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Brand new topic:

1. Line bundles and invertible sheaves

Invertible sheaves are fundamental objects. They are essentially the same thing
as line bundles, which are geometrically easy to visualize. So I’ll tell you intuitively
about line bundles first, and then introduce invertible sheaves. (I won’t discuss
motivation just yet, so I hope you believe me when I say how important this concept
is!)

1.1. Line bundles, classically. Line bundle on a complex manifold (with classical
topology). Draw a picture. Precisely, given a complex manifold X, a line bundle is
given by the data of a cover Ui (i ∈ I some index set), and trivializations Ui × C,
and transition functions fij on Ui ∩ Uj that is an analytic function, nowhere zero,
satisfying fijfjk = fik (the cocyle condition), from which fii = 1 and fij = f−1

ji .
What this means: if u ∈ Ui ∩ Uj , then the point (u, z) ∈ Uj × C is identified with
the point (u, fijz) ∈ Ui×C. (I think I said this incorrectly in class.) If you’ve seen
Cech cohomology before, you can check that the data of a line bundle is the same
as an element of H1(X,O∗), where O∗ is the sheaf of invertible (=nowhere zero)
analytic functions.
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In particular, the total space L of a line bundle is also a complex manifold (of
dimension one higher than that of X), with a morphism L→ X.

A section of a line bundle is the data of maps gi : Ui → C (or if you prefer,
Ui → Ui×C), satisfying gi(p) = fij(p)gj(p) for points p ∈ Ui∩Uj . (Draw a picture
of a section of L→ X.)

Note that there is always a zero-section given by gi(p) = 0 for all i, p ∈ Ui.

Two line bundles L1 → X, L2 → X are isomorphic if there is an isomorphism
L1 → L2 commuting with the morphisms to X.

Example. The trivial line bundle X × C→ X. Global sections are just analytic
functions.

At this point you might think that all line bundles are trivial (which isn’t true).
Indeed there are line bundles that seem nontrivial that are trivial. Exercise. Sup-
pose Ui is a finite open cover of X, and for each i, hi is an invertible function on Ui.
Prove that the data of the open cover Ui and the transition functions fij = hi/hj
defines a line bundle, and prove that this is isomorphic to the trivial line bundle.
(In fancy language, this shows that a zero-element of H1(X,C∗) indeed induces a
trivial line bundle.)

Example. Inside Cn+1, we know that Pn parametrizes lines through the origin.
This will give a line bundle on Pn (as we’ll soon see rigorously): “above” each point
of Pn, we have the line corresponding to that point. (We will later see that this is
not trivial, if n > 0.)

Example. LetX be a one-dimensional complex manifold. Then there is a tangent
line bundle (and similarly a cotangent line bundle). (Describe it pictorially.) This
will be tricky to describe precisely.

1.2. Line bundles on varieties (and schemes). We can use the same definition
for varieties, except this time we use the Zariski topology, and the functions should
be invertible regular functions. (Experts in Cech cohomology can later check that
line bundles are parametrized be H1(X,O∗X), where O∗X is the sheaf of invertible
functions and the topology on X is of course the Zariski topology; in fact, if you’ve
seen Cech cohomology of sheaves in any other setting, you know a whole lot about
cohomology of sheaves in algebraic geometry.)

1.3. Sheaf of sections of a line bundle, and the correspondence with line
bundles. Note that the sections actually form a sheaf. (Sketch intuitively first.)
Here, explicitly, is how. Suppose the line bundle L on our variety X is defined by
an open cover Ui and transition functions fij (on Uij = Ui ∩ Uj). Then the sheaf
of sections L is defined by:

Elements of L(U) are functions hi on U ∩Ui such that hi = fijhj on U ∩Ui∩Uj .
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Notice that this sheaf L is an OX -module. What this means is: for each open U ,
L(U) is an OX(U)-module (and this action commutes with restriction: if U ⊂ V ,
and a ∈ L(V ) and f ∈ OX(V ), then the restriction of (fa) to U is the same as the
restriction of f to U acting on the restriction of a to U .

We can now define an invertible sheaf.

Definition. An invertible sheaf on a variety X is an OX -module L such that
there is an open cover Ui of X satisfying:

• there are isomorphisms φi : L|Ui → OUi ,
• there are invertible functions fij on Ui ∩ Uj such that for z ∈ L(U) for any
U ⊂ Ui ∩Uj , φi(z) (which is a function on U) equals fijφj(z) (the product of
two functions on U).

