
SCATTERING FOR SYMBOLIC POTENTIALS OF ORDER ZERO

AND MICROLOCAL PROPAGATION NEAR RADIAL POINTS

ANDREW HASSELL∗, RICHARD MELROSE†, AND ANDRÁS VASY‡

Abstract. In this paper, the scattering and spectral theory of H = ∆g + V

is developed, where ∆g is the Laplacian with respect to a scattering metric
g on a compact manifold X with boundary and V ∈ C∞(X) is real; this
extends our earlier results in the two-dimensional case. Included in this class of
operators are perturbations of the Laplacian on Euclidean space by potentials
homogeneous of degree zero near infinity. Much of the particular structure of
geometric scattering theory can be traced to the occurrence of radial points
for the underlying classical system. In this case the radial points correspond
precisely to critical points of the restriction, V0, of V to ∂X and under the
additional assumption that V0 is Morse a functional parameterization of the
generalized eigenfunctions is obtained.

The main subtlety of the higher dimensional case arises from additional
complexity of the radial points. A normal form near such points obtained
by Guillemin and Schaeffer is extended and refined, allowing a microlocal de-
scription of the null space of H − σ to be given for all but the finite set of
‘threshold’ values of the energy (meaning when it is a critical value of V0);
additional complications arise at the discrete set of ‘effectively resonant’ ener-
gies. In particular each critical point at which the value of V0 is less than σ is
the source of solutions of Hu = σu. The resulting description of the general-
ized eigenspaces is a rather precise, distributional, formulation of asymptotic
completeness. We also derive the closely related L2 and time-dependent forms
of asymptotic completeness, including the absence of L2 channels associated
with the non-minimal critical points. This phenomenon, observed by Herbst
and Skibsted, can be attributed to the strictly non-minimal growth of the
eigenfunctions arising from these critical points.
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1. Introduction

In this paper, which is a continuation of [4], scattering theory is developed for
symbolic potentials of order zero. The general setting is the same as in [4], consisting
of a compact manifold with boundary, X, equipped with a scattering metric, g, and
a real potential, V ∈ C∞(X). Recall that such a scattering metric on X is a smooth
metric in the interior of X taking the form

(1.1) g =
dx2

x4
+

h

x2

near the boundary, where x is a boundary defining function and h is a smooth
cotensor which restricts to a metric on {x = 0} = ∂X. This makes the interior, X◦,
of X a complete manifold which is asymptotically flat and is metrically asymptotic
to the large end of a cone, since in terms of the singular normal coordinate r = x−1,
the leading part of the metric at the boundary takes the form dr2 + r2h(y, dy). In
the compactification of X◦ to X, ∂X corresponds to the set of asymptotic directions
of geodesics. In particular, this setting subsumes the case of the standard metric
on Euclidean space, or a compactly supported perturbation of it, with a potential
which is a classical symbol of order zero, hence not decaying at infinity but rather
with leading term which is asymptotically homogeneous of degree zero. The study
of the scattering theory for such potentials was initiated by Herbst [9].

Let V0 ∈ C∞(∂X) be the restriction of V to ∂X, and denote by Cv(V ) the
set of critical values of V0. It is shown in [4] that the operator H = ∆g + V
(where the Laplacian is normalized to be positive) is essentially self-adjoint with
continuous spectrum occupying [min V0,∞). There may be discrete spectrum of
finite multiplicity in (−minX V,maxV0] with possible accumulation points only
at Cv(V ) and then only accumulating from below. To obtain finer results, it is
natural to assume, as we do throughout this paper unless otherwise noted, that V0

is a Morse function, i.e. has only nondegenerate critical points; in particular Cv(V )
is a then finite set; by definition this is the set of threshold energies, or thresholds.

In the two-dimensional case, considered in [4], the boundary is one-dimensional
and so the critical points of V0 are either minima or maxima. In analyzing the
problem in general dimension, we must handle critical points of arbitrary index
corresponding to a general nondegenerate Hessian. The classical dynamical system
corresponding to the asymptotic behaviour of the operator H−σ has radial points,
two for each critical point of V with critical value less than σ, and the linearization
of the flow in the complementary directions has saddle behaviour at non-minimal
points. A technical problem arises from the existence of resonances, i.e. integral
relations between the eigenvalues of the linearization, for some values of σ and
these complicate the reduction of the classical system to a (microlocal) normal
form. Indeed in their study of radial points in the setting of classical microlocal
analysis, Guillemin and Schaeffer ([3]) exclude these cases. However the closure of
the set of resonant energies may have interior, so it is essential to deal with at least
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most of these cases; one of the main aspects of this work is the microlocal treatment
of such resonant radial points.

1.1. Previous results. The Euclidean setting described above was first studied
by Herbst [9], who showed that any finite energy solution of the time dependent
Schrödinger equation, so u = e−itHf, can concentrate, in an L2 sense, asymp-
totically as t → ∞ only in directions which are critical points of V0. This was
subsequently refined by Herbst and Skibsted, who showed that such concentration
can only occur near local minima of V0. In contrast, solutions of the classical flow
can concentrate near any critical point of V0.

Asymptotic completeness has been studied by Agmon, Cruz and Herbst [1], by
Herbst and Skibsted [6], [7], [8] and the present authors in [4]. Agmon, Cruz and
Herbst showed asymptotic completeness for sufficiently high energies, while Herbst
and Skibsted extended this to all energies except for an explicitly given union of
bounded intervals; in the two dimensional case, they showed asymptotic complete-
ness for all energies. These results were obtained by time-dependent methods.
On the other hand the principal result of [4] involves a precise description of the
generalized eigenspaces of H

(1.2) E−∞(σ) = {u ∈ C−∞(X); (H − σ)u = 0};

note that the space of ‘extendible distributions’ C−∞(X) is the analogue of tempered
distributions and reduces to it in case X is the radial compactification of Rn. Thus
we are studying all tempered eigenfunctions of H. Let us recall these results in more
detail.

For any σ /∈ Cv(V ) the space Epp(σ) of L2 eigenfunctions is finite dimen-
sional, and reduces to zero except for σ in a discrete (possibly empty) subset of

[minX V,maxV0] \ Cv(V ). It is always the case that Epp(σ) ⊂ Ċ∞(X) consists of
rapidly decreasing functions. Hence E−∞

ess (σ) ⊂ E−∞(σ), the orthocomplement of
Epp(σ), is well defined for σ /∈ Cv(V ). Furthermore, as shown in the Euclidean case
by Herbst in [9], the resolvent, R(σ) of H, acting on this orthocomplement, has a
limit, R(σ ± i0), on [minV0,∞) \ Cv(V ) from above and below. The subspace of
‘smooth’ eigenfunctions is then defined as

E∞(σ) = Sp(σ)
(
Ċ∞(X) ⊖ Epp(σ)

)
⊂ E−∞(σ)

Sp(σ) ≡
1

2πi

(
R(σ + i0) −R(σ − i0)

)
.

In fact

E∞
ess(σ) ⊂

⋂

ǫ>0

x−1/2−ǫL2(X).

An alternative characterization of E∞
ess(σ) can be given in terms of the scattering

wavefront set at the boundary of X .
The scattering cotangent bundle, scT ∗X, of X is naturally isomorphic to the

cotangent bundle over the interior of X, and indeed globally isomorphic to T ∗X by
a non-natural isomorphism; the natural isomorphism represents both ‘compression’
and ‘rescaling’ at the boundary. If (x, y) are local coordinates near a boundary
point of X , with x a boundary defining function, then linear coordinates (ν, µ) are
defined on the scattering cotangent bundle by requiring that q ∈ scT ∗X be written
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as

(1.3) q = −ν
dx

x2
+
∑

i

µi
dyi

x
, ν ∈ R, µ ∈ R

n−1.

This makes (ν, µ) dual to the basis (−x2∂x, x∂yi) of vector fields which form an
approximately unit length basis, uniformly up to the boundary, for any scattering
metric. In Euclidean space, ν is dual to ∂r and µi is dual to the constant-length
angular derivative r−1∂yi . In the analysis of the microlocal aspects of H−σ, in part
for compatibility with [3], it is convenient to multiply H − σ by x−1, i.e. to replace
it by

P = P (σ) = x−1(H − σ).

The classical dynamical system giving the behaviour of particles, asymptotically
near ∂X, moving under the influence of the potential corresponds to ‘the bichar-
acteristic vector field,’ see (2.3), determined by the boundary symbol, p, of P. This
vector field is defined on scT ∗

∂XX , which is to say on scT ∗X at, and tangent to,
the boundary scT ∗

∂XX = scT ∗X ∩ {x = 0}. It has the property that ν is nonde-
creasing under the flow; we refer to points (y, ν, µ) where µ = 0 as incoming if
ν < 0 and outgoing if ν > 0. What is important in understanding the behaviour
of the null space of P, i.e. tempered distributions, u, satisfying Pu = 0, is bichar-
acteristic flow inside {p = 0, x = 0}, a submanifold to which it is tangent. The
only critical points of the flow are at points (y, ν, 0) where y is a critical point of

P and ν = ±
√
σ − V (y). Thus, the only possible asymptotic escape directions of

classical particles under the influence of the potential V are the finite number of
critical points y ∈ Cv(V ). Moreover, only the local minima are stable; the others
have unstable directions according to the number of unstable directions as a critical
point of V0 : ∂X −→ R.

The classical dynamics of p and the quantum dynamics of P are linked via the
scattering wavefront set. Let u ∈ C−∞(X) be a tempered distribution on X (i.e.

in the dual space of Ċ∞(X ; Ω)). The part of the scattering wavefront set, WFsc(u),
of u lying over the boundary {x = 0}, which is all that is of interest here, is a
closed subset of scT ∗

∂XX which measures the linear oscillations (Fourier modes, in
the case of Euclidean space) present in u asymptotically near boundary points; see
[12] for the precise definition. We shall also need to use the scattering wavefront
set WFs

sc(u) with respect to the space xsL2(X) which measures the microlocal
regions where u fails to be in xsL2(X). There is a propagation theorem for the
scattering wavefront set in the style of the theorem of Hörmander in the standard
setting; if Pu ∈ Ċ∞(X), then the scattering wavefront set of u is contained in
{p = 0} and is invariant under the bicharacteristic flow of P, see [12]. In particular,
generalized eigenfunctions of u have scattering wavefront set invariant under the
bicharacteristic flow of P. Note that the elliptic part of this statement is already a
uniform version of the fact that all solutions are smooth.

In view of this propagation theorem, it is possible to consider where generalized
eigenfunctions ‘originate’. Let us say that a generalized eigenfunction originates at
a radial point q, if q ∈ WFsc(u) and if WFsc(u) is contained in the forward flowout
Φ+(q) of q; thus each point in WFsc(u) can be reached from q by travelling along
curves that are everywhere tangent to the flow and with ν nondecreasing along the
curve, so allowing the possibility of passing through radial points, where the flow
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vanishes, on the way. In Part I of this paper we showed, in the two-dimensional
case and provided the eigenvalue σ is a non-threshold value,

• Every L2 eigenfunction is in Ċ∞(X).
• Every nontrivial generalized eigenfunction pairing to zero with the L2

eigenspace fails to be in x−1/2L2(X).
• There are generalized eigenfunctions originating at each of the incoming

radial points in {p = 0}, i.e. at each critical point of V0 with value less
than σ.

• There are fundamental differences between the behaviour of eigenfunctions
near a local minimum and at other critical points. The radial point corre-
sponding to a local minimum is always an isolated point of the scattering
wavefront set for some non-trivial eigenfunction. For other critical points,
the scattering wavefront set necessarily propagates and in generic situa-
tions each nontrivial generalized eigenfunction is singular at some minimal
radial point.

• A generalized eigenfunction, u, with an isolated point in its scattering
wavefront set, necessarily a radial point corresponding to a local minimum
of V0, has a complete asymptotic expansion there. The expansion is deter-
mined by its leading term, which is a Schwartz function of n− 1 variables.
The resulting map extends by continuity to an injective map from E∞

ess(σ)
into ⊕qL

2(Rn−1), where the direct sum is over local minima of V0 with
value less than the energy σ.

• The space E0
ess(σ), consisting of those generalized eigenfunctions which

are in x−1/2L2 microlocally near {ν = 0}, is a Hilbert space and the
map above extends to a unitary isomorphism, M+(σ), from E0

ess(σ) to
⊕qL

2(Rn−1). A similar map M−(σ) can be defined by reversal of sign or
complex conjugation and the the scattering matrix for P = P (σ) at energy
σ may be written

S(σ) = M+(σ)M−1
− (σ).

In this paper we extend these results to higher dimensions.

1.2. Results and structure of the paper. We treat this problem by microlo-
cal methods. Thus, the ‘classical’ system, consisting of the bicharacteristic vector
field, plays a dominant role. The main step involves reducing this vector field to
an appropriate normal form in a neighbourhood of each of its zeroes, which are
just the radial points. Nondegeneracy of the critical points of V0 implies nondegen-
eracy of the linearization of the bicharacteristic vector field at the corresponding
radial points. If there are no resonances, Sternberg’s Linearization Theorem, fol-
lowing an argument of Guillemin and Schaeffer, allows the bicharacteristic vector
field to be reduced to its linearization by a contact transformation of scT ∗

∂XX. At
the quantum level this means that conjugation by a (scattering) Fourier integral
operator, associated to this contact transformation, microlocally replaces P by an
operator with principal symbol in normal form. For this normal form we construct
‘test modules’ of pseudodifferential operators and analyze the commutators with
the transformed operator. Modulo lower order terms, the operator itself becomes
a quadratic combination of elements of the test module. Just as in Part I, we use
the resulting system of regularity constraints to determine the microlocal structure
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of the eigenfunctions and ultimately show the existence of asymptotic expansions
for eigenfunctions with some additional regularity.

However, the problem of resonances cannot be avoided. Even for a fixed operator
and fixed critical point, the closure of the set of values of σ for which resonances
occur may have non-empty interior. Such resonances prevent the reduction of the
bicharacteristic vector field to its linearization, and hence of the symbol of P to
an associated model, although partial reductions are still possible. In general it
is necessary to allow many more terms in the model. Fortunately most of these
terms are not relevant to the construction of the test modules and to the derivation
of the asymptotic expansions. We distinguish between ‘effectively nonresonant’
energies, where the additional resonant terms are such that the definition of the
test modules, now only to finite order, proceeds much as before and the ‘effectively
resonant’ energies, where this is not the case. Ultimately, we analyze the regularity
of solutions at all (non-threshold) energies. Near effectively nonresonant energies,
smoothness of families of eigenfunctions may still be readily shown. Effectively
resonant energies are harder to analyze, but the set of these is shown to be discrete.
In any case, the space of microlocal eigenfunctions is parameterized at all non-
threshold energies. At effectively resonant energies the problems arising from the
failure of the direct analogue of Sternberg’s linearization are overcome by showing
that, to an appropriate finite order, the operator may be reduced to a non-quadratic
function of the test module.

In outline, the discussion proceeds as follows. In sections 2 – 4 we study radial
points. This is a general microlocal study except that we work under the assumption
that the symplectic map associated to the linearization of the flow at each radial
point (see Lemma 2.4) has no 4-dimensional irreducible invariant subspaces; this
assumption is always fulfilled in the case of our operator ∆+V −σ. The main result
is Theorem 3.7 in which the operator is microlocally conjugated to a linear vector
field plus certain ‘error terms’. In the nonresonant case the error terms can be
made to vanish identically, while in the effectively nonresonant case the error terms
have a good property with respect to a test module of pseudodifferential operators,
namely they can be expressed as a positive power xǫ, ǫ > 0 times a power of the
module. In the effectively resonant case this is no longer possible and we must allow
‘genuinely’ resonant terms, but the set of effectively resonant energies is discrete in
the parameter σ in all dimensions.

We then turn in sections 5 – 7 to studying microlocal eigenfunctions which are
microlocally outgoing at a given radial point q. The main result here is Theorem 6.7
(or Theorem 7.3 in the effectively resonant case) which gives a parameterization of
such microlocal eigenfunctions. For a minimal radial point, they are parameterized
by S(Rn−1), Schwartz functions of n− 1 variables, for a maximal radial point they
are parameterized by formal power series in n−1 variables, and in the intermediate
case of a saddle point with k positive directions, they are parameterized by formal
power series in n− 1 − k variables with values in S(Rk). In all cases, the parame-
terizing data appear explicitly in the asymptotic expansion of the eigenfunction at
the critical point.

We next investigate in sections 8 and 9 the manner in which the various radial
points interact, and prove, in Theorem 9.2, a ‘microlocal Morse decomposition.’
This shows that for each non-threshold energy σ there are genuine eigenfunctions
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(as opposed to microlocal eigenfunctions) in E∞
ess(σ) associated to each energy-

permissible critical point.
Then we turn in sections 10 and 11 to the spectral decomposition of P and prove

several versions of asymptotic completeness. First this is established at a fixed,
non-threshold energy; see Theorem 10.1 which shows that the natural map from
E0

ess(σ) to the leading term in its asymptotic expansion (i.e. to its parameterizing
data) is unitary. Next we prove a form valid uniformly over an interval of the
spectrum, Theorem 10.10. In section 11 a time-dependent formulation is derived,
as Theorem 11.3. This is based on the behaviour at large times of solutions of the
time-dependent Schrödinger equation Dtu = Pu and is subsequently used to derive
a result of Herbst and Skibsted’s on the absence of L2-channels corresponding to
non-minimal critical points (Corollary 11.5).

1.3. Notation.

Notation Description/definition of notation Reference
V0 restriction of V to ∂X
Cv(V ) set of critical values of V0
scT ∗X scattering cotangent bundle over X (1.3)
scT ∗

∂XX restriction of scT ∗X to ∂X (1.3)
x boundary defining function of X s.t. (1.1) holds
y coordinates on ∂X
(ν, µ) fibre coordinates on scT ∗X (1.3)
y = (y′, y′′, y′′′) decomposition of y variable (2.11)
µ = (µ′, µ′′, µ′′′) dual decomposition of µ variable (2.11)
r′i, r

′′
j , r

′′′
k eigenvalues of the contact map A (2.11)

Y ′′
j y′′j /x

r′′
j (5.23)

Y ′′′
k y′′′k /x

1/2 (5.23)
∆ (positive) Laplacian with respect to g
P x−1(∆ + V − σ) Sec. 2
H ∆ + V
R(σ) resolvent of H , (H − σ)−1

R(σ ± i0) limit of resolvent on real axis from above/below

Ṽ modified potential Lem. 8.5

R̃(σ) resolvent of modified potential (∆ + Ṽ − σ)−1

L2
sc(X) L2 space with respect to Riemannian density of g

Hm,0
sc (X) Sobolev space; image of L2

sc(X) under (1 + ∆)−m/2

Hm,l
sc (X) xlHm,0

sc (X)
Ψm,0

sc (X) scattering pseudodiff. ops. of differential order m

Ψm,l
sc (X) xlΨm,0

sc (X); maps Hm′,l′

sc (X) to Hm′−m,l′+l
sc (X)

σ∂,l(A) boundary symbol of A ∈ Ψm,l(X); C∞ fn. on scT ∗
∂XX

σ∂(A) σ∂,0(A)
WFsc(u) scattering wavefront set of u; closed subset of scT ∗

∂XX

WFm,l
sc (u) scattering wavefront set with respect to Hm,l

sc
scHp scattering Hamilton vector field Sec. 2
Φ+(q) forward flowout from q ∈ scT ∗

∂XX Sec. 1.1
radial point point in scT ∗

∂XX where p and scHp vanish Sec. 2
RP±(σ) set of radial points of H − σ where ±ν > 0
Min+(σ) subset of RP+(σ) associated to local minima of V0



8 ANDREW HASSELL, RICHARD MELROSE, AND ANDRÁS VASY

≤ partial order on RP+(σ) compatible with Φ+ Def. 8.3

Ẽmic,+(O,P ) microlocal solutions of Pu = 0 in the set O (4.1)
Emic,+(q, σ) microlocal solutions of (H − σ)u = 0 near q (4.4)
Es

ess(σ) space of generalized σ-eigenfunctions of H (9.1)
Es(Γ, σ) subset of u ∈ Es

ess(σ) with WFsc(u) ∩ RP+(σ) ⊂ Γ (9.5)
Es

Min,+(σ) Es(Γ, σ), with Γ = Min+(σ)

M test module Sec. 5

I
(s)
sc (O,M) space of iteratively-regular functions w. r. t. M (5.9)
τ rescaled time variable; τ = xt Sec. 11

XSch X × Rτ (11.2)

2. Radial points

If X is a compact n-dimensional manifold with smooth boundary and P ∈
Ψ∗,−1

sc (X) (for example, P = x−1(∆ + V − σ)), then the boundary part of its
principal symbol, p = σ∂(P ), is a C∞ function on scT ∗

∂XX. In this, and the next,
section we consider radial points of a general real-valued function, p ∈ C∞(scT ∗

∂XX),
with only occasional references to the particular case, p = |ζ|2 + V0 − σ, of direct
interest in this paper. If (x, y) are local coordinates on X, with x being a boundary
defining function, then recall from (1.3) that this determines dual coordinates (ν, µ)
on the scattering cotangent bundle. The objective is to find a symplectic change
of coordinates in which the form of p is simplified. In this section we consider the
simplification of p up to second order, in a sense made precise below.

The basic non-degeneracy assumption we make is that

(2.1) p = 0 implies dp 6= 0;

this excludes true ‘thresholds’ which however do occur for our problem, when 0 is
a critical value of V0. It follows directly from (2.1) that the boundary part of the
characteristic variety

Σ = {q ∈ scT ∗
∂XX ; p(q) = 0} is smooth;

we shall assume that it is compact, corresponding to the ellipticity of P. We may
extend p to a C∞ function on scT ∗X , still denoted by p. Over the interior scT ∗

X◦X
is naturally identified with T ∗X◦, which is a symplectic manifold with canonical
symplectic form ω. Near the boundary, expressed in terms of sc-dual coordinates,

(2.2) ω = d

(
−ν

dx

x2
+
∑

i

µi
dyi

x

)
= (−dν +

∑

i

µi
dyi

x
) ∧

dx

x2
+
∑

i

dµi ∧
dyi

x
.

Consider the Hamilton vector field, Hx−1p, of x−1p, which we shall denote scHp,
fixed by the identity ω(·, Hp) = dp. Then scHp extends to a vector field on scT ∗X
tangent to its boundary, so scHp ∈ Vb(scT ∗X). At the boundary scHp, as an ele-
ment of Vb(scT ∗X), is independent of the extension of p. We denote the restriction
of scHp (as a vector field) to scT ∗

∂XX by W, so W ∈ V(scT ∗
∂XX). Explicitly in local

coordinates
scHp = − (∂νp)(x∂x + µ · ∂µ) + (x∂xp− p+ µ · ∂µp)∂ν

+
∑

j

(
∂µjp ∂yj − ∂yjp ∂µj

)
+ xVb(scT ∗X);(2.3)
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since p is smooth up to the boundary, x∂xp = 0 at scT ∗
∂XX. Thus,

(2.4) W = −(∂νp)µ · ∂µ + (µ · ∂µp− p)∂ν +
∑

j

(
∂µjp ∂yj − ∂yjp ∂µj

)
.

