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PS10 back today; PS11 due today. PS12 due Monday December 13.

1. The genus of a nonsingular projective curve

The definition I’m going to give you isn’t the one people would typically start
with. I prefer to introduce this one here, because it is more easily computable.

Definition. The tentative genus of a nonsingular projective curve C is given by
deg Ω1

C = 2g − 2.

Fact (from Riemann-Roch, later). g is always a nonnegative integer, i.e. degK =
−2, 0, 2, . . . .

Complex picture: Riemann-surface with g “holes”.

Examples. Hence P1 has genus 0, smooth plane cubics have genus 1, etc.

Exercise: Hyperelliptic curves. Suppose f(x0, x1) is a polynomial of homo-
geneous degree n where n is even. Let C0 be the affine plane curve given by
y2 = f(1, x1), with the generically 2-to-1 cover C0 → U0. Let C1 be the affine
plane curve given by z2 = f(x0, 1), with the generically 2-to-1 cover C1 → U1.
Check that C0 and C1 are nonsingular. Show that you can glue together C0 and C1

(and the double covers) so as to give a double cover C → P1. (For computational
convenience, you may assume that neither [0; 1] nor [1; 0] are zeros of f .) What
goes wrong if n is odd? Show that the tentative genus of C is n/2− 1. (This is a
special case of the Riemann-Hurwitz formula.) This provides examples of curves of
any genus.
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Exercise. Suppose C is a nonsingular degree d projective plane curve. Show that
the tentative genus of C is

(
d−1

2

)
.

2. The Riemann-Roch Theorem with Applications but No Proof

Definition. If X is a topological space, and S is a sheaf on X, define H0(X,S)
to be the set of global sections of S over X (what we’ve called S(X)). If X is
a variety, and S is an OX -module, then H0(X,S) has the structure of a k-vector
space. In this situation, define h0(X,S) to be the dimension of H0(X,S) as a
k-vector space.

From here on in, C is a nonsingular projective curve, and we’ll deal with the
case when S is an invertible sheaf. In this case, we have shown that h0 is finite.

The Celebrated Riemann-Roch Formula. L a line bundle of degree d on
a nonsingular projective curve C of genus g. Then h0(C,L) − h0(C,Ω1 ⊗ L∨) =
d− g + 1.

Proof. Omitted!

I think you know enough to understand a proof, or at least a proof
under mild assumptions. If there are 2 or 3 of you interested, I could
try to come up with a proof that you’d understand in half an hour, and
present it during IAP.

Example. Let’s check this out for P1. (Make a table of degree, h0(C,L),
h0(C,Ω1 ⊗L∨), d− g + 1.)

Here come lots of appliations.

Corollary. Plug in L = O. Then we see that h0(C,Ω1) = g. Hence the tentative
genus is always a nonnegative integer.

Definition. Define the genus of a nonsingular projective curve C to be h0(C,Ω1
C).

Corollary. If d > 2g − 2 (i.e. the degree of L is greater than the sheaf of
differentials), then h0(C,Ω1 ⊗L∨) = 0. Hence h0(C,L) = d− g + 1.

Reason: the invertible sheaf Ω1 ⊗L∨ has negative degree.

Corollary. Given p ∈ C. Then there is a rational function with a pole only at
p.

Proof. Consider the divisor (2g+1)p. Then L := O((2g+1)p) is a degree 2g line
bundle, and it has h0(C,L) = d−g+1 = 2g+1−g+1 = g+2 > 1. Hence there are
two linearly independent sections of L. But the global sections of L corresponded to
rational functions whose valuation at every point distinct from p was nonnegative,

2



and whose valuation at p was at most −(2g+1). One such function is the constant
function; thus there is a function that is nonconstant, which must therefore have a
pole somewhere; the pole must be at p. (We also see that the order of pole can be
made to be at most 2g + 1.)

2.1. A criterion for closed immersions. Given a nonsingular projective curve
C, and invertible sheaf L. Let {s0, . . . , sn} be a basis for the (finite-dimensional)
vector space H0(C,L) of global sections. If, for each p ∈ C, there is a section s of
L such that s doesn’t vanish at p, then this basis gives a morphism

(s0, . . . , sn) : C 7→ Pn.

This morphism is denoted |L|, and is called the complete linear system associated
with L.

