y, we would obtain a
solution of the wave equation �v0 = f0 on (T0, T1), as 〈�v0, φ〉 = 〈v0,�φ〉 =
〈f0, φ〉 for φ ∈ Ḋ, which is indeed non-focusing at w, but we need not just
any solution, but the forward solution, �−1

+ f0. So we proceed by extending
the linear functional ℓ to a continuous linear functional L on

(9.8) RanḊ(T0,t
′

1)
�+ Ė(T0,t′0)

,

first, in such a manner that the extension is ℓ on the first summand and
vanishes on the second summand. If we actually have such an extension,
then we can further extend it to all ofY, then vanishing on the first summand
shows that it solves the wave equation on (T0, t

′
1), while vanishing on the

second summand shows that it vanishes on (T0, t
′
0), so its restriction as a

distribution on (T0, t
′
0) is indeed �−1

+ f0. In order to obtain such an extension
we show:

Lemma 9.5.

(i) ℓ vanishes on the intersection of the two summands, so L is well-
defined as a (not necessarily continuous) linear map,

(ii) The subspace (9.8) of Y is closed, and given an element ψ+ρ in the

sum, there is a representation19 ψ̃+ ρ̃ of ψ+ ρ as a sum of elements
of the two summands such that one can estimate the Y-norm of ψ̃
and ρ̃ in terms of ψ + ρ.

Proof of Lemma: We start with the statement regarding intersection of
the summands in (9.8). Thus, we claim that if

supp f0 ⊂ [t0, t1]×X,

then

(9.9) ψ ∈ RanḊ[T0,t
′

1]
� and suppψ ⊂ (T0, t

′
0) =⇒ ℓ(ψ) = 0.

To see this let ψj → ψ in Y, ψj = �φj , φj ∈ Ḋ[T0,t′1]
. Then {ψj} is Cauchy

in Y, hence {φj} is Cauchy in Z by (9.3), hence converges to some φ ∈ Z.
By the support condition on φj , suppφ ⊂ [T0, t

′
1]. As �φj → �φ in X∗ (for

� : X → X∗ is continuous), and �φj = ψj → ψ in Y, hence in X∗, we deduce

19Since the intersection of the summands is non-trivial, this can only be true for some
representation, not all representations!
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that ψ = �φ, i.e. �φ is supported in (T0, t
′
0). Thus, ψj |(t′0,T1) → 0 in the

Y topology hence φj |[t0,T1] → 0 in the Z topology using (9.4) with τ = t′0,
τ ′ = t0, so, by the support condition on f ,

|〈f0, φj〉| ≤ ‖f0‖Z∗

[t0,t1]
‖φj‖Z[t0,t1]

→ 0,

so we deduce that 〈f0, φ〉 = 0 as claimed.
Next we turn to the closedness of the sum in (9.8). First, we claim that if

ψ ∈ RanḊ(T0,t
′

1)
�, ρ ∈ Ė(T0,t′0)

then there exist ψ̃ ∈ RanḊ(T0,t
′

1)
�, ρ̃ ∈ Ė(T0,T̃0)

such that
ψ + ρ = ψ̃ + ρ̃ and ‖ψ̃‖Y . ‖ψ + ρ‖Y.

Indeed, let χ+ ∈ C∞(R) such that

suppχ+ ⊂ (T0,+∞) and supp(1− χ+) ⊂ (−∞, T̃0).

Let �−1
− (ψ + ρ) denote the backward solution of the inhomogeneous wave

equation; i.e. the unique solution of �ũ = ψ + ρ which vanishes on (t1, T1).
Then let

ψ̃ = �
(
χ+�

−1
− (ψ + ρ)

)
∈ RanḊ(T0,t

′

1)
�,

so

ρ̃ ≡ ψ + ρ− ψ̃ = (1− χ+)(ψ + ρ)− [�, χ+]�
−1
− (ψ + ρ) ∈ Ė(T0,T̃0)

.

Moreover,

(9.10) ψ̃ = χ+(ψ + ρ) + [�, χ+]�
−1
− (ψ + ρ)

satisfies
‖ψ̃‖Y . ‖ψ + ρ‖Y,

as follows by inspecting the two terms on the right hand side of (9.10): for
the first this is clear, for the second this follows from ‖ψ+ρ‖H1

b,X∗

. ‖ψ+ρ‖Y,
see (9.1), hence one has a bound in X for �−1

− (ψ + ρ) by (9.5), and then

supp[�, χ+] ⊂ supp dχ+ ⊂ (T0, T̃0) gives the desired bound in Y. This
concludes the proof of Lemma 9.5.

Thus, if ψj ∈ RanḊ(T0,t
′

1)
�, ρj ∈ Ė(T0,T̃0)

and ψj + ρj converges to some

ν ∈ Y then defining ψ̃j and ρ̃j as above, we deduce that due to the Cauchy

property of {ψ̃j + ρ̃j}, {ψ̃j} is Cauchy in Y, hence so is {ρ̃j}, thus by the

completeness of Y they converge to elements in ψ ∈ RanḊ(T0,t
′

1)
�, resp.

ρ ∈ Ė(T0,T̃0)
with ψ + ρ = ν. This shows that RanḊ(T0,t

′

1)
� + Ė(T0,T̃0)

is

closed, and indeed gives an estimate20 that if ν ∈ RanḊ(T0,t
′

1)
� + Ė(T0,T̃0)

then there exists ψ ∈ RanḊ(T0,t
′

1)
� and ρ ∈ Ė(T0,T̃0)

such that ψ+ ρ = ν and

(9.11) ‖ψ‖Y + ‖ρ‖Y . ‖ν‖Y.
20This estimate follows from the open mapping theorem, given that the sum is closed,

but the direct argument yields it anyway.



102 RICHARD MELROSE, ANDRÁS VASY, AND JARED WUNSCH

As mentioned earlier, this construction allows us to define a unique con-
tinuous linear functional L on

RanḊ(T0,t
′

1)
�+ Ė(T0,t′0)

,

in such a way that it is ℓ on the first summand and it vanishes on the second
summand: uniqueness is automatic, existence (without continuity) follows
from (9.9), as the two functionals agree on the intersection of the two spaces,
while continuity follows from (9.11). Then we extend L by the Hahn-Banach
theorem to a linear functional v0 on Y.