Notice that the cocycle condition fik = fijfjk on Ui ∩ Uj ∩ Uk follows from this
definition.

Notice that if you have a line bundle, its sheaf of sections is an invertible sheaf. If
you have an invertible sheaf, you can cook up a line bundle. And these constructions
commute.

Philosophy: Invertible sheaves are easier to deal with (if less intuitive to picture)
than line bundles, so we’ll deal with them in the future. Here’s why this fits into
the the philosophy of algebraic geometry. Classically, people would study varieties
by looking at them as topological spaces. In algebraic geometry, we study varieties
by looking at functions on them (in some sense a dual point of view). In the same
way, we will study line bundles by instead looking at their sheaf of sections.

1.4. Examples. (I’m going to discuss this example again later on.) Let’s bring this
back down to earth. I’ll now give some examples. Try to think of them analytically
at the same time as algebraically.

Define a meromorphic section (or “rational section”) to be a section of a line
bundle over some non-empty open set.

Example. The trivial line bundle X × A1 → X. Global sections are just regular
functions on X.

A specific case: let X = P1. Then the meromorphic sections of the trivial line
bundle are just rational functions. They are (in affine coordinates) of the form
(t − a1)n1 . . . (t − ar)nr , where the nr are integers, possibly negative. Define the
order of vanishing of a meromorphic function (at ai to be ni). What’s the order
of vanishing of this meromorphic function at ∞? Answer: −

∑
ni. Hence the sum

of the order of vanishings of any non-zero meromorphic section of the trivial line
bundle on P1 is 0. (Remark: whenever you are talking about orders of vanishing,
keep in mind that there is DVR theory lurking in the background.)
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Example: The “tautological” line bundle OPn(−1) on Pn. Let Pn have coor-
dinates (x0; . . . ;xn). This will be the line bundle that assigns to a point of Pn
the corresponding line through the origin in An+1. Perhaps ask about section of
OP1(−1) corresponding to x0 = 1 here. We’ll define this on patches. On the patch
U0 (i.e. the points (1; y1; . . . ; yn), so we can take coordinates yi on U0), the line is
of the form (s, sy1, . . . , syn) in An+1, with coordinate s.

On U1 (i.e. the points (z0; 1; z2; . . . ; zn)), the line is of the form (tz0; t; tz2; . . . ; tzn).
How do we change coordinates from s to t on U0∩U1? s = (x0/x1)t. The best way to
see this is by example. Consider the point (1, 2, 3, ..., n+1) ∈ An+1. This is a point
on the line above (1; 2; . . . ;n+1). Its s-coordinate is 1, and its t-coordinate is 2. In-
deed s/t = x0/x1. Precisely: f10 = x0/x1 = 1/y0 = z0. f01 = x1/x0 = y0 = 1/z0.

In general, you can define coordinates s0 on U0, . . . , sn on Un, and we have
transition functions fij = xj/xi. Note that fij is indeed an invertible function on
Ui ∩ Uj .

Proposition. OP1(−1) on P1 is not isomorphic to the trivial sheaf.

(I’ll restate this proof, and give a second proof next day.)

Proof. (Advantages: foreshadows idea of “degree of a line bundle”.) We con-
struct a meromorphic section corresponding to the plane x0 = 1 in An (draw
picture). It you think about it, you might convince yourself that it blows up at the
point x0 = 0 in Pn, and nowhere else (and it has no zeroes).

Cover P1 with two standard opens, U0 and U1. On the first standard open,
we have the section s0 = 1; it has no zeroes. On the second standard open, with
coordinates (z0; 1), the coordinates on the line is s1, and points on the line are of the
form (z0s1, s1). Thus the section (1, 0) gives (in this coordinate system) s1 = 1/z0.
This has a simple pole at z0 = 0.

In short, this nonzero meromorphic section of OP1(−1) has a single simple pole,
so the sum of its orders of vanishing is -1. But we earlier checked that any nonzero
meromorphic section of the trivial sheaf has sum of orders of vanishing 0. So they
are not the same.

Coming next: The line bundle OPn(m). Maps to projective space correspond
to a vector space of sections of a line bundle. The canonical invertible sheaf,
genus. Riemann-Roch Theorem: statement (no proof) and applications. Riemann-
Hurwitz.
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