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THE BURGER-SARNAK METHOD AND OPERATIONS ON THE
UNITARY DUAL OF GL(n)

AKSHAY VENKATESH

Abstract. We study the effect of restriction to Levi subgroups, induction

from Levi subgroups, and tensor product, on unitary representations of GL(n)
over a local field k. These results give partial answers to questions raised by

Clozel.

1. Introduction

In a recent paper [3], Clozel observed that Arthur’s conjectures had some striking
consequences for local harmonic analysis. Roughly speaking, the Arthur parame-
terization partitions (some of) the unitary dual of a reductive group over a local
field. Clozel observed that this partition should behave in a stable fashion under
restriction to or induction from proper subgroups.

The purpose of the present note is to clarify these consequences for GL(n): we
compute the correspondences of unitary representations suggested by Clozel in a
weakened sense, providing justification for the conjecture of the author that was
stated in [3]. Clozel’s motivation stemmed in part from the work of Burger-Li-
Sarnak [1], which showed that the “automorphic spectrum ” is stable under certain
operations arising from restriction or induction; here we explicate quite precisely
what these operations are in the case of GL(n).

The argument is very naive and only uses Mackey theory in the crudest way to
compute with representations with nice models, and a global argument (essentially
due to Clozel, which we have explicated) to deal with the general case. We are
unable to rule out, in general, the presence of complementary series when one
restricts or inducts a representation of “Arthur type” (see Section 2 for definition).

More precisely, our primary goal is to understand, for GL(n), the effect on the
unitary dual of the following operations: restriction to a Levi subgroup, induction
from a Levi subgroups and tensor product. There are other operations correspond-
ing to other embeddings of (products of) groups of type A into other such groups,
but (see remarks a little later), the three cases discussed seem the most interest-
ing. In some special cases these have been considered: for example the spectral
decomposition of L2(SL(a,R)× SL(b,R)\SL(a+ b,R)) has been computed as part
of the (general) Plancherel formula for symmetric spaces; of course the Plancherel
formula gives much more precise information than the discussion here.

The situation for other groups is quite unclear to the author. In general, given
an embedding H ↪→ G of algebraic groups, the relation between the dual groups
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Ĥ and Ĝ seems unclear. However, for the situations considered here, where H is
either a Levi subgroup of G or a diagonal copy of G inside G×G, the relationship
between the dual groups is much clearer. It may be, then, that in this restricted
setting one can formulate a general principle.

We note that ifH is “small” compared toG, restriction of unitary representations
from G to H very quickly “contracts” the entire spectrum to temperedness. (Thus,
in the case of GL(n), the cases under consideration are perhaps the most interesting;
other subgroupsH ⊂ GL(n) tend to be much smaller.) One can check temperedness
in any given case by using the temperedness criterion due to Cowling, Haagerup
and Howe [5]. A similar situation occurs with induction: if H ⊂ G is very small
the induction of any H-representation to G tends to be tempered. However, in
the induction case, (although one can verify temperedness in many cases by ad hoc
methods) the author does not know a general technique. For a very simple result
of this nature see Corollary 1.

Acknowledgments: This paper arose out of an attempt to understand the ideas
explained by L. Clozel in his 2002 Park City lectures, to appear [2]. I have benefited
greatly from a visit to Orsay and discussions with Professor Clozel; I thank him for
his generosity in sharing his ideas.

I would like to thank W.T. Gan and H. Oh for their comments on drafts of this.
Finally, I would also like to thank D. Vogan for discussions and for answering many
questions.

Also E. Lapid and J. Rogawski independently have proved most of these results
(their method seems somewhat sharper than our rather clumsy method in Section
3).

2. Enunciation of Conjectures

2.1. Preliminaries. Throughout this paper, we shall use “representation” to al-
ways mean unitary representation.

Let G = GL(n), and let k be a local field of characteristic 0. As usual Ĝ(k) =
̂GL(n, k) will denote the unitary dual of the topological group G(k); it is endowed

with the Fell topology (see [7] or [19]; we give a very brief discussion of weak closure
before Lemma 1.)

We also use several (deep) results from representation theory and automorphic
forms without explicit comment: we shall use the results of Tadić [15] on the
classification of the unitary dual of GL(n) over a nonarchimedean field and on its
topology [16], and the corresponding results of Vogan [18] in the archimedean case.

To be precise, we only need the fact that the Fell topology coincides with the
natural topology on the space of Langlands parameters if one stays away from the
endpoints of complementary series. This enters into our paper only during Propo-
sition 3. The required assertion certainly follows from [16] in the nonarchimedean
case, and in the archimedean case it should follow from the results of Miličić; in any
case, enough of it for our purposes can be deduced from the arguments contained
in [17], proof of Theorem A.3.

Finally, we use the results of Luo-Rudnick-Sarnak from [9]: these are valid even
at ramified places, and guarantee that the automorphic spectrum stays away from
the endpoints of complementary series, avoiding “pathologies” of the Fell topology.
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Let F be a number field and S a finite subset of places. Set FS =
∏
v∈S Fv. Let

G1 be a reductive algebraic group over F . We let Ĝ1(FS) denote the unitary dual
of G1(FS), and Ĝ1(FS)Aut ⊂ Ĝ1(FS) the “automorphic dual,” i.e. the weak closure
(in Ĝ1(F )) of L2(G1(F )\G1(AF )), considered as a G1(FS)-representation.

Remark 1. An irreducible representation π ∈ Ĝ(FS) belongs to the automorphic
dual if and only if all (equivalently one of) its irreducible constituents, when re-
stricted to SL(n, FS), belongs to the automorphic dual ̂SL(n, FS)Aut.

