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Problem sets back. 2 points extra to everyone who did the last problem set,
because of the A1 issue. If you didn’t do problems 5 and 6 (on Hilbert polynomials),
come ask me about it.

Warning: a morphism of varieties that gives a bijection of points isn’t necessarily
an isomorphism. Example 1: the morphism from A1 to the cuspidal curve y2 = x3,
given by t 7→ (t2, t3). Example 2: Frobenius morphism from A1 to A1, over a field
of characteristic p, given by t 7→ tp.

1. Valuation rings (and non-singular points of curves)

Get rid of zero-valuation problem. Valuation examples: I should have
said that you have valuations over k.

Dimension 1 varieties, or curves, are particularly simple, and most of the rest of
the course will concentrate on them.

We saw that nonsingularity has to do with local rings, so we’ll discuss one-
dimensional local rings.

First we’ll recall some facts about discrete valuation rings and Dedekind domains.

Definition. Let K be a field. A discrete valuation of K is a map v : K\{0} → Z
such that for all x, y non-zero in K, we have: v(xy) = v(x) + v(y), v(x + y) ≥
min(v(x), v(y)). It is trivial if it is the 0-valuation. From now on, assume all
discrete valuations are non-trivial. Then the image of v is of the form Zn for
some non-zero n; by dividing by n, we may as well consider the image of v to
be all of Z from now on. Notice that the set R = {x ∈ K|v(x) ≥ 0} ∪ {0} is
a subring of K; call this the discrete valuation ring, or DVR, of K. The subset
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m = {x ∈ K|v(x) > 0} ∪ {0} is an ideal in R, and (R,m) is a local ring. A discrete
valuation ring is an integral domain which is the discrete valuation ring of some
valuation of its quotient field. If k is a subfield of K such that v(x) = 0 for all
x ∈ k \ {0}, then we say v is a discrete valuation of K/k, and R is a discrete
valuation ring of K/k.

Example. Let K = k(t), and for f ∈ K, let v(f) be the order of the zero of f at
t = 0 (negative if f has a pole). Check all properties. Notice that discrete valuation
ring of of v are those quotients of polynomials whose denominator doesn’t vanish
at 0, i.e. k[t](t). In geometric language, it is the stalk of the structure sheaf of A1

at the origin.

Similarly, k[t](t) is a discrete valuation ring: it is indeed an integral domain, and
it is the valuation ring of some valuation in its quotient field k(t).

Similarly, we could get other valuations by replacing 0 with any other element
of k. Have we found all the valuations? No:

Example. Let K = k(t) as before. For f ∈ K, write f in terms of u = 1/t, and
let v(f) be the order of zero of f at u = 0. Again, it is indeed a valuation, and
it has geometric meaning. (Ask them.) It corresponds to the point of P1 “at ∞”
(when looking at it with respect to the t-coordinate).

Roya pointed out that v(f(t)/g(t)) = deg g − deg f .

Exercise. These are all the non-trivial valuations of k(t) over k, the function
field of P1. They naturally correspond to the points of P1. Hint: if v is a valuation,
consider the possible values of v(t− a) be for all a ∈ k.

Example. Let K = Q. If f ∈ Q, let v(x) be the highest power of 2 dividing x,
so v(14) = 2, v(3) = 0, v(13/12) = −2. Check all properties. What’s the discrete
valuation ring? Those fractions with no 2’s in the denominators. Geometrically,
Q is the function field of SpecZ, and the valuations turn out to correspond to the
maximal prime ideals of Z, i.e. the “closed points” of SpecZ.

Remark. Every element x of a local ring R that isn’t in the maximal ideal m is
invertible. Reason: the ideal (x) is either all of R, or it isn’t. If it isn’t, then it is
contained in a maximal ideal — but there’s only one, and x isn’t contained in m.
Hence (x) = R, so 1 ∈ (x), so 1 = fx for some f ∈ R, i.e. x is invertible.

Another example. Consider the ring k[[t]] of power series in one variable over k.
It’s a discrete valuation ring, with valuation given by v(f) is the largest power of t
dividing f . Its quotient field is denoted k((t)); you can check that elements of the
quotient field are of the form t−ng, where n is some integer, and g ∈ k[[t]].

This example looks very much like the example k[t](t) ⊂ k(t) above. You can
make this precise by talking about completions.
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1.1. Completions. Suppose R is a ring, and m is a maximal ideal. (Think: R is
a DVR.) Then the completition R̂ is defined to be the inverse limit lim←nR/mn.

What this means: you can consider elements of R̂ to be elements (x1, x2, . . . ) ∈
R/m×R/m2 × . . . such that xi ≡ xj mod mj (if j > i).

Note that there is a homomorphism R→ R̂. Caution: This isn’t always injective!
But I think it is if R is a domain.

Example: completion of k[t] at (t) is k[[t]]. Let R = k[t], and m the maximal
ideal (t). The function 1/(1 − t) defined near t = 0 is (after some work): (1, 1 +
t, 1+ t+ t2, . . . ) ∈ R/m×R/m2× . . . in the completion. For convenience, we write
this as 1 + t+ t2 + . . . .

Example. What’s -1 in the 5-adics? In the power-series representation? What is
1/3 in the ring Z2?

More on completitions appears in class 17; that should have been introduced here.

1.2. A big result from commutative algebra. We’ll need an amazing result
from commutative algebra. The proof will come up in Commutative Algebra, but
as usual, you can treat it as a black box.

