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Problem sets won’t be back for a while.

1. Recap of where we are

Integral closure in a function field. DVRs — 3 characterizations. Dedekind
domains (integrally closed noetherian domain of dimension one).

Key Technical Theorem (tricky). Let K be a finitely generated function
field of dimension one over k, and let x ∈ K. Then the set of discrete valuations of
K/k where v(x) < 0 is finite.

The proof involved the following construction.

Key technical construction. Suppose (R,m) is a DVR of K, and y ∈ m.
Consider k[y], the subring of K generated by y. Since k is algebraically closed,
y is transcendental over k, so k[y] is a polynomial ring, i.e. y doesn’t satisfy any
relations. Hence K is a finite field extension of k(y). Let B be the integral closure
of k[y] in K. Then by an earlier theorem (proved in the last few classes), B is a
Dedekind domain, and is also a finitely generated algebra over k.

Hence B corresponds to an affine variety Y , which maps to A1 with coordinate
y; draw it! It is dimension 1 and nonsingular. Also, y is a function on Y .

Using this key technical construction, we got the following corollaries:
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Corollary. Let v be a discrete valuation of the field K/k, a finitely-generated
function field of transcendence degree 1. Then there is a nonsingular curve C, with
function field K, and a point p ∈ C, such that v is the valuation induced by p.

Corollary. Given y ∈ K \ k, all discrete valuations of K/k such that v(y) ≥ 0
(i.e. that y is in the corresponding DVR) are accounted for by points on the curve
Y above.

Then we proved an important result: on extension of morphisms to projective
varieties, over nonsingular points of curves:

Theorem. Let X be a nonsingular curve, p a point of X, Y a projective variety,
and φ : X − p→ Y a morphism. Then there exists a unique morphism φ : X → Y
extending φ.

By separatedness, as Y is a variety, we have uniqueness; all that is necessary is
existence.

Last day, we discussed an example of a map from P1 to Pn: [x; y] 7→ [x3;x2y;xy2]
is defined away from [0; 1]; it’s clear how to extend. You divide by x. We’ll carry
this example along as we do the proof.

Now let’s get some consequences.

2. Consequences of theorem on extension of morphisms to projective

varieties, over nonsingular points of curves

From here on in, all curves will be assumed to be separated. I should
have made this part of the definition of “curve”.

Theorem. Every nonsingular (separated) curve C is quasiprojective.

Anything quasiprojective is separated, so that condition is necessary.

Proof. Cover C with finite number of (nonsingular) affines Ci ⊂ Ani (recall that C
is compact, so we can do this). Let Yi ⊂ Pni be projective closure of Ci; we get map
C → Yi by previous result. Hence get map φ : C →

∏
Yi ⊂

∏
Pni , which by the

Segre embedding we can consider as a closed subvariety of some bigger projective
space PN (recall our proof that the product of projective varieties was projective!).
Let Y be the closure (in PN ) of the image of C; then Y has dimension 1. (Exercise:
how do we know that the dimension of the closure of the image is at most the
dimension of the source?)

Next, let’s check that φ is an isomorphism from C onto its image. Recall that
to check that φ is an isomorphism, we need only construct a candidate inverse
morphism, and show that that composition is the identity on the level of sets.
(This is a strategy that doesn’t work for schemes.)
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We’ll do this first for each open Ui in our cover of C. Notice that for each i,
the open immersion Ui → Yi factors through Ui ↪→ C → Y ↪→

∏
Yi → Yi. So to

reverse the morphism φ : Ui → φ(Ui), take the image φ(Ui) of Ui in Y , project to
Yi, note that it is in the image of the open immersion Ui → Yi.

Hence this shows that Ui → Y is an isomorphism onto its image φ(Ui). Let φ−1
i :

φ(Ui) → Ui be the inverse morphism; this gives a rational map φ−1
i : φ(C) 99K C.

All of these rational maps agree on a dense open set ∩Ui, so as C is separated, they
can be glued together to give a morphism φ−1 : φ(C) → C, which is pointwise an
inverse to φ : C → φ(C). Hence φ is an isomorphism.