Proof. We sketch a part of the proof for completeness. The idea is entirely due to
Burger-Sarnak. Suppose that π ∈ Ĝ(FS), and let σ ∈ ̂SLn(FS)Aut be an irreducible
constituent of the restriction of π to SLn(FS). It is simple to verify that π occurs
weakly in the induction from SLn(FS) to GLn(FS) of σ. This implies that π occurs
weakly in L2(ΓS\GLn(FS)), where ΓS ⊂ SLn(FS) is an S-arithmetic subgroup.
Without loss we may assume ΓS = {g ∈ SLn(FS)|g ≡ 1 mod a} where a is an ideal of
OF,S , the ring of S-integers in F . Let p be any ideal of OF,S and, for j ≥ 1 integral,
set Γ′j,S = {g ∈ GLn(FS)|g ≡ 1 mod a,det(g) ≡ 1 mod pj}. Then Γ′j,S is an S-
arithmetic subgroup of GLn(FS) and ∩j≥1Γ′j,S = ΓS . Then one sees that matrix
coefficients of the GLn(FS)-representation L2(ΓS\GLn(FS)) may be approximated
by those of ⊕j≥1L

2(Γ′j,S\GLn(FS)). It follows that π ∈ ̂GLn(FS)Aut. �
We recall the Burger-Sarnak principle [1]. We note that a careful treatment has

been given in the S-arithmetic context by Clozel and Ullmo [4].

Proposition 1. Let G1 ⊂ G2 be semisimple algebraic groups defined over F . Sup-
pose that π ∈ Ĝ2(FS)Aut and σ ∈ Ĝ1(FS)Aut. Then any irreducible represen-
tation of G2(FS) weakly contained in the induction of σ to G2(FS) is contained
in Ĝ2(FS)Aut. Any irreducible representation of G1(FS) weakly contained in the
restriction of π to G1(FS) is contained in Ĝ1(FS)Aut.

Note firstly that Proposition 1 gives a result for tensor products, by application
to the situation where G1 is diagonally embedded in G2 = G1×G1. Note also that,
although the Proposition is stated for semisimple groups, by combining Proposition
1 with Remark 1 (and slight variants thereof) we may extend the applicability of
the Proposition to the situation where both G1 and G2 are products of GL(n).

We shall make free use of the word “tempered” for reductive groups; a repre-
sentation π is tempered if it can be written as a Hilbert space direct integral of
tempered irreducible representations. (For definitions and a careful treatment of
the basic properties of this notion for reductive, as opposed to semisimple, groups,
we refer to [14], Section 2.4.)

2.2. Type. We associate to each π ∈ Ĝ(k) a partition of n, the SL(2)-type or just
type of π. We caution that the type (as we define it) is defined for all π ∈ Ĝ(k),
not merely those attached to Arthur parameters; this extension is convenient.

We recall the classification of the unitary dual. We follow notation from the
paper of Tadić, [15]; specifically, his Theorem D, which is (as noted in [15]) also
valid at archimedean places. Let m, j be positive integers. Let δ be a discrete
series representation of GL(m, k), i.e. a representation whose matrix coefficients
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are square integrable modulo the center. The representation of GL(mj, k) parabol-
ically induced from (δ|det |(j−1)/2⊗δ|det |(j−2)/2⊗· · ·⊗δ|det |(1−j)/2) has a unique
irreducible quotient; we denote it by u(δ, j).

Suppose 0 < α < 1/2. The representation of GL(2mj, k) parabolically induced
from u(δ, j)|det |α × u(δ, j)|det |−α is unitarizable; we denote it by u(δ, j)[α,−α].

Any unitary representation of GL(n, k) is unitarily induced from representations
of type u(δ, j) or u(δ, j)[α,−α], and this expression is unique up to permutation
([15] and [18]).

We define ̂GL(n, k)Ar ⊂ ̂GL(n, k) (the part of the spectrum associated to Arthur
packets) to consist of those π which do not involve any u(δ, j)[α,−α]; we say an
element belonging to this subset is of Arthur type.

We shall use angle brackets 〈?〉 to denote partitions (and, more generally, un-
ordered sequences of integers).

Definition 1. The type of an irreducible representation π ∈ ̂GL(n, k) is the parti-
tion of n specified by the following two conditions:

(1) If π is unitarily induced from π1 ∈ ̂GL(a, k) and π2 ∈ ĜL(b, k), with a+b =
n, then the type of π is obtained by concatenating the types of π1 and π2.

(2) Suppose δ is a discrete series representation of GL(m, k). The type of u(δ, j)
is 〈j, j, . . . , j〉 (with m js).

(3) The type of u(δ, j)[α,−α] is 〈j, j, j, . . . , j〉 (with 2m js).

Finally, we say a (not necessarily irreducible) representation π has type τ if it can
be written as a (Hilbert space) direct integral of irreducible representations, all with
type τ .

Note that the trivial representation has type 〈n〉 and any tempered represen-
tation has type 〈1, 1, 1, . . . , 1〉. The converse is true for representations of Arthur
type: any π ∈ ̂GL(n, k)Ar with type 〈1, . . . , 1〉 is tempered. On the other hand, a
complementary series for GL(2) is also assigned the type 〈1, 1〉.

2.3. Results and Conjectures. In this assertion, we state our main result about
operations on SL(2)-types (Proposition 2). Part (3) of this Proposition appeared
as a conjecture in [3].

If σ = (n1, n2, . . . , nr) is a sequence of integers with
∑r
i=1 ni = n, we denote by

Pσ the corresponding parabolic and Mσ the corresponding Levi subgroup. (Thus
Pσ is the stabilizer of a flag of type (n1, n1 +n2, n1 +n2 +n3, . . . ), and Mσ consists
of block-diagonal matrices, with blocks of size n1, n2, . . . , nr.)

Note that the conjugacy class of a parabolic is determined by an ordered sequence
of integers whereas its associate class (i.e. conjugacy class of the Levi) does not
depend on the order. We shall generally use (. . . ) to denote ordered sequences.
As previously noted, we use 〈. . . 〉 to denote unordered sequences (i.e. multisets).
(Recall that a multiset on the set X is a function from X to the non-negative
integers; we shall identify them with sequences of elements of X where order is
unimportant.)

Let σ = 〈aj〉 or σ = (aj) be either a multiset of integers or a sequence of integers,
satisfying

∑
j max(0, aj) ≤ n. We denote by 〈σ〉n the partition of n consisting of all

positive ajs together with enough 1s to ensure that the resulting sequence sums to
n. For example if σ = 〈2, 2,−3〉, then 〈σ〉7 = 〈2, 2, 1, 1, 1〉 and 〈σ〉8 = 〈2, 2, 1, 1, 1, 1〉.
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By the standard embedding of GL(m) into GL(n) (for m < n) we mean the em-
bedding into the “top left hand corner,” equivalently the embedding corresponding
to the n-dimensional representation of GL(m) given by the sum of a standard rep-
resentation and n−m copies of the trivial representation.

