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Intro

There have been extensive studies of elliptic PDE on various
complete non-compact manifolds; the goal is to extend results to
hyperbolic PDE, such as the wave or Klein-Gordon equations.

Even for elliptic problems, there are often hyperbolic phenomena at
infinity. A good example is scattering on asymptotically Euclidean
spaces (or 'scattering metrics’, to be precise), or indeed on R”
itself.

Thus, as shown by Melrose and refined by Melrose-Zworski and
others, 'singularities’ of solutions of (A — X\)u = 0, here meaning
microlocal lack of decay, propagate along bicharacteristics, and the
scattering operator is a Fourier integral operator associated to the
geodesic flow on the boundary at distance 7.



The geometry

One of the simplest elliptic settings is that of conformally compact
manifolds. These are compact manifolds with boundary X
equipped with a Riemannian metric g on X = X°, such that
® g = x°g extends to be a C* positive-definite
symmetric-cotensor up to 9X (so g is a Riemannian metric on
)_(), where x is a defining function of 9.X, and such that
o |dx|z =1; here G is the dual metric of g.
We can equivalently phrase this as follows: there is a product
decomposition [0, €), x Y of a neighborhood U of Y = 39X, on

which
dx?>+ h
g=——>5—
X

with h € C®(X;Sym?T*X), and h|y is a section of Sym?T*Y.

The restriction on |dx|s or on hl|y is a zeroth order product
structure statement at Y, which is convenient, but not absolutely
necessary for many considerations — see in particular the work of
Borthwick.



The geometry

A specific example is hyperbolic space X, given by the upper half
(zn41 > 0) of the two-sheeted hyperboloid
4. +z2=2,—1inR"!

equipped with the negative of the pull-back of the Minkowski

metric
d23+1 —dzf — ... —dz2.

Since z,41 = 212 +...4+ 22+ 1, X is diffeomorphic to R". To
see its structure near infinity, we introduce polar coordinates (R, 6)
in (z1,...,2p), hence z,11 = VR? + 1, so the metric becomes

g= % + R?d6?,
so with x = R~ we obtain
(14 x?)~1dx? + do?
2
which is indeed conformally compact.
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The geometry

There are two immediate generalizations to Lorentzian metrics.
Our convention is that the signature of Lorentzian metrics is
(1,n — 1), so the maximal dimension of a subspace of T¢X on
which g is positive definite is 1.

Recall that a Lorentzian metric on X is a section g of

C(X; Sym? T*X) such that for each g € X, g is a
non-degenerate form on T,X (hence gives an isomorphism

TqX — T5X), and such that maximal dimension of a subspace of
T4X on which g is positive definite is 1.

Recall also that a Lorentzian metric g still induces a
non-degenerate density, |dg|, given by /| det gj| |dx1 ... dx|,
hence an inner product on CZ°(X). Thus, there is an associated
Laplace-Beltrami operator, called the d'Alembertian, given by
Og = d*d + dd*, or simply d*d on functions.



The geometry

Assume that X is a manifold with boundary, g a Lorentzian metric
on X =X° xa defining function of Y = 0X, and assume that g
is conformal to a Lorentzian metric on X in the sense that for
some (hence any) boundary defining function x of Y, § = x?g is
(i.e. extends to) a Lorentzian metric on X. There are two
non-degenerate cases regarding the boundary behavior:

® Y is space-like, i.e. (dx,dx)s >0,
@ Y is time-like, i.e. (dx,dx)s <O.

For convenience, we also adopt a zeroth order product structure
assumption:

o (X, g) is asymptotically de Sitter if Y is space-like and
dx,dx)e =1,

(
o (X, g) is asymptotically anti-de Sitter if Y is time-like and
<dX, dX>é =—1.



The geometry

A concrete example of the first class is de Sitter space, given by
the hyperboloid

4. +zi=7,+1inR™!

equipped with the pull-back of the Minkowski metric

d23+1—d212—...—d23.

Introduce polar coordinates (R, 6) in (z1,...,z,), noting
z2 4 ...+ 22 > 1, write T = z,11, so the hyperboloid can be
identified with X = R, x Sg_l with the Lorentzian metric

dr2
241

g= — (12 +1) d6>.