Then v0 ∈ Y∗ solves �v0 = f0 on (T0, t
′
1), since for φ ∈ Ḋ(T0,t′1)

〈�v0, φ〉 = 〈v0,�φ〉 = 〈f0, φ〉,
and v vanishes on (T0, t0), for it vanishes on Ḋ(T0,t0), i.e. on test functions
supported there, so it is the restriction of the forward solution of the wave
equation to (T0, T1). We have thus shown that if f0 ∈ Z∗ is supported
in [t0, t1], which holds if f0 satisfies the support condition, is microlocally
non-focusing on U0, and is conormal to the boundary elsewhere, then the
forward solution of �v0 = f0 is in Y∗ (cf. Lemma 6.10), hence by (9.2) it
is in particular microlocally non-focusing of order k′ relative to Hs−ǫ at w.
This completes the proof of the theorem if s ≤ 0.

If s > 0, one could use a similar argument relative to slightly different
spaces: the only reason for the restriction is that elements of Y lie in X∗ and
a larger space (which would thus have a smaller dual relative to L2) would
be required to adapt the argument. However, it is easy to reduce the general
case to s ≤ 0: replacing u by ũ = (1+D2

t )
Nu, N > s/2, ũ is non-focusing of

order k relative to Hs−2N on a neighborhood of Fb
I,p,reg and solves the wave

equation, hence it is non-focusing of order k′ relative to Hs−2N−ǫ at w by
the already established s ≤ 0 case of this theorem, and then the microlocal
ellipticity of (1 +D2

t )
N near the characteristic set (recall that w is over the

interior ofM0) shows that u itself is non-focusing of order k′ relative to Hs−ǫ

at w, as claimed. �

As a consequence of the proposition of nonfocusing, we are now able to
prove our main theorem:

Theorem 9.6. Let u ∈ H1
loc
(M0) satisfy the wave equation with Dirichlet

or Neumann boundary conditions. Let p ∈ HW,b, and w ∈ Fb
O,p,reg.

Assume

(i) u satisfies the nonfocusing condition21 relative to Hs on an open
neighborhood of Fb

I,p,reg in Fb
I,reg,

(ii) WFs u ∩ {w′ ∈ Fb
I,p,reg : w′, w are geometrically related} = ∅,

(iii) WFs
b(u) ∩ Fb

p,I,sing = ∅.
21Recall from Definition 6.3 that this means nonfocusing of some order k. The nonfo-

cusing order is irrelevant here: only the space relative to which the nonfocusing condition
holds matters.
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Then
w /∈ WFs−0(u).

Proof. By using a microlocal partition of unity (cf. the argument at the
beginning of Theorem 9.2), we may arrange that (ii) is strengthened to

(9.12) WF∞ u ∩ {w′ ∈ Fb
I,p,reg : w′, w are geometrically related} = ∅,

and (iii) to

(9.13) WF∞
b (u) ∩ Fb

p,I,sing = ∅,
for if a microlocal piece ũ of the solution is in Hs

b then it remains in Hs
b

under forward evolution, by the results of [34].
Let r < s. On the one hand, by conditions (i) and (iii), u satisfies the

non-focusing condition (of some, possibly large, order k′) relative to Hr at
w due to Theorem 9.2. On the other hand, by Theorem 8.1, (9.12) and
condition (iii), u is microlocally coisotropic at w, i.e. there exists S ∈ R such
that22 microlocally near w

(9.14) Aαu ∈ HS ∀α.
Lemma 8.4 now allows us to interpolate between nonfocusing and (9.14) to
conclude that microlocally near w, u ∈ Hr−0. Since r < s is arbitrary, this
proves the result. �

Corollary 9.7. Let u be a solution to �u = 0 with Dirichlet or Neumann
boundary conditions, and let p ∈ HW,b. Suppose that for some ǫ0 > 0, in

a neighborhood of Fb
I,p(ǫ0) in bS∗

M0\W
M0, u is a Lagrangian distribution

of order s with respect to L ⊂ T ∗M◦
0 , a conic Lagrangian such that L ∩

Fb
I,p,sing = ∅ and the intersection of L and Fb

I,reg is transverse at Fb
I,p,reg.

Then if w ∈ Fb
O,reg is not geometrically related to any point in L,

w /∈ WF−s−(n+1)/4+(k−1)/2−0 u,

where k is the codimension of W.

The a priori regularity of such a solution is H−s−(n+1)/4−0 so this repre-
sents a gain in regularity along the diffracted wave of (k−1)/2−0 derivatives.

Proof. Corollary 9.7 follows from Theorem 9.6 together with the results of
Section 14 of [25]. We therefore give only a brief sketch of the proof.

Microlocally near any point in the transverse intersection of L and Fb
I,reg,

we may apply a microlocally unitary FIO T quantizing a conic symplecto-
morphism that brings L and Fb

I,reg to the respective normal forms

N∗{0} and {ζ1 = · · · = ζk−1 = 0}
inside T ∗(Rn+1) with coordinates (y1, . . . , yn+2−k, z1, . . . zk−1) and dual co-
ordinates η, ζ. (One should think of the y coordinates as analogous to the

22The particular choice of S is dependent on the background regularity of the solution,
which in turn can be low, depending on the order of nonfocusing relative to Hs.
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collection of the coordinates t, x, y used previously, while the z coordinates
are associated the fiber variables, also called z above.) Thus our test mod-
ule M is generated by Dz1 , . . . Dzk−1

. Writing Tu as the inverse Fourier
transform of a symbol a of order s− (n+ 1)/4, we find that

(Id+D2
z1 + · · ·+D2

zk
)−NTu = F−1

(η,ζ)→(y,z)

(
(1 + ζ21 + · · ·+ ζ2k−1)

−Na
)
.