Alternatively W may be described in terms of the contact structure on scT ∗
∂XX

given by α = ω(·, x2∂x). This contact structure is well-defined, i.e. α is fixed up to
a positive smooth multiple. In terms of scattering coordinates

α = −dν + µ · dy.

Then W is the Legendre vector field of p, determined by

(2.5) dα(.,W ) + γα = dp, α(W ) = p

for some function γ. It follows that W is tangent to Σ, since dp(W ) = γα(W ) =
γp = 0 at any point at which p vanishes.

At a point in Σ at which dp and α are linearly independent, p (or the underlying
operator) is, by definition, of principal type. Conversely, radial points are those at
which dp and α are linearly dependent; from (2.5) and the nondegeneracy of α this
is equivalent to the vanishing of W, W (q) = 0. Thus, at a radial point, dp = λα,
λ = γ(q), and it follows from (2.5) that λ = −∂νp and from (2.1) that λ 6= 0. We
may choose coordinates in the base such that µ = 0 at q and then α = −dν and
dp = −λdν at q.

Definition 2.1. A radial point q ∈ Σ for a real-valued function p ∈ C∞(scT ∗
∂XX)

satisfying (2.1) is said to be non-degenerate if the vector field W , restricted to
Σ = {p = 0}, has a non-degenerate zero at q. Note that this implies that a non-
degenerate radial point is necessarily isolated in the set of radial points.

The vector field W vanishes at a radial point q, hence its linearization is well
defined as linear map, A′ on Tq

scT ∗
∂XX, (later we will use the transpose, A, as a

map on differentials)

(2.6) A′v = [V,W ](q),

for any smooth vector field V with V (q) = v; it is independent of the choice of
extension and can also be written in terms of the Lie derivative

(2.7) A′v = −LWV (q).

Since Wp = γp, A′ preserves the subspace TqΣ. Since α is normal to it, the restric-
tion of dα to TqΣ is a symplectic 2-form, ωq.

Lemma 2.2. At a non-degenerate radial point for p, where dp = λα, the lineariza-
tion is such that

S = A′ −
1

2
λ Id ∈ sp(2(n− 1))

is in the Lie algebra of the symplectic group with respect to ωq :

ωq(Sv1, v2) + ωq(v1, Sv2) = 0, ∀ v1, v2 ∈ TqΣ.

Proof. Observe that (2.5) implies that

(2.8) LWα = (dα)(W, ·) + d(α(W )) = γα.

For two vector smooth vector fields Vi, defined near q,

(2.9)
W (dα(V1, V2)) = LW (dα(V1, V2))

= (LW dα)(V1, V2) + dα(LWV1, V2) + dα(V1, LWV2).
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The left side vanishes at q so using (2.7)

(2.10) ωq(A
′v1, v2) + ωq(v1, A

′v2) = λωq(v1, v2) ∀ v1, v2 ∈ TqΣ.

�

It follows from Lemma 2.2, see for example [3], that A′ is decomposable into
invariant subspaces of dimension 2 and 4, with eigenvalues on the two-dimensional
subspaces of the form λr, λ(1 − r), r ≤ 1/2 real or λ(1/2 + ia), λ(1/2 − ia), with
a > 0.

While the eigenvalue λ of dx does not affect the normal form of p, it has a major
influence on the structure of microlocal solutions. Note that if λ > 0, then x is in-
creasing along bicharacteristics of p in the interior of scT ∗X, i.e. the bicharacteristics
leave the boundary, i.e. ‘come in from infinity’ if ∂X is removed, while if λ < 0, the
bicharacteristics approach the boundary, i.e. ‘go out to infinity’. Correspondingly
we make the following definition.

Definition 2.3. We say that a non-degenerate radial point q for p with dp(q) =
λα(q) is outgoing if λ < 0, and we say that it is incoming if λ > 0.

For p = |ζ|2 + V0 − σ, we have λ = −∂νp = −2ν. Hence, radial points are
outgoing for ν > 0 and incoming for ν < 0 in this case. We next discuss the form
the linearization takes for p = |ζ|2 + V0 − σ.

Lemma 2.4. For the function p = |ζ|2 + V0 − σ with V0 Morse, the radial points
are all nondegenerate and the linear operator S associated with each has only two-
dimensional invariant symplectic subspaces.

Remark 2.5. In view of the non-occurrence of non-decomposable invariant sub-
spaces of dimension 4 in this case we will exclude them from further discussion
below.

Proof. Choose Riemannian normal coordinates yj on ∂X , so the metric function h
satisfies h − |µ|2 = O(|y|2). Since the Hessian of V |∂X is a symmetric matrix, it
can be diagonalized by a linear change of coordinates on ∂X , given by a matrix in
SO(n− 1), which thus preserves the form of the metric. It follows that for each j,
(dyj , dµj) is an invariant subspace of A. �

Let I denote the ideal of C∞ functions on scT ∗
∂XX vanishing at a given radial

point, q. The linearization of W then acts on T ∗
q (scT ∗

∂XX) = I/I2; dp(q), or equiv-
alently αq, is necessarily an eigenvector of A with eigenvalue 0. Similarly, scHp

defines a linear map Ã on T ∗
q (scT ∗X) . Since dp(q) = −λdν, Ã preserves the conor-

mal line, span dx and the eigenvalue of Ã corresponding to the eigenvector dx is λ.
Thus Ã acts on the quotient

T ∗
q (scT ∗

∂XX) ≡ T ∗
q (scT ∗X) / spandx,

and this action clearly reduces to A.
By Darboux’s theorem we may make a local contact diffeomorphism of scT ∗

∂XX
and arrange that q = (0, 0, 0). Thus, as a module over C∞(scT ∗

∂XX) in terms of
multiplication of functions, I is generated by ν, yj and the µj , for j = 1, . . . , n− 1.
Thus in general we have the following possibilities for the two-dimensional invariant
subspaces of A.

(i) There are two independent real eigenvectors with eigenvalues in λ(R\[0, 1]).
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(ii) There are two independent real eigenvectors with eigenvalues in λ(0, 1).
(iii) There are no real eigenvectors and two complex eigenvectors with eigen-

values in λ(1
2 + i(R \ {0})).

(iv) There is only one non-zero real eigenvector with eigenvalue 1
2λ.

Case (iv) was called the ‘Hessian threshold’ case in Part I. In all cases the sum of
the two (generalized) eigenvalues is λ.

Lemma 2.6. By making a change of contact coordinates near a radial point q
for p ∈ C∞(scT ∗

∂XX) for which the linearization has neither a Hessian threshold
subspace, (iv), nor any non-decomposable 4-dimensional invariant subspace, coor-
dinates y and µ, decomposed as y = (y′, y′′, y′′′) and µ = (µ′, µ′′, µ′′′), may be
introduced so that

(i)

(2.11) (y′, µ′) = (y1, . . . , ys−1, µ1, . . . , µs−1)

where e′j = dy′j, f
′
j = dµ′

j are eigenvectors of A with eigenvalues λr′j ,

λ(1 − r′j), j = 1, . . . , s− 1 with r′j < 0 real and negative.
(ii) (y′′, µ′′) = (ys, . . . , ym−1, µs, . . . , µm−1) where e′′j = dy′′j , f ′′

j = dµ′′
j are

eigenvectors with eigenvalues λr′′j , λ(1 − r′′j ), j = s, . . . ,m − 1 where 0 <

r′′j ≤ 1/2 is real and positive.
(iii) (y′′′, µ′′′) = (ym, . . . , yn−1, µm, . . . , µn−1), where some complex combina-

tion of e′′′j , f
′′′
j , of dy′′′j and dµ′′′

j , m ≤ j ≤ n − 1, are eigenvectors with

eigenvalues λr′′′j and λ(1 − r′′′j ) with r′′′j = 1/2 + iβ′′′
j , β′′′

j > 0.

Thus if we set e = (e′, e′′, e′′′), f = (f ′, f ′′, f ′′′) the eigenvectors of A are dν, ej and
fj, with respective eigenvalues 0, λrj and λ(1− rj); we will take the coordinates so
that the rj are ordered by their real parts.

In coordinates in which the eigenspaces take this form it can be seen directly
that

(2.12) p = −ν +

m−1∑

j=1

rjyjµj +

n−1∑

j=m

Qj(yj , µj) + νe1 + e2

the Qj , are homogeneous polynomials of degree 2, e1 vanishes at least linearly and
e2 to third order.

Remark 2.7. For the function p = |ζ|2 + V0 − σ with V0 Morse, the eigenvalues
of A at a radial point q are easily calculated in the coordinates used in the proof
of Lemma 2.4. Indeed, since the 2-dimensional invariant subspaces decouple, the
results of [4] can be used. The eigenvalues corresponding to the 2-dimensional
subspace in which the eigenvalue of the Hessian is 2aj are thus

λ

(
1

2
±

√
1

4
−

aj

σ − V0(0)

)
, where λ = −2ν(q).

3. Microlocal normal form

We will reduce P (σ) = x−1(∆ + V − σ) to a model form by conjugation with
a Fourier integral operator eiB, where B ∈ Ψ∗,−1

sc (X) has real principal symbol, so
P ′ = e−iBPeiB ∈ Ψ∗,−1

sc (X). Under a local version of the Fourier transform this is
equivalent to the conjugation of a pseudodifferential operator, in the usual sense,
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by the Fourier integral operator obtained by exponentiation of a pseudodifferential
operator of first order, with real principal symbol; see [14]. In particular Hb̃ (where

b̃ = σ(B)) is a smooth vector field on scT ∗X tangent to its boundary and by
Egorov’s theorem, σ(P ′) is the pull-back of σ(P ) by the flow of the vector field Hb̃

at time 1.
In fact, we only need to put the principal and subprincipal symbols of P into

model form, and the latter needs to be done only along the ‘flow-out’, i.e. the
unstable manifold, of q, which can be done via conjugation by a function; this is
accomplished in Lemma 6.1. The model form of the subprincipal symbol only plays
a role in the polyhomogeneous, as opposed to just conormal, analysis, which is the
reason it is postponed to Section 6.

Thus, in this section we only put the principal symbol of P into a normal form
pnorm. For this purpose, we only need to construct the principal symbol σ(B) of B

as in the first paragraph. This in turn can be be written as x−1b̃, b̃ ∈ C∞(scT ∗X),
so we only need to construct a function b on scT ∗

∂XX such that the pull-back Φ∗p

of p by the time 1 flow Φ of Hx−1 b̃ is the desired model form pnorm, where b̃ is
some extension of b to scT ∗X ; this property is independent of the chosen extension.
Thus any B with σ(B) = b̃ will conjugate P to an operator with principal symbol
pnorm. This construction is accomplished in two steps, following Guillemin and
Schaeffer [3] in the non-resonant setting. First we construct the Taylor series of b
at q = (0, 0, 0), which puts p into a model form modulo terms vanishing to infinite
order at q. Next, we remove this error along the unstable manifold of q by modifying
an argument due to Nelson [15].

Rather than using powers of I to filter C∞(scT ∗
∂XX) in the construction of the

Taylor series of b, we proceed as in [3] and assign degree 1 to y and µ but degree
two to ν in local coordinates as discussed above. Thus, let hj denote the space of
functions

hj =
∑

2a+|β|+|γ|−2=j

νayβµγC∞(scT ∗
∂XX)

Note that this is well-defined, independently of our choice of local coordinates, since
−dν is the contact form α at q, so ν is well-defined up to quadratic terms. The
Poisson bracket preserves this filtration of I in the following sense. If ã, b̃ are some
smooth extensions to scT ∗X of elements a ∈ hi, b ∈ hj then

x−1c̃ = {x−1ã, x−1b̃} =⇒ c = c̃|scT∗
∂X

X ∈ hi+j .

When this holds we write c = {{a, b}}; explicitly,

(3.1) {{a, b}} = Wa(b) +
∂a

∂ν
b−

∂b

∂ν
a,

with W given by (2.4). Thus

(3.2) {{., .}} : hi × hj 7→ hi+j .

We then consider the quotient

gj = hj/hj+1,

so the bracket {{., .}} descends to

gi × gj → gi+j .
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Remark 3.1. These statements remain true with hj replaced by Ij . However, note
that p = −ν in I/I2, since dp = −dν at q, but it is not true that p = −ν in g0. In
fact, p is given by (3.3) below in g0.

Using contact coordinates as discussed above, gj may be freely identified with
the space of homogeneous functions of ν, y, µ of degree j + 2 where the degree of ν
is 2. Now let p0 be the part of p of homogeneity degree two, so from (2.12)

(3.3) p0 = −ν +
m−1∑

j=1

rjyjµj +
n−1∑

j=m

Qj(yj , µj), p− p0 ∈ h1.

If we take b ∈ hl, l ≥ 1 and let Φ be the time 1 flow of Hx−1b then

(3.4) xΦ∗(x−1p) = p+ {{p, b}} = p+ {{p0, b}}, modulo hl+1.

This allows us to remove higher order term in the Taylor series of the symbol
successively provided we can solve the ‘homological equation’

{{p0, b}} = e ∈ hl, modulo hl+1.

This we need to consider the range of this linear map; its eigenfunctions are easily
found from the eigenfunctions of the linearization of scHp.

Lemma 3.2. The (equivalence classes of the) monomials pa
0e

βfγ with 2a+ |β| +
|γ| = l + 2 satisfy

(3.5)

{{p0, p
a
0e

βfγ}} = Ra,β,γp
a
0e

βfγ with eigenvalue

Ra,β,γ = λ


a− 1 +

n−1∑

j=1

βjrj +
n−1∑

j=1

γj(1 − rj)




and give a basis of eigenvectors for {{p0, .}} acting on gl.

Proof. Taking into account the eigenvalues and eigenvectors of A, all eigenvalues
and eigenvectors of {{p0, .}} can be calculated iteratively using the derivation prop-
erty of the original Poisson bracket. This implies

{{p0, ab}} = x{x−1p0, x(x
−1a)(x−1b)}

= x−1{x−1p0, x}ab+ x{x−1p0, x
−1a}b+ xa{x−1p0, x

−1b}

= λab+ {{p0, a}}b+ a{{p0, b}},

(3.6)

where each term within {., .} really uses a C∞ extensions of the a, b, p0 to scT ∗X,
followed by evaluation of the bracket and then restriction to scT ∗

∂XX. Since

{{p0, a}} = x{x−1p0, x
−1a} = x{x−1p0, x

−1}a+ {x−1p0, a} = −λa+ {x−1p0, a},

on g−1 the eigenvectors of {{p0, .}} are the eigenvectors ej and fj of A with eigen-
values −λ+λrj and −λ+λ(1−rj). Moreover, in g0, p0 is an eigenvector of {{p0, .}}
with eigenvalue 0. Thus, ej, fj and p0 satisfy the claim of the lemma. Since the
other generators of g0, as well as generators of gj , j ≥ 1, can be written as a
products of the ej , fj and p0, the conclusion of the lemma follows by induction. �

Definition 3.3. We call the multiindices in the set

(3.7) I = {(α, β);R0,β,γ = 0 and |α| + |β| ≥ 3} ,

with Ra,β,γ given by (3.5), resonant.
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Conjugation therefore allows us to remove, by iteration, all terms except those
with indices in I. Expanding pa

0 using (3.3) we deduce the following.

Proposition 3.4. If P is as above and the leading term of p = σ∂,−1(P ) is given
by (3.3) near a given radial point q then there exists a local contact diffeomorphism
Φ near q such that
(3.8)

e−1Φ∗p = −ν+

m∑

j=1

rjyjµj +

n−1∑

j=m+1

Qj(yj , µj)+
∑

I

cα,βe
αfβ modulo I∞ = h∞ at q

with e smooth, e(q) = 1 and I given by (3.7).

Proof. The Taylor series of Φ and e at q can be constructed inductively over the
filtration hj as indicated above. At the jth stage, the terms of weighted homogeneity
j can be removed from p except for those in the null space of {{p0, ·}}, i.e. the
resonant terms with Ra,α,β = 0. For those with a > 0, i.e. with at least one factor
of p0, can be removed by adding a term of the appropriate homogeneity to e. This
leads to (3.8) in the sense of formal power series. However, by use of Borel’s Lemma
a local contact diffeomorphism and elliptic factor can be found giving (3.8). �

Now a small extension of Nelson’s proof of the Sternberg linearization theorem
can be used to remove the infinite order vanishing error along the unstable manifold,
i.e. at ν = 0, µ = 0, y′′ = 0, y′′′ = 0.

Proposition 3.5. Suppose that X and X0 are C∞ vector fields on RN with X−X0

vanishing to infinite order at 0. Suppose also that they are both linear outside a
compact set and equal there to their common linearization, DX(0), at 0 which
is assumed to have no pure imaginary eigenvalue. Let U(t), U0(t) be the flows
generated by X and X0. If E is a linear submanifold invariant under X0 such that

(3.9) lim
t→∞

U0(t)x = 0 ∀ x ∈ E

then for all j = 0, 1, 2, . . . and x ∈ E

(3.10) lim
t→∞

Dj(U(−t)U0(t))x

exists, and is continuous in x ∈ E, and

W−x = lim
t→∞

U(−t)U0(t)x, x ∈ E

has a C∞ extension, G, to RN which is the identity to infinite order at 0 and such
that (G−1)∗X = X0 to infinite order along E in a neighbourhood of 0.

Remark 3.6. Note that the derivatives Dj in (3.10) refer to the ambient space R
N ,

and not merely to E. This is useful in producing the Taylor series of G for the last
part of the conclusion.

Proof. We follow the proof of Theorem 8 in [15]. Indeed, if X0 was assumed to be
linear then Nelson’s theorem would apply directly. In fact, dropping this assumption
has little effect on the proof; the main difference is that a little more work is required
to show the exponential contraction property, (3.11) below.

Since the real part of every eigenvalue of DX(0) is non-zero, RN = E+ ⊕ E−

where E+, resp. E−, is the direct sum of the generalized eigenspaces of DX(0) with
eigenvalues with positive, resp. negative, real parts. Since E is invariant under X0,
and hence under DX(0), necessarily E ⊂ E−. We actually apply the theorem with
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E = E−, but, as in Nelson’s discussion, the more general case is useful for the
inductive argument for the derivatives.

Let ej denote a basis of E− consisting of generalized eigenvectors of DX(0)
with corresponding eigenvalue σj ; we shall consider the ej as differentials of lin-
ear functions fj on RN . For x ∈ RN , let x(t) = U0(t)x, Fj(t) = fj(x(t)). Then
dFj

dt |t=t0 = (X0fj)(x(t0)) where

X0fj(y) = DX(0)fj(y) + O(‖y‖2).

Moreover, for y ∈ E−, ‖y‖2 ≤ C1

∑
j f

2
j for some C1 > 0. So, setting ρ =

∑
f2

j , we
deduce that

X0ρ(y) =
∑

j

2σjf
2
j (y) + O(ρ(y)3/2),

hence with R(t) = ρ(x(t)), c0 ∈ (supσj , 0), there exists δ > 0 such that for ‖R(t)‖ ≤
δ,

dR

dt
− 2c0R ≤ 0,

and hence R(t) ≤ e−2c0t‖x‖ for t ≥ 0, ‖r(x)‖ ≤ δ, x ∈ E−. A corresponding
estimate also holds outside a compact set, as X0 is given by DX(0) there, so a
patching argument and (3.9) yield the estimate R(t) ≤ C0e

−2c0t‖x‖ for all x ∈ E−.
Since R(t)1/2 is equivalent to ‖.‖, we deduce that there are constants C, c > 0 such
that

(3.11) ‖U0(t)x‖ ≤ Ce−ct‖x‖ ∀ x ∈ E and t ≥ 0.

For the remainder of the argument we can follow Nelson’s proof even more closely.
Thus, let κ be a Lipschitz constant for X and X0, and choose m such that cm > κ.
Note that there exists c0 > 0 such that for all x ∈ RN ,

(3.12) ‖X1(x)‖ ≤ c0‖x‖
m.

For t1 ≥ t2 ≥ 0, t1 = t2 + t, x ∈ E,

I = ‖U(−t1)U0(t1)x− U(−t2)U0(t2)x‖ = ‖U(−t2) (U(−t)U0(t) − Id)U0(t2)x‖

≤ eκt2‖(U(−t)U0(t) − Id)U0(t2)x‖

by the Lipschitz condition (see [15, Theorem 5]). But with X = X0 +X1, by [15,
Proof of Theorem 6, (5)]

‖U(−t)U0(t)y − y‖ ≤

∫ t

0

eκs‖X1(U0(s)y)‖ ds.

Applying this with y = U0(t2)x, we deduce that

(3.13) I ≤ eκt2

∫ t

0

eκs‖X1(U0(s+ t2)x)‖ ds.

Thus, by (3.12) and (3.11),

I ≤ eκt2

∫ t

0

eκsc0C
me−cm(s+t2)‖x‖m ds

≤ eκt2

∫ ∞

0

eκsc0C
me−cm(s+t2)‖x‖m ds =

c0C
me−(cm−κ)t2‖x‖m

cm− κ
.

Letting t2 → ∞ shows that W−x = limt→∞ U(−t)U0(t)x exists, with convergence
uniform on compact sets, hence W− is continuous in x ∈ E. Moreover, applying
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the estimate with t2 = 0 shows that W−(x) − x = O(‖x‖m). Since m is arbitrary,
as long as it is sufficiently large, this shows that W− is the identity to infinite order
at 0, provided it is smooth, as we proceed to show.

Smoothness can be seen by a similar argument. Namely, first consider the first
derivatives, or rather the 1-jet. Thus, we work on R

N ⊕ L(RN ). Let (x, ξ) denote
the components with respect to this decomposition. These evolve under the flow
U ′(t), resp. U ′

0(t), given by

X ′(x, ξ) = (X(x), DX(x) · ξ), X ′
0(x, ξ) = (X0(x), DX0(x) · ξ),

where DX(x) and ξ are considered as elements of L(RN ), and · is composition
of operators. These vector fields are globally Lipschitz with Lipschitz constant κ′

even though they are not linear outside a compact subset of RN ⊕ L(RN ) due to
the dependence of DX on x. Thus,

(3.14) ‖U ′
0(t)(x, ξ)‖ ≤ eκ′t‖(x, ξ)‖,

see [15, Theorem 5]. So (3.13) still applies, with X1 replaced by X ′
1, κ replaced by

κ′, etc. Now choose m such that cm > 2κ′. Then

(3.15) ‖X ′
1(y, η)‖ ≤ c′0‖y‖

m‖(y, η)‖,

so by (3.11) and (3.14),

I ≤ eκ′t2

∫ t

0

eκ′sc′0C
me−cm(s+t2)‖x‖meκ′(s+t2)‖(x, ξ)‖ ds

≤ eκ′t2

∫ ∞

0

eκ′sc′0C
me−cm(s+t2)‖x‖meκ′(s+t2)‖(x, ξ)‖ ds

=
c′0C

me−(cm−2κ′)t2‖x‖m

cm− 2κ′
.