Remark. The sections of L ⊗ OC(−p) (often written L(−p)) over U can be
identified with the sections of L vanishing at p. (You’ve seen this before if L is OC ;
the proof is the same.) Hence there is a natural inclusion

H0(C,L(−p)) ↪→ H0(C,L).

The cokernel is dimension 0 or 1; it is 1 if there is a global section of L that does
not vanish at p. Hence we’ve proved:

Proposition. h0(C,L) − h0(C,L ⊗ OC(−p)) ≤ 1, and if equality holds then
then there is a section of L that does not vanish at p.

Proposition. Suppose p and q are distinct points of C. If h0(C,L)−h0(C,L⊗
OC(−p − q)) = 2, then p and q are mapped to distinct points of Pn via |L|. In
other words, |L| is injective.

Proof. (You can check that h0(C,L) − h0(C,L(−p − q)) ≤ 2, and that the
hypotheses of this proposition imply the hypotheses of the previous one, so that L
really does induce a morphism into projective space.)

It suffices to show that there is a section of L that vanishes at p but doesn’t
vanish at q. (Explain.)

When the degree of L is big, the hypotheses of these propositions are automati-
cally satisfied.

Proposition. If degL > 2g − 1, then for each p ∈ C, there is a section s of L
such that s doesn’t vanish at p. If degL > 2g, then the morphism |L| is injective.

Proof. In this range, h0(C,L) = d− g + 1, h0(C,L(−p)) = (d− 1)− g + 1, and
(in the second case) h0(C,L(−p− q)) = (d− 1)− g + 1.
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Under the conditions of the second proposition, |L| is an injection of sets. But
it still might get knotted up at some point (explain). It would be great to know
criteria for when |L| gives a closed immersion. Here’s one:

Proposition. Suppose for any pair of points p and q of C (not necessarily
distinct), h0(C,L)− h0(C,L⊗OC(−p− q)) = 2. Then |L| is a closed immersion.

Proof. Omitted. Shafarevich p. 217; Hartshorne.

Remark. By the same argument as above, if degL > 2g, then the hypotheses
are satisfied.

This is powerful. Here are applications.

Proposition. A projective nonsingular curve C of genus 0 must be isomorphic
to P1.

Proof. Choose any point p ∈ C. Then L := O(p) has degree 1 > 2g, so
|L| is a closed immersion. But L has 2 sections by Riemann-Roch: h0(C,L) =
degL − g + 1 = 2. Thus |L| describes a closed immersion of C into P1, so C must
be isomorphic to P1.

Thus there is only one projective nonsingular genus 0 curve.

Let’s try a similar trick in genus 1. Let C be a genus 1 (projective nonsingular)
curve, and let L be any degree 3 invertible sheaf (e.g. O(3p)). Then by Riemann-
Roch, h0(C,L) = 3− 1 + 1 = 3.

Then by the Proposition, |L| gives a closed immersion of C into P2, and it must
be as a cubic curve. (In fact the degree of the image is precisely the degree of
the line bundle. We haven’t analyzed this carefully yet, so I’ll resort to another
argument: from an exercise in PS12, you can calculate that the genus of a degree d
nonsingular plane curve is

(
d−1

2

)
. Hence as the image of |L| has genus 1, we know

d = 3.)

Hence we have proved:

Proposition. Every genus 1 curve can be written as a cubic plane curve.

Thus we’ve “seen” all genus 1 curves. By special request, we proved that:

Proposition. There is a natural bijection between the degree 1 line bundles on
a genus 1 curve C and the points of the curve.

Proof. The link is as follows. If p is a point on the curve, then OC(p) is a
degree 1 invertible sheaf. If L is a degree 1 invertible sheaf, then by Riemann-
Roch, h0(C,L) = 1, so there is (up to multiple) precisely one section of L. It’s
divisor is necessarily a point. These two constructions clearly commute.
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In the problem set, you’ll see that all genus 2 curves can be written as double
covers of P1 branched at six points. So now we’ve “seen” all genus 2 curves.

In the problem set, you’ll see that all genus 3 curves can be written either as
double covers of P1 branched at eight points, or as nonsingular plane quartics. So
now we’ve “seen” all genus 3 curves.

Proposition. A projective nonsingular curve minus a finite number of points is
affine.