We first enunciate a weak version of the conjecture. We shall prove this in the
following section; thus it is titled as a Proposition.

Proposition 2. “Weak conjecture.”
(1) Restriction to a Levi subgroup: Suppose that σ = 〈ni〉1≤i≤I is a partition of

n, and GL(m) is embedded into GL(n) via the standard embedding. Suppose
π ∈ ĜL(n, k)Ar has type σ.

Then ResGGL(m)π has type 〈(ni+m−n)1≤i≤I〉m. (Here ResGGL(m) denotes
restriction from G(k) = GL(n, k) to GL(m, k).)

(2) Induction from a Levi subgroup: suppose σ is as above, Mσ is the asso-
ciated Levi subgroup, and for each 1 ≤ i ≤ I we are given a partition
τi = 〈mi,k〉1≤k≤Ki of ni. Suppose πi ∈ ̂GL(ni, k)Ar has type τi.

Then IGMσ
(⊗1≤i≤Iπi) has type 〈(mi,k + ni − n, 1 ≤ i ≤ I, 1 ≤ k ≤ Ki)〉n.

(Here IGMσ
denotes induction from the Levi subgroup Mσ(k) to G(k).)

(3) Tensor product: suppose that σ1 = 〈ni〉, σ2 = 〈mj〉 are partitions of n, and
set τ = 〈ni + mj − n〉n. Suppose π1, π2 ∈ ̂GL(n, k)Ar have types σ1, σ2

respectively. Then π1 ⊗ π2 has type τ .

Note that, if one defines “type” for products of GL(n) in the natural way, then
assertion (1) above is sufficient to determine the type of the restriction of π to
a Levi subgroup (even though the assertion is only about the restriction to one
component GL(m) of the Levi factor).

One verifies easily that the assertions of this Proposition are well-defined and
satisfy the required compatibilities: associativity of the tensor product, projection
formula, and compatibility of the formula with “iterated” induction and restriction.

This Proposition is termed the weak conjecture, since it does not rule out the
possibility that one could obtain a complementary series representation occurring
weakly in (e.g.) the tensor product of two representations of Arthur type. That
this should not occur is the content of the following:

Conjecture 1. (Strong conjecture) The operations described in Proposition 2 pre-
serve the part of the spectrum associated to Arthur packets.

This conjecture would follow from the Ramanujan conjecture, c.f. argument in
Section 3.6. (Here we understand “Ramanujan conjectures” to mean “temperedness
of cusp forms on GL(n).”) Of course this does not seem a satisfactory way to
approach it!

3. Proof of Proposition 2

3.1. Preliminaries. In this section we shall prove Proposition 2. The author does
not know how to prove Conjecture 1 in full generality.

The strategy of proof is as follows. In Section 3.1 we recall some basic definitions
and results. In Section 3.2 we enunciate Lemma 3, a weakened version of Propo-
sition 2; this Lemma is proved in Sections 3.3–3.5. We deduce Proposition 2 from
Lemma 3 via a global argument, given in Section 3.6.
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This argument is rather unsatisfactory; in particular it would be desirable to
deal directly with representations that do not have nice models. Of course the
considerations of this section are very elementary.

In what follows, if G1 ⊂ G2 are locally compact separable topological groups,
IG2
G1

(respectively ResG2
G1

) denotes induction (respectively restriction) of unitary rep-
resentations. Note that induction always refers to induction of unitary representa-
tions, in the sense of Mackey [10].

We also sometimes write for brevity π|G1 , instead of ResG2
G1
π, for the restriction

of the representation π to G1.
We will make a number of arguments about induced representations which we

will not give detailed justification for; the details all follow from:

(1) Induction in stages: if G1 ⊂ G2 ⊂ G3 and U is a unitary representation of
G1, then IG3

G2
IG2
G1
U = IG3

G1
U .

(2) Decomposition: If G1, G2 are subgroups of G, we will often analyze the
composition ResGG1

IGG2
in the “naive” way, viz. by decomposing G into

(G1, G2) double cosets. This is justified if G1 and G2 are regularly related
in G, in the sense of Mackey (see [10]).

This is, in particular, true if there is a set Z ⊂ G/G2 with measure 0 so
that G1 acts transitively on G/G2 − Z.

(3) Continuity of induction: say H ⊂ G, and σ, τ are representations of H such
that σ is weakly contained in τ ; then IGHσ is weakly contained in IGHτ .

(4) Continuity of restriction: if π1, π2 are unitary representations of G so that
π1 is weakly contained in π2, then ResGHπ1 is weakly contained in ResGHπ2.

(5) Projection formula: if σ is a representation of G1, and τ a representation
of G2 ⊂ G1, then IG1

G2
(σ|G2 ⊗ τ) is isomorphic to IG1

G2
(τ)⊗ σ.

Although we have used it several times, we recall for completeness the notion
of weak containment: if G1 is a separable locally compact topological group, a
representation σ is weakly contained in a representation τ if every block of matrix
coefficients of σ can be approximated, uniformly on compacta, by a block of matrix
coefficients of τ ; for details see [11], Section 5.1. Now suppose that G1 is the group
of k-points of a reductive algebraic group, that σ is irreducible, and we decompose τ
into irreducibles as τ =

∫
x∈Ĝ1

πxdµ(x) for an appropriate measure µ on Ĝ1. In this
case such a decomposition is “essentially” unique. One knows that σ is contained
in the weak closure of τ iff σ belongs to the support of µ: [6], Proposition 8.6.8.

Lemma 1. Suppose G is a reductive group over a local field k and H an algebraic
subgroup so that IG(k)

H(k)(1) is tempered. Then, for any unitary H(k)-representation

σ, the representation I
G(k)
H(k)(σ) is tempered.

Proof. Every matrix coefficient of IG(k)
H(k)(σ) is pointwise dominated by a matrix

coefficient of IG(k)
H(k)(1).

