
INTRO TO ALGEBRAIC GEOMETRY, PROBLEM SET 11

Due Thursday December 9 in class. Hand in 6 of these problems. Ask someone
about the ones you skip. Problem 8 has a tricky step, but the punchlines are worth
it, so I encourage you to try it. (You might want to try it earlier than the rest, to
give yourself time to talk to me about it.) You’re strongly encouraged to collaborate
(although write up solutions separately), and you’re also strongly encouraged to ask
me questions (if you’re stuck, or if the question is vaguely worded, or if you want
to try out an argument).

I’ll use “line bundles” and “invertible sheaves” interchangeably.

1. Secretly trivial line bundles. Suppose Ui is a finite open cover of X, and for
each i, hi is an invertible function on Ui. Prove that the data of the open
cover Ui and the transition functions fij = hi/hj defines a line bundle, and
prove that this is isomorphic to the trivial line bundle. In fancy language, this
shows that a zero-element of H1(X,O∗) indeed induces a trivial line bundle.
(One possibility: Use the proposition, proved in Class 23, that any invertible
sheaf on X with a nowhere vanishing section is isomorphic to the trivial sheaf
OX .) Conversely, suppose that the line bundle given by Ui and fij is trivial.
Prove that there are invertible functions hi on the Ui such that fij = hi/hj
on Ui ∩ Uj .

2. Give (with proof) the identification between the vector space of global sections
of OPn(m) (where Pn has projective coordinates x0, . . . , xn) and the vector
space of polynomials in x0, . . . , xn of homogeneous degree m.

3. Torsion in the Picard group. Let X be the variety P2 minus an irreducible
conic. Let OX(m) be the restriction of OP2(m) to X. Show that OX(2) is
trivial, but that OX(1) isn’t. Hence OX(1) is a 2-torsion element of PicX.
(Hint: Show that OX(2) has a global section vanishing nowhere, and that ev-
ery global section of OX(1) vanishes somewhere. Use the proposition, proved
in Class 23, that any invertible sheaf on X with a nowhere vanishing section
is isomorphic to the trivial sheaf OX .

4. Prove that OP1(p) is isomorphic to OP1(1). A small addition, thanks to a
good question in Thursday’s class. If you choose coordinates so p = [1; 0],
then the global sections of OP1(p) can be identified with linear combinations
of the rational functions 1 and x0/x1. You might think that the global section
corresponding to 1 has no zeros or poles, but this isn’t true! (For example,
you know from Problem Set 10 that the sums of orders of zeros and poles of
OP1(1) is 1.) So: find the zeros and poles corresponding to 1.

5. Consider the morphism π : P1 → P3 given by [u; v] 7→ [u4;u3v;uv3; v4] which
expresses P1 as a closed subvariety C of P3. (You don’t need to verify that.)
By Problem 2, the space of global sections of OP3(1) has dimension 4. Show
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that this induces a 4-dimensional vector space of global sections π∗OP3(1).
(Hint: show that no nonzero section of OP3(1) vanishes on all of C. This
may involve exhibiting 4 points of C that are not coplanar.) Show that
π∗OP3(1) ∼= OP1(4), so (by Problem 2), π∗OP3(1) has a 5-dimensional vector
space of global sections.

Hence if L is an invertible sheaf on a variety Y , and X is a subvariety of
Y , then the restriction of Y to X may have more sections than those sections
restricted from Y .

6. Pullbacks of divisors and pullbacks of line bundles. Suppose π : X → Y is a
dominant morphism of nonsingular curves, and D is a divisor

∑
q∈Y nqq on

Y . Define the divisor π∗D on X by
∑
p∈X mpnπ(p)p where mp is defined as

follows. Let u be a uniformizer in the stalk OY,π(p). Then u pulls back to give
an element π∗u of OX,p. Then mp = vp(π∗u). Prove that mp is independent
of the choice of u. Then prove that π∗OY (D) ∼= OX(π∗D).

7. Suppose X is a nonsingular projective curve, and L is an invertible sheaf on X
of degree d. Prove that the sections of L form a finite-dimensional k-vector
space. (Hint: Prove it if d < 0. Show by induction that if d ≥ 0, then
L has at most d + 1 linearly independent sections.) This fact is true more
generally, whenever X is a projective scheme. It is not necessarily true if X
isn’t projective (consider A1 for example).

8. Fun with elliptic curves. Let C be the curve y2z = x3−xz2 in P2. (Everything
will work for y2z = x3 − αxz2 for any nonzero α.) Let π : C → P2 be the
inclusion. Let L = π∗O(1) (an invertible sheaf on C).
(a) Show that degL = 3.
(b) Show that L has a 3-dimensional family of global sections, and that they
are all restrictions of global sections of OP2(1). Hence any nonzero global
section of L vanishes at collinear points (where C is considered as lying in the
plane). This step might get tricky. If you get stuck after setting up what you
want to prove, come by on Wednesday afternoon or earlier.
(c) Use (a), (b) and Problem 2 to show that C is not isomorphic to P1.
(d) A nontrivial degree 0 line bundle. Let p and q be two distinct points
of C. Let M = OC(p − q) (a degree 0 line bundle). Show that M is not
isomorphic to the trivial line bundle as follows. Let q, r, s be distinct collinear
points on C so that p 6= r, p 6= s. Show that OC(q + r + s) ∼= L. Hence
L ⊗M ∼= OC(p + r + s), so there is a global section of L ⊗M with divisor
p + r + s. Show that L ⊗M can’t be isomorphic to L using (b), and hence
thatM isn’t trivial. (Once again, this proves that C is not isomorphic to P1,
as the only degree 0 invertible sheaves on P1 is the trivial sheaf.)
(e) The group law on the elliptic curve. We can put a group structure on the
curve as follows. Call the point [0; 1; 0] o; this will be the zero-point. Prove
that O(3o) ∼= L. Define a map i : C → Cl(C) by p 7→ p − o. Show that this
map is injective (as sets), using (d). Given two points p and q on C, define
a point r as follows. Let L be the line joining p and q in the plane; say it
meets C at r′ as well. Let M be the line joining o and r′; let r be the third
point of intersection. (Questions to ask yourself: what if L is tangent to C
at p? What if p = q? Think about these and similar issues. In writing up
the problem, feel free to avoid them, but say clearly what cases you aren’t
dealing with, and what assumptions you make.) Prove that i(p)+ i(q) = i(r).
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Given a point p ∈ C, describe a point p′ such that i(p) + i(p′) = i(o) (with
proof). Show that this gives the points of C the structure of a group. (We
will see, on the last day of class or in PS12, that the image of i are precisely
the degree 0 line bundles.)
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