Thus, limt→∞ U ′(−t)U ′
0(t)x exists, with convergence uniform on compact sets, so

the limit depends continuously on (x, ξ) for x ∈ E.
The higher derivatives can be handled similarly. The resulting Taylor series

about E can be summed asymptotically, giving G: this part of the argument of
Nelson is unchanged. �

Next we apply this general result to the symbol p. Following Lemma 2.6, when
resonances occur we cannot remove all error terms even in the sense of formal
power series. Consequently we do not attempt to get a full normal form in a
neighbourhood of the critical point, but only along the submanifold

(3.16) S = {ν = 0, y′′ = 0, y′′′ = 0, µ = 0},

which is the unstable manifold forW0. After reduction to normal form, errors which
are polynomial in the normal directions to S will remain. For later purposes, we
divide these into two parts. An ‘effectively resonant’ error term is a polynomial
containing only resonant terms of the form

(3.17) rer =
∑

α′,|β′|=1

cα′β′(e′)α′

(f ′)β′

+
∑

α′′,β′′

cα′′β′′(e′′)α′′

(f ′′)β′′

.

Notice that there are only a finite number of terms which can occur here at a given
critical point since in the first sum β′ is restricted to be degree one and r′j < 0 for

all j, while in the second r′′j and 1 − r′′j have the same sign; since 1 − r′′j > 1/2 it
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follows that |β′′| ≤ 1 in the second sum as well. Let JS denote the ideal of C∞

functions on scT ∗
∂XX which vanish on S and set

(3.18) I ′′ =



(α′′, β′′);

m−1∑

j=s

r′′j α
′′
j + (1 − r′′j )β′′

j ∈ (1, 2)



 .

An ‘effectively nonresonant’ error term is an element of JS of the form

(3.19) renr =

s∑

j=1

hjf
′
j +

∑

(α′′,β′′)∈I′′

h′′α′′,β′′eα′′

fβ′′

+
∑

j,k

h′′′jke
′′′
j f

′′′
k

hj ∈ JS , j = 0, 1, . . . , s, h′′α′′,β′′ ∈ C∞(scT ∗
∂XX), (α′′, β′′) ∈ I ′′,

h′′′jk ∈ JS , j, k = m, . . . , n− 1.

Theorem 3.7. Using the notation of Lemma 2.6 for coordinates near a radial
point of q of p there is a local contact diffeomorphism Φ from a neighbourhood of
(0, 0, . . . , 0) to a neighbourhood of q such that Φ∗p = epnorm with e(q) = 1 such that

(3.20) pnorm = −ν +
∑

j

rjyjµj +

n−1∑

j=m

Qj(yj , µj) + renr + rer,

with renr of the form (3.19) and rer of the form (3.17); in addition at a non-resonant
critical point, i.e. if I = ∅, then we may take renr = rer = 0 near q.

Remark 3.8. If F is a Fourier integral operator with canonical relation Φ then
ẼP̃ = F−1PF, with Ẽ elliptic at q, satisfies σ∂,−1(P̃ ) = pnorm.

Remark 3.9. Is will be seen below, of the two error terms, only rer has any effect
on the leading asymptotics of microlocal solutions. The construction below shows
that modulo I∞, renr may be chosen to consist of resonant terms only, i.e. to be
an asymptotic sum of resonant terms. However, this plays no role in the paper; all
the relevant information is contained in the statement of the theorem.

Remark 3.10. Any term νaµβyγ with a+ |β| ≥ 2 and a 6= 0, or with |β| ≥ 3 can be
included in rer or renr. The same is true for any term with |β| ≥ 2 such that βj 6= 0
for some j with Re rj 6= 1

2 . In particular, if Re rj 6= 1
2 for any j, the only terms which

need to be removed have a + |β| ≤ 1. The conjugating Fourier integral operator
can therefore also be arranged to have such terms only and thus to be of the form
eiB, with B = Z + (f/x) where Z is a vector field on X tangent to its boundary
and f is smooth function on X. Correspondingly, the normal form may be achieved
by conjugation of P by an oscillatory function, eif/x, followed by pull-back by a
local diffeomorphism of X, i.e. a change of coordinates. However, if Re rj = 1

2 for
some j, some quadratic terms in µ would also need to be removed for the model
form, but since they play a role analogous to rer, the arguments of Section 5, giving
conormality, are unaffected, and only the polyhomogeneous statements of Section 6
would need alterations. However, the contact diffeomorphism (i.e. FIO conjugation)
approach we present here is both more unified and more concise.

Proof. First we apply Proposition 3.4. Next we need to show that rer as in (3.17)
and renr as in (3.17) can be chosen to have Taylor series at 0 given exactly by the
error term in (3.8).
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So, consider a monomial νaeαfβ with (a, α, β) ∈ I. If α′′′ 6= 0 then β′′′ 6= 0 since
Im r′′′j > 0, and only the eigenvalues of f ′′′

j have negative imaginary parts, and
conversely. In addition, 2a+ |α|+ |β| ≥ 3 implies that a monomial with α′′′ 6= 0 or

β′′′ 6= 0 has the form νaeα̃f β̃e′′′j f
′′′
k for some j, k with 2a+ |α̃| + |β̃| ≥ 1 and

Re(a+
∑

rlα̃l +
∑

(1 − rl)β̃l) = 0.

Since Re(1 − rl) > 0 for all l and Re rl > 0 for l ≥ s, while rl < 0 for l ≤
s − 1, we must have α̃′ 6= 0 (i.e. α̃l 6= 0 for some l ≤ s − 1) and correspondingly

a + |α̃′′| + |α̃′′′| + |β̃| > 0. Due to the latter, νaeα̃f β̃ vanishes on S, so the terms
with α′′′ 6= 0 or β′′′ 6= 0 appear in renr.

So we may assume that α′′′ = β′′′ = 0. If a 6= 0, the monomial is of the form

νãeα̃f β̃ν, ã = a− 1, 2ã+ |α̃| + |β̃| ≥ 1 with

ã+
∑

rjα̃j +
∑

(1 − rj)β̃j = 0.

Arguing as in the previous paragraph we deduce that the terms with a 6= 0 also
appear in renr.

So we may now assume that a = 0, α′′′ = β′′′ = 0. If β′ 6= 0, the monomial is of

the form νaeα̃f β̃fj for some j, and 2a+ |α̃| + |β̃| ≥ 2,

a+
∑

rlα̃l +
∑

(1 − rl)β̃l = rj < 0.

We can still conclude that α̃′ 6= 0, but it is not automatic ath a+ |α̃′′|+ |β̃| > 0.

However, if a + |α̃′′| + |β̃| > 0 then νaeα̃f β̃fj is again included in renr, while if

a+ |α̃′′| + |β̃| = 0, then the monomial is included in rer.
Finally then, we may assume that a = 0, β′ = 0, α′′′ = β′′′ = 0. Since r′j < 0 for

all j = 1, . . . , s− 1
∑

(r′′j α
′′
j + (1 − r′′j )β′′

j ) ≥
∑

r′jα
′
j +

∑
(r′′j α

′′
j + (1 − r′′j )β′′

j ) = 1.

Moreover, the equality holds if and only if α′ = 0, in which case this term is included

in rer. The terms with α′ 6= 0 can be included in h′′
α̃′′,β̃′′

eα̃′′

f β̃′′

for some α̃′′ ≤ α′′,

β̃′′ ≤ β′′, chosen by reducing α′′ and/or β′′ to make
∑

(r′′j α̃
′′
j + (1 − r′′j )β̃′′

j ) ∈ (1, 2).

This can be done since r′′j , 1 − r′′j ∈ (0, 1).
It follows that p can be conjugated to the form

(3.21) −ν +
∑

j

rjyjµj +
n−1∑

j=m

Qj(yj , µj) + renr + rer + r∞,

where renr, rer are as in (3.19), (3.17), with both vanishing if q is non-resonant,
and r∞ vanishes to infinite order at (0, 0, 0). Thus, it remains to show that we can
remove the r∞ term in a neighbourhood of the origin.

To do this we apply Proposition 3.5. Let X ′ be the Legendre vector field of
(3.21), and let X ′

1 be the Legendre vector field of r∞, while X ′
0 = X ′ − X ′

1. Let

X̃ be the linear vector field with differential equal to DX(0), let χ be identically

1 near 0, and let X = χX ′ + (1 − χ)X̃, etc. Let E be the subspace S of R2n−1,
defined by (3.16). Then Proposition 3.5 is applicable, and G given by it may be
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chosen as a contact diffeomorphism since U(t), U0(t) are such, see [3, Section 3,
Theorem 4]. �

We also need a parameter-dependent version of this theorem. Namely, suppose
that p depends smoothly on a parameter σ, can we make the normal form depend
smoothly on σ as well? This problem can be approached in at least two different
ways. One can consider σ simply as a parameter, so p ∈ C∞((∂scT ∗X) × I) =
C∞((scT ∗

∂XX)×I) and then try to carry out the reduction to normal form uniformly.
Alternatively, one identify p with the function p′ on the larger space ∂scT ∗(X × I)
arising by the pull-back under the natural projection

p′ = π∗p, π : scT ∗
∂X×I(X × I) → (scT ∗

∂XX) × I

and then carry out the reduction to a model on the larger space. Whilst the second
approach may be more natural from a geometric stance, we will adopt the first,
since it is closer to the point of view of spectral theory of [4]. Clearly the difficulty
in obtaining a uniform normal form is particularly acute near a value of σ at which
the effectively resonant terms do not vanish. Fortunately in the case of central
interest here, and in other cases too, the set of points at which such problems arise
is discrete.

Lemma 3.11. If P = P (σ) = x−1(∆ + V − σ), q = q(σ) is a radial point of P
lying over the critical point π(q) of V0 and I(σ)) is the set (3.7) for p(σ) then

(3.22)

Rer,q =
{
σ ∈ (V0(π(q)),+∞); either ∃ (0, (α′, 0), (β′, 0)) ∈ I(σ) with |β′| = 1

or ∃ (0, (0, α′′), (0, β′′)) ∈ I(σ)
}

is discrete in (V0(π(q)),+∞).

Remark 3.12. It follows that if K ⊂ (V0(π(q)),+∞) is compact then K ∩ Rer,q is
finite. Thus, to prove properties such as asymptotic completeness, one can ignore
all effectively resonant σ ∈ K.

Proof. LetK be a compact subset of (V0(π(q)),+∞). The setK∩Rer,q of effectively
resonant energies in K is the the union of zeros of a finite number of analytic
functions (none of which are identically zero). Indeed, from Theorem 3.7, Rer,q is
given by the union of the set of zeros of the countable collection of functions

−1 +

m−1∑

j=s

α′′
j r

′′
j (σ) + β′′

j (1 − r′′j (σ)), −1 + (1 − rk) +

s−1∑

j=1

α′
jr

′
j(σ)

as k = 1, . . . , s− 1, while α′, α′′, β′′ are multiindices. But if c > 0 is large enough
then c−1 > |rj(σ)| > c for all j and for all σ ∈ K as K is compact and the rj do
not vanish there. Correspondingly, for |α′| > 2

c2 ,

−1 + (1 − rk) +

s−1∑

j=1

α′
jr

′
j(σ) < −rk − |α′|c < −c−1,

and analogously for |α′′| + |β′′| > 2
c ,

−1 +

m−1∑

j=s

α′′
j r

′′
j (σ) + β′′

j (1 − r′′j (σ)) > −1 + (|α′′| + |β′′|)c > 1.
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Thus, there are only a finite number of these analytic functions that may vanish in
K, as claimed. �

For a given critical point, consider an open interval O ⊂ (V0(π(q)),+∞) \Rer,q.
Apart from the coefficients hj , h

′′
α′′,β′′ , etc., in (3.19) the only part of the model

form depending on σ is

I ′′(σ) = {(α′′, β′′);

m−1∑

j=s

r′′j (σ)α′′
j + (1 − r′′j (σ))β′′

j ∈ (1, 2)}.

We note that on compact subsets K of O, there is a c > 0 such that r′′j (σ) > c for

σ ∈ K, and then for |α′′| + |β′′| > 2c−1,

σα′′β′′(σ) =
m−1∑

j=s

r′′j (σ)α′′
j + (1 − r′′j (σ))β′′

j > 2,

so if we let
JK = ∪σ∈KI

′′(σ),

then JK is a finite set of multiindices. For each multiindex (α′′, β′′) we let

(3.23) Oα′′,β′′ = σ−1
α′′β′′((1, 2)),

which is thus an open subset of O.
For the parameter dependent version of the Theorem 3.7 we introduce

(3.24) S = {(y, ν, µ, σ); ν = 0, y′′ = 0, y′′′ = 0, µ = 0, σ ∈ O},

in place of S (3.16).

Theorem 3.13. Suppose that p ∈ C∞(scT ∗
∂XX × O), O ⊂ (V0(π(q)),+∞) \ Rer,q

is open, that the symplectic map S induced by the linearization A′ of p at q(σ)
(see Lemma 2.2) can be smoothly decomposed (as a function of σ ∈ O) into two-
dimensional invariant symplectic subspaces and that there exists c > 0 such that
r′′j (σ) > c for σ ∈ O then Φ(σ) and F (σ) can be chosen smoothly in σ so that

pnorm(σ) = σ1(P̃ (σ)), P̃ (σ) = F (σ)−1P (σ)F (σ), is of the form in Theorem 3.7,
with the sum over I ′′ replaced by a locally finite sum (the sum is over JK over
compact subsets K ⊂ O,) the hj, etc., in (3.19) depending smoothly on σ, i.e. they
are in C∞(scT ∗

∂XX × O), vanishing at S as in Theorem 3.7, and h′′α′′β′′ supported

in scT ∗
∂XX ×Oα′′β′′ in terms of (3.23).

Remark 3.14. For P = x−1(∆ + V − σ) the conditions of the theorem are satisfied
for any bounded O = I disjoint from the discrete set of effectively resonant σ, since
in local coordinates (y, µ) on Σ(σ), the eigenspaces of S are independent of σ as
shown in the proof of Lemma 2.4, and the r′′j are bounded below by Remark 2.7.

Proof. Since the invariant subspaces depend smoothly on σ by assumption, so do
the eigenvalues of the linearization, and there is smooth family of local contact
diffeomorphisms, i.e. coordinate changes, under which p(σ) takes the form (2.12),
i.e.

(3.25) p(σ) = −ν +

m−1∑

j=1

rj(σ)yjµj +

n−1∑

j=m

Qj(σ, yj , µj) + νe1 + e2

the Qj(σ, .), are homogeneous polynomials of degree 2, e1 vanishes at least linearly
and e2 to third order, all depending smoothly on σ.
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For the rest of the argument it is convenient to reduce the size of the parameter
set O as follows. For σ ∈ O, let

Ô(σ) =
⋂

{Oα′′,β′′ = σ−1
α′′,β′′((1, 2)) : σα′′,β′′(σ) ∈ (1, 2)}∩

⋂
{σ−1

α′′,β′′((−∞, 1)) : σα′′,β′′(σ) ∈ (−∞, 1)},
(3.26)

an open set (as it is a finite intersection of open sets) that includes σ. Thus,

{Ô(σ) : σ ∈ O} is an open cover of O. We take a locally finite subcover and a
subordinate partition of unity. It suffices now to show the theorem for each element
Ô(σ0) of the subcover in place of O, for we can then paste together the models pnorm

we thus obtain using the partition of unity. Thus, we may assume that O = Ô(σ0)
for some σ0 ∈ O, and prove the theorem with the sum over I ′′ replaced by a sum
over I ′′(σ0). Hence, on O, for any (α′′, β′′) either

a) σα′′β′′(σ0) > 1, and then for some (α̃′′, β̃′′) ∈ I ′′(σ0), (α′′, β′′) ≥ (α̃′′, β̃′′)
(reduce |α′′|+ |β′′| until σα̃′′,β̃′′ ∈ (1, 2) – this will happen as rj ∈ (0, 1/2))

hence σα′′β′′(σ) ≥ σα̃′′β̃′′(σ) > 1 for all σ ∈ O by the definition of Ô(σ0),
or

b) σα′′β′′(σ0) < 1, and then σα′′β′′(σ) < 1 for all σ ∈ O by the definition of

Ô(σ0).

In order to make Φ(σ) smooth in σ, we slightly modify the construction of the
local contact diffeomorphism Φ1(σ) in Proposition 3.4 so that for any given σ we
do not necessarily remove every term we can (i.e. which are non-resonant for that
particular σ). Namely, we choose the set I ′ of multiindices (a, α, β) which we do
not remove by Φ1(σ) so that I ′ is independent of σ, and such that I ′ contains
every multiindex which is resonant for some σ ∈ O, i.e. I ′ ⊃ ∪σ∈OI(σ), with I(σ)
denoting the set of multiindices corresponding to resonant terms for p(σ), as in
Proposition 3.4. With any such choice of I ′, the local contact diffeomorphism of
Proposition 3.4, Φ1(σ), can be chosen smoothly in σ such that Φ∗

1p is of the form

−ν+
m∑

j=1

rj(σ)yjµj+

n−1∑

j=m+1

Qj(σ, yj , µj)+
∑

I′

caαβ(σ)νaeαfβ modulo I∞ = h∞ at q,

with caαβ depending smoothly on σ.
The requirement I ′ ⊃ ∪σ∈OI(σ) means that for (a, α, β) 6∈ I ′, Ra,α,β(σ) must

not vanish for σ ∈ O. Here we recall that Ra,α,β(σ) is the eigenvalue of {{p0, .}}
defined by (3.5), namely

(3.27) Ra,α,β(σ) = λ


a− 1 +

n−1∑

j=1

αjrj(σ) +

n−1∑

j=1

βj(1 − rj(σ))




Keeping this in mind, we choose I ′ by defining its complement (I ′)c to consist
of multiindices (a, α, β) with 2a+ |α| + |β| ≥ 3 such that either

(i) a+ |β′| = 1 and α′′ = 0, α′′′ = 0, β′′ = 0, β′′′ = 0, or
(ii) |α′′′| ≥ 1, β′′′ = 0, or
(iii) |β′′′| ≥ 1, α′′′ = 0, or
(iv) a = 0, β′ = 0, |α′′′| + |β′′′| = 2, α′′ = 0, β′′ = 0, or
(v) a = 0, β′ = 0, α′′′ = β′′′ = 0, σα′′β′′(σ) < 1 (for one, hence all, σ ∈ O, as

remarked above).
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We next show that multiindices in (I ′)c are indeed non-resonant. In cases (ii)–
(iii), ImRa,α,β(σ) 6= 0 since the imaginary part of all terms in (3.27) (with nonzero
imaginary part) has the same sign, and there is at least one term with non-zero
imaginary part, so (a, α, β) is non-resonant.

In case (v), the non-resonance follows from

λ−1Ra,α,β(σ) ≤ −1 + σα′′β′′(σ) < 0,

since λ−1Ra,α,β(σ) = −1 + σα′′β′′(σ) +
∑s−1

j=1 αjrj , and each term in the last sum-
mation is non-positive.

In case (i), if a = 1, β′ = 0 then λ−1Ra,α,β(σ) =
∑s−1

j=1 rjαj < 0 since |α′| ≥ 1

due to 2a+ |α| + |β| ≥ 3. Also in case (i), if a = 0, |β′| = 1, with say βl = 1, then

λ−1Ra,α,β(σ) = −rl +

s−1∑

j=1

αjrj

which may not vanish for then (a, α, β) would be effectively resonant – it would
correspond to one of the terms in the first summation in (3.17).

Finally, in case (iv),

λ−1 ReRa,α,β(σ) =

s−1∑

j=1

αjrj < 0

since α′ 6= 0 due to 2a+ |α| + |β| ≥ 3.
Thus, all terms corresponding to multiindices in (I ′)c can be removed from p(σ)

by a local contact diffeomorphism Φ1(σ) that is C∞ in σ. So we only need to remark
that any term corresponding to a multiindex in I ′ can be absorbed into renr(σ). In
fact, such a multiindex has either

1) a+ |β′| ≥ 2, or
2) a+ |β′| = 1 and |α′′| + |α′′′| + |β′′| + |β′′′| ≥ 1, or
3) |α′′′| + |β′′′| ≥ 3 (with neither α′′′ nor β′′′ zero), or
4) a = 0, β′ = 0, |α′′′| = 1, |β′′′| = 1, |α′′| + |β′′| ≥ 1, or
5) a = 0, β′ = 0, α′′′ = 0, β′′′ = 0, σα′′β′′ > 1.

The first two cases can be incorporated into the h0 or hj terms in (3.19). The third
and fourth ones can be incorporated into the h′′′jk term. Finally, in the fifth case,
any infinite linear combination of these monomials can be written as

∑

(α̃′′,β̃′′)∈I′′(σ0)

h′′
α̃′′,β̃′′(e

′′)α̃′′

(f ′′)β̃′′

,

as remarked in (i) after (3.26).
We thus obtain

−ν +
∑

j

rj(σ)yjµj +
n−1∑

j=m

Qj(yj , µj) + renr(σ) + r∞,

with renr as in (3.19), and r∞ vanishes to infinite order at (0, 0, 0). Finally, we can
remove the r∞ term in a neighbourhood of the origin using Proposition 3.5 as in
the proof of Theorem 3.7, thus completing the proof of this theorem. �
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4. Microlocal solutions

In [4] microlocally outgoing solutions were defined using the global function ν
on scT ∗

∂XX. This is increasing along W and plays the role of a time function;
microlocally incoming and outgoing solution are then determined by requiring the
wave front set to lie on one side of a level surface of ν. In the present study of
microlocal operators, no such global function is available. However there are always
microlocal analogues, denoted here by ρ, defined in appropriate neighbourhodds of
a critical point.

Lemma 4.1. There is a neighbourhood O1 of q in scT ∗
∂XX and a function ρ ∈

C∞(O1) such that O1 contains no radial point of P except q, ρ(q) = 0, and Wρ ≥ 0
on Σ ∩ O with Wρ > 0 on Σ ∩ O1 \ {q}.

Proof. This follows by considering the linearization ofW. Namely, if P is conjugated
to the form (2.12), then for outgoing radial points q take ρ = |y′|2− (|y′′|2 + |y′′′|2 +
|µ|2), defined in a coordinate neighbourhood O0, for incoming radial points take
its negative. On Σ, Wρ ≥ c(|y|2 + |µ|2) + h for some c > 0 and h ∈ I3. As (y, µ)
form a coordinate system on Σ near q, it follows that Wρ ≥ c

2 (|y|2 + |µ|2) on a
neighbourhood O′ of q in Σ. Now let O1 ⊂ O0 be such that O∩Σ = O′. Note that
Wρ(p) = 0, p ∈ O1, implies p = q, so there are indeed no other radial points in O1,
finishing the proof. �

Remark 4.2. Below it is convenient to replace O1 by a smaller neighbourhood O of
q with O ⊂ O1, so ρ is defined and increasing on a neighbourhood of O.

Consider the structure of the dynamics of W in O. First, ρ is increasing (i.e.
‘non-decreasing’) along integral curves γ of W, and it is strictly increasing unless γ
reduces to q. Moreover, W has no non-trivial periodic orbits and

Lemma 4.3. Let O be as in Remark 4.2. If γ : [0, T ) → O or γ : [0,+∞) → O is
a maximally forward-extended bicharacteristic, then either γ is defined on [0,+∞)
and limt→+∞ γ(t) = q, or γ is defined on [0, T ) and leaves every compact subset K
of O, i.e. there is T0 < T such that for t > T0, γ(t) 6∈ K.