Indeed, this remark is valid if one replaces H(k) ⊂ G(k) by an inclusion of locally
compact groups G1 ⊂ G2. Assume for simplicity that G1\G2 carries an invariant
measure dµ, and suppose that σ is a representation of G1 realized on the Hilbert
space V . Let 〈·, ·〉V be the inner product on V . Then IG2

G1
σ is realized on the

space of functions f : G2 → V satisfying f(g1g) = σ(g1)f(g) (g ∈ G2), the inner
product being 〈f1, f2〉 =

∫
G1\G2

〈f1(g), f2(g)〉V dµ(g). For such f1, f2 the functions
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hj : g 7→
√
〈fj(g), fj(g)〉V define elements of L2(G1\G2) = IG2

G1
1, and

|〈π(g)f1, f2〉IG2
G1
σ
| ≤ 〈π(g)h1, h2〉IG2

G1
1

If G is semisimple, this is enough, since in that case representation is tempered
if and only if all matrix coefficients belong to L2+ε [5].

In the general case, let ZG be the center of G. Then there exists a semisimple
subgroup G(0) ⊂ G so that the map ZG(k) · G(0)(k) → G(k) has finite kernel and
cokernel. For such a subgroup G(0)(k), a representation of G(k) is tempered if and
only if its restriction to G(0) is tempered. (Proof: This can be proved quite easily
using Lemma 2 below.)

Since every matrix coefficient of IG(k)
H(k)(σ) is pointwise dominated by a matrix

coefficient of IG(k)
H(k)(1), it follows that IG(k)

H(k)σ is tempered as aG(0)(k)-representation,
and thus also as a G(k)-representation. �

The following Lemma is a consequence of Harish-Chandra’s Plancherel formula.

Lemma 2. Suppose G is a reductive group over a local field k. Then any tem-
pered representation of G(k) is weakly contained in L2(G(k)). Conversely, any ir-
reducible representation of G(k) weakly contained in L2(G(k)) is tempered; indeed,
if G(k) × G(k) acts on L2(G(k)) in the natural way, any irreducible G(k) × G(k)
representation weakly occurring in L2(G(k)) is tempered.

Proof. See [14]; note only that the final statement is a consequence of the previous
ones, by considering the restriction to each G(k) factor separately. �

Corollary 1. (of Lemma 1 and Lemma 2) Let notations be as in Lemma 2 and
let σ be an irreducible unitary representation of G(k), and regard G(k) as being
diagonally embedded in G(k)×G(k). Then I

G(k)×G(k)
G(k) σ is tempered.

3.2. A weakened version of Proposition 2. From Section 3.2 to Section 3.5 we
shall work with the local field k = C.

The weakened version of Proposition 2 will be stated as Lemma 3 and will be
proven by induction in the sections that follow. In Section 3.6, we will deduce the
full Proposition 2 from Lemma 3 by global methods.

Roughly, this weakened version is a statement only over the local field C, and
states that (e.g.) the tensor product of two GL(n,C)-representations (both of
Arthur type, as in Proposition 2) weakly contains at least one GL(n,C) represen-
tation of the “predicted” SL(2)-type. The necessity for this in our procedure is as
follows: in one part of our argument – the approximation argument, see (3) – we
use a technique which produces a weak constituent of a certain representation, but
we lose information about all other possible constituents.

In the case of GL(n,C), the Arthur spectrum ̂GL(n,C)Ar can be described in
an especially nice way:

Say that an irreducible representation π of GL(n,C) is principal if it is unitarily
induced from a unitary one-dimensional character of a parabolic subgroup. Such
a representation is automatically irreducible. The same notion applies to a rep-
resentation of a product GL(n1,C) × GL(n2,C) × . . . ; in particular, it applies to
representations of Levi subgroups of GL(n,C). Clearly, if one parabolically induces
a principal representation of a Levi subgroup, one obtains a principal representa-
tion.
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Note that in fact, the principal representations of GL(n,C) are precisely those
of Arthur type in the sense of Section 2.2; for instance, a complementary series for
GL(2,C) is not principal. However, we have used the adjective “principal” in this
and the subsequent sections since it is really the property of being principal that is
used repeatedly in the proofs in Section 3.3 – Section 3.5. We will, however, need
the fact that any tempered representation of GL(n,C) is principal, see below.

Remark that any one-dimensional character of GL(n,C) factors through the
determinant (since SL(n,C), as an abstract group, is generated by commutators
g1g2g

−1
1 g−1

2 with g1, g2 ∈ SL(n,C)). In particular, any one-dimensional character of
GL(n,C) is trivial when restricted to any subgroup consisting of unipotent elements.
We will use this simple fact several times.

Any tempered irreducible representation of GL(n,C) is principal, by the clas-
sification of irreducible representations of GL(n,C); in particular, any tempered
(not necessarily irreducible) representation of GL(n,C) weakly contains a principal
representation. This is why we work over C, and we shall use it repeatedly without
further comment.

Lemma 3. Let π be a principal representation of GL(n,C). Then its restriction
to any Levi subgroup weakly contains a principal representation with SL(2)-type
that given by Proposition 2. A similar assertion is true for induction of a princi-
pal representation from Levi subgroups to GL(n,C) and for tensor products of two
principal representations of GL(n,C).

We will prove this by induction: assuming it true for all GL(m,C) with m < n,
we shall prove it for GL(n,C). We deduce Proposition 2 from this Lemma in Section
3.6 by a global argument, due to Clozel. This allows us to replace C by a general
local field in Lemma 3, and also to get information about all weak constituents, not
just one.

The proof of Lemma 3, as we have remarked, is standard Mackey theory; the
only twist is in Section 3.3 where we use an approximation argument (see equation
(3)). The assertions of the Lemma pertaining to induction, restriction and tensor
product will be proven in Sections 3.3, 3.4 and 3.5 respectively.