Proof. Consider the invertible sheaf O(kp) where k is huge. (Exercise: how big
does k have to be for this to work?) Then this gives a morphism into projective
space

|O(kp)| : C → Pn

expressing C as a closed subvariety. Now there is a section s0 of OC(kp) that has
only one zero, of order k, at the point p. Take a basis for the sections of OC(kp):
s0, . . . , sn. So we have a map

(s0, . . . , sn) : C → Pn

q 7→ (s0(q); . . . ; sn(q)).
Now where does x0 = 0 intersect C? Answer: where s0 = 0, i.e. only at the point
p. (Geometry: the curve meets the hyperplane x0 = 0 with multiplicity k there.)
Hence the affine open U0 of C is C \ {p}, so C \ {p} is affine!

Corollary. Any nonsingular curve that is not projective is affine.

Let’s calculate more things.

Suppose C is a genus 1 curve. Let L be any degree 4 invertible sheaf on C, e.g.
4p for some point p. Then |L| expresses C as a closed subvariety of P3 (as L has 4
sections, and the degree satisfies the criterion for closed immersions above). I claim
that it is the intersection of 2 quadrics. Here is a pretty good sketch of why.

Let π be the inclusion. Let w, . . . , z be the coordinates on P3. First, note that
the image isn’t contained in any hyperplane.

Next, compute the number of sections of π∗O(1), which has degree 4: by
Riemann-Roch, it has 4 sections, which are precisely the 4 sections we used to
map it to projective space. They correspond to the linear functions w, x, y, z.

Compute the number of sections of π∗O(2), which has degree 8: by Riemann-
Roch, it has 8 sections. But here are 10 sections: the sections w2, . . . , yz, z2.
Hence there is a two-dimensional vector space of polynomials that pullback to zero.
Let p(w, x, y, z) and q(w, x, y, z) be a general basis of this two-dimensional vector
space. Then the image of C lies on p = 0 and q = 0 (explain).

We know that p = 0 and q = 0 must intersect in a curve. Here’s why: if their
intersection included a surface S, the surface must be of degree 2 or degree 1. If S
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were degree 2, then it must be the surface p = 0 and q = 0; but then p is a scalar
multiple of q, contradicting the fact that p and q formed a basis. If S were degree
1, then p and q both consist of 2 planes (explain, and explain the contradiction).

Hence p = 0 and q = 0 intersect in a curve C ′ (including C). By the exercises
on the Hilbert polynomial, the curve C ′ has degree 4, which means that it meets a
general hyperplane at 4 points.

But a general hyperplane corresponds to the zeros of a general section of L. Any
nonzero section of L has 4 zeros, so C is all of C ′. Hence C is the intersection of 2
quadrics in P3.

(Conversely, if you take 2 general quadrics in P3, it turns out that you get an
elliptic curve.)

Remark. You can use this method to understand curves of genus 4 and 5.

For a genus 4 curve C, the sheaf of differentials has degree 6, and has 4 sections.
If C is not hyperlliptic, then |Ω1| expresses C as a closed subvariety of P3, (after
an application of the crition above). The methods we just used show that C is a
complete intersection of a quadric and a cubic. Hence this “describes all genus 4
curves”: they are either hyperelliptic, or the intersection of a quadric and a cubic.
(There is a uniform way of describing them, that doesn’t involve these cases.)

For a genus 5 curve C, something similar happens. C is either hyperelliptic, or
it sits in P4 as the intersection of 3 quadrics. Not quite! Could be trigonal, in which
case the intersection of the 3 quadrics is, not surprisingly, a rational scroll. Johan
showed me a paper of Rutger Noot.

3. Recap of course

Generalities: Algebraic sets. Zariski topology. Nullstellensatz. Hilbert basis
theorem. Sheaves and stalks; structure sheaf. Prevarieties and morphisms of pre-
varieties. Function fields and birational maps. Projective prevarieties. Schemes.
Products. Dimension. Nonsingularity.

Curves: Valuation rings. Completitions. Integral closure, Dedekind domains,
DVRs. Extending rational maps of nonsingular curves to projective varieties.
Finitely generated fields over k of tr. deg. 1 correspond to nonsingular projec-
tive curves.

Line bundles and invertible sheaves. O(m). Picard group. Class group. Degree.
Riemann-Roch.
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