For N ≫ 0, the integral in ζ converges absolutely, and the result is a con-
tinuous (indeed, as smooth as desired) family in z of conormal distributions
with respect to the origin in y; the order of growth of the amplitude is still
s − (n + 1)/4 but as the dimension is now (n + 1) − k, the order of the
Lagrangian distribution is now s − (k − 1)/4, while the resulting Sobolev
regularity is −s− (n+1)/4+(k−1)/2−0. Thus, the nonfocusing condition
is satisfied relative to this Sobolev space, and Theorem 9.6 yields the desired
regularity of the diffracted wave. �

Corollary 9.8. Let γ : (−ǫ0, 0] → bΣ0 be a GBB normally incident at W ,
γ(0) = α ∈ HW,b, and let γ be its projection to M◦

0 . Given o ∈ γ((−ǫ0, 0)),
let uo be the forward fundamental solution of �, i.e. uo = �−1

+ δo.

There exists ǫ > 0 such that if o ∈ γ((−ǫ, 0)) then for all w ∈ Fb
O,α,reg,

such that w is not geometrically related to point in bS∗
oM0 ∩ bΣ0,

w /∈ WF(−n+k+1)/2−0 uo

where k is the codimension of W.

Note that this represents a gain of (k−1)/2−0 derivatives relative to the

overall regularity of the fundamental solution, which lies in H−n/2+1−0.

Proof. The hypotheses on the location of o ensure that, with L denoting the
flow-out of bS∗

oM0∩bΣ0, L is disjoint from Fb
I,α,sing in view of Corollary 3.27.

Thus, the microlocal setting is the same as that of [25], hence the hypotheses
of Corollary 9.7 are satisfied. �

Appendix A. Some functional analysis

We often encounter the following setup. Suppose that H, Y are Banach,
resp. locally convex, spaces, and

ι : Y → H

is a continuous injection with dense range (so one can think of Y as a
subspace of H with a stronger topology). Let H′, Y′ denote the spaces of
linear functionals on H, Y endowed with their respective weak topologies
(i.e., the weak-* topology in the Banach space setting). Then the adjoint of
ι is the map

ι† : H′ → Y′, ι†ℓ(v) = ℓ(ιv), ℓ ∈ H′,

and ι† is continuous in the respective topologies. The injectivity of ι implies
that ι† has dense range, while the fact that ι has dense range implies that ι†
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is injective. Thus, one can think of H′ as a subspace of Y′, with a stronger
topology.

If H is a Hilbert space with inner product 〈., .〉H C-linear in the first
argument, there is a canonical (conjugate-linear) isomorphism jH : H → H′

given by jH(u)(v) = 〈v, u〉H. Suppose also that there is a canonical conjugate
linear isomorphism

cH : H → H, c2H = Id, 〈u, cHv〉 = 〈v, cHu〉;
if H is a function space, this is usually given by pointwise complex conjuga-
tion. Thus,

TH = jH ◦ cH : H → H′

is a linear isomorphism. Thus, if A : Y → H is continuous linear, then
A† : H′ → Y′ continuous linear, and

A♭ = A† ◦ jH ◦ cH : H → Y′

is continuous and linear. In particular, letting A be our continuous injection,

ι♭ = ι† ◦ jH ◦ cH : H → Y′

is linear, injective with dense range, so H can be considered a subspace of
Y′ (with a stronger topology). In particular,

ι♭ ◦ ι : Y → Y′

is also injective with dense range. One considers the triple (Y′,H, ι) the
H-dual of Y; we will denote this either simply by Y′,or by Y∗ if we want to
emphasize the inclusion of Y into Y′ via H, in what follows. Note that if Y
is also a Hilbert space with a canonical conjugate linear isomorphism23 cY,

ι ◦ cY = cH ◦ ι, c2Y = Id,

then we have the canonical linear isomorphism TY = jY ◦ cY : Y → Y′,
and it is important to keep in mind that TY is (usually) different from

ι♭ι = ι† ◦ TH ◦ ι:
TY(u)(v) = 〈v, cYu〉Y,
ι♭ι(u)(v) = 〈ιv, (cH ◦ ι)u〉H = 〈ιv, (ι ◦ cY)u〉H,

for u, v ∈ Y. A simple example, when X a compact manifold with a smooth
non-vanishing density ν is obtained by Y = Ċ∞(X) (a Fréchet space) and
H = L2

ν(X) with respect to the density ν, with ι : Y → X the inclusion.

Then ι♭ι : Ċ∞(X) → C−∞(X) is the standard inclusion of Schwartz functions

in tempered distributions: ι♭ιf(φ) =
∫
fφ ν.

In fact, we shall always consider a setting with D a dense subspace of H,
with a locally convex topology, with respect to which the inclusion map is
continuous (i.e. which is stronger than the subspace topology), so using the

23Again, pointwise complex conjugation on function spaces is a good example.
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linear isomorphism jH ◦ cH : H → H′, we have continuous inclusions, with
dense ranges,

D ⊂ H ≡ H′ → D′.

Suppose now that A : D → D, hence A† : D′ → D′, and suppose that A†

maps D, i.e. more precisely the range of ι♭ι (with ι : D → H the inclusion),
to itself, and let

Ã = (ι♭ι)−1A†(ι♭ι) : D → D.
Then for f, φ ∈ D

〈ιφ, ιÃf〉H = (ι♭ιcDÃf)(φ) = (cD′ι♭ιÃf)(φ) = (cD′A†ι♭ιf)(φ)

= (A†ι♭ιf)(cDφ) = (ι♭ιf)(AcDφ) = 〈ιcDf, ιAcDφ〉
= 〈ιcDAcDφ, ιf〉,

(A.1)

so Ã is the formal adjoint of cDAcD with respect to the H inner product.
Given a Hilbert space H as above, hence an inclusion of D into D′, we

shall also have to consider subspaces X of D′ with a locally convex topology,
which contain the image of D in D′ (under the H-induced inclusion map),
and such that the inclusion maps

D →֒ X →֒ D′

are continuous, with dense range, hence one has the corresponding sequence
of adjoint maps, which are continuous, with dense range, when all the duals
are equipped with the weak topologies. As (D′)′ = D, one obtains

D →֒ X′ →֒ D′.