We finally note that it suffices to show Lemma 3 in the cases of restriction to,
or induction from, maximal Levi subgroups; the general case can be expressed as
a sequence of such operations, and as remarked before the assertions of Propo-
sition 2 are compatible with iterated induction and restriction. Also, since we
are always considering principal π, it suffices to prove the assertions of Lemma
3 in the case where π is parabolically induced from a representation ρa ⊗ ρb of
GL(a,C)×GL(b,C), where a+b = n, ρa, ρb are unitary, and ρa is one-dimensional.
We will make similar easy reductions in the proofs of all three parts of Lemma 3.

3.3. Proof of Lemma 3 for Induction. Set G = GL(n,C) from this Section
through Section 3.5.

Let σ = (a, b), where a + b = n, and let ρa, ρb be principal representations of
GL(a,C) and GL(b,C) respectively. We may assume a ≤ b. Notations being as in
Section 2.3 and the previous section, we set Pσ to be the parabolic of type σ; then
we have a Levi decomposition Pσ = MσNσ, with Nσ abelian. Let Σ = ρa ⊗ ρb as
a representation of Mσ. We shall analyze I = IGMσ

Σ by induction in stages and
decomposing into characters of N . One has:
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(1) I = IGMσNσI
MσNσ
Mσ

Σ

We may identify Nσ with HomC(Cb,Ca) (maps of C-vector spaces, considered as an
additive group). M acts by conjugation on the character group of Nσ; this action
has a unique open orbit, and we say a character belonging to this open orbit is
generic. Let ψ be a generic character of Nσ and Mψ its stabilizer in M . Fourier
analysis on Nσ yields an isomorphism:

(2) IMσNσ
Mσ

Σ = IMσNσ
MψNσ

(ResMMψ
Σ · ψ)

(Here ResMMψ
Σ · ψ denotes the representation ResMMψ

Σ on Mψ extended by ψ on
Nσ).

We regard Nσ in the obvious fashion as a C-vector space; in particular C× acts
on Nσ. For z ∈ C×, set ψz(n) = ψ(zn). Note that Mψz = Mψ, thus (2) holds
with ψ replaced by ψz. Now take z → 0 so that ψz approaches (weakly) the trivial
character of N . Utilizing the continuity of induction w.r.t. the Fell topology, we
obtain:

IMσNσ
Mσ

Σ weakly contains IMσNσ
MψNσ

(ResMσ

Mψ
Σ · 1) = (IMσ

Mψ
ResMσ

Mψ
Σ) · 1(3)

= (IMσ

Mψ
(1)⊗ Σ) · 1

where we have used the projection formula (see Section 3.1, property 5), and the
final expression denotes the representation IMσ

Mψ
(1) ⊗ Σ on Mσ, extended by 1 on

Nσ.
After choosing a fixed nontrivial additive character of C, one may identify the

character group of Nσ with HomC(Ca,Cb); a generic character then corresponds to
an injection of Ca into Cb.

From this, one may deduce the description of Mψ as follows. Mσ = GL(b,C)×
GL(a,C) has a Levi subgroup of the formM1 = (GL(b−a,C)×GL(a,C))×GL(a,C)
with unipotent radical N1 isomorphic to Ca(b−a).

Then, for appropriate choice of ψ, Mψ ⊂ M1 is isomorphic to (GL(b − a,C) ×
GL(a,C)).N1, with the GL(a,C) factor embedded diagonally inside M1.

A computation (using Lemma 2 and induction in stages ) shows that IMσ

Mψ
(1)

weakly contains a principal representation of the form γtemp ⊗ γb, where γtemp is a
tempered representation of GL(a,C) and γb is a representation of GL(b,C) of type
(b− a, 1, . . . , 1).

We may then apply the inductive hypothesis (for tensor product) to IMσ

Mψ
(1)⊗Σ.

More precisely, we apply the assertion of Lemma 3 for tensor products on GL(a,C)
and GL(b,C).

Using (1) and (3), one deduces the validity of Lemma 3 in the case of induction
to GL(n,C).

3.4. Proof of Lemma 3 for Restriction. In this section the subgroup compu-
tations required for Mackey theory are more involved. We therefore discuss them
“geometrically” in an attempt to make these manipulations more transparent.

Let notations σ,Σ = ρa ⊗ ρb, Pσ = MσNσ be as in the previous section. Further
let τ = (a′, b′) and Pτ ,Mτ the associated parabolic subgroup and Levi. We shall
compute the restriction of IGPσΣ to Mτ = GL(a′,C)×GL(b′,C).
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Without loss of generality we may consider only the case where a ≤ b, a′ ≤ b′

and ρb is 1-dimensional. We divide into two cases according to whether a ≤ a′ or
a > a′.

Case 1: a ≤ a′ ≤ b′. We may identify G/Pσ with the Grassmannian of a-
dimensional subspaces of an n-dimensional vector space V over C; on the other
hand Mτ is the stabilizer of a splitting V = S ⊕ T , with dim(S) = a′,dim(T ) = b′.

Given such a splitting V = S ⊕ T , a generic a-dimensional subspace W ⊂ V
is specified by giving an a-dimensional subspace of S, an a-dimensional subspace
of T , and an isomorphism between them. (These are, respectively, the projection
of W onto S, the projection of W onto T , and the map between these projections
whose graph is given by W ). It follows from this description that Mτ acts with an
open orbit on G/Pσ.

Let us describe the stabilizer in Mτ of a generic point in G/Pσ. Fix an a-
dimensional subspaceWS of S, an a-dimensional subspaceWT of T , an isomorphism
ϕ : WS

∼→ WT . Choose complements S′ to WS in S and T ′ to WT in T , so that
we have splittings S = WS ⊕ S′, T = WT ⊕ T ′. By the remark above, WS ,WT , ϕ
determine an a-dimensional subspace graph(ϕ) ⊂ V . We can and will assume that
Pσ is the stabilizer of this subspace. With this choice, the identity coset in G/Pσ
belongs to the open Mτ -orbit on G/Pσ.

Let Pυ be the subgroup of GL(S)×GL(T ) stabilizingWS andWT . LetMυ be the
subgroup of GL(S)×GL(T ) stabilizing WS ,WT , S

′ and T ′. Let Nυ be the subgroup
of Pυ consisting of elements that induce the identity endomorphism on each of
WS ,WT , S/WS and T/WT . Then Pυ is a parabolic subgroup of GL(S) × GL(T ),
and Pυ = MυNυ is a Levi decomposition.