Immediately we have:

Corollary. Hence every nonsingular (separated) curve is birational to a projec-
tive curve.

We can tweak the proof of the Theorem above to get other interesting results.
Here are two:

Proposition. Let C1 and C2 be two separated nonsingular curves, and let
α : C1 99K C2 be a birational map between them. Then they can be glued together
via α, i.e. there is another nonsingular curve C = U1 ∪ U2, with Ci isomorphic to
Ui, and the birational map U1 99K U2 induced by α.

Examples. A1 99K A1, y 7→ 1/y, get P1. I also gave an example where you might
think you’d get something non-separated, but you don’t.

Proof. As C1 and C2 are birational, they have an isomorphic open subset V , which
we can consider as being an open subset of both, although α should really be in
the notation as well. By the theorem, consider Ci as an open subset of Yi ⊂ Pni .
Consider the morphism φ : V → Pn1 × Pn2 .

Note that the rational map φ1 : C1 99K Pn1 ×Pn2 extends to a morphism (as C1

is nonsingular and Pn2 is projective), and is an isomorphism onto its image (just
take φ1(C1) ↪→ Pn1 ×Pn2 → Pn1). So in particular its image φ1(C1) is nonsingular.
(And of course it contains φ(V ).) Just take the union of the images of C1 and C2

in Pn1 × Pn2 .

Proposition. If two nonsingular projective curves C1 and C2 are birational,
then they are isomorphic.

Proof. Consider Ci as closed subvarieties of two projective spaces. Let φi : Ci 99K
C3−i be the two rational maps composing to give the identity. Then they both
extend to morphisms, by the main result of the previous section (saying that you
can extend morphisms from nonsingular curves to projective varieties). Finally,
φ1 ◦ φ2 is the identity: it is a morphism from C2 to itself, that agrees with the
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identity on a non-empty open subset. Hence (as C2 is separated), it must be the
identity.

3. Theorem: Finitely generated fields over k of transcendence

degree 1 correspond to nonsingular projective curves (over k)

Our next topic will be proving the statement in the title. This is very powerful.
For example, if you want to prove things in algebra about finitely generated fields
/k of transcendence degree 1, then you can prove them using geometry.

One consequence in this vein (which will likely be an exercise near the end of
the semester):

Luroth’s theorem. Any subfield of k(y) containing k is isomorphic either to
k(y) or k.

Conversely, you can prove things about geometry using algebra.

Remark. One of the directions of the statement is easy: given a nonsingular
projective curve, its function field is a finitely generated field over k of transcendence
degree 1.

Recall that if two nonsingular projective curve C1 and C2 are birational, then
they are isomorphic (the last proposition of the previous section). So in order to
prove the result, we’ll have to take a finitely generated field K of transcendence
degree 1, and produce a nonsingular projective curve with function field K.

Remark. Note that we need finitely generated: every nonsingular projective curve
has a function field of transcendence degree 1, that is finitely generated. But there
are finitely genreated fields over k of transcendence degree 1 that are not finitely
generated, e.g. k(t, t1/2, t1/3, . . . ).

As an immediate corollary, we have:

Corollary. The following 3 categories are equivalent:

(i) nonsingular projective curves, and dominant morphisms;
(ii) curves, and dominant rational maps (in the problem set, I added quasiprojec-

tive, but that isn’t necessary);
(iii) function fields of dimension 1 over k, and k-homomorphisms.

I’ll leave the details to you as an exercise. This is important to understand. (Sketch
what the objects and morphisms are, and how the links go.)

With these insights, you can prove things such as: any nonsingular rational curve
is an open subset of P1.

4



3.1. Proof of Theorem. Hartshorne’s argument. Hartshorne has an interesting
construction in Section I.6, but I feel like it is somewhat convoluted. I’ll give a
different proof, but first I’ll give Hartshorne’s strategy.

Here’s how he constructs the curve C, as a prevariety. He does it by first giving
the points, then the topology, then the structure sheaf. These definitions are very
short: (i) the points of C correspond to the discrete valuations of K. (ii) the
topology on C is the cofinite topology. (iii) the structure sheaf is given by: for each
open U ⊂ C, let OC(U) = ∩p∈URp inside K.