If further
D →֒ X →֒ H →֒ D′

continuous, with dense ranges, then

D →֒ H′ ≡ H →֒ X′ →֒ D′,

and similarly if one had the reverse inclusion between X and H.
One way that subspaces such asY arise is by considering a a finite number

of continuous linear maps Aj : D → D, such that there exist continuous
extensions Aj : D′ → D′ (which are then unique by the density of D in
D′), hence Aj : X → D′, j = 1, . . . , k. Then, in what essentially amounts to
constructing a “joint maximal domain” for the Aj , and writing ιXD′ : X → D′

for the inclusion, let

(A.2) Y = {u ∈ X : ∀j, Aju ∈ Ran ιXD′}
with

(A.3) ‖u‖2Y = ‖u‖2X +
∑

‖ι−1
XD′Aju‖2X,

where the injectivity of ιXD′ was used. If {un} is Cauchy in Y, then it is such
in X, so converges to some u ∈ X, and thus Ajun → Aju ∈ D′. Moreover,

if {un} is Cauchy in Y then ι−1
XD′Ajun is Cauchy in X so converges to some

vj ∈ X, hence Ajun → ιXD′vj in X. Thus, Aju = ιXD′vj , so Aju ∈ Ran ιXD′ ,
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and Ajun → Aju in X, proving that Y is a Hilbert space. We will simply
write Aj for Aj |Y : Y → X. Note that D ⊂ Y, so Y is dense in X. However,
D is not necessarily dense in Y.

An example is given by X = L2
g(X) on a compact manifold with or without

boundary, g a Riemannian metric, Aj be a finite set of C∞ vector fields

which span all vector fields over C∞(X), D either C∞(X) or Ċ∞(X); then

Y = H1
g (X). If D = C∞(X), then D is dense in Y, but if D = Ċ∞(X),

then this is not in general the case: it fails if the boundary of X is non-
empty. Other examples are given coisotropic distributions, where the Aj

are products of first order ps.d.o’s characteristic on a coisotropic manifold;
see a general discussion below for spaces given by such ps.d.o’s.

Another way a subspace like Y might arise from continuous linear maps
Aj : D → D is the following. In a “joint minimal domain” construction, one
can define

(A.4) ‖u‖2
Ỹ
= ‖u‖2X +

∑
‖Aju‖2X,

as above, and let Ỹ be the completion of D with respect to this norm, so Ỹ

is a Hilbert space. Moreover, the inclusion map ιDX : D → X as well as Aj

extend to continuous linear maps

ι̃DX = ι
ỸX
, Ãj : Ỹ → X,

and ι
ỸX

has dense range (for D canonically injects into the completion).

In addition, with Y as above, the inclusion map ιDY : D → Y extends
continuously to a map

ι̃
ỸY

: Ỹ → Y

which is an isometry, and is in particular injective. This in particular shows

that the inclusion map from Ỹ to X is also injective, with a dense range.
For X a manifold with boundary and D = Ċ∞(X), Aj vector fields as above,
one has Y = H1

0 (X); with D = C∞(X), one has Y = H1(X).

Note that the closure of D in Y is Ỹ, so D is dense in Y if and only if Y =

Ỹ (i.e. ι̃
ỸY

is surjective). From this point on we assume that Y = Ỹ. This

is true, for instance, if one is given B1, . . . , Br ∈ Ψ1,0
eb (M), and A1, . . . , Ak

are up to s-fold products of these, as shown below in Lemma A.3. Thus,
Y′ ⊂ D′ (i.e. the inclusion map is injective).

Using the inclusion map ιYX we can now identify the dual of Y with
respect to H. We start with the case H = X. By the Riesz lemma, Y′ = TYY
and TY is unitary, where

TYv(u) = 〈u, cYv〉Y.
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But

TY(v)(u) = 〈u, cYv〉Y = 〈ιYHu, ιYHcYv〉H +
∑

j

〈Aju,AjcYv〉H

= jHιYHcYv(ιYHu) +
∑

j

jHAjcYv(Aju).

Thus,

TY(v)(u) =
(
(ι♭YHιYH +

∑
A♭

jcHAjcY)v
)
(u).

We conclude that

TYv = (ι♭YHιYH +
∑

A♭
jcHAjcY)v,

and

(A.5) Y∗ = (ι♭YHιYH +
∑

A♭
jcHAjcY)Y.

This also shows that

Y∗ = Ran ι†YH +
∑

RanA†
j ,

for ⊃ follows from the definition of ι†, etc., while ⊂ follows from (A.5). We

recall here that by (A.1), A†
j is the formal adjoint of cDAjcD.

More generally, we do not need to assume X = H; rather assume that

(A.6) 〈u, v〉X =
∑

k

〈Bku,Bkv〉H,

where Bk : X → H are continuous linear maps (and there is no assumption
on the relationship in the sense of inclusions between X and H). Then

TY(v)(u) = 〈u, cYv〉Y = 〈ιYXu, ιYXcYv〉X +
∑

j

〈Aju,AjcYv〉X

=
∑

k


〈BkιYXu,BkιYXcYv〉H +

∑

j

〈BkAju,BkAjcYv〉H




=
∑

k


jHBkιYXcYv(BkιYXu) +

∑

j

jHBkAjcYv(BkAju)




=


∑

k

(
(BkιYX)

♭cHBkιYX +
∑

j

(BkAj)
♭cHBkAj

)
cYv


 (u),

so we conclude as above, using (BkAj)
♭ = A†B♭

k, etc., that

(A.7) Y∗ = Ran ι†YX +
∑

j

A†
j ;

note that the same computation as in (A.1) with factors of ι omitted shows

that A†
j is the formal adjoint of cDAjcD.
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We now prove the density lemma mentioned above. We start by commut-
ing bounded families of operators through products of first order ps.d.o’s.

Lemma A.1. Let r ≥ 1. For s ∈ N, let Js be the set of maps {j :
{1, . . . , s} → {1, . . . , r}.