Let MH ⊂ Mυ be the subgroup of Mυ consisting of elements preserving the
isomorphism ϕ : WS → WT , i.e. MH = {(g1, g2) ∈ GL(S) × GL(T ) : (g1, g2) ∈
Mυ, ϕg1 = g2ϕ}. One can regard MH as the subgroup

MH = GL(S′)×GL(T ′)×GL(WS)(4)
⊂Mυ = GL(S′)×GL(T ′)×GL(WS)×GL(WT )(5)

where GL(WS) is “diagonally” embedded into GL(WS) × GL(WT ). Here “diago-
nally embedded” implicitly makes use of the identification of GL(WS) and GL(WT )
induced by ϕ. With these notations, we see that Pσ ∩Mτ = MHNυ, and so MHNυ
is the stabilizer in Mτ of a point in the open Mτ -orbit on G/Pσ.

One sees by Mackey theory (Section 3.1, property 2) that:

(6) ResGMτ
IGPσΣ weakly contains IMτ

MHNυ
ResPσMHNυ

Σ

One may compute ResPσMHNυ
Σ as follows: First, the restriction to Nυ of Σ is

trivial. Indeed, in terms of the “geometric” description given above, Nυ induces
the identity endomorphism on graph(ϕ); this shows that Nυ projects trivially to
the GL(a,C) factor in Pσ, and so Nυ acts trivially in Σ by the one-dimensionality
of ρb (see remark on one-dimensional characters in Section 3.2.) The GL(S′) ×
GL(T ′) factor of MH also induces the identity endomorphism on graph(ϕ). The
one-dimensionality of ρb now implies that GL(S′)×GL(T ′) acts by a character on
Σ. Finally it is easy to see that the restriction of Σ to GL(WS) ⊂MH (c.f. (4)) is
just a twist of the representation ρa by some one-dimensional character.

Using the triviality of Σ|Nυ and induction in stages, we obtain from (6):

(7) ResGMτ
IGPσΣ weakly contains IMτ

Pυ

(
IMυ

MH
ResPσMH

Σ · 1
)
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Again, the notation ·1 in (7) denotes extending a representation trivially on Nυ.
Now we have seen that ResPσMH

Σ is a representation of the form (m1,m2,m3) ∈
GL(S′) × GL(T ′) × GL(WS) 7→ γa′−a(m1) ⊗ γb′−a(m2) ⊗ γa(m3)ρa(m3) where
γa′−a, γb′−a, γa are 1-dimensional characters of GL(S′), GL(T ′) and GL(WS) re-
spectively. In view of Corollary 1, the restriction of IMυ

MH
ResPσMH

Σ to GL(WS) ×
GL(WT ) ⊂Mυ is tempered.

It follows that the representation IMυ

MH
ResPσMH

Σ of Mυ
∼= GL(a′−a,C)×GL(b′−

a,C) × GL(a,C) × GL(a,C) weakly contains an irreducible representation of the
form

γa′−a ⊗ γb′−a ⊗ γtemp ⊗ γ′temp

where γtemp, γ′temp are tempered (thus principal) representations of GL(a,C), and
(γa′−a⊗γb′−a) is a one-dimensional representation of GL(a′−a,C)×GL(b′−a,C).

The assertion of Lemma 3 in this case now follows from (7).
Case 2: a′ < a ≤ b′. As before suppose Mτ is the stabilizer of a splitting

V = S ⊕ T with dim(S) = a′,dim(T ) = b′. Again, G/Pσ can be identified with
the Grassmannian of a-dimensional subspaces in an n-dimensional vector space; in
this case, a generic a-dimensional subspace is specified by giving an a-dimensional
subspace of T together with a surjection of this subspace onto S. It is clear from
this description that Mτ , and even the factor GL(b′,C) inside Mτ , acts with an
open orbit on G/Pσ.

One first checks that the restriction of IGPσΣ to the GL(S) ∼= GL(a′,C) ⊂ Mτ

is tempered (this may be verified by a computation of matrix coefficients, or by
direct Mackey-type arguments). It therefore suffices to compute the restriction
to the other factor GL(T ) ∼= GL(b′,C) and show it weakly contains a principal
representation of the correct type.

Let us describe the stabilizer in GL(T ) of a point in the open GL(T )-orbit on
G/Pσ. Let WT be an a-dimensional subspace of T , let KT ⊂ WT be an a − a′-
dimensional subspace of WT , and let ϕ : WT /KT

∼→ S be an isomorphism. Then ϕ
determines an a-dimensional subspace of V , viz. graph(ϕ). We can and will assume
that Pσ is the stabilizer of graph(ϕ). Then the identity coset in G/Pσ belongs to
the open GL(T )-orbit on G/Pσ.

Fix a complement T ′ to WT inside T , so that T ′⊕WT = T . (Thus dim(WT ) = a,
dim(KT ) = a− a′, dim(T ′) = b′ − a.)

Let P1 be the stabilizer in GL(T ) of WT , let N1 ⊂ P1 be the subgroup inducing
the identity endomorphism on WT and T/WT , and let M1 = GL(T ′) × GL(WT ).
Then P1 = M1.N1 is a Levi decomposition.

Let H ⊂ GL(WT ) be the subgroup of linear automorphisms of WT that preserve
KT and induce the identity endomorphism on WT /KT . The stabilizer in GL(T ) of
graph(ϕ), i.e. GL(T ) ∩ Pσ, is then seen to be (GL(T ′)×H).N1.

One now sees by Mackey theory that:

(8) ResGGL(T )I
G
PσΣ = I

GL(T )
(GL(T ′)×H).N1

ResPσ(GL(T ′)×H).N1
Σ

We now compute ResPσ(GL(T ′)×H).N1
Σ. Firstly, elements of N1 induce the identity

automorphism on WT , so they also induce the identity automorphism on graph(ϕ).
Using the one-dimensionality of ρb, one sees this implies that N1 acts trivially in Σ.
The same reasoning shows that GL(T ′) acts by scalars on Σ. Finally, one computes
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that H acts on Σ via ρa|H (recall that H ⊂ GL(WT ), and WT is a-dimensional, so
we can regard H ⊂ GL(a,C).)