An analogous conclusion holds for maximally backward-extended bicharacteris-
tics.

Proof. If γ : [0,+∞) → O then limt→+∞ ρ(γ(t)) = ρ+ exists by the monotonicity
of ρ, and any sequence γk : [0, 1] → Σ, γk(t) = γ(tk + t), tk → +∞, has a uniformly
convergent subsequence, which is then an integral curve γ̃ of W in Σ with image
in O, hence in O1. Then ρ is constant along this bicharacteristic. But the only
bicharacteristic segment in O1 on which ρ is constant is the one with image {q}, so
limt→+∞ γ(t) = q. The claim for γ defined on [0, T ) is standard. �

As in [4] we make use of open neighbourhoods of the critical points which are
well-behaved in terms of W.

Definition 4.4. By a W -balanced neighbourhood of a non-degenerate radial point
q we shall mean a neighbourhood, O, of q in scT ∗

∂XX with O ⊂ O (in which ρ is
defined) such that O contains no other radial point, meets Σ(σ) in a W -convex set
(that is, each integral curve of W meets Σ(σ) in a single interval, possibly empty)
and is such that the closure of each integral curve of W in O meets ρ = ρ(q).
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The existence of W -balanced neighbourhoods follows as in [4].
If q is a radial point for P and O a W -balanced neighbourhood of q we set

(4.1) Ẽmic,+(O,P ) =
{
u ∈ C−∞(X);O ∩ WFsc(Pu) = ∅,

and WFsc(u) ∩O ⊂ {ρ ≥ ρ(q)}
}
,

with Ẽmic,−(O,P ) defined by reversing the inequality.

Lemma 4.5. If O ∋ q is a W -balanced neighbourhood then every u ∈ Ẽmic,±(O,P )

satisfies WFsc(u) ∩O ⊂ Φ±({q}); furthermore, for u ∈ Ẽmic,±(O,P )

WFsc(u) ∩O = ∅ ⇐⇒ q 6∈ WFsc(u).

Thus, we could have defined Ẽmic,±(O,P ) by strengthening the restriction on the
wavefront set to WFsc(u)∩O ⊂ Φ±({q}). With such a definition there is no need for
O to be W -balanced; the only relevant bicharacteristics would be those contained
in Φ±({q}). Moreover, with this definition ρ does not play any role in the definition,
so it is clearly independent of the choice of ρ.

Proof. For the sake of definiteness consider u ∈ Ẽmic,+(O,P ); the other case follows
similarly. Suppose ζ ∈ O \ {q}. If ρ(ζ) < ρ(q), then ζ 6∈ WFsc(u) by the definition

of Ẽmic,+(O,P ), so we may suppose that ρ(ζ) ≥ ρ(q). Since q ∈ Φ+({q}) we may
also suppose that ζ 6= q.

Let γ : R → Σ be the bicharacteristic through ζ with γ(0) = ζ. As O is W -
convex, and WFsc(Pu)∩O = ∅, the analogue here of Hörmander’s theorem on the
propagation of singularities shows that

ζ ∈ WFsc(u) ⇒ γ(R) ∩O ⊂ WFsc(u).

As O is W -balanced, there exists ζ′ ∈ γ(R) ∩ O such that ρ(ζ′) = ρ(q). If ρ(ζ) =
ρ(q) = 0, we may assume that ζ′ = ζ. From this assumption, and the fact that ρ
is increasing along the segment of γ in O, and O is W -convex, we conclude that

ζ′ ∈ γ((−∞, 0]) ∩O.
If ζ′ = γ(t0) for some t0 ∈ R, then for t < t0, ρ(γ(t)) < ρ(γ(t0)) = ρ(q), and

for sufficiently small |t− t0|, γ(t) ∈ O as O is open. Thus, γ(t) 6∈ WFsc(u) by the

definition of Ẽmic,+(O,P ), and hence we deduce that ζ 6∈ WFsc(u).
On the other hand, if ζ′ 6∈ γ(R), then as O is open γ(tk) ∈ O for a sequence

tk → −∞, and as O is W -convex, γ|(−∞,0] ⊂ O. Then, again from the propagation
of singularities and Lemma 4.3, ζ′ = q. �

We may consider Ẽmic,±(O,P ) as a space of microfunctions, Emic,+(q, P ), by
identifying elements which differ by functions with wavefront set not meeting O:

Emic,±(q, P ) = Ẽmic,±(O,P )/{u ∈ C−∞(X); WFsc(u) ∩O = ∅}.

The result is then independent of the choice of O, as we show presently.
If O1 and O2 are two W -balanced neighbourhoods of q then

(4.2) O1 ⊂ O2 =⇒ Ẽmic,±(O2, P ) ⊂ Ẽmic,±(O1, P ).

Since {u ∈ C−∞(X); WFsc(u) ∩ O = ∅} ⊂ Ẽmic,±(O,P ) for all O and this linear
space decreases with O, the inclusions (4.2) induce similar maps on the quotients

(4.3)
Emic,±(O,P ) = Ẽmic,±(O,P )/{u ∈ C−∞(X); WFsc(u) ∩O = ∅},

O1 ⊂ O2 =⇒ Emic,±(O2, P ) −→ Emic,±(O1, P ).
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Lemma 4.6. Provided Oi, for i = 1, 2, are W -balanced neighbourhoods of q, the
map in (4.3) is an isomorphism.

Proof. We work with Emic,+ for the sake of definiteness.
The map in (4.3) is injective since any element u of its kernel has a represen-

tative ũ ∈ Ẽmic,+(O2, σ) which satisfies q 6∈ WFsc(ũ), hence WFsc(ũ) ∩ O2 = ∅ by
Lemma 4.5, so u = 0 in Emic,+(O2, σ).

The surjectivity follows from Hörmander’s existence theorem in the real principal
type region [10]. First, note that

R = inf{ρ(p) : p ∈ Φ+({q}) ∩ (O \O1)} > 0 = ρ(q)

since in O, ρ is increasing along integral curves of W, and strictly increasing away
from q. Let U be a neighbourhood of Φ+({q})∩O1 such that U ⊂ O, and ρ > R0 =
R/2 on U \O1. Let A ∈ Ψ−∞,0

sc (O) be such that WF′
sc(Id−A) ∩O1 ∩Φ+({q}) = ∅

and WF′
sc(A) ⊂ U. Thus, WFsc(Au) ⊂ U and WFsc(PAu) ⊂ U\O1, so in particular

ρ > R0 on WFsc(PAu). We have thus found an element, namely ũ = Au, of the
equivalence class of u with wave front set in O and such that ρ > R0 > 0 = ρ(q)
on the wave front set of the ‘error’, P ũ.

We now note that the forward bicharacteristic segments from U \ O1 inside O
leave O2 by the remark after Lemma 4.1; since O2\O1 is compact, there is an upper
bound T > 0 for when this happens. Thus, Hörmander’s existence theorem allows
us to solve Pv = P ũ on O2 with WFsc(v) a subset of the forward bicharacteristic
segments emanating from U \ O1. Then u′ = ũ − v satisfies WFsc(u

′) ⊂ O ∩ {ρ ≥
0 = ρ(q)}, WFsc(Pu

′)∩O2 = ∅, so u′ ∈ Emic,+(O2, P ), and q 6∈ WFsc(u
′−u). Thus

WFsc(u
′ − u)∩O1 = ∅, hence u and u′ are equivalent in Ẽmic,+(O1, P ). This shows

surjectivity. �

It follows from this Lemma that the quotient space Emic,±(q, P ) in (4.3) is well-
defined, as the notation already indicates, and each element is determined by the
behaviour microlocally ‘at’ q. When P is the operator x−1(∆ + V − σ), then we
will denote this space

(4.4) Emic,±(q, σ).

Definition 4.7. By a microlocally outgoing solution to Pu = 0 at a radial point q
we shall mean either an element of Ẽmic,+(q, P ) or of Emic,+(q, P ).

5. Test Modules

Following [4], we use test modules of pseudodifferential operators to analyze
the regularity of microlocally incoming solutions near radial points. This involves
microlocalizing near the critical point with errors which are well placed relative to
the flow.

Definition 5.1. An element Q ∈ Ψ∗,0
sc (X) is a forward microlocalizer in a neigh-

bourhood O ∋ q of a radial point q ∈ scT ∗
∂XX for P ∈ Ψ∗,−1

sc (X) if it is elliptic at q
and there exist B, F ∈ Ψ0,0

sc (O) and G ∈ Ψ0,1
sc (X) such that

(5.1) i[Q∗Q,P ] = (B∗B +G) + F and WF′
sc(F ) ∩ Φ+({q}) = ∅.
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Using the normal form established earlier we can show that such forward mi-
crolocalizers exist under our standing assumption that

(5.2)
the linearization has neither a Hessian threshold subspace, (iv),

nor any non-decomposable 4-dimensional invariant subspace.

Proposition 5.2. A forward microlocalizer exists in any neighbourhood of any non-
degenerate radial point q ∈ scT ∗

∂XX for P ∈ Ψ∗,−1
sc (X) at which the linearization

satisfies (5.2).

Proof. Since the conditions (5.1) are microlocal and invariant under conjugation
with an elliptic Fourier integral operator, it suffices to consider the model form in
Theorem 3.7 which holds under the same conditions (5.2).

Let R = |µ′|2 + |y′′|2 + |y′′′|2 + |µ′′|2 + |µ′′′|2, and

S = {p̃ = 0, R = 0},

so S is the flow-out of q. We shall choose Q ∈ Ψ−∞,0
sc (X) such that

(5.3) σ∂(Q) = q = χ1(|y
′|2)χ2(R)ψ(p̃),

where χ1, χ2, ψ ∈ C∞
c (R), χ1, χ2 ≥ 0 are supported near 0, ψ is supported near

0, χ1, χ2 ≡ 1 near 0 and χ′
1 ≤ 0 in [0,∞). Choosing all supports sufficiently small

ensures that Q ∈ Ψ−∞,0
sc (O). Note that supp d(χ2 ◦R)∩ S = ∅. On the other hand,

(5.4) scHpχ1(
∑

j

(y′j)
2) = 2

∑

j

y′j(
scHpy

′
j)χ

′
1(|y

′|2) = 2λy′j(r
′
jy

′
j + hj)χ

′
1(|y

′|2),

with hj vanishing quadratically at q. Moreover, on suppχ′
1 ◦ (|.|2), y′ is bounded

away from 0. Since r′j < 0, −
∑

j r
′
j(y

′
j)

2 > 0 on suppχ′
1 ◦ (|.|2). The error terms

hj can be estimated in terms of |y′|2, R and p̃2, so, given any C > 0, there exists
δ > 0 such that the −

∑
j y

′
j(r

′
jy

′
j + hj) > 0 if suppχ1 ⊂ (−δ, δ), R/|y′|2 < C and

|p̃|/|y′| < C. In particular, taking C = 2, −
∑

j y
′
j(r

′
jy

′
j + hj) > 0 on S ∩ suppχ′

1 ◦

(|.|2), for R = p̃ = 0 on S. Thus (5.1) is satisfied (with B appropriately specified,
microsupported near S), provided that χ1 is chosen so that (−χ1χ

′
1)

1/2 is smooth.
More explicitly, letting χ ∈ C∞

c (R) be supported in (−1, 1) be identically equal
to 1 in (− 1

2 ,
1
2 ) with χ′ ≤ 0 on [0,∞), χ ≥ 0, χ1 = χ2 = ψ = χ(./δ). Indeed, for

any choice of δ ∈ (0, 1), |y′|2 ≥ δ/2 on suppχ′
1 ◦ |.|

2, hence R/|y′|2 < 2, |p̃|/|y′| < 2
on supp q ∩ suppχ′

1 ◦ |.|
2. With C = 2, choosing δ ∈ (0, 1) as above, we can write

(5.5)

σ∂(i[Q∗Q,P ]) = − scHpq
2 = −4λb̃2 + f̃ ,

b̃ = (
∑

j

y′j(r
′
jy

′
j + hj)χ

′
1(|y

′|2)χ1(|y
′|2))1/2χ2(R)ψ(p̃), supp f̃ ∩ S = ∅,

which finishes the proof since λ < 0 for an outgoing radial point. �

A test module in an open set O ⊂ scT ∗
∂XX is, by definition, a linear subspace

M ⊂ Ψ∗,−1
sc (X) consisting of operators microsupported in O which contains and is

a module over Ψ∗,0
sc (X), is closed under commutators, and is algebraically finitely

generated. To deduce regularity results we need extra conditions relating the mod-
ule to the operator P.

Definition 5.3. If P ∈ Ψ∗,−1
sc (X) has real principal symbol near a non-degenerate

outgoing radial point q then a test module M is said to be P -positive at q if it is
supported in a W -balanced neighbourhood of q and
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(i) M is generated by A0 = Id, A1, . . . , AN = P over Ψ∗,0
sc (X),

(ii) for 1 ≤ i ≤ N − 1, 0 ≤ j ≤ N there exists Cij ∈ Ψ∗,0
sc (X), such that

(5.6) i[Ai, xP̃ ] =

N∑

j=0

xCijAj

where σ∂(Cij)(q̃) = 0, for all 0 6= j < i, and Reσ∂(Cjj)(q̃) ≥ 0.

As shown in [4], microlocal regularity of solutions of a pseudodifferential equation
can be deduced by combining such a P -positive test module with a microlocalizing
operator as discussed above. We recall and slightly modify this result.

Proposition 5.4. (Essentially Proposition 6.7 of [4]). Suppose that P ∈ Ψ∗,−1
sc (X)

has real principal symbol, q is a non-degenerate outgoing radial point for P,

(5.7) σ∂,1(xP − (xP )∗)(q) = 0,

M is a P -positive test module at q, Q ∈ Ψ∗,0
sc (X) is a forward microlocalizer for P

at q and for some s < − 1
2 , u ∈ H∞,s

sc
(X) satisfies

(5.8) WFsc(u) ∩O ⊂ Φ+({q}) and Pu ∈ Ċ∞(X),

then u ∈ I
(s)
sc (O′,M) where O′ is the elliptic set of Q.

Proof. As already noted this is essentially Proposition 6.7 of [4]; there are some
small differences to be noted. In [4], the condition in (5.6) was j > i; here we
changed to j < i for a more convenient ordering. Since the labelling is arbitrary,
this does not affect the proof of the Proposition.

Also, in [4] the proposition was stated for the 0th order operators such as ∆+V −
σ, which are formally self-adjoint with respect to a scattering metric. This explains
the appearance of xP both in (5.7) and in (5.6) here, even though in the applications
below, [Ai, x] could be absorbed in the Ci0 term. In particular, s < −1/2 in (5.8)
arises from a pairing argument that uses the formal self-adjointness of xP , modulo
terms that can be estimated by [xsAα, xP ], s > 0, Aα a product of the Aj .

Also, in [4] the proposition is proved for (5.7) is replaced by (xP ) = (xP )∗, but
(5.7) is sufficient for all arguments in [4] to go through, for B = (xP )−(xP )∗ would
contribute error terms of the form xsAαB with σ∂,1(B)(q) = 0, which can thus be
handled exactly the same way as the Cjj term in (5.6).

In fact (5.7) can always be arranged for any P0 ∈ Ψ∗,−1
sc (X) with a non-degenerate

radial point and real principal symbol. Indeed, we only need to conjugate by xk

giving

P = xkP0x
−k, k =

−σ∂,1(B)(q)

2iλ
∈ R

satisfies (5.7); here dp|q = λα|q, with α the contact form. Microlocal solutions
P0u0 = 0, correspond to microlocal solutions Pu = 0 via u = xku0, so u ∈ H∞,s

sc (X)
is replaced by u0 ∈ H∞,s−k

sc (X). �

Thus, iterative regularity with respect to the module essentially reduces to show-
ing that the positive commutator estimates (5.6) hold. For each critical point q
satisfying (5.2) a suitable (essentially maximal) module is constructed below, so
microlocally outgoing solutions to Pu = 0 have iterative regularity under the mod-
ule; that is, that

(5.9) u ∈ I(s)
sc (O,M) = {u;Mmu ⊂ H∞,s

sc (X) for all m}.
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The test modules are elliptic off the forward flow out Φ+(q) which is an isotropic
submanifold of Σ. Thus, it is natural to expect that u is some sort of an isotropic
distribution. In fact the flow out (in the model setting just the submanifold S) has
non-standard homogeneity structure, so these distributions are more reasonably
called ‘anisotropic’.

First we construct a test module for the model operator when there are no
resonant terms. Thus, we can assume that the principal symbol is

p0 = −ν +
m−1∑

j=1

rjyjµj +
n−1∑

j=m

Qj(yj , µj).

Then let M be the test module generated by Id and operators with principal
symbols

(5.10) x−1f ′
j, x−r′′

j e′′j , x−(1−r′′
j )f ′′

j , x−1/2e′′′j , x−1/2f ′′′
j and x−1p0

over Ψ∗,0
sc (X).

Note that the order of the generators is given by the negative of the normalized
eigenvalue (i.e. the eigenvalue in Lemma 2.6 divided by λ) subject to the conditions
that if the order would be < −1, it is adjusted to −1, and if it would be > 0, it
is omitted. The latter restrictions conform to our definition of a test module, in
which all terms of order 0 are included and there are no terms of order less than −1.
These orders can be seen to be optimal (i.e. most negative) by a principal symbol
calculation) of the commutator with A in which the corresponding eigenvalue arises.

Lemma 5.5. Suppose P is nonresonant at q. Then the module M generated by
(5.10) is closed under commutators and satisfies condition (5.6).

Proof. It suffices to check the commutators of generators to show that M is closed.
In view of (2.3) (applied with a in place of p), {a, b} = scHab, this can be easily
done. Property (5.6) follows readily from (3.1). Indeed, we have the stronger
property

i[Ai, P (σ)] = ciAi +Gi, Gi ∈ Ψ∗,0(X), Re ci ≥ 0

where Ai is any of the generators of M listed in (5.10). �

Remark 5.6. We may take generators of M to be the operators

(5.11)

Dy′
j
, x−r′′

j y′′j , x
r′′

j Dy′′
j
, x−1/2y′′′j , x

1/2Dy′′′
j

and

xDx +

m−1∑

j=1

rjyjDyj +

n−1∑

j=m

Qj(x
−1/2yj , x

1/2Dyj ).

Combining this with Proposition 5.4 proves that, in the nonresonant case, if u is
a microlocal solution at q, and if WFs

sc(u) is a subset of the W -flowout of q, then

u ∈ I
(s)
sc (O,M) for all s < −1/2.

The discrepancy between the ‘resonance order’ of polynomials in νaeβfγ , given
by a +

∑
j βjrj +

∑
k γk(1 − rk) and the ‘module order’ given by the sum of the

orders of the corresponding module elements is closely related to arguments which
allow us to most resonant terms as ‘effectively nonresonant’. To give an explicit
example, take a resonant term of the form y′iµ

′
j(y

′′)β′′

, corresponding to a term like

x−1y′i(y
′′)β′′

(xDy′
j
) in P. Resonance requires that r′i + (1 − r′j) +

∑
k β

′′
k r

′′
k = 1 and
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|β′′| > 0. In the module, this corresponds to a product of module elements times a
power xǫ with ǫ > 0, since we can write it

xǫy′i
∏

k

(x−r′′
k y′′k )β′′

kDy′
i
, ǫ =

∑

k

β′′
k r

′′
k > 0.

Since, by Proposition 5.4, the eigenfunction u remains in xsL2(X), for all s < −1/2,
under application of products of elements of M, this term applied to u gains us
a factor xǫ, and therefore it can be treated as an error term in determining the
asymptotic expansion of u; see the proof of Theorem 6.7. Only the terms where the
module order is equal to the resonance order affect the expansion of u to leading
order, and it is these we have labelled as ‘effectively resonant’.

Next we consider the general resonant case. To do so, we need to enlarge the
module M so that certain products of the generators of M, such as those in the

resonant terms of Theorem 3.7, are also included in the larger module M̃. For a
simple example, see section 8 of Part I. It is convenient to replace P0 by xDx as
the last generator of M listed in (5.11), though this is not necessary; all arguments
below can be easily modified if this is not done. Let us denote the generators of M
by

A0 = Id, A1 = x−s1B1, . . . , AN−1 = x−sN−1BN−1, AN = xDx = x−1BN ,

si = − order(Ai), Bi ∈ Ψ−∞,0
sc (O).

(5.12)

Note that for each i = 1, . . . , N, dσ∂,0(Bi) is an eigenvector of the linearization of
W ; we denote the eigenvalue by σi. Thus,

si = min(1, σi) > 0 for i = 1, . . . , N.

For any multiindex α ∈ NN (with N = {1, 2, . . .}) let

s(α) = min(
∑

siαi, 1), s̃(α) =
∑

i

siαi − s(α) = max(0,
∑

i

siαi − 1),

and let

Aα = Aα1
1 Aα2

2 . . . AαN

N .

Let ei be the multiindex ei = (0, . . . , 0, 1, 0, . . . , 0), where the 1 is in the ith slot, if
i = 1, . . . , N, and let e0 = (0, . . . , 0).

To deal with resonant terms, we define a module Mk generated (over Ψ−∞,0
sc (O))

by the operators

(5.13) xs̃(α)Aα ∈ Ψ−∞,−s(α)
sc (O), |α| ≤ k.

Note that α = 0 gives Id as one of the generators. Thus, the order of the generators
in (5.13) is ‘truncated’ so that it is always between 0 and −1; in particular Mk ⊂
Ψ−∞,−1

sc (O). Since in computations below we want to think of Ψ−∞,0
sc (O) as the

submodule of Mk consisting of trivial elements, it is convenient to work modulo
such terms, so we use what is essentially the principal symbol equivalence relation
on Mk where P ∼ Q if P −Q ∈ Ψ−∞,0

sc (O).
While it appears that the ordering in the factors in the product Aα matters, this

is not the case. Indeed, if σ is a permutation of {1, . . . , |α|}, and j : {1, . . . , |α|} 7→
{1, . . . , N} which takes αm-times the value m, m = 1, . . . , N, then

xs̃(α)Aj(1) . . . Aj(|α|) ∼ xs̃(α)Aj(σ(1)) . . . Aj(σ(|α|)),
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for this is clear if σ interchanges n and n+ 1, as

xs̃(α)Aj(1) . . . Aj(n−1)[Aj(n), Aj(n+1)]Aj(n+2) . . . Aj(|α|)

∈ Ψ−∞,s̃(α)+1−
P

siαi
sc (O) ⊂ Ψ−∞,0

sc (O)

since s̃(α) + 1 −
∑

i siαi = 1 − s(α) ≥ 0.
In addition, for Q ∈ Ψ−∞,0

sc (O),

xs̃(α)QAj(1) . . . Aj(|α|) ∼ xs̃(α)Aj(1) . . . Aj(m)QAj(m+1) . . . Aj(|α|).