Suppose that A1, . . . , Ar ∈ Ψ1,0
eb (M), and for s ∈ N and j ∈ Js, let

Aj = Aj1 . . . Ajs .

Then for k ∈ N, j ∈ Jk and {Qn} a uniformly bounded family in Ψ0,0
eb (M),

AjQn = QnAj +
∑

s≤k−1

∑

i∈Js

CinAi,

with {Cin : n ∈ N} uniformly bounded in Ψ0,0
eb (M), and the uniform bounds

are microlocal (so in particular WF′({Cin : n ∈ N}) ⊂ WF′({Qn : n ∈
N})).

Moreover, for ǫ > 0, if Qn → Id in Ψǫ,0
eb (M) then Cin → 0 in Ψǫ,0

eb (M) as
n→ ∞.

Remark A.2. We do not need the microlocality of the uniform bounds below,
but it is useful elsewhere.

Proof. We proceed by induction, with k = 0 being clear.
Suppose k ≥ 1, and the statement has been proved with k replaced by

k − 1. Then for j ∈ Jk,

AjQn = QnAj + [Aj1 , Qn]Aj2 . . . Ajk + . . .+Aj1 . . . Ajk−1
[Ajk , Qn].

Note that [Ajm , Qn] ∈ Ψ0,0
eb (M) uniformly, and in a microlocal sense (and

[Ajm , Qn] → 0 in Ψǫ,0
eb (M) if Qn → Id in Ψ0,0

eb (M)). Thus, the first two terms
are of the stated form. For the others, there are l ≤ k − 1 factors in front
of the commutator, which is bounded in Ψ0,0

eb (M) (and converges to 0 in

Ψǫ,0
eb (M) if Qn → Id in Ψǫ,0

eb (M)), so by the inductive hypothesis

Aj1 . . . Ajl [Ajl+1
, Qn]

can be rewritten as
∑

s≤l

∑
i∈Js

Cs,inAi, hence

Aj1 . . . Ajl [Ajl+1
, Qn]Ajl+2

. . . Ajk

is rewritten as Cs,inAi1 . . . AisAjl+2
. . . Ajk with s + (k − (l + 1)) ≤ l + k −

(l + 1) = k − 1 factors of the A’s, hence is of the stated form. �

Lemma A.3. Suppose that B1, . . . , Br ∈ Ψ1,0
eb (M), and let X be a Hilbert

space on which Ψ0,0
eb (M) acts, with operator norm on X bounded by a fixed

Ψ0,0
eb (M)-seminorm. Let D ⊂ X be a dense subspace with a locally convex

topology, and with all Q ∈ Ψ−∞,0
eb (M), Q : X → D continuous, while for

all Q ∈ Ψm,0
eb (M), Q : D → X is continuous, with bound given by a fixed

Ψm,0
eb (M) seminorm and a fixed seminorm on D.
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For k ∈ N, let

Y = {u ∈ X : ∀s ≤ k, ∀j ∈ Js, Aju ∈ X}

with

‖u‖2Y = ‖u‖2X +
∑

s≤k

∑

j∈Js

‖Aju‖2X,

Then D is dense in Y.

Proof. We start by observing that if Qn is a uniformly bounded family in
Ψ0,0

eb (M), Q ∈ Ψ0,0
eb (M) and Qn → Q in Ψǫ,0

eb (M) for ǫ > 0, then Qn → Q
strongly on X. Indeed, Qn is uniformly bounded on X by the assumptions
of the lemma, so it suffices to prove that for a dense subset of X, which we
take to be D, u ∈ D implies Qnu → Qu in X. But this is immediate, for
Qn → Q in Ψǫ,0

eb (M), hence as a map D → X, by the assumptions of the
lemma.

Now let Λn ∈ Ψ−∞,0
eb (M) uniformly bounded in Ψ0,0

eb (M) and Λn → Id in

Ψǫ,0
eb (M) for ǫ > 0, so Λn → Id strongly on X. We claim that for s ≤ k,

(A.8) u ∈ Y, j ∈ Js =⇒ AjΛnu→ Aju as n→ ∞ in X.

Since Λnu ∈ D, this will prove the lemma. Note that Λnu→ u in X.
By Lemma A.1, for j ∈ Js,

AjΛn = ΛnAj +
∑

l≤s−1

∑

i∈Jl

CinAi,

with {Cin : n ∈ N} uniformly bounded in Ψ0,0
eb (M), Cin → 0 in Ψǫ,0

eb (M) for
ǫ > 0. Correspondingly, {Cin : n ∈ N} is uniformly bounded as operators
on X, and Cin → 0 strongly on X. Since Aju ∈ X and Aiu ∈ X for i ∈ Jl,
l ≤ s, we deduce that AjΛnu→ Aju in X, completing the proof. �

Appendix B. The edge-b calculus

Let M be, for this section, a general compact manifold with corners and
let W be one of its boundary hypersurfaces. At the end of the section
we comment on non-compact M , which is setting of the main body of the
paper; this is essentially a notational issue as our problem is indeed local
in a relevant sense. In the body of the paper above, M is obtained by the
blow up of a boundary face Y of a manifold with corners M0 and W is
the front face of the blow up, i.e. the preimage of Y under the blow-down
map. In fact our discussion is mostly local in the interior of Y and hence
we could assume that Y has locally maximal codimension, so that it has no
boundary. We shall not, however, make this assumption here, and we include
the setting obtained by blow-up without actually restricting the discussion
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to it. Instead, we shall suppose that W is equipped with a fibration

(B.1) Z W

φ
��

Y.

Since the manifolds here may have corners, this is to be a fibration in that
sense, so the typical fiber, Z, is required to be a compact manifold with
corners, the base, Y, is a manifold with corners and φ is supposed to be
locally trivial in the sense that each p ∈ Y has a neighborhood U over which
there is a diffeomorphism giving a commutative diagram

(B.2) φ−1(U)
≃

//

φ
##G

GG
GG

GG
GG

U × Z

πU
||xx
xx
xx
xx
x

U.