The geometry

1

For 7 > 1, let x = 77, so the metric becomes

(1 4+ x?)"tdx? — (1 + x?) d6?
x2 '

An analogous formula holds for 7 < —1, so if we compactify the
real line as an interval [0,1]7 (with T = x for x < 7, say), we
obtain a compactification of de Sitter space on which the metric is
conformal to a non-degenerate Lorentz metric.



The geometry

Anti-de-Sitter space is defined analogously. Consider R"! with
the pseudo-Riemannian metric of signature (2, n — 1) given by

—dz? — ... —dz? | +d2 + d23+1a
with (z,...,z,y1) denoting coordinates on R"1, and the
hyperboloid

212+...+z,3_1—23—z,3+1 =-1

inside it. Anti-de-Sitter space is this hyperboloid X equipped with
the pull-back g of the above pseudo-Riemannian metric.



The geometry

Since z2 + z2,, > 1 on the hyperboloid, so we can
(diffeomorphically) introduce polar coordinates in these two
variables, i.e. we let (z,,z,41) = RO, R >1, 6 € S1. Then the
hyperboloid is of the form

... +z22 —-R=-1

inside R""! x (0,00)g X S}. As dzj, j=1,...,n—1, df and
d(z2+...+22_ | — R?) are linearly independent at the hyperboloid,

Zlv"'>zn—1>9

give local coordinates on it, and indeed these are global in the sense
that the hyperboloid X° is identified with R"1 x S! via these.



The geometry

The metric g is indeed Lorentzian. Away from {0} x S, we obtain
a convenient form of the metric by using polar coordinates (r,w) in
R so R2=1r241:

g = —(dr)® — r* dw? + (dR)? + R? d6?
= —(14r?)1dr®> — P2 dw?® + (1 + r?) d6?,
where dw? is the standard round metric; a similar description is

easily obtained near {0} x S! by using the standard Euclidean
variables.



The geometry

We compactify the hyperboloid by compactifying R"~! to a ball

B"~1 via inverse polar coordinates (x,w), x = r—1,

(21, 2Zn—1) = X tw, 0 < x < 00, w e S"2,

The interior of B"—1 is identified with R"1, and the boundary
S"2 of B"—1 is added at x = 0 to compactify R™ 1. Let

X =Br-1 xSt
be this compactification of X; a collar neighborhood of 9X is

identified with
[0,1)x x ST72 x S§.

In this collar neighborhood the Lorentzian metric takes the form

1
g = ;< —(1+x*)7tdx® — dw? + (1 +X2)d92),
which is of the desired form, and with respect to g, the boundary,
{x = 0}, is indeed time-like. The induced metric on the boundary
is —dw? + db?.



The geometry

For Lorentzian metrics g, the basic geometric concept is that of
null-bicharacteristics in T*X, whose projections to the base space
are null-geodesics. (For elliptic equations, the bicharacteristics
themselves have only relevance at a high energy limit.)

To define null-bicharacteristics, let G be the dual metric, also
considered as the metric function on T*X, and let

Y={aeTX: G(a) =0}

be the characteristic set. Then null-bicharacteristics are integral
curves of He in X, where H is the Hamilton vector field of G
(using that T*X is symplectic).

Since the map G — Hg is a derivation, H,c = aHg at ¥, so
null-bicharacteristics are merely reparameterized if G is replaced by
a conformal multiple (unlike non-null bicharacteristics!). In
particular, in X, the null-bicharacteristics of g and g are the same
(up to reparameterization).



The geometry

A basic difference between asymptotically De Sitter and anti de
Sitter spaces is that in the former there are no null-bicharacteristics
of g that are tangent to Y, while in the latter this is possible.

Even for g, one has to be careful in defining generalized broken
(null) bicharacteristics at Y in general, which is an indication that
AdS-like spaces are more complicated than dS-like ones.

However, for AdS, g has the special feature that Y is totally
geodesic, unlike e.g. the case of B"~! x S! equipped with a
product Lorentzian metric, with B"~! carrying the standard
Euclidean metric. This is a first order statement on g at Y.



The geometry

For hyperbolic PDE to have global solutions (rather than merely a
local theory) one needs an extra assumption, such as global
hyperbolicity. We take this to mean that there is a global ‘time’
function t € C*°(X), such that the surfaces Sy, = {t = tp} are
spacelike, and every nullbicharacteristic crosses each T;tOX in
exactly one point. A spacelike hypersurface S such that each
nullbicharacteristic intersects TgX exactly once is a Cauchy
hypersurface.