Similarly, one can shift powers of x from in front of the product to in between
factors, so in fact the generators can be written equivalently, modulo Ψ−∞,0

sc (O), as

(5.14) xs(α)Bα ∈ Ψ−∞,−s(α)
sc (O), |α| ≤ k,

where Bα = Bα1
1 . . . BαN

N .
Moreover, there is an integer J such that Mk = MJ if k ≥ J ; indeed this is true

for any J ≥ 2(r′′s )−1, where r′′s is the smallest positive eigenvalue of the operator in
Lemma 2.4 (or J ≥ 4 if no eigenvalue lies in (0, 1

2 ]), since then adding new elements

to the product simply has the effect of multiplying by an element of Ψ∗,0
sc (X).

In particular, note that the generators in (5.13) or (5.14) are usually not linearly
independent: some Bαj may be absorbable into a Ψ∗,0

sc (O) factor without affecting

s(α). We could easily give a linearly independent (over Ψ∗,0
sc (O)) subset of the

generators, but this is of no importance here.
Suppose that P̃ , the normal operator for P (σ) at q, contains resonant terms.

Then Lemma 5.5 is replaced by

Lemma 5.7. Let > be a total order on multiindices α satisfying

(i) |α′| > |α| implies α′ > α;
(ii) |α′| = |α| and

∑
k skα

′
k >

∑
k skαk imply α′ > α;

(iii) |α′| = |α| = 1, α′ = ei, α = ej, si = sj = 1, σi > σj imply that α′ > α.

With the corresponding ordering of the generators x−s̃(α)Aα, the module MJ is a
test module for P̃ at q satisfying (5.6).

Remark 5.8. (ii) and (iii) could be replaced by (ii)’: |α′| = |α| and
∑

k σkα
′
k >∑

k σkαk imply α′ > α, which would simplify the statement of the lemma. However,
the proof is slightly simpler with the present statement. Note that (ii)+(iii) is not
equivalent to (ii)’, i.e. the ordering of the generators may be different, but either
ordering gives (5.6).

Proof. We first observe that MJ is closed under commutators. Indeed, not only
is M closed under commutators, but the commutators [Ai, Aj ] can be written as∑N

l=0 ClAl with Cl ∈ Ψ−∞,0
sc (X) and Cl = 0 unless sl ≤ si + sj − 1. Expanding

[xs̃(α)QαA
α, xs̃(β)QβA

β ], Qα, Qβ ∈ Ψ−∞,0
sc (O),

and ignoring momentarily the commutators with powers of x and with Qα and Qβ,
gives a sum of terms of the form

xs̃(α)+s̃(β)QαQβA
α′

Aβ′

[Ai, Aj ]A
α′′

Aβ′′

with α = α′ + α′′ + ei, and similarly for β. Substituting in [Ai, Aj ] =
∑N

l=0 ClAl

shows that this is an element of the module and is indeed equivalent, modulo
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Ψ−∞,0
sc (O), to

∑

l:sl≤si+sj−1

(
Clx

s̃(α)+s̃(β)−s̃(γ(l))
)
xs̃(γ(l))Aγ(l)

,

γ(l) = α′ + α′′ + β′ + β′′ + el = α+ β − ei − ej + el,

(5.15)

provided that

(5.16) s̃(γ(l)) ≤ s̃(α) + s̃(β).

But s̃(α)+s̃(β) ≥ (
∑
siαi−1)+(

∑
siβi−1) =

∑
siγ

(l)
i +si+sj−sl−2 ≥

∑
siγ

(l)
i −1

as si + sj − sl ≥ 1. Moreover, s̃(α) + s̃(β) ≥ 0, so

s̃(α) + s̃(β) ≥ max(
∑

skγ
(l)
k − 1, 0) = s̃(γ(l)),

proving (5.16).
The commutators

(5.17) xs̃(β)Qβ[xs̃(α)Qα, A
β ]Aα, xs̃(α)Qα[Aα, xs̃(β)Qβ ]Aβ

also lie in MJ . Indeed, [Ai, x
ρQ] = xρ−si+1Q′ for some Q′ ∈ Ψ−∞,0

sc (O), so they
are sums of terms of the form xs̃(α)+s̃(β)−si+1Q′Aγ with γ = α+ β − ei. Now,

s̃(γ) ≤ s̃(α) + s̃(β) − si + 1

since s̃(α)+s̃(β)−si+1 ≥ 0 as 1 ≥ si as well as s̃(α)+s̃(β)−si+1 ≥ (
∑

k skαk−1)+
(
∑

k skβk−1)−si+1 =
∑

k skγk−1, so s̃(α)+s̃(β)−si+1 ≥ max(
∑

k skγk−1, 0) =
s̃(γ) indeed, proving that (5.17) is in MJ . The commutators

(5.18) [xs̃(α)Qα, x
s̃(β)Qβ ]AαAβ

can be shown to lie in MJ by a similar argument, this time using γ = α + β, and
s̃(γ) ≤ s̃(α) + s̃(β) + 1. Thus, we conclude that [xs̃(α)QαA

α, xs̃(β)QβA
β ] ∈ MJ ,

and hence MJ = MJ+1 = . . . is closed under commutators.

Modulo Ψ−∞,0
sc (O), xs̃(γ(l)))Aγ(l)

may be replaced by x−s(γ(l))Bγ(l)

. If |γ(l)| > J
in (5.15), then this is written in terms of one of the generators listed in (5.14)
(or equivalently, modulo Ψ−∞,0

sc (O), in (5.13)), only after some of the factors in

Bγ(l)

, which we may always take from BlB
β′

Bβ′′

, are moved to the front and are
incorporated in Cl, i.e. they are simply regarded as 0th order operators and Cl is
replaced by C̃l = ClBlB

β′

Bβ′′

. Notice the principal symbol of C̃l always vanishes
at q in this case. Analogous conclusions hold for the terms in (5.17) and (5.18).

On the other hand, if |γ(l)| ≤ J , then xs̃(γ(l))Aγ(l)

is one of the generators in
(5.13), and |γ(l)| = |α|+ |β|−1 if l ≥ 1, and |γ(l)| = |α|+ |β|−2 if l = 0. Moreover,
if
∑

k skβk > 1 then
(5.19)∑

k

skγ
(l)
k =

∑

k

skαk +
∑

k

skβk −si −sj +sl ≥
∑

k

skαk +
∑

k

skβk −1 >
∑

k

skαk.

For the terms in (5.17) and (5.18), if |γ| ≤ J , we always get |γ| ≥ |α|+ |β|− 1 since
γ = α+ β or γ = α+ β − ei for some i.

Now we turn to (5.6). First, with P̃ replaced by P0, (5.6) is certainly satisfied,
exactly as in the non-resonant case, since the σ∂,0(B

α) are eigenvectors of the
linearization of W with eigenvalue given in Section 3. Thus,

(5.20) i[Aα, x−1P0]
∑

γ

C′
γA

γ , C′
γ ∈ Ψ−∞,0

sc (O),
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with σ∂,0(C
′
γ(q)) = 0 if α 6= γ and Reσ∂,0(C

′
α(q)) ≥ 0. So it remains to show

that it also holds for the resonant terms. If x−s(β)QβB
β is a resonant term, then

s(β) = 1. Moreover,

(i) if |β| = 1, then x−1QβB
β =

∑
µ′(y′)µ′

Dy′
k

for some µ′ and some k; in
particular it is a summand of rer;

(ii) if |β| = 2, then either x−1QβB
β = BjDy′

k
for some j > 0, k, or x−1QβB

β

is associated to the sum over I ′′ in (3.19); in either case
∑
skβk > 1.

We claim that for a resonant term x−s(β)QβB
β ,

(5.21) [x−s(α)Bα, x−s(β)QβB
β ] ∼

∑

γ

C̃γx
−s(γ)Bγ , C̃γ ∈ Ψ−∞,0

sc (X),

and each term on the right hand side has the following property:

(i) Either σ∂,0(C̃γ)(q) = 0,
(ii) or |γ| > |α|,
(iii) or |γ| = |α|,

∑
k skγk >

∑
k skαk,

(iv) or |γ| = |α| = 1, γ = ek, α = ej, sj = sk = 1 and σk > σj .

Indeed, if |β| ≥ 3, then either (i) or (ii) holds, depending on whether any factors
Ak had to be cancelled to write the commutator in terms of the generators in
(5.13). If |β| = 2, then

∑
skβk > 1. Thus, again, either (i) or (ii) holds, or

|γ| = |α| and
∑

k skγk >
∑

k skαk by (5.19), so (iii) holds. Finally, if |β| = 1, then

x−1QβB
β =

∑
µ′(y′)µ′

Dy′
k

for some µ′ and some k. Since r1 ≤ r2 ≤ . . . ≤ rs−1 < 0,

and the resonance condition is
∑s−1

l=1 µ
′
lrl + (1 − rk) = 1 with |µ′| + 1 ≥ 3, we

immediately deduce that µ′
l = 0 for l ≤ k. Thus, not only do powers of x commute

with x−1QβB
β , but all Ai commute with Dy′

k
and [Ai, (y

′)µ′

] = 0 unless Ai = Dy′
j

and µ′
j 6= 0 for some j, which in turn implies that j > k, so 1 − rk > 1 − rj , hence

(iv) holds. This completes the proof of (5.21).
By the assumption on the ordering of the multiindices α, we deduce that for all

resonant terms x−s(β)Bβ ,

i[Aα, x−s(β)Bβ ] =
∑

γ

CγA
γ , Cγ ∈ Ψ−∞,0

sc (O),

and either σ∂,0(Cγ)(q) = 0, or γ > α. Combining this with (5.20), we deduce that
MJ satisfies (5.6). This establishes the lemma. �

Corollary 5.9. Let M = MJ be as in the previous lemma. Suppose that

(5.22) s < −
1

2
, u ∈ H∞,s

sc
(X), P̃ u ∈ Ċ∞(X) and WFsc(u) ∩O ⊂ Φ+({q}).

Then u ∈ I
(s)
sc (O,M).

Regularity with respect to M can be understood more geometrically as follows.
Suppose δ > 0 is sufficiently small so that (x, y′, y′′, y′′) define local coordinates on
the region U given by 0 ≤ x < δ, |yj| < δ for all j. Let

(5.23) Φ : U◦ → R
n
+, Φ(x, y′, y′′, y′′′) = (x, y′, Y ′′, Y ′′′), Y ′′

j =
y′′j
xrj

, Y ′′′
j =

y′′′j

x1/2
.

Thus, Φ is a diffeomorphism onto its range Φ(U◦) with

Φ−1(x, y′, Y ′′, Y ′′′) = (x, y′j , x
rjY ′′

j , x
1/2Y ′′′).
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Note that Φ(U◦) is not compact; Y ′′ and Y ′′′ are ‘global’ variables. Thus Φ−1

is actually continuous on Φ(U◦) since r′′j > 0. Thus, Φ is a blow-up and Φ−1

is a somewhat singular blow-down map. In the coordinates (x, y′, Y ′′, Y ′′′) the
Riemannian density takes the form

ax−n−1 dx dy = ax−n+
P

r′′
j +(n−m)/2−1 dx dy′ dY ′′ dY ′′′,

a > 0, a ∈ C∞(X). We thus conclude that (for O small) u ∈ I
(s)
sc (O,M) if

and only if for any Q ∈ Ψ−∞,0
sc (O) with Schwartz kernel supported in U × U , its

microlocalization Qu satisfies

(Y ′′)γ′′

(Y ′′′)γ′′′

(xDx)aDβ′

y′D
β′′

Y ′′D
β′′′

Y ′′′Qu

∈ xs+n/2−
P

r′′
j /2−(n−m)/4L2(x−1 dx dy′ dY ′′ dY ′′′),

(5.24)

for every a, β, γ′′ and γ′′′, i.e. if and only if microlocally u is conormal in (x, y′)
with values in Schwartz functions in (Y ′′, Y ′′′), with the weight given by s+ n/2−∑
r′′j /2 − (n−m)/4.

We also recall that for conormal functions, the L2 and the L∞ spaces are very

close, namely they are included in each other with a loss of xǫ. Thus, u ∈ I
(s)
sc (O,M)

implies that

(Y ′′)γ′′

(Y ′′′)γ′′′

(xDx)aDβ′

y′D
β′′

Y ′′D
β′′′

Y ′′′Qu

∈ xs+n/2−
P

r′′
j /2−(n−m)/4−ǫL∞(x−1 dx dy′ dY ′′ dY ′′′),

for every ǫ > 0.

6. Effectively nonresonant operators

We now assume that the normal form pnorm for σ1(P (σ)) at q is such that the
term rer vanishes. If this is true, we shall call pnorm effectively nonresonant, and σ
an effectively nonresonant energy for q. The significance of the notion of effective
resonance in general is that the form of the asymptotics of microlocally outgoing
solutions of Pu = f , f ∈ Ċ∞(X), is independent of renr; only rer changes this form
slightly. Moreover, effective non-resonance is a more typical condition than non-
resonance. For the actual Hamiltonian we are interested in, P (σ) = x−1(∆+V −σ),
the set of the effectively resonant energies, i.e. the set of energies σ at which P (σ) is
effectively resonant at some radial point, is discrete, as shown in Lemma 3.11, while
the closure of the set of resonant energies may have nonempty interior! Nonetheless,
we shall treat both effectively resonant and effectively nonresonant energies in this
paper. We deal with the effectively nonresonant case in this section and treat the
effectively resonant case in the following section. In both cases, it is convenient to
put P , and not only its principal symbol, to model form. This is accomplished in
the following lemma.

Lemma 6.1. Let P̃ be as in Theorem 3.7. P̃ can be conjugated by a smooth function
to the form

Pnorm =xDx +

m−1∑

j=1

rjyjDyj +

n−1∑

j=m

Qj(x
−1/2yj , x

1/2Dyj) +Rer + b+R

Rer =

s−1∑

j=1

Pj(y
′)Dyj +

m−1∑

j=s

Pj(y
′′)Dyj + P0(y

′′),

(6.1)
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where b is a constant, Qj is a real elliptic homogeneous quadratic polynomial (i.e.
a harmonic oscillator), Pj and P0 are homogeneous polynomials of degree rj resp.
1, when yk is assigned degree rk, and R ∈ xǫ(M)j for some j ∈ N and ǫ > 0. In
addition, for s ≤ j ≤ m − 1, Pj is actually a polynomial in ys, . . . , yj−1 (i.e. is
independent of yj , . . . , ym−1) without constant or linear terms, while for j ≤ s− 1,
Pj is a polynomial in yj+1, . . . , ys−1.

We call Pnorm a normal form of P . If pnorm is effectively non-resonant then
Rer = 0.

Remark 6.2. Note that Qj(x
−1/2yj, x

1/2Dyj ) is not completely well-defined since
Qj is a homogeneous quadratic polynomial, and yj and Dyj do not commute.
However, any two choices for the quantization Qj differ by a constant multiple of

the commutator [x−1/2yj, x
1/2Dyj ] = [yj , Dyj ], hence by a constant.

In particular, with the notation of the previous section, Qj(Yj , DYj) may be
arranged to be self-adjoint with respect to dYj , by symmetrizing if necessary, which
changes Qj at most by a constant.

Proof. With the notation of Lemma 5.7, any effectively resonant monomial gives
rise to a term of the form x−1QβB

β with
∑

k skβk = 1, while the effectively non-
resonant terms are of the form x−1QβB

β with
∑

k skβk > 1. This is indeed
the key point in categorizing resonant terms as effectively resonant or nonreso-
nant; see the proof of Theorem 6.7. But if ǫ =

∑
skβk − 1 > 0, we can rewrite

x−1QβB
β ∼ xǫQβA

β (i.e. the difference of the two sides is in Ψ−∞,0
sc (X)), and

QβA
β ∈ M|β|. Since there are only finitely many effectively non-resonant terms in

(3.19), we deduce that any P̃ with σ1(P̃ ) = pnorm may be written

(6.2) P̃ = xDx +

m−1∑

j=1

rjyjDyj +

n−1∑

j=m

Qj(x
−1/2yj , x

1/2Dyj) +Rer +B + R̃,

where Rer is as in (6.1), R̃ ∈ xǫMJ for some ǫ > 0, and B ∈ Ψ∗,0
sc (X). Note

that Pj and P0 are polynomials, and the homogeneity claim is the meaning of the
resonance condition Proposition 3.4. For s ≤ j ≤ m − 1, Pj is independent of
yj, . . . , ym−1 since 0 < rs ≤ rs+1 ≤ . . . ≤ rm−1; yj itself cannot appear in Pj due
to the restriction 2a+ |β| + |γ| ≥ 3 in Proposition 3.4. Similarly, for j ≤ s− 1, Pj

is independent of y1, . . . , yj as r1 ≤ r2 ≤ . . . ≤ rs−1 < 0. This also shows that the
polynomials Pj , j 6= 0, have no constant or linear terms.

Let B have symbol b(ν, y, µ). Modulo terms in xǫMj, this can be reduced to the

symbol b′(0, (y′, 0, 0), 0). Finally, by conjugating Pnorm by a function eif(y′), we can
remove the y′-dependence of b′. Indeed, the Taylor series of f can be constructed
iteratively. Let I ′ denote the ideal of functions of y′ that vanish at 0. Conjugating

P̃ by eif produces the terms
∑s−1

j=1 r
′
jy

′
jDy′

j
f , as well as terms from Rer, which map

(I ′)k → (I ′)k+1. For k ≥ 1, f 7→
∑s−1

j=1 r
′
jy

′
j∂y′

j
f defines a linear map on (I ′)k,

k ≥ 1, with all eigenvalues negative since r′j < 0 for j = 1, . . . , s − 1. Thus, this
map is invertible, and this shows that b′ − b′(0) can be conjugated away in Taylor
series. Then it is straightforward to check that the infinite order vanishing error
can also be removed. �

Later in this section we show that if pnorm is effectively non-resonant, the form
of the leading asymptotics of microlocally outgoing solutions for (6.1) and for the
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completely explicit operator

(6.3) P0 = xDx +
m−1∑

j=1

rjyjDyj +
n−1∑

j=m

Qj(x
− 1

2 yj , x
1
2Dyj ) + b, b constant

are the same, if R ∈ x1+ǫMj for some ǫ > 0, i.e. R is indeed an ‘error term’. An
analogous conclusion holds in the effectively resonant case, with Rer included in the
right hand side of (6.3).

First, however, we study the asymptotics of approximate solutions of P0u = 0.
The constant b simply introduces a power x−ib into the asymptotics, as can be seen
by conjugation of P0 by x−ib. Here it is convenient to have the asymptotics for the
ultimately relevant case, where the operator xP is self-adjoint, stated explicitly, so
we assume that xP0 is formally self-adjoint on L2

sc(X), which amounts to

(6.4) Im b =
n− 1

2
−

1

2
(
s−1∑

j=1

r′j +
m−1∑

j=s

r′′j ) −
n−m

2
,

provided that we have already made Qj self-adjoint as stated in Remark 6.2. Note

that n−m
2 =

∑n−1
j=m Re r′′′j .

For convenience, we separate the case where q is a source/sink of W , hence of
the contact vector field of P0. Recall from the previous section that

(6.5) Y ′′
j = x−r′′

j y′′j , Y ′′′ = x−1/2y′′′,

and define the exponents

(6.6) b̃ = b− i
n−m

4
, aβ′ = −

s−1∑

j=1

rjβ
′
j − ib̃.

Notice that Re aβ′ → ∞ as |β′| → ∞.

Proposition 6.3. Suppose that the radial point q is a source/sink of W , and (6.4)

holds. Suppose that u ∈ I(s)(O,M), and P0u ∈ I(s′)(O,M) where s < −1/2 < s′.
Then u takes the form

(6.7) u =
∑

k

x−ib̃−iσkwk(Y ′′)vk(Y ′′′) + u′

where the sum is over k ∈ N, vk(Y ) is an L2-normalized eigenfunction of the
harmonic oscillator
(6.8)

n−1∑

j=m

Q̃j(Yj , DYj ), Q̃j(Yj , DYj ) = Qj(Yj , DYj ) −
1

4
(YjDYj +DYjYj), Yj =

yj

x1/2
,

with eigenvalue σk, wk are Schwartz functions with each seminorm rapidly decreas-
ing in k, and u′ ∈ I(s′−ǫ)(O,M) for every ǫ > 0.

Conversely, given any sequence wk that are Schwartz functions in Y ′′ with each

seminorm rapidly decreasing in k, and given any f ∈ I
(s′)
sc (O,M), there exists

u ∈ ∩s<−1/2I
(s)
sc (O,M) of the form (6.7) with WFsc(P0u− f) ∩O = ∅.

Remark 6.4. The result is true if we only assume s < s′. However, if s ≥ −1/2, we
can replace s by s̃ > −1/2, apply the proposition with s̃ in place of s, and then use

u ∈ I
(s)
sc (O,M) to show that each wk vanishes. On the other hand, if s′ ≥ −1/2,
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the proof of the proposition shows that u ∈ I
(s)
sc (O,M) implies u ∈ I

(s′−ǫ)
sc (O,M)

for every ǫ > 0.

Proposition 6.5. Suppose that q is a saddle point of W , and (6.4) holds. Suppose

u ∈ I(s)(O,M), and P0u ∈ I(s′)(O,M) for some s < s′ < ∞. Then u takes the
form

(6.9) u =
∑

β′,k

xaβ′−iσk (y′)β′

wβ′,k(Y ′′)vk(Y ′′′) + u′

where the sum is over k ∈ N and a finite set of multiindices β′, vk(Y ) and σk are
as above, wβ′,k are Schwartz functions with each seminorm rapidly decreasing in k,

and u′ ∈ I(s′−ǫ)(O,M) for every ǫ > 0.
Conversely, given any sequence of Schwartz functions wβ′,k, finite in β′ with

each seminorm rapidly decreasing in k, and any f ∈ I
(s′)
sc (O,M) there exists u ∈

∩s<−1/2I
(s)
sc (O,M) of the form (6.9) with WFsc(P0u− f) ∩O = ∅.

Remark 6.6. As shown later, x2Dx gives rise to the terms in Q̃−Q after the change
of variables (x, yj) 7→ (x,

yj

x1/2 ). If Qj is self-adjoint on L2(R, dYj) then Q̃j has the
same property.

Also, with

B =
n− 1

2
−

1

2

∑

j

r′′j −
n−m

4
,

the (β′, k) summand in (6.9) is in I
(Re aβ′−B− 1

2−ǫ)
sc (O,M) for every ǫ > 0. We

show below that Im b̃ = B + d, d = − 1
2

∑
r′j > 0, so the (β′, k) summand is in

I
(d−

P

rjβ′
j−

1
2−ǫ)

sc (O,M) for every ǫ > 0, and in view of the rapid decay in k, the same

is true after the k summation. Thus, for u as in (6.9), u ∈ I
(d− 1

2−ǫ)
sc (O,M) provided

s′ > d − 1
2 , i.e. decays xd faster than the microlocal solutions at sources/sinks of

W .

