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Problem set 3 is now due one week from today; future problem sets will be due
on Thursdays, and returned the following Tuesday. I'll give out copies of parts of
the red book.

Where we are.

Last day, we played around with the structure sheaf of the plane A2, and observed
that the sections of the structure sheaf over some random open set U was a subring
of k(x,y).

We now formally know what a prevariety is: it is a topological space with a
structure sheaf, that “locally” looks like an irreducible algebraic set. We’ll next
make this concrete by working out a fair number of examples.

Some of you are wondering about that prefix “pre”; we’ll begin to answer that
today.

I was initially going to tell you about the function field of a prevariety beforehand,
that generalizes the role of k(z,y) in the plane, but instead, I'll say a few words
now, and talk about it at length after the examples.

Function fields, quickly.

To find the function field of a prevariety, take any affine open set, find its ring of
regular functions R, and take its field of fractions K(R). We'll see later that this
is well-defined.

Quick comment about sheaves: gluability and identity are not just for finite
covers.
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Also, at some point during the lecture, we discussed why two non-empty open
subsets of a prevariety must intersect. Here’s the summary: (i) This is true for any
irreducible topological space. (ii) Affine varieties are irreducible (by definition).
(iil) If you glue two irreducibles along non-empty (homeomorphic) open sets, you
get an irreducible topological space. (iv) A prevariety is a connected union of a
finite number of irreducible spaces, so you can use (iii) inductively to show that a
prevariety is irreducible.

1. EXAMPLES OF PREVARIETIES

Let’s start with a prevariety that isn’t affine.

Last time we showed that an open subset of a prevariety (with the induced topol-
ogy and structure sheaf) is also a prevariety. This is called an open subprevariety.

Consider A%\ (0,0).

Exercise. Prove that A2\ (0,0) is not an affine variety. (Hint: If it were, then
what would its ring of functions be?)

Hence not all open subsets of affine varieties are affine varieties.
The function field of this prevariety is k(z,y).

Ezample: P'. Take two copies of A'; call them X and Y, and say their coordi-
nates are a and b. Glue them together along the open set X \ 0 and Y \ {0}, where
the two open sets are identified via a = 1/b.

You can see these patches in terms of coordinates on P!.

As mentioned earlier, if k is the complex numbers, you can picture this quite
explicitly. You're gluing two complex planes together, and you end up with a
sphere.

The function field of k(X) is k(a) = k(b), and the isomorphism is via a — 1/b.
(Discuss a bit.) To see what happens if we chose the isomorphism a — b, see the
line with the doubled origin below.

Ezxample: Global sections of Op:.

Notice that P! isn’t affine: the affine algebraic set associated to the global sec-
tions of Op1 is a point.

A pathological example: the line with the doubled origin. Now let’s glue our two
copies X and Y of A' together, along the same open sets, except this time identify
the open sets via ¢ = y. (Explain.) This is something nasty that we’ll want to
get rid of when defining varieties. (For the same reason, a real manifold isn’t just
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defined as a topological space that is locally isomorphic to a neighborhood of the
origin in R™; an additional condition (the Hausdorff condition) is necessary.)

Again, the function field of k(X) is k(z).

Ezample: P". Recall that projective space (over the field k) is usually defined
as the set of (n + 1)-tuples (zo;...;x,) where the z; are not all zero, under the
equivalence (xo;...;xn) ~ a(yo;-..;yn) Where a € k", We'll define P" as an alge-
braic variety. We have n + 1 open sets, each isomorphic to A, and we glue them
together just as we did P!. For convenience, I'll just describe the first two, and show
how they glue together. The affine open Uy has coordinates (aq,...,a,), and the
affine open U; has coordinates (b, ba, . .., b, ); the open subset of Uy correspond-
ing to a; # 0 is glued to the open subset of U; corresponding to by # 0, and the
identification is via:

(13 a15a2;- - -5 an) ~ (bo; 1;ba; - -5 bn),

ie. ag/al = bg/b(), ag/al = bg/bo, ey an/al = bn/b()

In an analogous manner, this tells you how to glue together any U; and Uj.
We still have something further to check: that these gluings agree. You can think
through yourself that it suffices to prove that the gluing data of U; and U;, U; and
Uy, and Uy, and U; all “agree”.

This also tells you how to think of points in P™ with projective coordinates. For
example, consider P3, which is covered by Uy, ..., Us. Then (4;3;0;1) is a point
which corresponds to (3/4,0,1/4) on Uy, (4/3,0,1/3) on Uy, and (4, 3,0) on Us; it
doesn’t lie in the open Us,.

