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In case I forget to tell you on Thursday: I'll be out of town next Tuesday (Nov.
7), so Jason Starr will kindly be giving a guest lecture. He will likely tell you about
applying Schlessinger’s criteria to the Quot functor.

1. WHERE WE ARE

C,C. k[V]. Axc B. k[V @& W] =k[V] xx k[W].
Lemma. Suppose F' is a functor (covariant, on C) such that
F(k[V] % k[W]) = F(k[W]) x F(k[W])

for finite-dimensional vector spaces V and W over k. Then F(k[V]) and in particu-
lar tp = F(k[e]), has a canonical vector space structure, such that F(k[V]) X tpQV.

Patched proof. k[V] is a “vector space object” in C, via

Hom(A, k[V]) = Deri(A4,V).

For the last statement: Note that Hom(k[e]/€2, k[V]) is naturally identified with
V. For any element of Hom(k[e] /€2, k[V]) we get a map tp = F(k[e]/e?) — F(k[V]),
hence tp x V. — F(k[V]). In fact this is ® The desired result is true if V
is one-dimensional; then use induction, as V is finite-dimensional, and k[V] =
xHmVEle]/(€2). (I said something wrong in class.) O

Date: Tuesday, October 31, 2000.



2. SCHLESSINGER’S CRITERION FOR EXISTENCE OF UNIVERSAL DEFORMATIONS
AND HULLS (MINIVERSAL DEFORMATIONS)

Recall: In C, define a small extension to be a surjection A” — A, so A= A"/I,
and my~I = 0, and I is one-dimensional.

For the purposes of this course only, define a fairly small extension to be a
surjection A” — A, so A = A”/I, and my~I = 0, without requiring that I is
one-dimensional. Then for any A in C, you can filter A into a series of fairly small
extensions (by powers of the maximal ideal). Then you can filter A into a series of
small extensions.

Fix our functor F' : C — Sets.

Let A’ — A and A” — A be morphisms in C, and consider the map
(1) F(A/ X A A”) — F(AI) XF(A) F(AN).

I explained last time that if F' is a prorepresentable functor, by R € C say, then
this map is always a bijection — this is because x is a categorical product!

Schlessinger’s Theorem. [Put on one board permanently!]
It has two parts, and I'll say it slowly, with translations and remarks.

(1) F has a hull iff F' has properties H1-H3:

HI. (You can glue.) (1) is a surjection whenever A” — A is a small extension.
Equivalently whenever A” — A is any surjection.

H2. (Uniqueness of gluing on k[e]/€2.) (1) is a bijection when A = k, A” = k[e]/€>.
Equivalently, A” = k[V]. Then by previous lemma, tr is a k-vector space.

H3. (finite-dimensional tangent space) dimy(tr) < oco.

(2) F is pro-representable if and only if F' has the additional property

H4. (bijection for gluing a small extension to itself)
(2) F(A" xq A") = F(A") xpay F(A).

is a bijection for any small extension A" — A.

Recall from last time. Suppose F satisfies HI-H3.

Consider any fairly small extension p: A’ — A,ie. 0 =1 - A — A — 0, so
ma I = 0. We have an isomorphism

A X qrp A S A X k[

induced by the map (z,y) — (zv,20 +y — ) (e.g. A" = k[u]/u® = k[v]/v3, A =
klul /u?).



Now given a small extension p: A’ — I, By H2, we get
F(A x4 A') = F(A x, KT)) S F(A') x py F(RIT) = F(A) x (tr ® 1).
Hence we get
F(A") x (tp ® I) — F(A') xp(ay F(A).

For each n € F(A), this determines a group action of t; ® I on F(p)~*(n), i.e.
those F(A’)’s lifting F(A), assuming the set is nonempty. The fact that this is a
surjection (H1) means that the action is transitive. H4 is precisely the condition
that this set is a principal homogeneous space under tr ® I. (Say more here.)

