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Problem Set 8 back at end of lecture. PS9 due today.

PS10 due Thursday December 2. PS11 due Thurs. Dec. 9. PS12 due Monday
December 13. If you don’t get a chance to do PS12 by December 13, but still want
to think about it, I’ll be around, so you can drop by and we can talk.

1. Example: The invertible sheaves OPn(m).

Caution. I don’t I think I was consistent with transition functions last time. I
think everything is correct in the lecture notes. If gi is a section over Ui and gj is
a section over Uj , then gi = fijgj .

I’ll now describe some invertible sheaves on projective space. I think this de-
scription will help you see how to deal with invertible sheaves in general.

Let U0, . . . , Un be the standard opens of Pn. Consider the invertible sheaf
(known as OPn(m)) given by the transition functions fij = (xj/xi)m. Recall for
this sheaf, the sections corresponding to an open set U are given by the data of
sections gi ∈ O(U∩Ui) (i.e functions on U∩Ui), satisfying the transition information
gi = fijgj on the open set U ∩ Ui ∩ Uj .

Note that fii = 1, and fik = fijfjk.

We can talk about rational (or meromorphic) sections as well.

Date: Tuesday, November 30, 1999.
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1.1. Example: P1. Let’s do an example. To keep with last day’s example, let’s
let n = 1, and let’s first take m = −1. Here are the variables we’ll use.

On P1, use projective coordinates [x0;x1].

On open set U0, choose coordinate y1 = x1/x0, so U0 are the points [1; y1]. (Note
that this is equal to [x0;x1]!)

On open set U1, choose coordinate z0 = x0/x1, so U0 are the points [z0; 1].

Here’s a section over U0: g0(y1) = y1−1. Let me ask you some stupid questions.
Where does it have zeroes or poles? Answer: a zero of order 1 at y1 = 1, i.e. at
[x0;x1] = [1; 1].

Let’s consider this as a rational section over all of P1. What does this section
look like over U1? It is given by a function g1(z0) = f10f0(y0) = x1/x0(1/z0− 1) =
(z0 − 1)/z2

0 . Zero of order 1 at [1;1], and pole of order 2 at [0;1].

Remark. Note that we calculated that this section had a zero of order 1 at
[1; 1] in both open neighbourhoods. But the functions whose order of vanishing we
checked were different! Why were we guaranteed to get the same answer? Answer:
they differed by a factor that was invertible (i.e. had 0 valuation).

Proposition. OP1(−1) is not isomorphic to the structure sheaf.

Proof 1. The sums of orders of vanishing of this meromorphic section is -1. The
sums of orders of vanishing of a meromorphic structure sheaf is 0. (This is the proof
I gave last time.

Remark. Notice that In general, the sums of orders of vanishing of a meromorphic
section of OP1(m) is m. So they are all non-isomorphic invertible sheaves.

Proof 2. You can check that OP1(−1) has no non-zero global sections. But the
structure sheaf has non-zero global sections (the non-zero constants).

1.2. Identification of global sections of OPn(m) with the degree m poly-
nomials in x0, . . . , xn (m ≥ 0). As another example, I’ll let you calculate the
space of global sections of OP1(2).

Using the same variables as before, g0(y1) is a polynomial in y1. g1(z0) is a
polynomial in z0, and g1(z0) = z2

0g0(1/z0). Hence g0 can have degree at most 2.
Conversely, any polynomial of degree 2 will work. Hence the space of global sections
of OP1(2) has dimension 3. (The same argument will show that the space of global
sections of OP1(n) has dimension n+ 1 if n ≥ 0.)
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You can identify the space of global sections with the vector space of degree
2 polynomials in x0 and x1. Here’s the identification. Given a polynomial ax2

0 +
bx0x1+cx2

1, to get the corresponding section g0(y1) over U0, just divide by x2
0. Hence

get a + b(x1/x0) + c(x1/x0)2 = a + by1 + cy2
1 . To get the corresponding section

g1(z0) over U1 just divide by x2
1, and get a(x0/x1)2 + b(x0/x1) + c = az2

0 + bz0 + c.
Note that g0 and g1 satisfy the desired transition data: g0 = (x0/x1)2g1.

In the same way you can prove:

Proposition. Let m ≥ 0. Then the vector space of global sections of OPn(m)
can be identified with the vector space of polynomials h(x0, . . . , xn) of degree m.
The identification is this: gi = h/xmi .

Probably an exercise. You’ve actually done this in the case when m = 0, when
you proved that the only regular functions on projective space are the constants.

This is really concrete, and to prove to you how concrete it is, let me ask you
some questions.

Here’s a section of OP2(3): x3 + y3 + z3. Where does it have zeroes? How about
xy2?