Theorem. Let (R,m) be a noetherian local domain of dimension one. Then the
following are equivalent.

(i) R is a discrete valuation ring;
(ii) R is integrally closed (I’ll speak about integral closures next day);
(iii) R is a regular local ring;
(iv) m is a principal ideal.

To get you used to these idea, let’s see what this gives us.

Now m is principal by (iv), so let x be a generator of m. (It is often called a
uniformizer.) Note that v(x) must be 1. Note that mn = (xn).

Next, mn = {r ∈ R|v(r) ≥ n}. You can see this by induction. This is true when
n = 0 and 1. Clearly mn = (xn) ⊂ {r ∈ R|v(r) ≥ n}, so take any r ∈ R such
that v(r) ≥ n. Then r ∈ m, so r is a multiple of x, so r = xs for some s. Then
v(s) ≥ n− 1, and by induction, s ∈ mn−1. Hence r ∈ mn.

Next, mn/mn+1 is a k-vector space of dimension 1: it is an R-module generated
by x, and m annihilates it, so it is a R/m-module generated by x, i.e. a k-vector
space generated by x. So its dimension is either 0 or 1. But xn gives a non-zero
element of mn/mn+1, so the dimension of this space must be 1.
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So here’s our picture: we have nested subsets mn of R, and the difference between
two adjacent ones is one-dimensional. You can see this in each of our examples.

The following lemma will let you know, partially, how to think about discrete
valuation rings that come up geometrically.

Lemma. If (R,m) is a discrete valuation ring over k, such that R/m ∼= k, and
there is an inclusion k ↪→ R such that the composition k → R → R/m ∼= k is an
isomorphism, then R̂ ∼= k[[t]].

Note: these hypotheses are satisfied by k[t](t), but not Zp.

Proof. Fix an element r ∈ R. I claim that for each n, there are unique elements
a0, . . . , an−1 such that

r ≡ a0 + a1x+ · · ·+ an−1x
n−1 (mod mn).

This is certainly true if n = 1, so we work by induction.

First we show existence. Suppose

r ≡ a0 + · · ·+ an−1x
n−1 (mod mn).

Call this polynomial f . Then r − f ∈ mn; hence r − f ≡ anx
n (mod mn+1) (for a

unique an). Hence

r ≡ a0 + a1x+ · · ·+ anx
n (mod mn+1).

Thus we have existence.

Now for uniqueness. If r ≡ b0+· · ·+bnxn (mod mn+1), then by reducing modulo
mn, we see that b0 = a0, . . . , bn−1 = an−1. Finally, bn = an by the comment in
the last paragraph.

Thus we’ve shown that r can be written in this unique way. Then its image in
the completion can be written as

r̂ = (a0, a0 + a1x, a0 + a1x+ a2x
2, . . . )

for uniquely chosen ai ∈ k. At this point, it’s clear what the isomorphism with the
power series ring k[[t]], whose elements can be uniquely written as

(a0, a0 + a1t, a0 + a1t+ a2t
2, . . . ).

We just need to check that the ring structures are the same, i.e. when you add r
and s in our ring R, you end up adding the corresponding power series, and the
same for multiplication. Addition is clear, and for multiplication: notice that if
ŝ = (b0, . . . ), then

r̂s = (a0b0, a0b0 + (a1b0 + a0b1)x, . . . )

which is the same multiplication rule as for power series.

In conclusion any one of these nice local rings you can informally imagine as
power series, although you lose some information in doing so.
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Fact. Completion of dimension n regular local ring with this property (that the
residue field is contained in ring) is isomorphic to k[[t1, . . . , tn]].

Mild generalization to the p-adics: You don’t need k to lie in R for this to work
(or indeed for k to be algebraically closed). All you really need is a map σ : k → R
— not a ring map or anything, just a map of sets — such that the composition
k → R→ R/m is an isomorphism. (Explain more.)

Example. Let p be a nonsingular point on a curve Y . Then OY,p is a regular
local ring of dimension 1. Hence it is a valuation of k(Y )/k. What’s the valuation?
Essentially, it’s the same thing we say in the case of k[t]. The maximal ideal m is
the ideal of functions vanishing at p, and m is generated by a single element (often
called the uniformizer). In a way that can soon be made precise, given a regular
function on a curve, its valuation is the order of vanishing at the point p.

If you’re willing to think analytically, over the complex numbers, you can already
see it: there are classical neighbourhoods of nonsingular points look just like open
sets in C, and functions there can have zeroes or poles at p. And if you’re thinking
analytically, you’ll want to think in terms of power series, which is precisely what
the above Lemma allows you to do.

How to think of the map R → R̂ or Rm → R̂. This is expanding out a locally
defined function as a power series. Any function in a Zariski neighbourhood is an
element of the localization. Any element of the localization is an element of the
completition.

Smaller and smaller neighbourhoods of a point p in a variety V : Zariski-neighbourhoods
(denominators are powers of some f). Local ring (denominators are functions not
vanishing at p. (Etale neighbourhoods.) Analytic neighbourhoods (convergent
power series). Formal neighbourhoods (formal power series).

For example, all nonsingular varieties (of dimension n) look the same formally.

Coming next: Integral closure and Dedekind domains. Definition of integral
closure. Two examples: Z and k[t]. Integral closure is a “local property”. Definition
of Dedekind domain.
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