Proof of Proposition 6.3. Suppose that P0u = f ∈ I(s′)(O,M) for some s′ > −1/2.
Let O′ be a W -balanced neighbourhood of q with O′ ⊂ O, and let Q ∈ Ψ−∞,0

sc (X)
satisfy WF′

sc(Q) ⊂ O (i.e. Q ∈ Ψ−∞,0
sc (O)) and WF′

sc(Id−Q) ∩ O′ = ∅, with
Schwartz kernel supported in U × U ,

U = {0 ≤ x < δ, |yj | < δ for all j}.

(See (5.23) for the definition of the diffeomorphism Φ, the coordinates Yj , etc.)

Then, as noted in (5.24), by the definition of I
(s)
sc (O,M), ũ = Qu satisfies

(Y ′′)γ′′

(Y ′′′)γ′′′

(xDx)aDβ′′

Y ′′D
β′′′

Y ′′′ ũ ∈ xsL2
sc(X)

for all a, β′′, β′′′, γ′′ and γ′′′. Note that ũ is a microlocalization of u since WFsc(u−
Qu) ⊂ WF′

sc(Id−Q), so WFsc(u−Qu) ∩O′ = ∅. Moreover,

P0(Qu) = QP0u+ [P0, Q]u = Qf + f ′, f ′ ∈ Ċ∞(X),

since WFsc(u)∩O ⊂ {q}, while WF′
sc([P0, Q]) ⊂ WF′

sc(Q)∩WF′
sc(Id−Q) ⊂ O\O′,

so WFsc(u) ∩ WF′
sc([P0, Q]) = ∅. Thus, with f̃ = Qf + f ′,

P0ũ = f̃ ,

(Y ′′)γ′′

(Y ′′′)γ′′′

(xDx)aDβ′′

Y ′′D
β′′′

Y ′′′ f̃ ∈ xs′

L2
sc(X),

(6.10)



SCATTERING THEORY AND RADIAL POINTS 37

for all a, β′′, β′′′, γ′′ and γ′′′.
To prove first part of the proposition, it thus suffices to show that, with the

notation of (6.7),

(6.11) ũ =
∑

k

x−ib̃−iσkwk(Y ′′)vk(Y ′′′) + u′.

Writing the operator P0 in the coordinates x, Y ′′, Y ′′′ we have

(6.12) P0 = xDx|Y +
∑

j

Q̃j(Y
′′′
j , DY ′′′

j
) + b̃

with b̃ = b − in−m
4 as in (6.6). Formal self-adjointness of xP0, i.e. (6.4), requires

that

(6.13) Im b̃ =
n− 1

2
−

1

2

∑

j

r′′j −
n−m

4
≡ B.

As already remarked, (6.10), which states that f̃ is conormal in x, and Schwartz

in Y ′′, Y ′′′, and belongs to xs′

L2(dxdy/xn+1), or in terms of the Y coordinates, to

xs′+n/2−
P

r′′
j /2−(n−m)/4 L2(dxdY/x), implies (by conormality) that

f̃ ∈ xs′+1/2+B−ǫL∞

for every ǫ > 0, where B is defined by (6.13). More precisely, for all a, β, γ′′ and
γ′′′,

(Y ′′)γ′′

(Y ′′′)γ′′′

(xDx)aDβ′′

Y ′′D
β′′′

Y ′′′ f̃ ∈ xs′+1/2+B−ǫL∞

for every ǫ > 0. Conversely these conditions imply that f̃ satisfies (6.10) with s′

replaced by s′ − ǫ for every ǫ > 0.
Writing f̃ in the form

f̃(x, Y ′′, Y ′′′) =
∑

k

fk(x, Y ′′)vk(Y ′′′),

where fk is conormal in x, Schwartz in Y ′′, with each seminorm rapidly decreasing
in k, a particular solution to P0ũ = f̃ , is given by

(6.14)

ũ =
∑

k

uk(x, Y ′′)vk(Y ′′′),

uk = −ix−ib̃−iσk

∫ x

0

fk(t, Y ′′)tib̃+iσk
dt

t
.

Since s′ + 1/2 > 0, this integral is convergent and it is not hard to see that ũ ∈

I(s′−ǫ)(O,M) for every ǫ > 0.
On the other hand, the general solution to P0ũ = 0 with ũ Schwartz in Y ′′ and

Y ′′′ is given by

(6.15) ũ =
∑

k

x−ib̃−iσkwk(Y ′′)vk(Y ′′′),

where wk have the property that each seminorm is rapidly decreasing in k. Since
any solution is the sum of the particular solution (6.14) and some homogeneous
solution, the first half of the proposition follows.

In fact, the second half also follows by defining

ũ =
∑

k

uk(x, Y ′′)vk(Y ′′′) +
∑

k

x−ib̃−iσkwk(Y ′′)vk(Y ′′′),
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with uk as in (6.14). Multiplying by a cutoff function φ ∈ C∞(X) which is identi-
cally 1 near (0, 0, . . . , 0), we deduce that u = φũ satisfies all requirements. �

Proof of Proposition 6.5. We use a similar argument to prove this proposition. Let
O′, Q, etc., be as in the previous proof. With ũ = Qu, as noted in (5.24),

(6.16) (Y ′′)γ′′

(Y ′′′)γ′′′

(xDx)aDβ′

y′D
β′′

Y ′′D
β′′′

Y ′′′ ũ ∈ xsL2
sc(X),

for all a, β, γ′′ and γ′′′. One of the main differences with the proof of Proposition 6.3
is that microlocalization introduces a non-trivial error, i.e. P0ũ is not globally well-
behaved (not as good as f was microlocally). However, the error is supported away
from y′ = 0. Indeed, now WFsc(u) ∩O ⊂ S, and

f̃ = P0ũ = Qf + f ′, f ′ = [P0, Q]u.

Here WF′
sc([P0, Q]) ∩ S ⊂ {|y′| > δ0} for some δ0 > 0, so f ′ ∈ I

(s)
sc (O,M) in fact

satisfies

(Y ′′)γ′′

(Y ′′′)γ′′′

(xDx)aDβ′

y′D
β′′

Y ′′D
β′′′

Y ′′′f
′ ∈ xsL2

sc(X)

for all a, β′, β′′ and β′′′, γ′′ and γ′′′, with the improved conclusion

φ(y′)(Y ′′)γ′′

(Y ′′′)γ′′′

(xDx)aDβ′

y′D
β′′

Y ′′D
β′′′

Y ′′′f
′ ∈ Ċ∞(X)

if φ is supported in |y′| < δ0. Correspondingly,

(6.17) φ(y′)(Y ′′)γ′′

(Y ′′′)γ′′′

(xDx)aDβ′

y′D
β′′

Y ′′D
β′′′

Y ′′′ f̃ ∈ xs′

L2
sc(X).

The operator P0 in the coordinates x, y′, Y ′′, Y ′′′ now takes the form

(6.18) P0 = xDx|y′,Y ′′,Y ′′′ +
∑

j

r′jy
′
jDy′

j
+
∑

j

Q̃j(Y
′′′
j , DY ′′′

j
) + b̃,

with b̃ = b − in−m
4 as in (6.6). Again, (6.17) implies that f̃ is conormal in x,

smooth in y′, and Schwartz in Y ′′, Y ′′′, and belongs to xs′+1/2+B−ǫL∞ for every
ǫ > 0, where B is defined by (6.13), in the precise sense that for all a, β, γ′′ and
γ′′′,

φ(y′)(Y ′′)γ′′

(Y ′′′)γ′′′

(xDx)aDβ′′

Y ′′D
β′′′

Y ′′′ f̃ ∈ xs′+1/2+B−ǫL∞

for every ǫ > 0. However, now formal self-adjointness of xP0 requires that

(6.19) Im b̃ = B + d, d = −
1

2

∑

j

r′j > 0,

so there is a discrepancy of d compared with the previous proposition. Write f̃ in
the form

f̃(x, Y ′′, Y ′′′) =
∑

k

fk(x, y′, Y ′′)vk(Y ′′′),

where fk is conormal in x, smooth in y′, and Schwartz in Y ′′ with seminorms rapidly
decreasing in k.

We start by describing solutions of the homogeneous equation P0ũ = 0 in U
which in addition satisfy (6.16). Decomposing ũ in terms of the vk, and factoring

out a power of x for convenience, i.e. writing ũ =
∑

k x
−ib̃−iσkuk(x, y′, Y ′′)vk(Y ′′′),

we see that the coefficients uk satisfy

(x∂x|y′,Y ′′,Y ′′′ +
∑

j

r′jy
′
j∂y′

j
)uk = 0.
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Since ũ is smooth in the interior of U , P0ũ = 0 amounts to demanding that uk be
constant along each integral curve segment of the vector field x∂x +

∑
j r

′
jy

′
j∂y′

j
,

with the value of ũ depending smoothly on the choice of the integral curve. (We
remark that U is convex for this vector field; |y′| is increasing as x→ 0.) Thus, we
in fact have uk(x, y′, Y ′′) = ûk(Y ′, Y ′′) with ûk smooth in Y ′ and Schwartz in Y ′′.

Here Y ′
j = y′j/x

r′
j ; note that r′j < 0. Expanding ûk in Taylor series around Y ′ = 0

to order N , we see that

uk(x, y′, Y ′′) −
∑

|β′|≤N−1

x−
P

j r′
jβ′

j (y′)β′

wβ′,k(Y ′′)

is a finite sum of terms of the form x−
P

j r′
jβ′

j (y′)β′

ûk,β′(Y ′, Y ′′) with ûk,β′ smooth
(Schwartz in Y ′′′), where the sum runs over β′ with |β′| = N . Thus, given any
s′′ (e.g. s′′ = s′), we can choose N sufficiently large so that this difference lies

in I
(s′′)
sc (O,M), which means it is ignorable for our purposes. Thus, the general

solution to P0ũ = 0 in U which satisfies (6.16) is given by

(6.20) ũ =
∑

β′,k

xaβ′−iσk(y′)β′

wβ′,k(Y ′′)vk(Y ′′′),

modulo any I
(s′′)
sc (O,M) (where the sum is understood as a finite one, due to the

remark above), where the seminorms of wβ′,k are rapidly decreasing in k for each
β′.

In expressing a particular solution ũ of P0ũ = f in terms of f , we need to
integrate along integral curves of the vector field x∂x+

∑
j r

′
jy

′
j∂y′

j
, and since r′j < 0,

|y′| → ∞ as x→ 0 along integral curves (unless y′ = 0); in fact |y′| is increasing as
x → 0 as mentioned above. So we cannot integrate down to x = 0. Instead we fix
an x0 > 0 and use the formula

(6.21)

uk(x, y′, Y ′′) = (
x

x0
)−ib̃−iσkuk(x0, (

x

x0
)−r′

jy′j , Y
′′)

+ix−ib̃−iσk

∫ x

x0

fk(t, (
x

t
)−r′

jy′j , Y
′′)tib̃+iσk

dt

t
.

Notice that uk(x♯, y
′
♯, Y

′′
♯ ) depends only on fk evaluated at points (x, y′, Y ′′) with

|y′| ≤ |y′♯|. Thus, (6.17) can be used to deduce properties of uk, hence of ũ, in

|y′| < δ0.

If s′ < −1/2 + d, then (6.21) gives φ(y′)ũ ∈ I(s′−ǫ)(O,M) for every ǫ > 0,
with φ as in (6.17). If s′ ≥ −1/2 + d, then φ(y′)ũ ∈ I(−1/2+d−ǫ)(O,M) for every
ǫ > 0. However, we claim that is actually a sum of terms solving the homogeneous
equation, plus a function in I(s′−ǫ)(O,M) for every ǫ > 0. For simplicity we show
this only in the case that −1/2 + d < s′ < −1/2 + d + |r′s−1|. Then we observe

that (x/x0)
−ib̃−iσk ũ(x0, 0, Y

′′) is a solution of the homogeneous equation, while the
difference

(
x

x0
)−ib̃−iσk ũ(x0, (

x

x0
)−r′

jy′j , Y
′′) − (

x

x0
)−ib̃−iσk ũ(x0, 0, Y

′′)

=
∑

j

(
x

x0
)−r′

j

∫ 1

0

y′j∂y′
j

(
ũ(x0, τ(

x

x0
)−r′

jy′j , Y
′′)
)
dτ
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has decay at least x−r′
s−1 better, hence yields a term in I(s′−ǫ)(O,M) for every

ǫ > 0. Similarly, if we replace fk(t, (x
t )−r′

jy′j, Y
′′) in the integral by fk(t, 0, Y ′′) then

we get a homogeneous term, while the difference gives a term in I(s′−ǫ)(O,M) for
every ǫ > 0. The argument can be repeated, removing more and more terms in the
Taylor series for ũ and f̃ , for larger values of s′. Since any solution is the sum of the
particular solution above and the general solution, the first half of the proposition
follows with O replaced by a smaller neighbourhood O′′ of q. However, we recover
the original statement by using the real principal type parametrix construction of
Duistermaat and Hörmander [2].

The second half can be proved as in the previous proposition. Fix some x0 > 0,
and let uk be given by the second term on the right hand side of (6.21), and let
û =

∑
k uk(x, Y ′′)vk(Y ′′′). Then P0û = f , and as shown above, û has the form

(6.22) û =
∑

β′,k

xaβ′−iσk(y′)β′

ŵβ′,k(Y ′′)vk(Y ′′′) + û′,

with û′ ∈ I
(s′−ǫ)
sc (O,M) for all ǫ > 0. Then with

ũ =
∑

k

uk(x, Y ′′)vk(Y ′′′) +
∑

β′,k

xaβ′−iσk(wβ′,k(Y ′′) − ŵβ′,k(Y ′′))vk(Y ′′′),

u = φũ, φ ∈ C∞(X) identically 1 near (0, . . . , 0), u satisfies all requirements. �

These results on the explicit normal form P0 then allow us to parameterize
microlocally outgoing solutions for every effectively nonresonant critical point.

Theorem 6.7. Suppose that P (σ) is effectively nonresonant at q, with normal form
Pnorm near q as in Lemma 6.1, and (6.4) holds.

(i) If in addition q is a source/sink of W , then any microlocally outgoing
solution u of Pnorm has the form (6.7), and conversely given any Schwartz
sequence of Schwartz functions wk there is a microlocally outgoing solution
u of Pnorm which has the form (6.7). Thus, microlocal solutions at a
source/sink of W are parameterized by Schwartz functions of the variables
(Y ′′, Y ′′′).

(ii) If q is a saddle point of W , then all microlocally outgoing solutions are
in x−1/2+ǫL2 for some ǫ > 0. For each monomial (y′)β in the variables
y′, each k ∈ N and each Schwartz function w(Y ′′) there is a microlocally
outgoing solution of the form

(6.23) u =
∑

k

xaβ′−iσk(y′)β′

w(Y ′′)vk(Y ′′′) + u′,

where u′ is in a strictly faster decaying weighted L2 space than u, and
every microlocally outgoing solution is a sum of such solutions, with the
w = wk,β′ rapidly decreasing as k → ∞ in every seminorm.

Proof. First, Pnorm = P0 + R, R ∈ xǫMj, ǫ > 0. Thus, if O is a neighbourhood

of q as above, WFsc(Pnormu) ∩ O = ∅, then u ∈ I
(s)
sc (O,M) for all s < −1/2, so

Ru ∈ I
(s′)
sc (O,M) for some s′ > 1/2. Hence P0u = Pnormu−Ru ∈ I

(s′)
sc (O,M).

If q is a source/sink of W , then Proposition 6.3 is applicable, and we deduce that
u is microlocally of the form (6.7). Moreover, if q is a source/sink of W , then given

any Schwartz sequence of Schwartz functions wk, let u0 ∈ ∩s<−1/2I
(s)
sc (O,M) be
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of the form (6.7) with P0u0 ∈ Ċ∞(X). We construct uk ∈ ∩r<−1/2−kǫI
(r)
sc (O,M),

k ≥ 1, inductively so that P0uk + Ruk−1 ∈ Ċ∞(X) for k ≥ 1; this can be done
by the second half of Proposition 6.3. Asymptotically summing

∑
k uk to some

u ∈ ∩s<−1/2I
(s)
sc (O,M) gives a microlocally outgoing solution with the prescribed

asymptotics, completing the proof of the theorem in this case.
If q is a saddle point of W , we apply Proposition 6.5 with s′ > −1/2 as in

the first paragraph of the proof. If ǫ′ > 0 is sufficiently small, all of the terms

in (6.9) are in I
(−1/2+ǫ′)
sc (O,M) proving the first claim. To show the next, let

u0 = xaβ′−iσk(y′)β′

w(Y ′′)vk(Y ′′′), so P0u0 = 0 and u0 ∈ I
(s)
sc (O,M) for any s <

−1/2 + d. We construct uk inductively as above, using Proposition 6.5, to obtain
u. �

Remark 6.8. From (6.7) or (6.25) it is not hard to derive the asymptotic expansion
of eigenfunctions of the original operator ∆+V −σ; we need only apply the Fourier
integral operator F−1 to these expansions. In the case of a radial point q ∈ Min+(σ),
the expansion takes the form
(6.24)

u = eiΦ(y)/x
∑

k

x−ib̃−iσkwk(Y ′′)vk(Y ′′′) + u′, u′ ∈ I−
1
2 +ǫ(O,M) for some ǫ > 0

where Φ is a smooth function (it parameterizes the Legendrian submanifold which
is the image of the zero section under the canonical relation of F−1). For a given
σ, only a finite number of terms in the Taylor series for Φ are relevant. Similarly
in the case of radial points q ∈ RP+(σ) \ Min+(σ), the expansion (6.25) takes the
form

(6.25) u = eiΦ(y)/x
∑

k

xaβ′−iσk(y′)β′

w(Y ′′)vk(Y ′′′) + u′,

with Φ smooth. Again it parameterizes the image of the zero section under the
canonical relation of F−1. In this case, the value of Φ on the unstable manifold
{y′′ = y′′′ = 0} is essential, but only a finite number of terms in the Taylor series
for Φ about this unstable manifold are relevant.

These expansions were obtained directly in Part I (i.e. without going via a normal
form) in the two dimensional case.

7. Effectively resonant operators

If P is effectively resonant, the simple expressions (6.7) and (6.9) need to be
replaced by a slightly more complicated one in which positive integral powers of
log x also appear. Essentially, instead of powers, or Schwartz functions, of

yj

xrj , we
also get factors of log x in the expressions for the Yl.

Now we define a change of coordinates inductively that simplifies the vector field

(7.1) V = (xDx) +

m−1∑

j=1

(rjyj + Pj(ys, . . . , yj−1))Dyj

that appears in (6.1) as the combinations of the linear terms
∑
rjyjDyj and the

effectively resonant vector fields in Rer. (Note that rjyj and Pj(ys, . . . , yj−1) are
both homogeneous of degree rj .) We do this in two steps to clarify the argument,
first only dealing with the y′′ terms, i.e. j = s, . . . ,m− 1.
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The coordinates Yj , j = s, . . . ,m − 1, are a modification of the coordinates
yj

xrj

that appear in (6.5), so that Yj −
yj

xrj are polynomials P♯
j in Ys, . . . , Yj−1, t = log x.

Thus, we let

Ys =
ys

xrs
, P♯

s = 0, Ȳs(Ys, logx) = Ys + P♯
s(log x)

and provided that Ys, . . . , Yj−1, P♯
s, . . . ,P

♯
j−1 have been defined, we let

P♯
j(Ys, . . . , Yj−1, t) =

∫ t

0

Pj(Ȳs(Ys, t
′), . . . , Ȳj−1(Ys, . . . , Yj−1, t

′)) dt′,

Yj =
yj

xrj
− P♯

j (Ys, . . . , Yj−1, log x),

Ȳj = Yj + P♯
j (Ys, . . . , Yj−1, log x), j = s, . . . ,m− 1.

The point of the construction is that V annihilates Yj for all j. This can be seen
iteratively: for Ys this is straightforward, and if V Ys = . . . = V Yj−1 = 0 then (with

∂tP
♯
j denoting the derivative with respect to the last variable, t = log x)

V Yj = −rj
yj

xrj
+ (rjyj + Pj(ys, . . . , yj−1))x

−rj − (∂tP
♯
j )(Ys, . . . , Yj−1, log x)

= Pj(ysx
−rs , . . . , yj−1x

−rj−1 ) − Pj(Ȳs(Ys, log x), . . . , Ȳj−1(Ys, . . . , Yj−1, log x))

= 0

in view of the definition of Ys, . . . , Yj−1 and Ȳs, . . . , Ȳj−1.

One can deal with the j = 1, . . . , s− 1 terms similarly. We define P♯
j , Yj and Ȳj

inductively as above, starting with Ys−1. Thus, we let

Ys−1 =
ys−1

xrs−1
, P♯

s−1 = 0, Ȳs−1(Ys−1, log x) = Ys−1 + P♯
s−1(log x)

and provided that Yj+1, . . . , Ys−1, P
♯
j+1, . . . ,P

♯
s−1 have been defined, we let

P♯
j (Yj+1, . . . , Ys−1, t) =

∫ t

0

Pj(Ȳj+1(Yj+1, . . . , Ys−1, t
′), . . . , Ȳs−1(Ys−1, t

′)) dt′,

Yj =
yj

xrj
− P♯

j(Yj+1, . . . , Ys−1, log x),

Ȳj = Yj + P♯
j(Yj+1, . . . , Ys−1, log x), j = 1, . . . , s− 1.

(7.2)

With these definitions, in the coordinates X = x, Y1, . . . , Ym−1, ym, . . . , yn−1, i.e.
(X,Y ′, Y ′′, y′′′), which correspond to a blow-up of x = ys = . . . = ym−1 = 0,
V = X2DX .

The zeroth order term is a polynomial P0 in ys, . . . , ym−1 which is homogeneous
of degree 1 (where yj has degree rj). Thus,

x−1P0(ys, . . . , ym−1) = P0(Ȳs(Ys, log x), . . . , Ȳm−1(Ys, . . . , Ym−1, log x)).

Let

P♯
0(Ys, . . . , Yj−1, t) =

∫ t

0

P0(Ȳs(Ys, t
′), . . . , Ȳj−1(Ys, . . . , Yj−1, t

′)) dt′,

which is thus a polynomial in Ys, . . . , Yj−1, t. Then eiP♯
0(Ys,...,Yj−1,log x) can be used

as an integrating factor, conjugating P̃ , to remove the zeroth order term in I ′′.
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Finally, to put the quadratic terms in a convenient form, we let

Yj =
yj

x1/2
, j = m, . . . , n− 1

as before.
Suppose first that P0 = 0. With our definition of the Yj , (6.12), resp. (6.18),

hold if q is a source/sink, resp. saddle point, of V0. Thus, the statement and the
proof of Proposition 6.3 holds without any changes, while the statement and the

proof of Proposition 6.5 hold provided that xaβ′ (y′)β′

is replaced by x−ib̃(Y ′)β′

. A
minor difference is that slightly more effort is required to show that |y′| decreases on
the integral curves of the vector field (7.1) inside |y′| < δ1 for δ1 > 0 small. Namely
we need to use that, as Pj , j = 1, . . . , s − 1 have no linear or constant terms by

Lemma 6.1, V |y′|2 =
∑s−1

j=1 rjy
2
j + O(|y′|3) ≤ rs−1|y′|2 + O(|y′|3), rs−1 < 0, to

conclude that V |y′|2 ≤ 0 for |y′| < δ1, δ1 > 0 small.