The U; are often called the standard affine cover of P*. We will talk about
projective varieties at great length soon.

The function field is k(a1, ..., a,).
Exercise. Prove that the global sections of Opr are constant.

Remark. You don’t have to know much about the structure sheaf to glue
together prevarieties, thanks to the fact that we understand affine prevarieties well,
and distinguished opens of affines are affines too.

2. FUNCTION FIELDS OF PREVARIETIES

Definition. Given a prevariety X, define the function field k(X) as follows.
(Caution: that k isn’t the field k.) Elements of k(X) are called rational functions
on X.

Intuition: Meromorphic functions on C (i.e. functions defined almost every-
where). There’s no point where all such functions are defined, yet they definitely
form a ring: you can add two and get another such, or multiply, etc.
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Elements of k(X) is the data (U, f) where U is an open subset of X and f €
Ox(U) is a section of the structure sheaf over U, modulo an equivalence relation:
(U, f) ~ (V,g) if there is an open W in U and V such that f and g agree on W, or
precisely:

resy,w f = resy,w g.

This might remind you of the definition of the stalk of a sheaf. This is no
coincidence; in the land of schemes, this actually is a stalk, albeit at a weird kind
of point (called the generic point of X).

It is a complicated way of saying something that turns out to be quite simple:

Claim. Let U be an affine open set of X. Then k(X ) = K(A(U)); the function
field is just the ring of fractions of A(U).

Hence to find k(X), you just have to find any affine open, take the ring of regular
functions on that affine open, and take its quotient field.

Ezample. k(A™) = k(z1,...,2,). In fact, if X is any open subset of A", then
kE(X) = k(A™).

Proof. First, we show the result when X is affine; let its ring of regular func-
tions be R. Then an element of k(X) is of the form (U, f € Ox(U)). Using the
equivalence relation, make U smaller so that it is a distinguished open (possible
as distinguished opens form a base for the topology); this element is of the form
(D(9), f € Ox(D(g)) = R(g)). Thus f can be written as a/b where a,b € R (in
fact b is a power of g).

Conversely, given an element of K (R), write it as a/b. Then this gives a section
of Ox over D(b): a/b € Ry = Ox(D(b)). Then you just have to check that these
two constructions commute. O

Consequences (proofs omitted).

1. For any open U C X, Ox(U) is a subring of k(X).

2. The restriction maps are inclusions, i.e. U C V implies Ox (V) C Ox(U) C
E(X).

3. Ox(UUV) =0x(U)NOx(V) inside k(X). (The right side wouldn’t even
make sense unless Ox (U) and Ox (V) were subrings of the same thing.)

4. Ox(UNYV) is the subring of k(X) generated by Ox (U) and Ox (V). (False!
See problem on Problem Set 4. If X is separated, I suspect this is true.)
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3. MORPHISMS OF PREVARIETIES: FIRST THOUGHTS

First, some philosophy. We know what morphisms from one affine open to
another looks like: it’s the same as the maps of rings of regular functions (as rings
over k) in the opposite direction.

So here is how we might like to think of morphisms of one prevariety to another.
(Explain: to describe a morphism X to Y, we might write X as a union of affine
opens U;, and Y as a union of affine opens V;, where U; maps to V;, and everything
glues nicely.) This is actually correct, but what gets confusing is showing that this
description is independent of the choice of cover; plus it is kind of annoying to
check, so it would be good to have a (slightly) more usable definition.

So we’ll define morphisms in another way first, that doesn’t involving covers,
then show that this is the same as the “naive” description I've just given. Then in
real life, we’ll use (a variant of) the “naive” description.

We begin by recasting morphisms of affines in a different light.

Theorem. Let X C A™ Y C A" be irreducible algebraic sets, and let 7 : X —
Y be a continuous map. Then the following are equivalent. (Draw pictures!)

i) m is a morphism of algebraic sets
ii) forall g € Oy (Y) = A(Y), gom € Ox(X) = A(X).
We've already proved this Theorem.

But note that we’ve described morphisms in a new way: they are (i) continuous
maps, such that (ii) pullback takes regular functions to regular functions.

Coming in the next few lectures (in some order):

Morphisms of prevarieties.

Examples of morphisms, including open immersions, closed immersions.

The isomorphism of 22 + 42 = 22 in P? with PL.

Projective varieties. Rational maps (and maps of function fields?). Degree of
rational maps. Birationality.
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