Mainly for notational reasons we will also assume that Y is connected.
Let Veb(M) ⊂ Vb(M) be the Lie subalgebra of all those smooth vec-

tor fields on M which are tangent to all boundary (hypersur-)faces and in
addition are tangent to the fibers of φ on W. The calculus of edge-b pseu-
dodifferential operators will be constructed in this setting, it is determined
by M and φ and microlocalizes Veb(M).

In case the φ has a single fiber, i.e. Z = W, corresponding to the case
that W is not blown up at all, the Lie algebra Veb(M) reduces to Vb(M)
and the desired microlocalization is just the algebra of b-pseudodifferential
operators onM as a manifold with corners. The construction of this algebra
is discussed in [19], [22] and of course W is in no way singled out amongst
the boundary hypersurfaces. The pseudodifferential operators are described
in terms of their Schwartz kernels, which are the conormal distributions
with respect to the resolved diagonal in a blown-up version of M2, with the
additional constraint of vanishing rapidly at boundary faces which do not
meet the lifted diagonal. The resolved double space in this case is

(B.3) M2
b = [M2;B], B = {B ×B;B ∈ M1(M)}.

Here, in generality, Mp(M) is the collection of all connected boundary faces
of codimension p of the manifold with corners M. It is of crucial importance
that the lift to M2

b of the diagonal, is a p-submanifold—the lift in this case
is the closure (in M2

b) of the inverse image of the interior of the diagonal:

(B.4) Diagb = cl(Diag(M) ∩ int(M2)).

Then the operators on functions correspond to the kernels

(B.5) Ψm(M) =
{
A ∈ Im(M2

b ;β
∗ΩR);A ≡ 0 at ∂M2

b \ ff(β)
}

where ff(β) is the collection of boundary faces produced by the blow-ups
defining the combined blow-down map β :M2

b −→M2.
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The composition properties of these operators, including the fact that
the “small calculus” is an algebra, can be obtained geometrically from the
corresponding triple space

(B.6) M3
b = [M3;B3,B2], B3 = {B3;B ∈ M1(M)},

B2 = {M ×B ×B, B ×M ×B, B ×B ×M ;B ∈ M1(M)}.
There is considerable freedom in the order of blow-ups here and this is
sufficient to show that the three projections, πO, from M3 to M2 lift to
“stretched projections” πO,b : M3

b −→ M2
b , O = S,C, F, corresponding to

the left, outer and right two factors respectively; these maps are b-fibrations
and factor through a product of M2

b and M in each case.
As already noted, it is crucial for the definition (B.5) that the lifted diag-

onal Diagb be a p-submanifold, meaning that it meets the boundary locally
as a product. This also turns out to be essential in the construction of M2

eb
below.

There is another extreme case in which the microlocalization of the Lie
algebra Veb is well-established, namely when W is the only boundary hy-
persurface, so M is a manifold with boundary; this is the case of an “edge”
alone, with no other boundaries. The construction of a geometric resolution
in this case can be found in [16] and [17]. It is quite parallel to, and of course
includes as a special case, the b-algebra on a manifold with boundary. In
the general edge case when the fibration φ is non-trivial (but W itself has
no boundary) the center blown up in (B.3), which would be W 2, is replaced
by the fiber diagonal

(B.7)
Diagφ = {(p, p′) ∈W 2;φ(p) = φ(p′)} = (φ× φ)−1(Diag(F ))

M2
φ = [M2; Diagφ].

Similarly, the triple space is obtained by blow-up of the triple fiber product
(B.8)
Diag3φ = {(p, p′, p′′) ∈W 3;φ(p) = φ(p′) = φ(p′′)} = (φ×φ×φ)−1(Diag3(F ))

and then the three partial fiber diagonals, the inverse images, DiagOφ , O =

S,C, F of Diagφ under the three projections πO :M3 −→M2 :

(B.9) M3
φ = [M3; Diag3φ; DiagSφ ,DiagCφ ,DiagFφ ].

Again the three projections lift to b-fibrations

(B.10) M3
φ

πF,φ
//

πS,φ
//

πC,φ
//

M2
φ.

The microlocalization of Veb is accomplished here by the combination of
these two constructions. The diagonal, even for a manifold with boundary,
is not a p-submanifold—does not meet the boundary faces in a product
manner—and as already noted this is remedied by the b-resolution. Since
the fiber diagonal inW 2 is the inverse image of the diagonal in Y it too is not
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a p-submanifold in case Y has boundary, but then the partial b-resolution
of M resolves it to a p-submanifold which can then be blown up.

More explicitly, the boundary hypersurfaces ofM, other thanW itself, fall
into three classes according to their behavior relative to φ. Namely there may
be some disjoint from W ; these are relatively unimportant in the discussion
below. Otherwise the intersection of W and such a boundary hypersurface,
B, is a boundary hypersurface B ∩W of W. The remaining two cases corre-
spond to this being the preimage under φ of a boundary hypersurface of Y
or, if this is not the case, then B∩W is the union of boundary hypersurfaces
of the fibers of φ, corresponding to a fixed boundary hypersurface of Z. In
brief, the boundary hypersurfaces B ∈ M1(M) \ {W} which meet W corre-
spond either to the boundary hypersurfaces of Y or of Z. Let B′, B(Y ) and
B(Z) ⊂ M1(M) denote the three disjoint subsets into which M1(M) \ {W}
is so divided.

To define the double space on which the kernels are conormal distributions
with respect to the lifted diagonal, just as in both special cases discussed
above, we make one blow up for each of the boundary hypersurfaces. For
those other than W, this is the same as for the b-double space for M, which
is to say the corners, B ×B, are to be blown up for all B ∈ M1(M) \ {W}.
Since these submanifolds are mutually transversal boundary faces within
M2 they may be blown up in any order with the same final result. For W
we wish to blow up the fiber diagonal, Diagφ, in (B.7). This is certainly
a manifold with corners, since it is the fiber product of W with itself as
a bundle over Y, given by φ. However, as noted, it is not embedded as a
p-submanifold if Y has non-trivial boundary. If xi and yj are respectively
boundary defining functions and interior coordinates near some boundary
point of Y, and x′, y′, x′′, y′′ are their local lifts to W 2 under the two copies
of φ, then Diagφ ⊂W 2 is the “diagonal” x′ = x′′, y′ = y′′. Near a boundary
point of Y this is not a p-submanifold.