An example would be working on the universal cover of AdS, where
St is replaced by R.



Analysis: the basics

We now move to the analysis of the Laplacian, resp. the
d’'Alembertian, on the three classes of spaces considered so far. It
is helpful to think of these as more complicated versions of the
conformally related problems, Az and Uz, so we first consider the
latter, for the Dirichlet boundary condition (DBC) when relevant
for the sake of definiteness, global hyperbolicity for the hyperbolic
equations, and without stating the function spaces.

@ Riemannian: (Az — A)u = f with DBC is well-posed for
A <0.

@ Lorentzian, 0X = Y, U Y_ is spacelike: (s —A\)u=0, u
and its normal derivative at S specified (1C), is well-posed.
The solution is C* up to Y.

@ Lorentzian, 0X is timelike: (g — A)u =0, with DBC at Y,
and v and its normal derivative at S specified (1C), is
well-posed.



Analysis: the basics

Y

Y Y

On the left, a Riemannian example, @ in the middle, an example
of spacelike boundary, [0, 1] x S} with x timelike, on the right,

the case of timelike boundary, IB%i’y, x Ry, with y” timelike.



Analysis: the basics

We now go through the original problems. Let

n—1 (n—1)?
2 4

- A

o Asymptotically hyperbolic, A € C\ [(n — 1)?/4,+00): There
is a unique solution of (Ag — A)u = f, f € C*°(X), such that
u=x*MNy, ve C®X). (Analogue of DBC; Mazzeo and
Melrose.) (Indeed, u = (Agz — X\)~1f, and this can be
extended to A € [(n — 1)?/4,+0c), and analytically continued
further.)



Analysis: the basics

@ Asymptotically de Sitter, A € C: There is a unique solution of
(Og — Nu=f, f € C=(X), such that
u=x*Mv; 4+ x5Ny_ vy e C®(X) and vi|y_ is specified,
provided that s (\) — s_(A\) ¢ Z. (Analogue of IC: Vasy.)

o Asymptotically Anti de Sitter, A\ € R\ [(n — 1)?/4, 4+-00):
There is a unique solution of (g — A)u = f such that
u=x*MNv, v e C®(X) and v and its normal derivative at S
are specified (in C*°(S)). (Analogue of DBC: Vasy. Earlier
work in special cases: Breitlohner-Freedman, Bachelot,
Yagdjian-Galstian, Holzegel.)



Analysis: the basics

Indeed, one has the following result for the homogeneous equation:

Theorem

Suppose that X is asymptotically de Sitter, A € C. The solution u
of the Cauchy problem (O — N)u = f, f € C*(X), with C*>
initial data at Sy, 0 < tog < 1, has the form

u=x*My 4 x=MNy_ vy e C®(X),

ifsi(A) —s-(A) € N. Ifsi(A\) —s—(A) is an integer, the same
conclusion holds if we replace v_ € C °°_(X ) by
vo = C(X) + x5+ =5-(N Jog x C=(X).

Conversely, given any ax € C°(Y,) and f € C*°(X), there exists
a unique u of the above form such that (Og — A)u = f and
V:|:|y+ = a+.

Here the roles of Y, and Y_ can be interchanged.



Regularity

One of course wants to understand solutions of PDEs beyond their
mere existence. We start with the conformal problem. First, we
need a notion of singularity. This is Melrose's b-wave front set.

Recall that Vp(X) is the Lie algebra of vector fields tangent to 09X,

and Diff (X)) is the corresponding algebra of differential operators.

The space of ‘very nice' functions corresponding to Vb()_() and
Diff 5 (X), replacing C°°(X), is the space of L? conormal functions
to the boundary, i.e. functions v € L2 (X) such that Qv € L2 (X)
for every @ € Diff,(X) (of any order).

One «can also work relative to other spaces instead of L2, such as
H*(X). Thus, H* conormal functions to the boundary are
functions v € HE (X) such that Qv € L2 (X) for every

Q € Diff p(X) (of any order).



Regularity

We can microlocalize this using Melrose’s W, (X) (understood to
be classical ps.d.o’s). Recall that the principal symbol o}, s(A) of
A € W3(X) is then a homogenenous degree s function on

bT*X\ o.