We can extend this to rational sections. Once again, they have to be homoge-
neous degree m. How about (x3 + y3 + z3)/(x2yz), which is a meromorphic section
of OP2(−1). Where are the poles and zeroes?

2. More background on invertible sheaves

2.1. Operations on invertible sheaves. Here are some basic things you can do
with invertible sheaves.

i) Pullback. You can pull back invertible sheaves (or line bundles). (Give picture
first.) Here’s how. If you have a morphism π : X → Y , and you have an invertible
sheaf L on Y defined by open sets Ui and transition functions fij on Ui ∩Uj , then
define the inverse invertible sheaf π∗L by the open sets π−1(Ui), and the functions
π∗fij , which are functions on π−1(Ui ∩ Uj) = π−1(Ui) ∩ π−1(Uj).

You can pull back sections as well: if g is a section of L over some open subset
U ⊂ Y , then you can define a section π−1g of π−1L over π−1(U) (which is also
open). For convenience of notation, I’ll show you how this works for global sections.
If g is a global section given by regular functions gi on Ui related by gi = fijgj
on Ui ∩ Uj , when consider the regular functions π∗gi on π−1Ui. (Remember that
you can pull back regular functions via morhpisms!) Then because gi = fijgj on
Ui ∩ Uj , we have π−1gi = π−1fijπ

−1gj on π−1(Ui ∩ Uj) = π−1(Ui) ∩ π−1(Uj). In
other words, these regular functions define a section of π∗L.

As an example of how you can use this, consider:
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Proposition. OPn(m1) is not isomorphic to OPn(m2) if m1 6= m2.

Proof. Recall that we’ve proved this for n = 1: any non-zero meromorphic
section has “total order of vanishing” m.

Now we’ll deal with the general n. Take the closed immersion P1 ↪→ Pm, sending
P1 to a line, e.g. (x0;x1) 7→ (x0;x1; 0; . . . ; 0). Check that OPn(mi) pulls back to
OP1(mi). But OP1(m1) is not isomorphic to OP1(m2).

Fact. (We probably won’t prove this, but the proof isn’t difficult to follow.)
These are all the line bundles on Pm. Hence PicPn ∼= Z, with O(1) the generator.

Example: Line bundles on curves. This example is somewhat lame. Consider
the curve C y2z = x3 + xz2. We can pull back the line bundle OP2(2) to C. We
already can see that it has at least 6 linearly-independent sections. Where on the
curve does the section x2 + y2 vanish? Answer: where x2 + y2 = 0. We can pull
back the line bundle OP2(3) to C. We can already see that it has at least 9 linearly
independent sections. OP2(3) has 10 sections. But one of them vanishes on C: the
section y2z − x3 − xz2.

ii) Tensor product of two invertible sheaves. Take 1: Suppose you have two
invertible sheaves L and M on X, given by the same open cover Ui and (possibly
different) transition functions lij and mij . Then define the tensor product invertible
sheaves L ⊗M by the same open cover, and the transition function lijmij . (You
can immediately check that this satisfies the cocyle condition.)

Take 2: Suppose now that you have two invertible sheaves L andM, given with
the data of possibly different open covers Ui and Vj respectively, with transition
functions lii′ and mjj′ respectively. Then what you want to do is to take a different
cover finer than the Ui and the Vj so you can express L and M using this new
cover; then use the construction above. The following does the trick: L ⊗ M
is defined using the open sets Ui ∩ Vj , and the transition functions are given by
fij,i′j′ = lii′mjj′ .

Things you might want to check: that this construction is independent of the
“representation” of the invertible sheaf. Also, L⊗OX is isomorphic to L.

Remark. If a is a global section of L (or more generally, a section over some
open set), and b is a section ofM, then you can interpret ab as a section of L⊗M.

Remark. You can see how this works with OP1(m). Immediately, we have
OP1(m+ n) ∼= OP1(m)⊗OP1(n).

Remark. If a is a section of L (over some open set) and b is a section ofM (over
the same open set), then ab is naturally a section of L ⊗M. For example, x2 is a
global section of OP1(2), and (x+ y)3 is a global section of OP1(3). What is their
product as a global section of OP1(5)? Answer: x2(x+ y)3.
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iii) Inverse invertible sheaves. Suppose you have an invertible sheaf L defined
by the open cover Ui and transition functions fij . Then define the inverse, denoted
L−1, by the same open cover, and the transition functions f−1

ij . Note that the
cocycle condition is satisfied, and also that L⊗ L−1 ∼= OX .

Coming next: The Picard group. Maps to projective space correspond to a
vector space of sections of an invertible sheaf. The class group. The canonical
invertible sheaf (= the sheaf of differentials). Genus. Riemann-Roch Theorem:
statement (no proof) and applications. The Riemann-Hurwitz formula.
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