Note that in the simplest case, when B(Y ) = ∅, the following lemma
merely says that Diagφ is a p-submanifold of M2.

Lemma B.1. The fiber diagonal Diagφ lifts to a p-submanifold of

[M2;B(Y )].

We will still denote the lifted submanifold as Diagφ .

Proof. Since Diagφ ⊂W 2 and this is the smallest boundary face of M2 with

this property, under the blow up of other boundary faces of M2, Diagφ lifts

to the subset (always a submanifold in fact) of the lift of W 2 under the blow
up of the intersection of W 2 with the boundary face which is the center
of the blow up. That is, to track the behavior of Diagφ we need simply

blow up the intersections of the elements of B(Y ) with W 2, inside W 2. This
corresponds to exactly the “boundary resolution” of Y 2 to Y 2

b as discussed
briefly above. So the diagonal in Y lifts to be a p-submanifold. Since φ
is a fibration over Y, it follows easily from the local description that Diagφ
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lifts to a p-submanifold of the blow up, [W 2;B(Y ) ∩W 2] and hence to a
p-submanifold of [M2;B(Y )] as claimed. �

Thus blowing up the elements of B(Y ) in M2 resolves Diagφ to a p-

submanifold, by resolving the diagonal in Y 2. The defining functions of the
elements of B(Z) restrict to defining functions of boundary faces of the lift
of Diagφ so all the remaining boundary faces, in B′∪B(Z) are transversal to
this lift. Such transversality is preserved under blow up of boundary faces,
so we may define the eb-double space in several equivalent ways as regards
the order of the blow-ups and in particular:

(B.11)
M2

eb =[M2;B2,Diagφ]

≡[M2;B(Y )2,Diagφ,B(Z)2, (B′)2],

where the “squares” mean the set of self-products of the elements and the
ordering within the boundary faces is immaterial.

The fibration φ restricts to a fibration, φB, of B ∩W for each B ∈ B(Z),
over the same base Y. For each B ∈ B(Y ) instead φ restricts to B ∩ W
to a fibration, again denoted φB, over Y (B), the corresponding boundary
hypersurface of Y. Thus considering B ∈ B(Z) or B ∈ B(Y ) as manifolds
with corners on their own, each inherits a fibration structure as initially
given on W ⊂ M on the intersection B ∩W ∈ M1(B). For the elements of
B′ there is a corresponding trivial structure with no W.

Lemma B.2. The diagonal in M2 lifts to a p-submanifold of M2
eb. The

“front faces” of M2
eb, those boundary hypersurfaces produced by blow up, are

of the form B2
eb × [0, 1], corresponding to each B ∈ B̃ = M1(M) \ {W} with

its induced fibration structure. That corresponding to Diagφ is the pull-back

of the bundle [W 2; (B(Z)∩(W ))2], defined by blowing up the diagonal corners
of the fibers, to a (closed) quarter ball bundle over Y.

Proof. These statements are all local and follow by elementary computations
in local coordinates. �

Thus, the definition of the “small” calculus of edge-b pseudodifferential
operators is directly analogous to (and of course extends in generality) (B.5):

(B.12) Ψm
eb(M) =

{
A ∈ Im(M2

eb;β
∗ΩR);A ≡ 0 at ∂M2

b \ ff(β)
}

where the particular fibration φ is not made explicit in the notation. The
fact that these kernels define operators on Ċ∞(M) and C∞(M) reduces to
the fact that push-forward off the right factor of M, which is to say under
the left projection, gives a continuous map

(B.13) (πL,φ)∗ : Ψ
m
eb(M) −→ C∞(M).

The principal symbol map is well-defined at the level of conormal distribu-
tions, taking values in the smooth homogeneous fiber-densities of the non-
zero part of the conormal bundle to the submanifold in question. In this
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case N∗Diageb = ebT ∗M is a natural identification and the density factors
cancel as in the standard case so

(B.14) σm : Ψm
eb(M) −→ C∞(ebS∗M ;Nm)

where Nm is the bundle of functions which are homogeneous of degree −m.
The structure of the front faces leads directly to the “symbolic” structure

of the (small) algebra of pseudodifferential operators. Namely, there are
homomorphisms to model operator algebras corresponding to each boundary
face of M, known as normal operators. For faces other than W the model
is a parametrized (“suspended”) family of edge-b (or for those boundary
faces not meeting W simply b-) operators corresponding to the fibrations of
boundary hypersurfaces of W. Note that if zj is a defining function for such
a face, the operator zjDzj maps in this correspondence to the operation
of multiplication by the corresponding suspension parameter. For W the
model is a family of b-operators on the fiber times a half-line, parametrized
by the cosphere bundle of the base of the fibration. (We do not employ the
normal operator homomorphism for the face W in this paper.)

The corresponding triple space can be defined by essentially the same
modifications to the construction of M3

b as correspond to obtaining M2
eb in

place of M2
b .

Lemma B.3. Under the blow-down map for the partial triple b-product

(B.15) β3
B̃
:M3

B̃
= [M3;B(Y )3;B(Y )2;B(Z)3; (B′)3;B(Z)2, (B′)2] −→M3

the triple fiber diagonal and the three partial fiber diagonals

(B.16)
Diag3φ = {(p, p′, p′′) ∈W 3;φ(p) = φ(p′) = φ(p′′)},

DiagOφ = (πO)
−1(Diagφ), O = S,C, F,

all lift to p-submanifolds.

Proof. This reduces to the same argument as above, namely that the triple
and three partial diagonals in Y 3 are resolved to p-submanifolds in Y 3

b and
the effect of the first two sets of blow-ups in (B.15) on Y 3 is to replace it by
Y 3
b and hence to resolve the submanifolds in (B.16). Under the subsequent

blow-ups of boundary faces any p-submanifold lifts to a p-submanifold. �

Thus we may define the edge-b triple space to be

(B.17) M3
eb = [M3

B̃
; Diag3φ; DiagSφ ; DiagCφ ; DiagFφ ].

