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No class Thursday. Problem sets back at end. New problem set handed out.

1. Extending rational maps of nonsingular curves

1.1. More on integral closure in a field extension. I neglected to say a few
small facts about integral closure in a field extension. Recall:

Let A be an integral domain, which is a finitely generated algebra over k. Let K
be the quotient field of A, and let L be a finite algebraic extensions of K. Then the
integral closure of A in L consists of those elements of L satisfying xn+an−1x

n−1 +
· · ·+ a0 = 0 where ai ∈ A.

For example, the integral closure of A in its quotient field is the integral closure
of A.

It isn’t hard to show that integral closure A′ of A in L must be integrally closed,
i.e. the only solutions to such equations in L, where now the ai are supposed to lie
in A′, lie in A′.

Remark 1. R ⊂ S. Indeed, if r ∈ R, then it is a solution to the equation
x− r = 0.

Remark 2. The quotient field of A′ is L. This follows from:

Remark 3. If l ∈ L, then some multiple of it al (a ∈ A) is in A′. Proof. l
satisfies some ln + an−1l

n−1 + · · ·+ a0 = 0 for some ai ∈ K. Clear denominators,
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to write bnln + bn−1l
n−1 + · · ·+ b0 = 0 for some bi ∈ A. Then rewrite as (bnl)n +

bn−1bn(bnl)n−1 + · · ·+ b0b
n
n = 0. Thus bnl ∈ A′.

Remark 4. A reminder: A theorem I proved (using a couple of theorems I didn’t
prove), that we’ll use today:

Theorem. Take any Dedekind domain R that is a finitely generated algebra
over k, and let K be its field of fractions. Let L be a finite extension of K, and let
S be the integral closure of R in L. Then S is also a Dedekind domain, and is also
a finitely generated algebra over k.

1.2. Last time. Goal: Rational maps of nonsingular curves to projective varieties
can be extended to morphisms.

We discussed reasons why you can’t extend P1 99K A1, A2 99K P1.

Lemma. Let Y be a prevariety, and suppose P and Q are two points contained
in a single affine open U , and OY,Q ⊂ OY,P (as subrings of k(Y )). Then P = Q.

Key Technical Theorem (tricky). Let K be a finitely generated function
field of dimension one over k, and let x ∈ K. Then the set of discrete valuations of
K/k where v(x) < 0 is finite.

Warning: We’re going to get a lot of mileage out of the proof this, so pay atten-
tion to it, even though it will get heavy!

Here’s the geometric idea. Suppose K = k(t), the function field of P1. x ∈ K, so
x is a rational function of P1. Then the discrete valuations of K/k correspond to
points of P1 (exercise). The points/valuations vp where vp(x) < 0 are precisely the
points where x has poles; there are only a finite number of such points/valuations.

1.3. New material starts here. The proof will use the following:

Commutative algebra lemma. Suppose (S, n), (R,m) are two discrete valu-
ation rings of K/k, with S ⊂ R and n = S ∩m. Then S = R and n = m: they are
the same valuation ring.

(Compare to lemma just above.)

Proof. The two valuation rings give two discrete valuations vn and vm on K (so
S are the elements s of K with vn(s) ≥ 0, and R are the elements r of K with
vm(r) ≥ 0; we can recover the DVRs from the valuations.) Let u be a uniformizaer
of S (i.e. a generator of n), so vn(u) = 1 (and vm(u) > 0). Suppose r ∈ K, r /∈ S;
we’ll see that r /∈ R. As v /∈ S, vn(r) < 0, so r = u−nw with n > 0, vn(w) = 0, so
w ∈ S\n. Then w ∈ R\m, hence vm(w) = 0. But then vm(r) = −nvm(u)+vm(w) <
0, so r /∈ R as desired.
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Proof of “Key Technical Theorem”. i) The set-up. Note that if (R,mR) is a
valuation ring of K/k, then if x is not in R then it has negative valuation, so
y := 1/x, having positive valuation, is in mR. So we have to show that if y ∈ K,
y 6= 0, then the set of discrete valuations where y ∈ mR is a finite set. (Geometric
picture: show that a non-zero rational function on P1 has only a finite number of
zeroes.) If y ∈ k, then v(y) = 0 for all discrete valuations of K/k, so we can assume
y is not in k. (Geometric picture: can ignore constant functions.)

ii) Part of proof involving y. Consider k[y], the subring of K generated by y.
Since k is algebraically closed, y is transcendental over k, so k[y] is a polynomial
ring, i.e. y doesn’t satisfy any relations. Hence K is a finite field extension of k(y).
Let B be the integral closure of k[y] in K. Then by an earlier theorem proved last
day (and repeated as Remark 4 above), B is a Dedekind domain, and is also a
finitely generated algebra over k.

