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No class Thursday. Problem sets back at end. New problem set handed out.

1. EXTENDING RATIONAL MAPS OF NONSINGULAR CURVES

1.1. More on integral closure in a field extension. I neglected to say a few
small facts about integral closure in a field extension. Recall:

Let A be an integral domain, which is a finitely generated algebra over k. Let K
be the quotient field of A, and let L be a finite algebraic extensions of K. Then the
integral closure of A in L consists of those elements of L satisfying " +a,_12" ! +
-+« 4+ ag = 0 where a; € A.

For example, the integral closure of A in its quotient field is the integral closure

of A.

It isn’t hard to show that integral closure A’ of A in L must be integrally closed,
i.e. the only solutions to such equations in L, where now the a; are supposed to lie
in A, liein A'.

Remark 1. R C S. Indeed, if r € R, then it is a solution to the equation
z—r=0.

Remark 2. The quotient field of A’ is L. This follows from:

Remark 8. If | € L, then some multiple of it al (a € A) is in A’. Proof. 1
satisfies some {"™ + ap_I" "1 4+ -+ ag = 0 for some a; € K. Clear denominators,
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to write b,l™ + by, 11"t 4 -+ 4 by = 0 for some b; € A. Then rewrite as (b,1)™ +
b 1bn(bpl)" "t + - 4+ b = 0. Thus b,l € A’. O

Remark 4. A reminder: A theorem I proved (using a couple of theorems I didn’t
prove), that we’ll use today:

Theorem. Take any Dedekind domain R that is a finitely generated algebra
over k, and let K be its field of fractions. Let L be a finite extension of K, and let
S be the integral closure of R in L. Then S is also a Dedekind domain, and is also
a finitely generated algebra over k.

1.2. Last time. Goal: Rational maps of nonsingular curves to projective varieties
can be extended to morphisms.

We discussed reasons why you can’t extend P! —-» Al A% ——» PL,

Lemma. Let Y be a prevariety, and suppose P and @ are two points contained
in a single affine open U, and Oy, C Oy,p (as subrings of k(Y")). Then P = Q.

Key Technical Theorem (tricky). Let K be a finitely generated function
field of dimension one over k, and let x € K. Then the set of discrete valuations of
K /k where v(x) < 0 is finite.

Warning: We’re going to get a lot of mileage out of the proof this, so pay atten-
tion to it, even though it will get heavy!

Here’s the geometric idea. Suppose K = k(t), the function field of P!. z € K, so
7 is a rational function of P'. Then the discrete valuations of K/k correspond to
points of P! (exercise). The points/valuations v, where v,(z) < 0 are precisely the
points where = has poles; there are only a finite number of such points/valuations.

1.3. New material starts here. The proof will use the following:

Commutative algebra lemma. Suppose (S,n), (R, m) are two discrete valu-
ation rings of K/k, with S C R and n =S Nm. Then S = R and n = m: they are
the same valuation ring.

(Compare to lemma just above.)

Proof. The two valuation rings give two discrete valuations v, and vy, on K (so
S are the elements s of K with v,(s) > 0, and R are the elements r of K with
vm (1) > 0; we can recover the DVRs from the valuations.) Let u be a uniformizaer
of S (i.e. a generator of n), so vn(u) =1 (and vy (u) > 0). Suppose r € K, r ¢ S,
we'll see that r ¢ R. Asv ¢ S, va(r) <0, so r =u "w with n > 0, vy(w) = 0, so
w € S\n. Then w € R\m, hence vy, (w) = 0. But then vy (1) = —noy (u) 4o (w) <
0, sor ¢ R as desired. O
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Proof of “Key Technical Theorem”. i) The set-up. Note that if (R,mpg) is a
valuation ring of K/k, then if x is not in R then it has negative valuation, so
y := 1/z, having positive valuation, is in mg. So we have to show that if y € K,
y # 0, then the set of discrete valuations where y € mp is a finite set. (Geometric
picture: show that a non-zero rational function on P! has only a finite number of
zeroes.) If y € k, then v(y) = 0 for all discrete valuations of K/k, so we can assume
y is not in k. (Geometric picture: can ignore constant functions.)

i) Part of proof involving y. Consider k[y], the subring of K generated by y.
Since k is algebraically closed, y is transcendental over k, so k[y] is a polynomial
ring, i.e. y doesn’t satisfy any relations. Hence K is a finite field extension of k(y).
Let B be the integral closure of k[y] in K. Then by an earlier theorem proved last
day (and repeated as Remark 4 above), B is a Dedekind domain, and is also a
finitely generated algebra over k.