In general, with b̃ = b− in−m
4 as in (6.6), (6.12), resp. (6.18), are replaced by

(7.3) P0 = xDx|Y +
∑

j

Q̃j(Y
′′′
j , DY ′′′

j
) + P0 + b̃,

respectively

(7.4) P0 = xDx|y′,Y ′′,Y ′′′ +

s−1∑

j=1

(r′jy
′
j + Pj)Dy′

j
+
∑

j

Q̃j(Y
′′′
j , DY ′′′

j
) + P0 + b̃.

Thus,

(7.5) eiP♯
0P0e

−iP♯
0 = xDx|Y +

∑

j

Q̃j(Y
′′′
j , DY ′′′

j
) + b̃,

respectively

(7.6) eiP♯
0P0e

−iP♯
0 = xDx|y′,Y ′′,Y ′′′ +

s−1∑

j=1

(r′jy
′
j + Pj)Dy′

j
+
∑

j

Q̃j(Y
′′′
j , DY ′′′

j
) + b̃.

Since multiplication by e±iP♯
0 preserves I

(s)
sc (O,M), the rest of the proof of the

propositions is applicable with u replaced by eiP♯
0u, f = P0u replaced by eiP♯

0f .
We thus deduce the following analogues of Propositions 6.3 – 6.5 in the effectively
resonant case.

Proposition 7.1. Suppose that the radial point q is a source/sink of W , and (6.4)

holds. Suppose that u ∈ I(s)(O,M), and P0u ∈ I(s′)(O,M) where s < −1/2 < s′.
Then u takes the form

(7.7) u =
∑

k

x−ib̃−iσke−iP♯
0wk(Y ′′)vk(Y ′′′) + u′

where the sum is over k ∈ N, vk(Y ) is an L2-normalized eigenfunction of the
harmonic oscillator
(7.8)

n−1∑

j=m

Q̃j(Yj , DYj ), Q̃j(Yj , DYj ) = Qj(Yj , DYj ) −
1

4
(YjDYj +DYjYj), Yj =

yj

x1/2
,

with eigenvalue σk, wk are Schwartz functions with each seminorm rapidly decreas-
ing in k, and u′ ∈ I(s′−ǫ)(O,M) for every ǫ > 0.
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Conversely, given any sequence wk that are Schwartz functions in Y ′′ with each

seminorm rapidly decreasing in k, and given any f ∈ I
(s′)
sc (O,M), there exists

u ∈ ∩s<−1/2I
(s)
sc (O,M) of the form (7.7) with WFsc(P0u− f) ∩O = ∅.

Proposition 7.2. Suppose that q is a saddle point of W , and (6.4) holds. Suppose

u ∈ I(s)(O,M), and P0u ∈ I(s′)(O,M) for some s < s′ < ∞. Then u takes the
form

(7.9) u =
∑

β′,k

x−ib̃−iσk(Y ′)β′

e−iP♯
0wβ′,k(Y ′′)vk(Y ′′′) + u′

where the sum is over k ∈ N and a finite set of multiindices β′, vk(Y ) and σk are
as above, wβ′,k are Schwartz functions with each seminorm rapidly decreasing in k,

and u′ ∈ I(s′−ǫ)(O,M) for every ǫ > 0.
Conversely, given any sequence of Schwartz functions wβ′,k, finite in β′ with

each seminorm rapidly decreasing in k, and any f ∈ I
(s′)
sc (O,M) there exists u ∈

∩s<−1/2I
(s)
sc (O,M) of the form (7.9) with WFsc(P0u− f) ∩O = ∅.

We thus deduce the following analogue of Theorem 6.7, with a similar proof.

Theorem 7.3. Suppose that P (σ) is effectively resonant at q, with normal form
Pnorm near q as in Lemma 6.1, and (6.4) holds.

(i) If in addition q is a source/sink of W , then any microlocal solution u of
Pnorm has the form (7.7), and conversely given any Schwartz sequence of
Schwartz functions wk there is a microlocally outgoing solution u of Pnorm

which has the form (7.7). Thus, microlocal eigenfunctions at a source/sink
are parameterized by Schwartz functions of the variables (Y ′′, Y ′′′).

(ii) If q is a saddle point of W , then all microlocal solutions are in x−1/2+ǫL2

for some ǫ > 0. For each monomial in the variables Y ′, each k ∈ N and
each Schwartz function w(Y ′′) there is a microlocally outgoing solution of
the form

(7.10) u = x−ib̃−iσke−iP♯
0 (Y ′)β′

w(Y ′′)vk(Y ′′′) + u′,

where u′ is in a strictly faster decaying weighted L2 space than u, and
every microlocally outgoing solution is a sum of such solutions, with the
w = wk,β′ rapidly decreasing as k → ∞ in every seminorm.

8. From microlocal to approximate eigenfunctions

We are interested in the structure of (global) eigenfunctions of ∆ + V. While in
the first half of the paper a rather general element P ∈ Ψ∗,−1

sc (X) was considered,
from now we work with

H = ∆ + V ∈ Ψ∗,0
sc (X), H(σ) = H − σ,

in particular the order of H at ∂X is 0.
In the next section we obtain an iterative description of the ‘smooth’ eigen-

functions in terms of the microlocal eigenspaces. As the first step, we show that
if q is a radial point for H(σ) = H − σ, then elements of Emic,+(q, σ), which
are the microlocally outgoing eigenfunctions near q, have representatives satisfying
(H − σ)u ∈ Ċ∞(X), i.e. they extend to approximate eigenfunctions, with WFsc(u)
a subset of the forward flow-out of q. Stated explicitly this is
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Proposition 8.1. If q ∈ RP+(σ) then every element of Emic,+(q, σ) has a repre-

sentative u such that (H − σ)u ∈ Ċ∞(X), and WFsc(u) ⊂ Φ+({q}).

Remark 8.2. From this result it is easy to produce an exact eigenfunction v such
that WFsc(v) ∩ {ν ≥ 0} ⊂ Φ+({q}); we simply take v = u−R(σ − i0)u.

The key ingredient of the proof, as in the two-dimensional case studied in [4],
is the microlocal solvability of the eigenequation through radial points. To avoid a
microlocal construction along the lines of Hörmander [10], we introduce, as in [4],

an operator H̃ which arises from H by altering V appropriately. This is chosen to
be equal to H near the radial point in question but to have no other radial points in
RP+(σ) at which ν takes a smaller value. One may then assume, in any argument
concerning q ∈ RP+(σ), that there is no q′ ∈ RP+(σ) with ν(q′) < ν(q).

As in [4], we introduce a partial order on RP+(σ) corresponding to the flow-out
under W.

Definition 8.3. If q, q′ ∈ RP+(σ) we say that q ≤ q′ if q′ ∈ Φ+({q}) and q < q′

if q ≤ q′ but q′ 6= q. A subset Γ ⊂ RP+(σ) is closed under ≤ if, for all q ∈ Γ,
{q′ ∈ RP+(σ); q ≤ q′} ⊂ Γ. We call the set {q′ ∈ RP+(σ); q ≤ q′} the string
generated by q.

Remark 8.4. This partial order relation between two radial points in RP+(σ) cor-
responds to the existence of a sequence qj ∈ RP+(σ), j = 0, . . . , k, k ≥ 1, with
q0 = q, qk = q′ and such that for every j = 0, . . . , k − 1, there is a bicharacteristic
γj with limt→−∞ γj = qj and limt→+∞ γj = qj+1.

Lemma 8.5. Given σ > min V0 and ν̃ > 0, set K = V0
−1((−∞, σ − ν̃2]) ⊂ ∂X

then there exists a potential function Ṽ ∈ C∞(X) with Ṽ0 Morse such that

(i) Ṽ0 ≥ V0,

(ii) Ṽ0 = V0 on a neighbourhood of K,

(iii) no critical value of Ṽ lies in the interval (σ − ν̃2, σ],

(iv) if Σ̃(σ) is the characteristic variety at energy σ of H̃ = ∆ + Ṽ then

(8.1) Σ(σ) ∩ {ν ≥ ν̃} = Σ̃(σ) ∩ {ν ≥ ν̃} and

(v) H̃ − σ has no L2 null space.

Proof. Choose a smooth function f on the real line so that f ′ > 0, f(t) = t if
t ≤ σ− ν̃2 and f(t) > σ for t ≥ min{V (q); dV (q) = 0 and V (q) > σ− ν̃2} > σ− ν̃2.

Then let Ṽ = f ◦ V, so the critical points of V0 and Ṽ0 are the same and are
non-degenerate.

On Σ(σ) ∩ {ν ≥ ν̃}, ν2 + |µ|2y + V0 = σ, hence V0 ≤ σ − ν̃2, so V0 = Ṽ0, and

therefore Σ(σ) ∩ {ν ≥ ν̃} ⊂ Σ̃(σ). With the converse direction proved similarly, (i)

– (iv) follow. Property (v) can be arranged by a suitable perturbation of Ṽ with
compact support in the interior. �

These properties of H̃ are exploited in the proof of the following continuation
result.

Lemma 8.6 (Lemma 5.5 of [4]). Suppose u ∈ C−∞(X) satisfies

WFsc(u) ⊂ {ν ≥ ν1} and WFsc((H − σ)u) ⊂ {ν ≥ ν2},

for some 0 < ν1 < ν2, then there exists ũ ∈ C−∞(X) with WFsc(u− ũ) ⊂ {ν ≥ ν2}
and (H − σ)ũ ∈ Ċ∞(X).
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Proof. We just sketch the proof here; for full details, see [4]. The obvious idea of
subtracting R(σ + i0)((H − σ)u) from u does not quite work, since the forward
flow out of other critical points in RP+(σ) with ν less than ν(q) may strike q. To
avoid this problem, choose ν̃ with ν1 < ν̃ < ν2, sufficiently close to ν2 so that there
are no radial points q with ν(q) ∈ [ν̃, ν2), and a corresponding Ṽ as in Lemma 8.5.

Then consider the function R̃(σ + i0)(H − σ)Au, where A vanishes microlocally

for {ν ≤ ν̃} and is equal to the identity microlocally in {ν ≥ ν2}. Since Ṽ0 has no

critical points q with 0 < ν(q) < ν2 it follows readily ũ = Au− R̃(σ+ i0)(H−σ)Au
satisfies the desired conditions. �

From this we can readily deduce

Lemma 8.7. If q ∈ RP+(σ) then every element of Emic,+(q, σ) has a representative

ũ such that (H − σ)ũ ∈ Ċ∞(X) and WFsc(ũ) is contained in the union of Φ+({q})
and the Φ+({q′}) for those q′ ∈ RP+(σ) with ν(q′) > ν(q).

Proof. Let O be a W -balanced neighbourhood of q (see Definition 4.4). Let A ∈
Ψ−∞,0

sc (X) be microlocally equal to the identity on Φ+({q})∩O and supported in a
small neighbourhood of Φ+({q})∩O. Then there exists ν2 > ν(q) such that ν > ν2
on Φ+({q}) \ O, and WF′

sc(A) \ O ⊂ {ν ≥ ν2}. Now let u be any representative.
Since WFsc(u) ∩ O ⊂ Φ+({q}), WFsc(Au − u) ∩ O = ∅. In addition, WFsc(Au) ⊂
WF′

sc(A)∩WFsc(u), hence ν ≥ ν(q) on WFsc(Au). Moreover, WFsc(Au−u)∩O = ∅
implies that

WFsc((H − σ)Au) ∩O = WFsc((H − σ)Au − (H − σ)u) ∩O = ∅,

so WFsc((H − σ)Au) ⊂ WF′
sc(A) \ O, hence is contained in {ν ≥ ν2}. Thus, by

Lemma 8.6, there exists ũ ∈ C−∞(X) such that ν ≥ ν2 on WFsc(ũ − Au) and

(H − σ)ũ ∈ Ċ∞(X). In particular, ν ≥ ν(q) in WFsc(ũ). Moreover, ν ≥ ν2 on
WFsc(ũ− u) ∩O, hence by Lemma 4.5, WFsc(ũ− u) ∩O = ∅, so ũ and u have the
same image in Emic,+(O, σ). �

Finally, we can show that each microlocally outgoing eigenfunction is represented
by an approximate eigenfunction.

Proof of Proposition 8.1. Let ũ be a representative as in Lemma 8.6. If we choose
q′ from the set

(8.2) {q′ ∈ RP+(σ) ∩ WFsc(ũ); ν(q
′) > ν(q), q′ /∈ Φ+({q})},

with ν(q′) minimal, then, localizing ũ near q′, gives an element v of Emic,+(q′).
By subtracting from ũ a representative of v given by Lemma 8.7, we remove the
wavefront set near q′. Inductively choosing radial points from (8.2) and performing
this procedure repeatedly, all wavefront set may be removed from ũ except that
contained in Φ+({q}). �

9. Microlocal Morse decomposition

Next we show that global smooth eigenfunctions can, in an appropriate sense,
be decomposed into components originating, in the sense of the Introduction, at
a single radial point. We do this by defining subspaces of E∞

ess(σ) corresponding
to the location of scattering wavefront set in {ν > 0} and showing that suitable
quotients of these spaces are isomorphic to the spaces of microlocal eigenfunctions
E∞

mic,+(q, σ), q ∈ RP+(σ), analyzed in sections 6 and 7. Since each of the spaces
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E∞
mic,+(q, σ), q ∈ RP+(σ), is non-trivial this shows that each such radial point gives

rise to eigenfunctions. However, as noted previously in [6], [7], [8] and [4] in some
special cases, there is a qualitative difference between the radial points correspond-
ing to local minima of V0 and the others. This is expressed by Proposition 10.3
where we show that the eigenfunctions u ∈ E∞

Min,+(σ) originating only at minimum

radial points are dense in E0
ess(σ) (definitions of these spaces are given below).

Recall from [4] the spaces of eigenfunctions of fixed growth

(9.1) Es
ess(σ) = {u ∈ E−∞

ess (σ); WF0,s−1/2
sc (u) ∩ {ν = 0} = ∅}.

This condition is equivalent to requiring that

(9.2) Bu ∈ xs−1/2L2(X)

for some pseudodifferential operator B ∈ Ψ0,0
sc (X) with boundary symbol which is

elliptic on Σ(σ) ∩ {ν = 0} and microsupported in {|ν| < a(σ)}, where

a(σ) = min{|ν(q)|; q ∈ RP(σ)}.

The space E0
ess(σ) is of particular interest. Choose an operator A ∈ Ψ0,0

sc (X) whose
boundary symbol is 0 for ν ≤ −a(σ) and 1 for ν ≥ a(σ). The space E0

ess(σ) is a
Hilbert space with norm

(9.3) ‖u‖2
E0

ess(σ) = 〈i[H,A]u, u〉.

The positive-definiteness of this form, and its independence of the choice of operator
A, was shown in [4], Section 12. An equivalent norm is

(9.4) ‖Bu‖x−1/2L2 + ‖u‖x−1/2−ǫL2

where ǫ > 0 and B is as in (9.2); see [4], section 3.
We now define subspaces of Es

ess(σ) depending on the location of the scattering
wavefront set inside {ν = 0}. Given any ≤-closed subset Γ of RP+(σ), we define

(9.5) Es
ess(σ,Γ) = {u ∈ Es

ess(σ); WFsc(u) ∩ RP+(σ) ⊂ Γ}.

The set of radial points q ∈ RP+(σ) lying above local minima of V is an example of
a ≤-closed subspace and will be denoted Min+(σ). In this case we use the notation

Es
Min,+(σ) ≡ Es

ess(σ,Min+(σ)) = {u ∈ Es
ess(σ); WFsc(u) ∩ RP+(σ) ⊂ Min+(σ)}

to be consistent with [4].

Proposition 9.1. Suppose that Γ ⊂ RP+(σ) is ≤-closed and q is a ≤-minimal
element of Γ. Then with Γ′ = Γ \ {q}

0 // E∞
ess(σ,Γ

′)
ι

// E∞
ess(σ,Γ)

rq
// Emic,+(σ, q) // 0

is a short exact sequence, where ι is the inclusion map and rq is the microlocal
restriction map.

Proof. The injectivity of ι follows from the definitions. The null space of the mi-
crolocal restriction map rq, which can be viewed as restriction to a W -balanced
neighbourhood of q, is precisely the subset of E∞

ess(σ,Γ) with wave front set dis-
joint from {q}, and this subset is E∞

ess(σ,Γ
′). Thus it only remains to check the

surjectivity of rq .
We do so first for the strings generated by q ∈ RP+(σ). For q ∈ Min+(σ),

the string just consists of q itself and the result follows trivially. So consider the
string S(q) generated by q ∈ RP+(σ)\Min+(σ). By Proposition 8.1 any element of
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Emic,+(q, σ) has a representative ũ satisfying (H − σ)ũ ∈ Ċ∞(X) with WFsc(ũ) ⊂
Φ+({q}). Then u = ũ−R(σ− i0)(H − σ)ũ ∈ E∞

ess(σ,Γ), which gives surjectivity in
this case.

For any ≤-closed set Γ and ≤-minimal element q, the string S(q) is contained in
Γ, so the surjectivity of rq follows in general. �

Notice that we can always find a sequence ∅ = Γ0 ⊂ Γ1 ⊂ . . . ⊂ Γn = RP+(σ),
of ≤-closed sets with Γj \ Γj−1 consisting of a single point qj which is ≤-minimal
in Γj : we simply order the qi ∈ RP+(σ) so that ν(q1) ≥ ν(q2) ≥ . . . , and set
Γi = {q1, . . . , qi}. Then Proposition 9.1 implies the following

Theorem 9.2. Suppose that ∅ = Γ0 ⊂ Γ1 ⊂ . . . ⊂ Γn = RP+(σ), is as described
in the previous paragraph. Then

(9.6) {0} −→ E∞
ess(σ,Γ1) →֒ . . . →֒ E∞

ess(σ,Γn−1) →֒ E∞
ess(σ),

with

(9.7) E∞
ess(σ,Γj)/E

∞
ess(σ,Γj−1) ≃ Emic,+(qj , σ), j = 1, 2, . . . , n.

10. L2-parameterization of the generalized eigenspaces

Recall from Theorem 6.7, or Theorem 7.3 in the effectively resonant case, that
there is a surjective map

(10.1) M+(σ) : E∞
Min,+(σ) → ⊕q∈Min+(σ)S(Rn−1), σ ∈ (min V0,∞) \ Cv(V ),

given by taking u ∈ E∞
Min,+(σ), microlocally restricting u to a neighbourhood of

each q giving uq ∈ E∞
mic,+(σ, q) and sending u to the sum of the leading coefficients∑

k wk(Y ′′)vk(Y ′′′), (Y ′′, Y ′′′) ∈ Rn−1, of each of the uq. Since the vk are nor-
malized eigenfunctions of a harmonic oscillator and the wk are Schwartz functions
of Y ′′ with seminorms rapidly decreasing in k, the sum is a Schwartz function of
(Y ′′, Y ′′′).

Let us regard ⊕qS(Rn−1) as a subspace of ⊕qL
2(Rn−1), endowed with the norm

(10.2) ‖(wq)q∈Min+(σ)‖
2 =

∑

q

√
σ − V (π(q))

∫

Rn−1

|wq(Y )|2dωq,

where ωq is the measure induced by Riemannian measure, namely the measure

x−n+(n−m)/2+
P

j r′′
j dg divided by dx/x and restricted to x = 0. (It takes the form

dY ′′ dY ′′′ provided that the y are normal coordinates, centred at the critical point,
for the metric h(0, y, dy). )

In this section the following result is proved.

Theorem 10.1. The map M+(σ) in (10.1) has a unique extension to an unitary
isomorphism

M+(σ) : E0
ess(σ) → ⊕q∈Min+(σ)L

2(Rn−1).

Remark 10.2. Here, and throughout this section, we take σ ∈ (minV0,∞) \Cv(V ).

To prove the theorem, we establish several intermediate results. First we show

Proposition 10.3. The space E∞
Min,+(σ) is dense in E∞

ess(σ) in the topology of

E0
ess(σ).
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Proof. The proof is by induction. We consider a sequence Γ0 ⊂ Γ1 ⊂ · · · ⊂ Γn =
RP+(σ) as in the previous section, but with the additional condition that the
radial points are ordered so that, among the points with equal values of ν, those
corresponding to local minima of V0 are placed last. We shall prove by induction
that

(10.3) E∞
ess(σ,Γi ∩ Min+(σ)) is dense in E∞

ess(σ,Γi) in the topology of E0
ess(σ).

For i = 1 there is nothing to prove. Assume that (10.3) is true for i = k. Let
Γk+1 \ Γk = {q}. If q arises from a local minimum of V0, then using a microlocal
decomposition, any u ∈ E∞

ess(σ,Γk+1) can be written as the sum of u1 ∈ E∞
ess(σ, {q})

and u2 ∈ E∞
ess(σ,Γk). A similar statement is true for u ∈ E∞

ess(σ,Γk+1 ∩ Min+(σ)),
which proves (10.3) for i = k + 1.

Next suppose that q does not arise from a local minimum of V0. Then we adapt
the argument of Proposition 11.6 of [4] to prove (10.3) for i = k + 1. We first
make the assumption that σ is not in the point spectrum of H . Using our inductive
assumption, it is enough to show that E∞

ess(σ,Γk) is dense in E∞
ess(σ,Γk+1). Let

u ∈ E∞
ess(σ,Γk+1). Let Q ∈ Ψ0,0

sc (X) be microlocally equal to the identity near
Γk ∩ Min+(σ), and microsupported sufficiently close to Γk ∩ Min+(σ). Then away
from Min+(σ), u ∈ x−1/2+ǫL2 by (ii) of Theorem 6.7 and thus (H − σ)Qu =
[H,Q]u ∈ x1/2+ǫL2 for some ǫ > 0. This is also true near Min+(σ) since Q is
microlocally the identity there, so we have (H − σ)Qu ∈ x1/2+ǫL2 everywhere.
This implies that

(10.4) u = Qu−R(σ − i0)(H − σ)Qu,

since v = u− (Qu−R(σ− i0)(H−σ)Qu) satisfies (H−σ)v = 0 and v ∈ x−1/2+ǫL2

microlocally for ν > 0.
Now choose a modified potential function Ṽ as in Lemma 8.5, where we choose

ν̃ larger than ν(q) but smaller than ν(q′) for every q′ ∈ Γk ∩ Min+(σ). (This is
possible because of the way we ordered the qi.) Since WFsc(Qu) lies in {ν > ν̃},
we have

(10.5) Qu = R̃(σ + i0)(H̃ − σ)Qu.

Now take u′j = φ(x/rj)u, where φ ∈ C∞(R), φ(t) = 1 for t ≥ 2, φ(t) = 0 for

t ≤ 1 and rj → 0 as j → ∞. Then u′j ∈ Ċ∞(X), and wj defined by

wj = R̃(σ + i0)(H̃ − σ)Qu′j

converge to Qu in x−1/2−ǫL2. Our choice of Ṽ ensures that

WFsc(wj) ∩ RP+(σ) ⊂ Γk.