Proposition B.4. The three partial diagonals lift to b-submanifolds inter-
secting in the lifted triple diagonal and the three projections lift to b-fibrations

(B.18) M3
eb

πF,eb
//

πS,eb
//

πC,eb
//

M2
φ.

where πO,eb is transversal to the other two lifted diagonals.
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Proof. The existence of the stretched projections as smooth maps follows
from the possibility of commutation of blow-ups. For the sake of definiteness,
concentrate on πF , the projection onto the right two factors.

After the blow up of the triple fiber diagonal in (B.17), the three partial
fiber diagonals are disjoint so the other two can be blown up last. When it
is to be blown up, the triple fiber diagonal is a submanifold of DiagFφ so the
order can be exchanged, showing that there is a composite blown-down map

(B.19) M3
eb −→ [M3

B̃
; DiagFφ ].

The manifold with corners M3
B̃
is the b-resolved triple product where the

boundary hypersurface W is ignored. The commutation arguments showing
the existence of a composite blow-down map M3

b −→ M ×M2
b carry over

directly to give an alternative construction

(B.20) M3
B̃
= [M ×M2

B̃
;F ]

where F consists of those boundary faces in (B.15) which involve a defin-
ing function on the first factor of M3—so all the triple products and the
double products with boundary hypersurface in the first factor. These are
all transversal to DiagFφ , realized as a p-submanifold of M ×M2

B̃
so can be

commuted past it in the blow up, giving the map πF,φ in (B.18). That it
is a b-submersion follows from its definition as a composite of blow-downs
of boundary faces, together with the corresponding fact for the edge case.
That it is a b-fibration follows from the fact that the image of a boundary
hypsersurface is either a boundary hypersurface or the whole manifold since
this is true locally in the interior of boundary hypersurfaces. �

These facts together show that the small calculus of edge-b pseudodiffer-
ential operators, as defined in (B.12), is a filtered algebra. It also follows
directly that the symbol (B.14) is multiplicative as in the standard case.
The extension to operators on sections of bundles is essentially notational.

If M is non-compact but the fibers of φ are compact, the same construc-
tion goes through, but we require proper supports, i.e. that the projections
πL,φ and πR,φ are proper when restricted to the support of A:

Ψm
eb(M) =

{
A ∈ Im(M2

eb;β
∗ΩR);

A ≡ 0 at ∂M2
b \ ff(β) and A has proper support

}
.

(B.21)

Then Ψm
eb(M) acts on C∞(M), Ċ∞(M) and C−∞(M), as well as on their

compactly supported versions.



DIFFRACTION ON MANIFOLDS WITH CORNERS 117

Index of Notation

A Algebra generated by operators characteristic on Feb
reg, page 60.

C Smooth functions on M vanishing to infinite order at blown-up edge,
page 43.

Diff∗
eb Edge-b differential operators, page 37.

Diff∗
es,† Adjoints of edge-smooth differential operators, page 48.

Diffk
es,†(M) Adjoints of edge-smooth differential operators, page 48.

Diff∗
es,♯ Compositions of edge-smooth differential operators with adjoints,

page 48.
Diff∗

es(X) Edge-smooth differential operators, page 15.

Diffk
esΨ

m
eb edge-b pseudodifferential, edge-smooth differential calculus, page 40.

E ,G,H edge-b elliptic, glancing and hyperbolic sets, page 25.
EGBB Edge generalized broken bicharacteristic, page 27.
Feb
I/O edge-b flow-in/flow-out, page 34.

Fb
I/O b flow-in/flow-out, page 34.

GW,b,HW,b b glancing and hyperbolic sets, page 18.
GBB Generalized broken bicharacteristic, page 18.

Ḣs,l
es Edge-smooth Sobolev space of supported distributions, page 46.

Hs,l
es,0 For s ≥ 0, closure of Ċ∞(M) in edge-smooth Sobolev space, page 42.

Hs,l
es edge-smooth Sobolev space, page 42.

Hes Hamilton vector field on edge-smooth cosphere bundle, page 21.
Hs Hamilton vector field on smooth cosphere bundle, page 17.
Hm

b,X b-Sobolev space relative to a Hilbert space X, page 95.
Heb,X edge-b Sobolev space relative to a Hilbert space X, page 44.

M Module of first-order operators characteristic on Feb
reg, page 60.

M Spacetime manifold, blown up at corner, page 15.
M0 Spacetime manifold, not blown up, page 15.
̟eb Map from eb characteristic set to cotangent bundle of blown-down

edge, page 24.
̟es Map from es cotangent bundle to cotangent bundle of blown-down

edge, page 21.
πes→eb Projection from es cotangent bundle to eb cotangent bundle, page 23.
πs→b Projection from cotangent bundle to b cotangent bundle, page 16.
Ψ∗

eb edge-b pseudodifferential calculus, page 37.
Reb edge-b radial set, page 27.
Res edge-smooth radial set, page 22.
bT b tangent bundle, page 16.
bT ∗ b cotangent bundle, page 16.
ebT Edge-b tangent bundle, page 23.
ebT ∗ edge-b cotangent bundle, page 23.
esT edge-smooth tangent bundle, page 20.
esT ∗ edge-smooth cotangent bundle, page 20.
Tν Family of elliptic operators of order ν, page 72.
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Vb b-vector fields, page 16.
Veb edge-b vector fields, page 23.
Ves edge-smooth vector fields, page 20.
W̃ Front face of blow-up of space-time edge, page 15.
W Space-time edge, page 15.
WFm,r

eb,X(u) edge-b wave front set relative to a Hilbert space X, page 44.

X Spatial manifold, blown up at corner, page 13.
X0 Spatial manifold, not blown up, page 13.
Ỹ Front face of blown-up spatial corner, page 13.
Y Corner of spatial manifold, page 13.
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