Finally, he needs to show that this really gives a variety, and that it is projective.
This is tricky.

Another argument. Here’s another argument.

First, we construct a separated nonsingular curve C with function field K. We
already know that the points of C will give discrete valuations of K; we’ll ensure
that they give all of the discrete valuations of K.

From a Corollary to the Key Technical Theorem, given any discrete valuation
v of K/k, there is a nonsingular curve Y1, one of whose points corresponds to v.
Moreover, almost all the discrete valuations will be represented by points on Y1.
By repeating this with the valuations that we’re missing, we have a finite number
of nonsingular birational curves Y1, . . . , Yn, all with function field K (and hence
all birational), such that each discrete valuation is represented by some point on at
least one of the Y ′i s.

By the Corollary at the end of the previous section, we can glue the Yi’s together
to get a single nonsingular curve C, such that all of the discrete valuations of K/k
correspond to points of C. (Sophisticated remark. At this point, it is still possible
that each valuation is represented by more than one point of C. This actually can’t
happen though; see the “earlier lemma” below.)

Thus: there is a nonsingular curve C (with function field K) such that all the
valuations of K correspond to points of C (and vice versa).

We will be done once we prove:

Proposition. C is projective.

Proof. Suppose it isn’t projective. By the previous section, C is quasiprojective, so
embed it in some Pn, and let p be any point in its closure C but not in C. Using
p, we’ll construct a new DVR of K/k, contradicting the fact that C is supposed to
have points corresponding to all the DVRs of K/k.

Leo pointed out that it wouldn’t matter if all the points of C not in C were
nonsingular, but as it is enlightening to the rest of the argument, we’ll still show
that:
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Step 1: p can’t be a nonsingular point of C. Notice that p can’t be a nonsingular
point of C, or else it would correspond to a DVR of K. Then it would be a distinct
DVR from any of the other points on C: if it were the same as the DVR arising
from a point q ∈ C, then take an affine U = Ui ∩ C containing p and q (where Ui
is a standard affine open of projective space; it’s easy to find such an open missing
two points in projective space). On this affine curve, we have two distinct points
giving rise to the same valuation. But we had a lemma a couple of classes ago
(Class 17 to be precise, restated in Class 18):

Earlier Lemma. Let Y be a prevariety, and suppose p and q are two points
contained in a single affine open U , and OY,q ⊂ OY,p (as subrings of k(Y )). Then
p = q.

(I also gave a geometric argument that could replace this.)

In our situation, OY,q = OY,p. Hence we’ve shown that p can’t be a nonsingular
point of C, so we have a picture like this (draw it).

Take any affine open U = Ui ∩C as before, containing p, so U is an affine curve.
Take the normalization in its function field. (Draw a picture.) Let Ũ be the variety
corresponding to the normalization of A(U); note that we have a normalization
morphism ν : Ũ → U . If we could prove that ν is surjective (which we will in
a moment), then we’d be essentially done. Let p̃ be a point mapping to p; it is a
nonsingular point of Ũ . It corresponds to a DVR of K/k. By our earlier lemma, it is
a different DVR from any of the points of U . But we could have chosen U to include
any given point of of C, so this DVR isn’t the same as the DVR corresponding to
any point of C, giving a contradiction.

Next day, we will finish the proof, by showing that we get a contradiction even
if p is a singular point of C.

In the last few minutes, I gave an aside on normalization; in the rest of the proof,
we will (prove and) use the fact that the normalization morphism is surjective.
Precisely: Commutative Algebra Lemma. Let U be an affine variety, with
coordinate ring A(U). Let Ũ be the variety corresponding to the normalization of
A(U) (in its function field), and let ν : Ũ → U be the normalization morphism
corresponding to the inclusion A(U) ↪→ A(Ũ). Then ν is surjective.

This will involve Nakayama’s Famous Lemma.

Coming next: Finishing this proof; using Nakayama’s lemma. Then on to the
last topic of the semester: Invertible sheaves, line bundles. The canonical sheaf,
genus. Riemann-Roch Theorem: statement (no proof) and applications. Riemann-
Hurwitz.
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