Hence B corresponds to an affine variety Y, which maps to A! with coordinate
y; draw it! It is dimension 1 and nonsingular. Also, y is a function on Y.

iii) Now bring in the valuation. If y is contained in a discrete valuation ring
(R,mp) of K/k, then k[y] C R, and since R is integrally closed in K, we have
B C R as well. Let n = mp N B. Then n is a maximal ideal of B. (Hence it
corresponds to a point of Y mapping to zero.) Also, B, C R. And also nB, C mpg.
Now B, is also a DVR of K /E, so B, = R by the Commutative Algebra Lemma.

Hence if y is in mpg, then y is in n. To say that y is in n, means that y, as a
regular function on Y, vanishes at the corresponding point. As non-zero functions
vanish at only finitely many points (closed zero-dimensional subsets are only finite
numbers of points), we’re done. O

From the proof, we can also extract another result, which we can use later.
Corollary. Let v be a discrete valuation of the field K/, a finitely-genenerated
function field of transcendence degree 1. Then there is a nonsingular curve C, with

function field K, and a point p € C, such that v is the valuation induced by p.

Proof. Take any y € K of positive valuation. Then construct Y as in the previous
proof. O

Corollary. Given y € K \ k, all discrete valuations of K/k such that v(y) > 0
(i.e. that y is in the corresponding DVR) are accounted for by points on the curve
Y above.

(Remark: just proof above.)

The only “missing” valuations are those for which v(y) < 0, so by the Key
Technical Theorem, we're only missing a finite number.



Proof. Let (R, m) be the corresponding DVR. As v (y) >0,y € R. Then let a € k
be the residue of y modulo m, i.e. y =a (mod m). If a = 0, then the proof above
shows that (R, m) is the local ring of one of the points of ¥ mapping to 0, so we’re
done.

If a # 0, then replace y with y — a, and we’re done again. O

This confused them.

1.4. Extension of morphisms to projective varieties, over nonsingular
points of curves. Now we’re ready to prove the main result of this section.

Theorem. Let X be a nonsingular curve, p a point of X, Y a projective variety,
and ¢ : X — p — Y a morphism. Then there exists a unique morphism ¢ : X — Y
extending ¢.

By separatedness, as Y is a variety, we have uniqueness; all that is necessary is
existence.

Last day, we discussed an example of a map from P! to P": [x;y] — [23; 2%y; 712
is defined away from [0;1]; it’s clear how to extend. You divide by xz. We'll carry
this example along as we do the proof.

Hence this is I’'Hopital’s rule in a vague sense.

Proof. Tt is sufficient to show that f extends to a morphism of X into P" (with
coordinates xg, ..., ©,. Let U be the open set where all x; are non-zero. By
changing coordinates if necessary, assume f(X — p) meets U.

For each i, j, ;/x; is a regular function on U; pulling back by f, we have regular
function f;; on an open subset of X, which we view as a rational function on X, so
fij is in k(X)

Let v be the valuation associated with p. Let r; = v(fy) for i = 0,1,...,n.
Then v(f;;) = r; —r;. Choose r, minimal, so v(f;z) > 0.

Consider the map of sets ¢ : X — P”, given by ¢ is the same as ¢ on X — p, and
&(p) = (for(P); - -; far(p)) (observe that not all coordinates are 0). I claim this is
a morphism. To show this, I need only show an affine neighbourhood X,g of X
that maps pointwise to an affine U of P, such that the pullback of every regular
function on U is a regular function on X,g-.

Let U = Uy, be the open set where x5, # 0 (so ¢(p) € Uy, since frr(p) = 1). The

coordinate ring of the affine Uy, is k[zo/k, . .., Tk/Tk, - - ., Tn/Tk). These functions
pull back to fok, ..., fnr Which are regular at p by construction. Let X,g be any

affine neighbourhood of p where the rational functions f;; are defined.
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So we're done. O

As consequences, we will get (next day):
Theorem. Every nonsingular separated curve C' is quasiprojective.

Corollary. Hence every nonsingular separated curve is birational to a projective
curve.

Proposition. Let C; and Cy be two separated nonsingular curves, and let
a: Cy --+ Cy be a birational map between them. Then they can be glued together
via «, i.e. there is another nonsingular curvve C' = U; U Us, with C; isomorphic to
U;, and the birational map U; --+ Us induced by «.

Proposition. If two nonsingular projective curves C; and Cy are birational,
then they are isomorphic.

Coming up: We’ll discuss these, and begin talking about why finitely-generated
fields of transcendence dimension 1 correspond to nonsingular projective curves
(over k). started just before the introduction

ot