Moreover,

(10.6) (H − σ)wj converges to (H − σ)Qu in x1/2+ǫL2.

Now define

uj = wj −R(σ − i0)(H − σ)wj .

Then uj ∈ E∞
ess(σ,Γk). We claim that uj → u in the topology of E0

ess(σ). Certainly,

uj → u in x−1/2−ǫL2. We must also show that Buj → Bu in x−1/2L2, where B is
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as in (9.2). To do this we write

Buj −Bu = B
(
wj −R(σ − i0)(H − σ)wj

)
−B

(
(Id−Q)u+Qu

)

= B
(
R̃(σ + i0)(H̃ − σ)Qu′j −R(σ − i0)(H − σ)wj

+R(σ − i0)(H − σ)Qu − R̃(σ + i0)(H̃ − σ)Qu
)
,

using (10.4) and (10.5), and this goes to zero in x−1/2L2 by (10.6) and propagation
of singularities, Theorem 3.1 of [4], as in the proof of [4, Proposition 11.6].

If σ is in the point spectrum of H , then equation (10.4) must be replaced by

(10.7) u = Π
(
Qu−R(σ − i0)(H − σ)Qu

)
,

where Π is projection off the L2 σ-eigenspace. Consequently we must define wj by

ΠR̃(σ + i0)(H̃ − σ)Qu′j, and then the rest of the proof goes through. �

The second intermediate result we need is

Proposition 10.4. The Hilbert norm (9.3) on the subspace E∞
Min,+(σ) ⊂ E0

ess(σ)
is given by the formula

∑

q∈Min+(σ)

√
σ − V (π(q))

∫

Rn−1

∣∣M+(q, σ)u
∣∣2 dωq.

Proof. The proof is the same as the one dimensional case, which is proved in Propo-
sition 12.6 of [4], so we just give a sketch here.

Let φ be as in the proof of Proposition 10.3. Then we can write the natural
norm (9.3) on E0

ess(σ) as a limit

(10.8) lim
r→0

i〈(H − σ)Au, φ(x/r)u〉 = lim
r→0

i〈Au, [H,φ(x/r)]u〉.

Since u ∈ x−1/2−ǫL2, the only term in [H,φ(x/r)] that contributes in the limit
is 2(x2Dx)φ(x/r)(x2Dx). The cutoff operator A restricts attention to {ν > 0}, and
the limit vanishes when localized to any region where u ∈ x−1/2+ǫL2, so we can
substitute for u a sum of expressions uq as in (7.9), one for each q ∈ Min+(σ). A
straightforward computation then gives (10.8). �

Proof of Theorem 10.1. Proposition 10.4 shows that M+(σ) maps E∞
Min,+(σ) into a

dense subspace of ⊕qL
2(Rn−1), with the Hilbert norm of M+(σ)u, u ∈ E∞

Min,+(σ),

equal to that of u. By Proposition 10.3, E∞
Min,+(σ) is dense in E∞

ess(σ), and by

Corollary 3.13 of [4], E∞
ess(σ) is dense in E0

ess(σ). The result follows. �

So far we have only considered the microlocal restriction of eigenfunctions near
radial points q satisfying ν(q) > 0. For each critical point of V0, there are two cor-
responding radial points with opposite signs of ν, and we can equally well consider
microlocal restriction near radial points with ν(q) < 0. This leads to an operator

M−(σ) : E0
ess(σ) → ⊕q∈Min−(σ)L

2(Rn−1)

and the analogue of Theorem 10.1 holds also for M−(σ).

Definition 10.5. The inverses of M±(σ), P±(σ) : ⊕q∈Min±(σ)L
2(Rn−1) → E0

ess(σ)
of M±(σ) are called the Poisson operators at energy σ.
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We can identify ⊕q∈Min+(σ)L
2(Rn−1) and ⊕q∈Min−(σ)L

2(Rn−1) in the obvious
way, and may therefore assume that the M±(σ) have the same range, identified
with the domain of P±(σ).

Corollary 10.6. For σ /∈ Cv(V ), the S-matrix may be identified as the unitary
operator S(σ) = M+(σ)P−(σ) on ⊕z∈MinL

2(Rn−1).

Remark 10.7. For n = 2, structure of S(σ) was described rather precisely in [5] as
an anisotropic Fourier integral operator.

Theorem 10.1 is essentially a pointwise version of asymptotic completeness in
σ. Integrating gives a version of the usual statement, but we do need uniformity
in σ to be able to prove it. For this purpose, as well as for the next section on
the time-dependent Schrödinger equation, we prove an extension of Theorem 7.3
that is valid in an interval rather than just at one value. For this purpose, let
I ⊂ (min V0,∞) be a compact interval disjoint from the set of effectively resonant
energies, the set of L2-eigenvalues of H , and Cv(V ). Then for each σ ∈ I, the
sets Min+(σ) ⊂ RP+(σ) can be identified; we write Min+(I) for this set. Each
element of Min+(I) is thus a continuous family q(σ) of minimal radial points, with
q(σ) ∈ Min+(σ).

Proposition 10.8. Let I ⊂ (min V0,∞) be as above, and let the q(σ) ∈ Min+(I)
be an outgoing radial point associated to a minimum point z of V0, with Y ′′, Y ′′′

the associated coordinates given by (5.23). For any h(σ, ·) ∈ C∞(I;S(Rn−1)) there

is φ ∈ Ċ∞(X) such that for every σ ∈ I,

F−1
σ R(σ + i0)φ = x−ib−iσkwk(Y ′′, σ)vk,σ(Y ′′′) + u′,

h(σ, Y ′′, Y ′′′) =
∑

k

wk(Y ′′, σ)vk,σ(Y ′′′),(10.9)

where vk,σ and b are as in Proposition 6.3, and where u′ ∈ C∞(I; I
(l)
sc (X,M)) for

some l > − 1
2 .

Remark 10.9. The statement u′ ∈ C∞(I; I
(l)
sc (X,M)) is meant to underline that

this is a global claim, namely u′ ∈ C∞(I; I
(l)
sc (O,M)) and that it is C∞ with values

in Ċ∞(X) microlocally away from {q(σ);σ ∈ I}, i.e. for all A ∈ Ψsc(X) with

WF′
sc(A) ∩ {q(σ);σ ∈ I} = ∅, Au′ ∈ C∞(I; Ċ∞(X)).

Proof. By the construction of Section 6, for each σ ∈ I there is an approximate
microlocally outgoing solution uσ with fσ = (H − σ)uσ ∈ Ċ∞(X) and F−1

σ uσ of
the same form as the right hand side of (10.9). Indeed, the construction is smooth
in σ, in the sense that (d/dσ)ku ∈ Is(O,M) for each k and each s < −1/2, so

that with f(σ, .) = fσ(.), we have f ∈ C∞(I; Ċ∞(X)). Notice that there is no need
to ‘globalize’ using by Proposition 8.1, since microlocally outgoing solutions over
sources/sinks (i.e. minima of V0) are localized at q(σ).

Let f̃ ∈ Ċ∞
c (C×X) be an almost analytic extension of f with compact support,

so ∂σf vanishes to infinite order at R ×X , and let

φ =
−1

2πi

∫

C

R(σ)∂σf̃ dσ ∧ dσ̄.

Thus, φ ∈ Ċ∞(X) since ∂σ f̃ vanishes to infinite order on the real axis.
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We also claim that (10.9) holds. Indeed, let σ0 ∈ R, χ ∈ C∞
c (R), χ identically 1

near σ0, let χ̃ be an almost analytic extension of χ of compact support. Thus, we
may write

f(σ, .) = f(σ0, .)χ(σ) + (σ − σ0)g(σ, .), f̃(σ, .) = f(σ0, .)χ̃(σ) + (σ − σ0)g̃(σ, .)

with g ∈ Ċ∞
c (R×X), g̃ ∈ Ċ∞

c (C×X). Then, writing σ− σ0 = (H − σ0)− (H − σ),

φ =
−1

2πi

(∫

C

R(σ)∂σχ̃ dσ ∧ dσ̄

)
f(σ0, .)

−
1

2πi
(H − σ0)

∫

C

R(σ)∂σ g̃ dσ ∧ dσ̄ +
1

2πi

∫

C

∂σ g̃ dσ ∧ dσ̄,

where in the last term is used (H − σ)R(σ) = Id. Since the last term vanishes (as

g̃ is smooth), and the integral in the second term is in Ċ∞(X), while the integral
in the first term is χ(H), we deduce that

φ = fσ0 + (H − σ0)Fσ0

for some F. ∈ Ċ∞(I × X). Therefore R(σ0 + i0)φ − R(σ0 + i0)fσ0 ∈ Ċ∞(X), so
R(σ0 + i0)φ and R(σ0 + i0)fσ0 indeed have the same asymptotics. In particular,
(10.9) holds for every σ0 ∈ R. �

Now we state asymptotic completeness in a more standard form.

Theorem 10.10 (Asymptotic completeness). If I ⊂ (min V0,∞) \ Cv(V ) is com-
pact then

M+(·) ◦ Sp(·) : Ran(ΠI) ⊖ Epp(I) → ⊕q∈Min+(I)L
2(I × R

n−1
q )

is unitary.

Proof. For f ∈ Ċ∞(X) orthogonal to Epp(I), let

u = u(σ) = (2πi)−1(R(σ + i0)f −R(σ − i0)f) = Sp(σ)f,

where Sp(σ) = (2πi)−1(R(σ + i0) −R(σ − i0))

is the spectral measure. The norm of u in E0
ess(σ) is given by 〈i(H − σ)Au, u〉,

where A is as in (9.3). Notice that

2πi(H − σ)Au − f = (H − σ)A
(
R(σ + i0)−R(σ − i0)

)
f − (H − σ)R(σ + i0)f

= (H − σ)
(
(A− Id)R(σ + i0)f −AR(σ − i0)f

)
= (H − σ)v, v ∈ Ċ∞(X),

since

WF′
sc(A) ∩ WFsc(R(σ − i0)f) = ∅ and WF′

sc(A− Id) ∩ WFsc(R(σ + i0)f) = ∅.

Hence

2π‖u‖2
E0

ess(σ) = 2πi〈(H − σ)Au, u〉 = 〈f + (H − σ)v, u〉 = 〈f, Sp(σ)f〉.

Note that the right hand side is continuous, hence so is the left hand side.
Integrating over σ in I, denoting the spectral projection of H to I by ΠI , and

using Proposition 10.4, we deduce that M+(σ) Sp(σ)f is continuous with values in
L2 and

(10.10) ‖ΠIf‖
2 =

∫

I

‖M+(σ) Sp(σ)f‖2 dσ,
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so M+(·) ◦ Sp(·) is an isometry on the orthocomplement of the finite dimensional
space Epp(I) in the range of ΠI .

It remains to prove that the range is dense in ⊕q∈MinL
2(I × Rn−1). Since the

set Rer of effectively resonant values of σ is discrete, it suffices to show that if
I is in addition disjoint from Rer, and h ∈ ⊕q∈MinĊ∞(I × Rn−1) then there is a

f ∈ Ċ∞(X) with M+(σ) Sp(σ)f = h(σ, .). But this was proved in Proposition 10.8,
so the proof of the theorem is complete. �

Remark 10.11. We can relate the results of this section more closely with The-
orem 9.2 by considering the closure of E∞

Min,+(σ) as a subset of E∞
ess(σ) in the

topology of Es
ess(σ) for varying values of s. We have seen in Proposition 10.3 that

E∞
Min,+(σ) is dense, in the topology of E0

ess(σ). In fact the proof of Proposition 10.3

shows that this is true in the topology of Es
ess(σ) for 0 ≤ s < s0, where s0 is the

smallest number such that every u ∈ E∞
mic(q), for every q ∈ RP+(σ) \ Min+(σ),

is in x−1/2+s0L2 locally near π(q); that s0 is strictly positive follows from (ii) of
Theorem 6.7. By contrast, E∞

Min,+(σ) is closed in the E∞
ess(σ) topology. What hap-

pens as s increases is that the closure of E∞
Min,+(σ) in the Es

ess(σ) topology changes
discretely, as s crosses certain values determined by the structure of eigenfunctions
at the non-minimal critical points.

One way to understand this is in terms of microlocally incoming eigenfunctions at
the outgoing radial points, i.e. microlocal eigenfunctions u with scattering wavefront
set near q is contained in Φ−(q) as opposed to Φ+(q). In Part I we showed (in all
dimensions) that there are nondegenerate pairings

Emic,+(q, σ) × Emic,−(q, σ) → C,

Es
ess(σ) × E−s

ess (σ) → C

(Lemma 12.2 and Proposition 12.3 of [4]). The closure of E∞
Min,+(σ), in the topology

of Es
ess(σ), may be identified with the annihilator, in E∞

ess(σ), of the eigenfunctions
which are in E−s

ess(σ) and have scattering wavefront set contained in
⋃

q∈RP+(σ)\Min+(σ)

Φ−(q) ∪ {ν < 0}.

This set is trivial for s < s0, and nontrivial for s > s0. The fact that this set
of eigenfunctions jumps discretely with s in shown in the two dimensional case in
Section 10 of Part I.

11. Long-time asymptotics for the Schrödinger equation

In this final section we deduce the long-time asymptotics for solutions of the
initial value problem

(11.1) (Dt +H)u = 0, u|t=0 = u0, u0 ∈ Ċ∞(X),

for a dense set (in L2 ⊖ Epp(H)) of initial data.
Our approach is to use the spectral resolution of u0 and the functional calculus.

In this way, we deduce the long-time asymptotics of u from the asymptotics of
generalized eigenfunctions of H using the stationary phase lemma.

We first define the space XSch on which the asymptotics of the solution u of
(11.1) will be described. Let us first choose a globally defined boundary defining
function x satisfying (1.1); we can specify, for example, that x ≡ 1 outside a collar
neighbourhood of ∂X . We then introduce the variable τ = tx, where t is time. Let
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us compactify the real τ -line R to an interval R using τ−1 as a boundary defining
function near τ = ∞, and −τ−1 as a boundary defining function near τ = −∞.
Then we define

(11.2) XSch = X × Rτ

Thus XSch is a compact manifold with corners, with boundary hypersurfaces if
(the ‘infinity face’) at τ = ±∞ (or t = ±∞), naturally diffeomorphic to two copies
of X (one at t = +∞, one at t = −∞), and a boundary hypersurface af (the
‘asymptotic face’) diffeomorphic to ∂X × Rτ . Notice that at af, every point with
τ > 0 corresponds to t = +∞ and every point with τ < 0 corresponds to t = −∞,
so this is the place to look for long-time (and large-distance) asymptotics of the
Schrödinger wave u. The variable τ has an interpretation of inverse speed; a particle
travelling asymptotically radially at speed τ−1

0 will end up at af after infinite time
at τ = τ0.

We now specify a good subset of L2 initial data u0, for which the asymptotics as
t → +∞ of the solution, u, to (11.1) are particularly simple. Let I ⊂ (min V0,∞)
be a compact interval disjoint from Cv(V ) and from the set of effectively resonant
energies and L2 eigenvalues of H . Let (h(σ, ·))q ∈ C∞(I;S(Rn−1)) be a collection
of smooth functions from I into Schwartz functions of n − 1 variables, one for
each q ∈ Min+(I), and let φ = φ(I, h) =

∑
q φ(I, hq) ∈ Ċ∞(X) be the function

constructed in Proposition 10.8. Let

AI = {φ(I, h);h(σ, ·) ∈ C∞(I;S(Rn−1))} and A =
∑

I

AI

be the (algebraic) vector space sum of AI over all such I as above. It is clear from
Theorem 10.10 that AI is dense in Ran ΠI(H)⊖Epp(I), and hence that A is dense
in L2⊖Epp(H) = Hac(H). To give the asymptotics of (11.1) with initial data from
A it suffices to give the asymptotics starting from u0 = φ(I, h) for some h as above.

Theorem 11.1. Suppose that I is disjoint from Cv(V ), the set of effectively reso-
nant energies and the set of L2-eigenvalues of H, and that φ = φ(I, h) ∈ AI . Let
u(t, ·) be the solution of (11.1) with initial data u0 = φ, regarded as a function on
XSch. Then u has trivial asymptotics at if. Near af ∩{τ > 0}, using coordinates
τ = xt, x, and (Y ′′, Y ′′′) defined by (5.23), u takes the form
(11.3)

u(τ, x, Y ′′, Y ′′′) = c
∑

q∈Min+(I)

∑

k

x−ib−iσk+1/2eiΨq(y,τ)/x

(σ − V (z))3/4
wk(Y ′′, σ(τ))vk,σ(τ)(Y

′′′) + u′,

h(σ(τ), Y ′′, Y ′′′) =
∑

k

wk(Y ′′, σ(τ))vk,σ(τ)(Y
′′′), c = 2eiπ/8,

where

(11.4) σ(τ) = V0(z) +
1

4τ2
, z = π(q),

Ψ is a smooth function of y and τ , h is decomposed as in Proposition 10.8, and u′

decays faster than the leading term.

Proof. Let v(σ) = Sp(σ)φ = (2πi)−1(R(σ + i0) −R(σ − i0))φ. Then

u(t, ·) =
1

2πi

∫

I

e−itσ(R(σ + i0)−R(σ − i0))φdσ.
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Shifting the contour of integration shows that, as t → ∞, R(σ − i0)φ has trivial
asymptotics. Hence it is enough to consider

(11.5) u(t, ·) =
1

2πi

∫
e−itσR(σ + i0)φdσ.

By construction, F−1
σ R(σ+ i0)φ has asymptotics (10.9) for every σ. Since Fσ is

a smooth family of FIOs, it follows that R(σ + i0)φ itself has asymptotics

(11.6) R(σ + i0)φ = eiΦ(y,σ)/xa(Y ”, Y ′′′, x, σ) + v′,

where v′ ∈ C∞(I;xlL2(X)) for some l > −1/2 — see Remark 6.8. Moreover, Φ is
a smooth function of σ (it parameterizes the Legendrian submanifold which is the
image of the zero section under Fσ), with

(11.7) Φ(z, σ) =
√
σ − V0(z), z = π(q), q ∈ Min+(σ),

and a in (11.6) is smooth in σ as an element of Is(O,M) for every s < −1/2. Hence
we may substitute (11.6) into (11.5) and compute

(11.8) u(t, ·) =
1

2πi

∫
e−itσ

(
eiΦ(y,σ)/xa(Y ”, Y ′′′, x, σ) + v′

)
dσ,

exploiting the smoothness of Φ and a in σ.
Let p ∈ X be an interior point. Then (R(σ ± i0)φ)(p) is a smooth function of σ

by Proposition 10.8.
It follows that for a fixed interior point p the integral (11.8) is rapidly decreasing

as t→ ∞, being the Fourier transform of a smooth, compactly supported function.
Hence the asymptotics of u are trivial at if.

To investigate asymptotics at af, where x→ 0, we rewrite (11.8) as
(11.9)

u(τ, x, Y ′′, Y ′′′) =
1

2πi

∫
ei(−τσ+Φ(y,σ))/x

(
a(Y ”, Y ′′′, x, σ) + v′(Y ′′, Y ′′′, x, σ)

)
dσ,

and apply stationary phase to the integral. The integrand is rapidly decreasing as
x→ 0 at points (y, σ) for any y which is not a minimum point of V0, uniformly in
σ, so we may restrict attention to minimum points z = π(q), q ∈ Min+(I). There

the phase has critical points when τ = dσΦ(y, σ) =
√
σ − V0(z)/2, and the second

derivative is then 4−1(σ − V0(z))
−3/2, which is nonzero for σ ∈ I. The stationary

phase lemma then gives (11.3), with Ψ(y, τ) = τ − Φ(y, σ(τ)). �

Remark 11.2. Equation (11.4) is just the energy equation ‘total energy = potential
energy+ kinetic energy’ at infinity, since 1/τ is the asymptotic speed. The factor
1/4 comes from the fact that in writing our Hamiltonian as ∆ + V , we have taken
the value of mass to be 1/2 in our units.

We see that solutions of the time dependent Schrödinger equation (at least those
with initial data in A) have expansions at af which are equivalent to first spectrally
resolving the initial data and looking at the expansion of the corresponding family
of generalized eigenfunctions. In view of this, we can recast Theorem 10.10 in
time-dependent terms as follows:

Theorem 11.3. Let u be the solution of the time dependent Schrödinger equation
(11.1) with initial data u0. Let b and vk and Q̃ =

∑
j Q̃j be as in Proposition 6.3.

The map
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AI ∋ u0 7→ ⊕q∈Min+(I)

(
ei log xQ̃xibe−iΨ(y,τ)/xu(x, τ, Y ′′, Y ′′′)

)∣∣
x=0

whose existence is guaranteed by Theorem 11.1 extends uniquely by linearity and
continuity to a unitary isomorphism

L2 ⊖ Epp(H) → ⊕qL
2
(
Rτ × R

n−1
q ;

dτ

τ
⊗ ωq,τ

)
.

Here ωq,τ is the measure in (10.2), where τ = τ(q, σ) is given by (11.4).

Remark 11.4. The operator ei log xQ̃ simply removes the factors of x−iσk in the
expansion (11.3), so that we can take a limit as x→ 0.

From asymptotic completeness we can also deduce the following result which
was recently proved by Herbst and Skibsted, using a direct method involving the
uncertainty principle, rather than proceeding via the structure of generalized eigen-
functions as here.

Corollary 11.5 (Absence of L2 channels at non-minimal critical points). Let χ ∈
C∞(X) vanish in a neighbourhood of the local minima of V0 on ∂X. Let u be the
solution of (11.1) on X × R with initial value u0 ∈ L2(X). Then

(11.10) lim
t→∞

‖χu(t, ·)‖L2(X) → 0.

Proof. First decompose u0 = u′0 + u′′0 , where u′0 ∈ Epp(H) and u′′0 ∈ L2 ⊖ Epp(H).
The solution u′ with initial condition u′0 is easily treated, so we consider the solution
u′′ with initial condition u′′0 . Let ǫ > 0 be given. Then by density of A in L2 ⊖
Epp(H), we can find φ ∈ A, with φ equal to a sum of a finite number of φj(Ij , hj) ∈
AIj , such that ‖u′′0 − φ‖L2 < ǫ. Without loss of generality we may assume that
all the Ij are disjoint. Let u′′′ be the solution with initial condition φ. By direct
calculation from (11.3) we find that

lim
t→∞

‖(1 − χ)u′′′(t, ·)‖2
L2 =

∑

j

∫

I

√
σ − V0(π(q))‖hj‖

2
L2(Rn−1) dσ,

which by Theorem 10.10 is equal to ‖φ‖2
L2 . But by unitarity of e−itH , we have

‖u′′′(t, ·)‖2
L2 = ‖φ‖2

L2 for each t,

which implies that
lim

t→∞
‖χu′′′(t, ·)‖2

L2 = 0.

So (11.10) is true for φ. On the other hand,

lim supt→∞ ‖χ(u′′(t, ·) − u′′′(t, ·))‖L2 ≤ ǫ‖χ‖L∞,

so lim supt→∞ ‖χu′′(t, ·)‖L2 ≤ ǫ‖χ‖L∞. Since this is true for every ǫ > 0, the result
follows. �
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