Hence B corresponds to an affine variety Y , which maps to A1 with coordinate
y; draw it! It is dimension 1 and nonsingular. Also, y is a function on Y .

iii) Now bring in the valuation. If y is contained in a discrete valuation ring
(R,mR) of K/k, then k[y] ⊂ R, and since R is integrally closed in K, we have
B ⊂ R as well. Let n = mR ∩ B. Then n is a maximal ideal of B. (Hence it
corresponds to a point of Y mapping to zero.) Also, Bn ⊂ R. And also nBn ⊂ mR.
Now Bn is also a DVR of K/k, so Bn = R by the Commutative Algebra Lemma.

Hence if y is in mR, then y is in n. To say that y is in n, means that y, as a
regular function on Y , vanishes at the corresponding point. As non-zero functions
vanish at only finitely many points (closed zero-dimensional subsets are only finite
numbers of points), we’re done.

From the proof, we can also extract another result, which we can use later.

Corollary. Let v be a discrete valuation of the field K/k, a finitely-genenerated
function field of transcendence degree 1. Then there is a nonsingular curve C, with
function field K, and a point p ∈ C, such that v is the valuation induced by p.

Proof. Take any y ∈ K of positive valuation. Then construct Y as in the previous
proof.

Corollary. Given y ∈ K \ k, all discrete valuations of K/k such that v(y) ≥ 0
(i.e. that y is in the corresponding DVR) are accounted for by points on the curve
Y above.

(Remark: just proof above.)

The only “missing” valuations are those for which v(y) < 0, so by the Key
Technical Theorem, we’re only missing a finite number.
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Proof. Let (R,m) be the corresponding DVR. As vm(y) ≥ 0, y ∈ R. Then let a ∈ k
be the residue of y modulo m, i.e. y ≡ a (mod m). If a = 0, then the proof above
shows that (R,m) is the local ring of one of the points of Y mapping to 0, so we’re
done.

If a 6= 0, then replace y with y − a, and we’re done again.

This confused them.

1.4. Extension of morphisms to projective varieties, over nonsingular
points of curves. Now we’re ready to prove the main result of this section.

Theorem. Let X be a nonsingular curve, p a point of X, Y a projective variety,
and φ : X − p→ Y a morphism. Then there exists a unique morphism φ : X → Y
extending φ.

By separatedness, as Y is a variety, we have uniqueness; all that is necessary is
existence.

Last day, we discussed an example of a map from P1 to Pn: [x; y] 7→ [x3;x2y;xy2]
is defined away from [0; 1]; it’s clear how to extend. You divide by x. We’ll carry
this example along as we do the proof.

Hence this is l’Hopital’s rule in a vague sense.

Proof. It is sufficient to show that f extends to a morphism of X into Pn (with
coordinates x0, . . . , xn. Let U be the open set where all xi are non-zero. By
changing coordinates if necessary, assume f(X − p) meets U .

For each i, j, xi/xj is a regular function on U ; pulling back by f , we have regular
function fij on an open subset of X, which we view as a rational function on X, so
fij is in k(X).

Let v be the valuation associated with p. Let ri = v(fi0) for i = 0, 1, . . . , n.
Then v(fij) = ri − rj . Choose rk minimal, so v(fik) ≥ 0.

Consider the map of sets φ : X → Pn, given by φ is the same as φ on X− p, and
φ(p) = (f0k(p); . . . ; fnk(p)) (observe that not all coordinates are 0). I claim this is
a morphism. To show this, I need only show an affine neighbourhood Xaff of X
that maps pointwise to an affine U of Pn, such that the pullback of every regular
function on U is a regular function on Xaff .

Let U = Uk be the open set where xk 6= 0 (so φ(p) ∈ Uk, since fkk(p) = 1). The
coordinate ring of the affine Uk is k[x0/xk, . . . , x̂k/xk, . . . , xn/xk]. These functions
pull back to f0k, . . . , fnk which are regular at p by construction. Let Xaff be any
affine neighbourhood of p where the rational functions fik are defined.
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So we’re done.

As consequences, we will get (next day):

Theorem. Every nonsingular separated curve C is quasiprojective.

Corollary. Hence every nonsingular separated curve is birational to a projective
curve.

Proposition. Let C1 and C2 be two separated nonsingular curves, and let
α : C1 99K C2 be a birational map between them. Then they can be glued together
via α, i.e. there is another nonsingular curvve C = U1 ∪U2, with Ci isomorphic to
Ui, and the birational map U1 99K U2 induced by α.

Proposition. If two nonsingular projective curves C1 and C2 are birational,
then they are isomorphic.

Coming up: We’ll discuss these, and begin talking about why finitely-generated
fields of transcendence dimension 1 correspond to nonsingular projective curves
(over k). started just before the introduction
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