Set γb′−a be the character of GL(T ′) defined by Σ. Then, applying (8) and
inducing in stages through P1:

ResGGL(T )I
G
PσΣ = I

GL(T )
P1

IP1
(GL(T ′)×H).N1

ResPσ(GL(T ′)×H).N1
Σ

= I
GL(T )
P1

IP1
(GL(T ′)×H).N1

((γb′−a ⊗ ρa|H).1)

= I
GL(T )
P1

((γb′−a ⊗ I
GL(WT )
H ρa|H) · 1)(9)

Here, in the middle line, (γb′−a⊗ρa|H).1 denotes the representation γb′−a⊗ρa|H
on GL(T ′)×H, extended trivially on N1. One interprets the final line similarly.

One sees from (9) that ResGGL(T )I
G
Pσ

Σ is the representation of GL(T ) ∼= GL(b′,C)
induced from the parabolic P1 of type (a, b′ − a) with a one-dimensional rep-
resentation on the GL(b′ − a,C) factor and the following representation on the
GL(WT ) ∼= GL(a,C) factor:

(10) I
GL(WT )
H ρa|H = ρa ⊗ L2(H\GL(WT ))

Here we have again used the projection formula (Section 3.1, property 5). However
L2(H\GL(WT )) is trivial to analyze by induction in stages. One verifies that that
L2(H\GL(WT )) – considered as a representation of GL(WT ) ∼= GL(a,C) – weakly
contains a principal representation of type (a− a′, 1, . . . , 1).

Then using the inductive hypothesis (for tensor product) we deduce from (10)
that IGL(WT )

H ρa|H weakly contains a principal representation of a type specified by
Proposition 2. (More precisely, we use the assertion of Lemma 3 for tensor products
on GL(WT ) ∼= GL(a,C).)

One now concludes from (9) that Lemma 3 holds in this case.

3.5. Proof of Lemma 3 for tensor product. We now wish to analyze the tensor
product of two principal representations. Suppose for a moment that they are of
type 〈a1, . . . , ar〉 and 〈b1, . . . , br〉. Note that if every sum ai+bj is less than n, then
an argument with matrix coefficients shows the tensor product to be tempered and
the conclusion of Lemma 3 holds. (This verification proceeds along the same lines
as the computations performed in the last section of [3]; the point is that [5] reduces
the question to a finite combinatorial problem.)

We may therefore assume that there is an inequality ai + bj > n (some i, j).
Let σ = (a, b) and τ = (a′, b′). We will assume we are given representations

ρa, ρb, ηa′ , ηb′ of GL(a,C),GL(b,C),GL(a′,C),GL(b′,C) respectively; let Σ = ρa ⊗
ρb and Υ = ηa′ ⊗ ηb′ be the corresponding representations of Mσ and Mτ (thus Pσ
and Pτ , by extending trivially on the unipotent radicals).

We shall analyze IGPσΣ ⊗ IGPτΥ. In view of the above remarks we may assume
that b+ b′ > n (equivalently a+ a′ < n) and that ρb and ηb′ are 1-dimensional. By
the Bruhat decomposition G acts with finitely many orbits, and a single open orbit
on Pσ\G× Pτ\G.

The stabilizer H of a point in this open orbit may be described as the stabilizer
of a configuration V1 ⊕ V2 ⊂ V , where V1, V2 are (respectively) a, a′ -dimensional
C-subvector spaces of the n-dimensional C-vector space V .

Let υ = (a + a′, n − a − a′); consider the corresponding parabolic Pυ, Levi
subgroup Mυ = GL(a+ a′,C)×GL(n− a− a′,C) and unipotent radical Nυ. Now
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GL(a,C) × GL(a′,C) may be embedded as a Levi subgroup of GL(a + a′,C); in
particular, MH = GL(a,C) × GL(a′,C) × GL(n − a − a′,C) is a subgroup of Mυ.
Set H = MH ·Nυ; then H is the stabilizer in G of an appropriate point in the open
G-orbit on Pσ\G × Pτ\G. We can and will assume that this point is the identity
coset, so that H ⊂ Pσ × Pτ . (More precisely: the choice of MH defines a splitting
Cn = Ca ⊕ Ca′ ⊕ Cn−a−a′

, and we take Pσ and Pτ to be the stabilizers of the Ca
and Ca′

respectively.)
We then have:

(11) IGPσΣ⊗ IGPτΥ = IGH(ResPσ×PτH Σ⊗Υ)

= IGMυNυI
MυNυ
MHNυ

(ResPσ×PτH Σ⊗Υ)

Reasoning similar to that of Section 3.4 (using the one-dimensionality of ρb, ηb′)
shows that ResPσ×PτH Σ⊗Υ is trivial on Nυ and given on MH via

(12) (m1,m2,m3) ∈ GL(a,C)×GL(a′,C)×GL(n− a− a′,C)

7→ ρa(m1)⊗ ηa′(m2)⊗ ρb((m2,m3))⊗ ηb′((m1,m3))

where, for example, (m1,m3) is considered as an element of GL(b′,C) via the
Levi embedding GL(a,C)×GL(n−a−a′,C) → GL(n−a′,C) = GL(b′,C). Since ρb
and ηb′ are 1-dimensional and ρa and ηa′ are principal, it follows that (12) defines
a principal representation of MH .

We may now apply the inductive hypothesis (for induction) to show that the
representation IMυ

MH
ResPσ×PτH (Σ⊗Υ) weakly contains a principal representation of

a particular type. (More precisely, we use Lemma 3 for induction from a Levi
subgroup GL(a,C)×GL(a′,C) to GL(a+ a′,C).)

Combining this with (11), one verifies that IGPσΣ⊗ IGPτΥ weakly contains a rep-
resentation of the type predicted by Proposition 2.

This proves Lemma 3 in the tensor product case.

3.6. Global argument: from Lemma 3 to Proposition 2. We now conclude
the proof of Proposition 2 with a global argument; we carry it out for the case of
the tensor product, but it is clear the method applies to the other cases. It should
be noted that the ideas here are already in Clozel’s recent note [3], and they are
explicated there in the case of a function field. We treat the case of a global field
of characteristic zero only for completeness, c.f. last paragraph of Section 3 in [3];
more details in the characteristic 0 case are given in Clozel’s Park City lecture notes
[2].