Definition

Suppose u € L2 (X). Then q € °T*X \ o is not in WF(u) if
there is an A € \UO(X) such that o 0(A)(q) is invertible and
QAu € L2 (X) for all @ € Diff(X).

Note that the definition of WF could be stated in a completely
parallel manner: we would require (for X without boundary)
QAu € [2(X) for all Q € Diff(X) - this is equivalent to

Au € C®(X) by the Sobolev embedding theorem.

In fact, technically it is useful to work with the space of functions

conormal relative to HL (X), i.e. replace L2 by HL_ above; for

solutions of the wave equation, these two are equivalent.



Regularity

For timelike boundaries we also need the notion of generalized
broken bicharacteristics, due to Melrose and Sjostrand. These
encode the law of reflection at the boundary, as well as subtle
phenomena when some light rays are tangent to the boundary.

Recall first that one has a natural map 7 : T*X — 2T*X given in
local coordinates by

d
m(E d+dy) = (x€) T +ndy.

m(x,y,&m) = (x,y,x§,n).

This is a diffeomorphism for x 7é_0, but is not invertible at x = 0.
The characteristic set ¥, C T*X \ 0 is the zero set of G.

The compressed characteristic set, ¥, is ¥ = 7(Zz) C °T*X \ o.
Let 7 = 7'("[.



Regularity

Definition
Generalized broken bicharacteristics, or GBB, are

o continuous maps~y : | — ¥,
o for f € C®(°T*X) real valued,

liminf fon(s) = fov(s)
5—50 s — sg

> inf{Hpf(q) : g€ (v(s0))}-

o

In local coordinates, such f are functions of x, y,x¢ and 1, but not
of £, i.e. the normal component of momentum is allowed to
change.




Regularity

For the conformal problem we have:

@ Riemannian: (Agz — A)u = f with DBC, then
WEF(u) C WE(f) (microlocal elliptic regularity).

@ Lorentzian, 0X = Y, U Y_ is spacelike: (Oz — A)u =0,
WF(u) is a union of maximally extended bicharacteristics
(propagation of singularities, Duistermaat and Hormander).
Moreover, the (renormalized) map of Cauchy data at Y_ to
Cauchy data at Y, is an elliptic Fourier integral operator.

@ Lorentzian, 0X is timelike, with DBC: (Oz — A)u = 0, with
DBC at Y: WFp(u) is a union of maximally extended GBB
(propagation of singularities, Melrose, Sjostrand, Taylor).



Regularity

We now return to the original setting. Here it is useful to consider
conormality relative to the ‘energy space’ H&(X) and its dual
Hy *(X). Recall that
° Vo()_() is the set of C™ vector fields vanishing at 90X,
@ Diffo(X) is the associated set of differential operators,
o HX(X) is the corresponding Sobolev space, i.e. for k >0
integer, it is given by u € L3(X) such that Qu € L3(X) for
Q < Diff§(X).
o Hy*(X) is the dual of H¥(X).
The general 0-Sobolev spaces are defined using the zero ps.d.o’s of
Mazzeo and Melrose.



Regularity

Definition

Suppose u € Hé‘loc()_() Then g € ®T*X \ o is not in WFy(u) if
there is an A € W9(X) such that oy, .0(A)(q) is invertible and
QAu € Hé‘loc(X) for all Q € Diff 5(X).

More generally, one can ask whether one has m b-derivatives in
Hé‘loc, the resulting wave front set is denoted by WF’;"".



Regularity

Definition

Suppose X is asymptotically de Sitter-like. The map
S(A) = C2(Yo)2 3 (vely_, velyo) = (vplve, vely.) € C(Y4)?
is called the scattering operator.

One can describe S(\) rather precisely.

Theorem

Suppose A # ((n—1)2 — m?) /4, m € N. Then the scattering
operator is a Fourier integral operator associated to the
null-geodesic flow on X; which is elliptic after suitable
renormalization. In particular, even for a; € D'(Y_), WF(v4|y,)
and WF(v_|y, ) are subsets of the image of WF(a;) U WF(a_)

under the null-bicharacteristic flow of G in X.

More precisely, here we lift points
a € WF(a;) UWF(a-) C T*Y_ \ o to the characteristic set in

Ty X (yielding two points!), flow them forward to T;",+)_(, and pull
back the result to T*Y, \ o.