So explicitly, what this is telling us is explicitly is that if F' already has a hull,
then its obstruction to be representable is the existence of an automorphism of
an object y in some F(A), that cannot be extended to an automorphism of some
object y' € F(A’) for some A'.

3. PROOF OF SCHLESSINGER, TAKE 2

e Immediate: If F' is prorepresentable, then H1-H4 are all satisfied, as (1) is
always a bijection, and tg is finite-dimensional.

e Hull and H4 imply prorepresentable (shown last time).
e Next: Then I'll show that hull implies H1-H3.

e Finally: H1-H3 imply hull.

Hull implies H1-H3.

Recall the definition of a hull or miniversal deformation space (e.g. def space of
anode). (R,r € F(R)) — F, formally smooth.

Translation: for each surjection B — A in C, Hom(R, B) — Hom(R, A) X p(4)
F(B) is surjective.

Translation:
(B,b e F(B))
v/ !
(R,re F(R)) — (A,ae F(A))

(Note phantom left corner.)
H3: tgp 2 tp proves H3.

H1: Want:
F(A/ X A A”) — F(AI) XF(A) F(AN).

is a surjection whenever A” — A is a small extension (or indeed any surjection).
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Suppose we have p’ : (A", € F(A")) — (4,n) and p” : (A",n") — (A,n) are
morphisms of couples or deformations, and p” is a surjection. (Put in diagram, A’
to left, A” above).

(A XA A7) = (A%
l Pl

’

(4d) 5 (4,9

Since hr — F is surjective, there is v’ : (R,r) — (A’,n’). By smoothness of hg
over F, we get u” : (R,7) — (A”,n"). We get R maps to A’ x 4 A”; use covariant
F to get n there. So H1 is satisfied!

H2 (restate). Suppose now that (A,n) = (k,pt) and A” = k[e]/e2. We want
there to be only one such (A’ x4 A”,n). Suppose there are two, n; and 72. Then
make that diagram, add in (R,7). Choose u' as before. Then there is only one u”
possible, thanks to tg = tr. Then there is only one lift R — A’ x4 A”, and that’s
it.

Diagram (mostly for my own benefit), of maps from (R,r) to various parts of
the diagram.

second, lift by smoothness of hp — F — finally, unique by tgp = tg

1 |
pick wu first —

Finally, H1-H3 implies hull. This is the trickiest part of the proof. Most of
it has the same level of complexity, but there’s a trick at the end.

Assume H1-H3. We will build a hull. By H2, ¢g is a vector space, and by H3, it
is finite-dimensional. Let T1, ..., T, be a dual basis for tr. Let S = k[[T1,...,T,]],
with maximal ideal n. Our goal is to get R = S/J, with r € F(R), that is a hull.

Ry = S/n?. (Think: S/(J,n?).) = kle]/€® X - Xy kle] /€.

By H2, there is some ro € F(R;) inducing a bijection between tg, (which is
Hom(Rs, k[e])) and tp. (Say this differently! Use the lemma; get canonical family
over this ring.)

Now we build up R inductively.

Suppose we have (Ry,7,), where R, = S/J,. We want J,11 in S, minimal
among S = (ideals J in S satisfying (a) nJ, C J C J,, and (b) r, lifts to Sy).
Those satistying J correspond to subspaces of J,/nJ,. (Picture?)

So we need to show that there is a minimal element. So we need to see that S
is stable under pairwise intersection. Say J, K € S. Enlarge J so that J + K = J,,
without changing their intersection. Then

S/J Xs/Jq S/K%S/(JQK)

If you want an example: J, = (z,y)%. J = (2%, 2y, y%), K = (23, 2y, y?).
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By H1, F(S/JNK) — F(S/J) xr(s,1,) F(S/K) surjects, so that’s okay.

So now let J = Ng>1Jy, and R = §/J. Let r be the inverse limit of the r,. (As
Jq form a base for the topology, as n? C Jg, can set r = lim. ry € F(R).) This will
be our hull; we’ll check that next day.

ot