We continue with the notations introduced at the start of Section 2; in particular
G = GL(n).

Let F be a number field with at least one complex place, and AF its adèle ring.
Let S be a finite subset of places of F containing at least one complex place, set
FS =

∏
v∈S Fv and let Ĝ(FS)Aut ⊂ Ĝ(FS) be defined as in Section 2.1.

Proposition 3. Suppose πS ∈ Ĝ(FS)Aut, and write πS = ⊗v∈Sπv, with each
πv ∈ Ĝ(Fv). Then the type of πv is the same for each v ∈ S.

Proof. (Sketch) The theory of Eisenstein series ([8], [13]) gives an explicit spectral
decomposition of L2(G(F )\G(AF )) in terms of the discrete spectrum occurring in
L2(M(F )\M(AF )), where M varies through Levi subgroups of G. In the case of
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GL(n) the discrete spectrum of Levi subgroups is known, owing to the work of
Moeglin-Waldspurger [12]. The assertion follows from these results; note at this
point we are implicitly and crucially using the result of [9] which ensures that
the weak closure of the automorphic spectrum stays away from the endpoints of
complementary series. �

On the other hand, set Ĝ(FS)Ar ⊂ Ĝ(FS) to consist of π = ⊗πv so that each
πv ∈ Ĝ(Fv)Ar and each πv (for v ∈ S) has the same type.

Lemma 4.
Ĝ(FS)Ar ⊂ Ĝ(FS)Aut

Of course, one expects equality; this is the Ramanujan conjecture for GL(n)!

Proof. (Sketch) It suffices to see that every π1,S ∈ Ĝ(FS)Ar can be arbitrarily well
approximated by local constituents of (unitary) automorphic representations. If
π1,S is tempered, this is Lemma 5 below. In the general case, one may express π1,S

as a Langlands quotient of an induced-from-tempered representation, and use the
results of Moeglin-Waldspurger (see [12], especially Section I.11 and results cited
there), together with the theory of Eisenstein series, to conclude the result. �

Lemma 5. Any tempered representation of G(FS) may be arbitrarily well approxi-
mated (in the Fell topology) by constituents of cuspidal automorphic representations
of G(FA).

Proof. In the spirit of the paper, we present a proof using [1] (roughly equivalent
to an elementary proof using Poincare series). We will use the subscript temp to
denote the tempered part of the unitary dual for a reductive group over a product
of local fields.

Suppose ρS ∈ Ĝ(FS)temp. Let w be an auxiliary finite place of F not belonging
to S. By the Burger-Sarnak principle (Proposition 1) applied to induction from the
trivial group, together with Lemma 2, one gets:

(13) ̂G(F{S,w})temp ⊂
̂G(F{S,w})Aut

On the other hand, if ρw is a supercuspidal representation of G(Fw), the rep-
resentation ρS ⊗ ρw belongs to ̂G(F{S,w})temp, and so, by (13), to ̂G(F{S,w})Aut;
as such, it can be approximated in the Fell topology by local constituents of auto-
morphic forms; but these automorphic forms may be taken to be cuspidal (for any
supercuspidal irreducibles is isolated from non-supercuspidal representations in the
unitary dual of G(Fw)). �

Now take S to consist of two places: an arbitrary v, together with a complex
place of F . Suppose given π1,v, π2,v ∈ Ĝ(Fv)Ar with SL(2)-types σ1, σ2 respectively.
Suppose that π1,C ∈ Ĝ(C)Ar and π2,C ∈ Ĝ(C)Ar also have SL(2)-types σ1 and σ2,
respectively. By Lemma 4, one has πj,C ⊗ πj,v ∈ Ĝ(FS)Aut for j = 1, 2. Then, by
Burger-Sarnak (Proposition 1) any unitary representation of G(FS) weakly occur-
ring in (π1,C ⊗ π2,C)⊗ (π1,v ⊗ π2,v) also belongs to Ĝ(FS)Aut.

In particular, by Proposition 3, any representation of G(Fv) occurring weakly in
π1,v ⊗ π2,v is associated to the same partition τ of n as any representation of G(C)
occurring weakly in π1,C ⊗ π2,C.
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Therefore Proposition 2 follows from Lemma 3 by choosing a global field F with a
prescribed local completion Fv. (More precisely, if k is a local field of characteristic
0, it is easily checked that there is a number field F and two distinct places v, w of
F so that Fw = C and Fv = k).

3.7. Twisted forms. The reasoning above is also valid in twisted cases. We give
some simple examples. Let E/F be a quadratic extension of local fields; we will
give some instances which come from maps between F -groups of the form GLn and
ResE/FGLn.

Let π be a unitary irreducible representation of GL(n,E) of Arthur type and
SL(2)-type 〈n1, . . . , nr〉. Then the restriction of π to GL(n, F ) has SL(2)-type
〈2n1 − n, 2n2 − n, . . . , 2nr − n〉n, as follows from our description of the tensor
product.

Similarly, the type of all representations occurring in L2(GL(n, F )\GL(n,E))
is the same as those occurring in L2(GL(n, F )\GL(n, F ) × GL(n, F )), and thus
all these representations have type 〈1, . . . , 1〉. In particular, one expects all these
representations to be tempered (and the validity of this would follow from the
Ramanujan conjecture!)

Finally, there is a natural embedding GL(n,E) → GL(2n, F ). Then if π is a
unitary irreducible representation of GL(2n, F ) of Arthur type and with SL(2)-
type (n1, . . . nr), then the restriction of π to GL(n,E) has SL(2)-type 〈n1−n, n2−
n, . . . , nr − n〉n.

Of course, each of these could be “guessed” by Mackey-theory in the same way
that we have done earlier; also, in some cases far more precise results are known
in the context of the Plancherel formula for symmetric spaces. The striking point
is that, at the crude level where one is only interested in the behavior of SL(2)-
types, the qualitative results depend on the corresponding map of groups over the
algebraic closure.
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