Regularity

The condition A # ((n — 1)> — m?) /4 simply eliminates log terms
that should show up in the construction in general.

In fact, one also understands the structure of the forward
fundamental solution; this is due to the work of Dean Baskin: it is
a paired Lagrangian distribution on a blow up of the
zero-double-space )_(02, in which the boundary of the light cone
(flow out of the O-diagonal) is blown up.



Regularity

The analogous result in the Anti de Sitter case is the following:

Theorem

Suppose that P =, + A\, A € (—oo,(n—1)?/4), and m € R or
m = co. Suppose u € Hy,.(X). Then

WEL"(u) \ & € WF}, ™ (Pu).

Moreover, _
(WEL™(u) NE)\ WE, V™ (Pu)

is a union of maximally extended generalized broken
bicharacteristics of the conformal metric g in

>\ WF, "™ (Pu).

In particular, if Pu= 0 then WF%”OO(U) C ¥ is a union of
maximally extended generalized broken bicharacteristics of g.




Energy decay

We now return to de Sitter space, and the long time behavior of
solutions of the wave equation there. Recall that these had the
form (for C*° Cauchy data)

u=x*My 4+ xRNy v e C®(X),

with possible logarithmic modifications for the more decaying term,
where
n—1 (n—1)?

2 4 —A

In particular, for A =0, s_(\) =0, so the result is
u=vy +x"ogx)v_, vi € C*(X).
Rather than looking at the asymptotics on the whole spacetime,

X, it is sometimes useful to study it only on a domain in X, whose
boundaries are characteristic for the PDE (lightlike).



Energy decay

2
|

4+ ff,
€y T =0,

T=1
q-

On the left, the compactification of de Sitter space with the
backward light cone from g and forward light cone from g_ are
shown. €., resp. 2_, denotes the intersection of these light cones
with T > 0, resp. T < 0. On the right, the blow up of de Sitter
space M’, together with the spatial and temporal coordinate lines
of the static model in Q. The interior of the light cone inside the
front face ff;, can be identified with the spatial part of the static
model of de Sitter space.



Energy decay

The static model of de Sitter space arises by singling out a point
on Sg_l, e.g. qo=(1,0,...,0) €St CR™
@ it is the intersection of the backward lightcone from qg
considered as a point g at T =0, and the forward light cone
from qp considered as a point g_ at T = 1.
@ These intersect the equator T = 1/2 (here 7 = 0) in the same
set, and altogether form a ‘diamond’.
o Explicitly this region is given by 222 + ...+ z2 <1 inside the
hyperboloid.

@ Blow up the corner where the light cones intersect 7 =0, as
well as gy and g_; call the resulting space M'.



Energy decay

M can also be obtained as follows.
o Consider [0,1]7 x B3, with T = e~ for t > 4, say.
@ In polar coordinates (r,w) on B3, consider the Lorentz metric

(1—r?)dt? — (1 —r*)tdr? — r* du?.

@ Blow up the corners to obtain M.

o It is straightforward to see that M and M’ are (almost)
diffeomorphic and isometric.
@ ‘Almost’ refers to this approach gives that the defining

function of ff,, in M is x? — this corresponds to an evenness
statement for the Lorentz metric in the sense of Guillarmou.



Energy decay

While one can analyze the solutions of the wave equations on de
Sitter space at points inside the ‘diamond’ by considering the
diamond only (in view of the finite propagation speed for the wave
equation), the resulting picture does include rather artificial
limitations.

For instance, the local static asymptotics, corresponding to the tip
of the diamond at Y, describes only a small part of the
asymptotics of solutions of the Cauchy problem on de Sitter space.

Note though that restricted to the diamond the asymptotics is
particularly simple: as there is only one point on Y, in the
diamond, one sees that for the wave equation (A = 0) the solution
decays to a constant, and the decay rate is ‘exponential’ (i.e.
modulo O(x)).



Energy decay

Black holes, especially de Sitter-Schwarzschild space, are very
closely connected to de Sitter space: the event horizon for a black
hole plays the same role as for the backward light cone in de Sitter
space.

In these settings, energy decay was proved by Dafermos and
Rodnianski (polynomial decay) and Melrose-S4 Barreto-V.
(exponential decay).
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