INTRO TO ALGEBRAIC GEOMETRY, PROBLEM SET 7

Due Thursday November 4 in class (no lates). Hand in six of the following
problems. Make sure you know how to do the non-scheme problems you skip.
You're strongly encouraged to collaborate (although write up solutions separately),
and you're also strongly encouraged to ask me questions (if you’re stuck, or if the
question is vaguely worded, or if you want to try out an argument).

1. (a) Hartshorne Ex. I1.5.1. Assume the characteristic is not 2. Locate the
singular points. Which is which in Figure 1 below? (a) 22 = z* + y*; (b)
zy = 2% + 95 (c) 23 = 9® + 2t + 9% (d) 22y + 2y? = 2 +y*.

(b) Hartshorne Ex. 1.5.2. Assume the characteristic is not 2. Locate the
singular points in A®. Which is which in Figure 2 below? (I forgot to give the
equations!)
(c) Find the dimension of the Zariski-tangent space to the surfaces in (b) at
the origin.

2. Hartshorne Ex. 1.5.3: Multiplicities. Let Y C A? be the curve defined by the
equation f(x,y) = 0. Let P = (a,b) be a point of A2, Make a linear change
of coordinates so that P becomes the point (0,0). Then write f as a sum
f=/fo+ fi+ -+ f4, where f; is a homogeneous polynomial of degree 7 in
x and y. Define the multiplicity of P on Y, denoted pup(Y), to be the least r
such that f, # 0. (Note that P € Y if and only if up(Y) > 0.) The linear
factors of f, are called the tangent directions at P.

(a) Show that up(Y) =1 if and only if P is a nonsingular point of Y.
(b) Find the multiplicity of each of the singular points in problem 1 (a) above.

3. Intersection multiplicity. 1f Y, Z C A? are two distinct curves, given by

equations f =0, g =0, and if P € Y N Z, define the intersection multiplicity
(Y-Z)p of Y and Z at P to be the length of the O2 p-module Oy2 p/(f,9),
or equivalently its dimension as a k-vector space. (It is also equivalent to
replace Op2 (45 With the power series ring k[[z’,y/]], where 2/ = z — a and
y' = y — b; this makes calculations easier.)
(a) Calculate the intersection number of y? = 2° and zy = 0 at the origin.
(Don’t bother justifying all steps; just show how you computed the number.)
(b) If P €Y, show that for almost all lines L through P (i.e. all but a finite
number), (L-Y)p = up(Y).

4. Suppose the characteristic of k is 0. Suppose a hypersurface Y C P" is
given by f(xg,...,2,) = 0. Show that the locus of points p € P" where
Of /0xi(p) = 0 for all ¢ are precisely the singular points of Y. (In particular,
if f/0x;(p) = 0 for all 4, then f(p) =0, i.e. p € Y! To see why, calculate
> i(0f /Ox;); this algebraic trick is called Euler’s Lemma.)

5. Consider the subvariety V of A2 cut out by the equation 22 = zy. Explain
why dimV = 2. Let R = k[z,y,2]/(2%> — zy) be its coordinate ring. Find
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(with proof) a subvariety W of codimension 1 whose coordinate ring is not of
the form R/(f) for any function f € R. (Not precise. Instead: show I(W) is
not principal in R. Show that W can be expressed as V() for some f € R.
(f will cut out W with multiplicity 2.)
. Suppose f : X — Y is a morphism of varieties, with f(p) = ¢. Show that
there are natural morphisms T'(f)* : mg/m2 — m,/m? (the induced map on
cotangent spaces) and T(f) : (m,/m2)* — (m,/m2)* (the induced map on
tangent spaces). (If you imagine what is happening on the level of tangent
spaces and cotangent spaces of smooth manifolds, this is quite reasonable.) If
¢ is the vertical projection of the parabola x = y? onto the x-axis, show that
the induced map of tangent spaces at the origin is the zero map.
. Nonsingular schemes
(a) Show that both SpecZ and Spec Z[i] are nonsingular curves.
(b) Let m = (1 +¢) in Z[i]. Then under the map f : SpecZ[i] — SpecZ,
f(m) = (2). Check that the map on cotangent spaces (or equivalently, that
the dual map on tangent spaces) is the zero-map. For all other primes of Z][i],
calculate the map on cotangent spaces.

I should note here that the map on tangent spaces doesn’t always exist.
Note interpretation: at 0, codim 1 point.
. Fibred products of affine schemes. (This problem isn’t as long as it looks!)
(a) Fibred products of sets. Suppose X, Y, and Z are sets, and f : X — Z
and g : Y — Z are (set) maps. Define a fibred product of X andY over Z
X xz Y as follows: it is a set W along with morphisms p; : W — X and
po : W — Y such that

W — Y
l i
X - Z

is a commutative diagram, and for any maps a : V — X, b: V — Y, such
that foa = gob (i.e. the two maps V' — Z are the same), there is a unique
map ¢: V — W such that a = p; oc and b = ps o ¢, and vice versa. (Informal
translation: “maps V' — X,Y that agree on Z correspond precisely to maps
V-w)

Prove that W/ = {(x,y) € X x Y|f(z) = g(y) € Z} is a fibred product

of X and Y over Z (so the above definition is an abstract nonsense way of
saying something simple). Prove that if W is any fibred product, then there
is a natural bijection W = W’. (Note that if Z is a one-element set, then
X xzY can be naturally identified with the product X x Y.)
(b) Schemes. Fibred products in arbitrary categories can be defined in the
same way. Consider now the category of affine schemes (which is the same
as the category of rings, with the arrows reversed). If X = SpecR, and
Y = SpecS, Z = SpecT, and f and g are induced by f* : T — R and
g : S — R, explain why W = Spec R ®r S is a fibred product of X and
Y over Z. (You'll have to describe the morphisms p; and ps.) Hence fibred
products exist in the category of affine schemes. (One can then show that
fibred products exist in the category of schemes using the same argument as
our proof that products exist in the category of prevarieties; see Hartshorne
pp. 87-88.)



(c) Varieties. In the category of varieties, suppose the fibred product W =
X Xz Y exists. If |Q| denotes the underlying set of a variety @, show that
W] = |X| x|z |Y]. (Translation: the points of the fibred product is/are the
fibred product of the points.)

(d) Fibred products of varieties don’t always exist. An affine scheme Spec R
corresponds to an affine variety over k if R is a finitely generated k algebra
that is a domain. Find an example of schemes X, Y, Z that correspond to
varieties, and morphisms between them, such that the fibred product X xzY
in the category of affine schemes doesn’t correspond to a variety. Hint: look
in positive characteristic; you can even take X, Y, and Z to be the affine line.
(This can easily be extended to prove that fibred products don’t always exist
in the category of (pre)varieties over k.)

From David Sheppard: reducedness is not a problem. Better: let Z be the
affine line, X be a double cover, and Y a point mapping to a point of Z that
isn’t a branch point.

(e) A fun example, not for credit. Calculate Spec C ®gpecr Spec C.

(Note: diagrams from Hartshorne p. 36 must be pasted in.)



