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Scheme aside: All varieties can be considered as schemes.

1. Non-singularity

Last day:

Definition. Let Y be a dimension d affine variety in An (with coordinates x1,
. . . , xn. Suppose Y is defined by equations f1, . . . , ft (i.e. I(Y ) is generated by
the fi; recall that any ideal in k[x1, . . . , xn] is finitely generated!). Warning: We
know that t is at least the codimension n−d, but they two aren’t necessarily equal!
Then Y ⊂ An is nonsingular at a point p ∈ Y if the rank of the Jacobian matrix
(∂fi/∂xj(p))i,j is n− d.

Remark. Derivatives are just “formal”, i.e. dxn/dx = nxn−1, even in character-
istic p; there are no limits here.

1.1. A more algebraic definition of nonsingularity; hence nonsingularity
is intrinsic. Algebraic Definition. Let A be a noetherian local ring with max-
imal ideal m and algebraically residue field k. Then A is a regular local ring if
dimk m/m2 = dimA. I should have made clear that the dimension here is just the
dimension of m/m2 as a k-vector space.

The reason this definition will be relevant is:
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Theorem (*). Let Y ⊂ An be an affine variety. Let p ∈ Y be a point. Then Y
is nonsingular at p if and only if the local ring OY,p is a regular local ring. Leave
on board until proof is complete.

I promised you a proof, and I’ll delay the proof for a few minutes after I sum-
marize last day some more.

Hence the concept of nonsingularity is intrinsic, so we can make the following
definitions:

Definition. Let Y be any prevariety. Then Y is nonsingular at a point p ∈ Y
if the local ring OY,p is a regular local ring; otherwise it is singular at p. Y is
nonsingular if it is nonsingular at any point. Otherwise it is singular.

Remark. To check that something is singular, it is still easier to look at an affine
cover and use the Jacobian definition.

Theorem (**). Let A be the localization of k[x1, . . . , xn] at the origin, so A has
dimension n. Then m/m2 is naturally isomorphic to the vector space (α1, . . . , αn) ∈
k
n

(call it V ), where points of the vector space can be associated with linear forms
α1x1 + . . . αn + xn. Hence A is a regular local ring.

Remark. m/m2 is clearly basis-free.

Recap of proof of Theorem (**): The proof identified the vector space V of
“hyperplanes through the origin” α1x1 + · · ·+αnxn = 0 with m/m2. The map from
left to right is easy; the map from right to left is given by

f ∈ A 7→ (∂f/∂x1(0, ..., 0), . . . , ∂f/∂xn(0, ..., 0))

(where f vanishes at the origin). We checked that this is well-defined, i.e. if f ∈ m2,
then this is the 0-map; this was the chain rule.

Proof of Theorem (*). You’ll notice the similarity to the above proof.

Let p be a point (a1, . . . , an) in An, and let a = (x1 − a1, . . . , xn − an) be the
maximal ideal corresponding to p in A = k[x1, . . . , xn]. We define a linear map
θ : A→ k

n
by

θ(f) =
(
∂f

∂x1
(p), . . . ,

∂f

∂xn
(p)
)

for any f ∈ A. Notice that this is exactly the same map as in the proof about An.
(You should really think of the k

n
as being the space of linear forms vanishing at

the origin.) As we said before, θ induces an isomorphism θ′ : a/a2 → k
n
.

Now let’s bring Y into the picture. Let b be the ideal of Y in A, and let
f1, . . . , ft be a set of generators of b. Then the rank of the Jacobian matrix
J = (∂fi/∂xj)(p)i,j is just the dimension of θ(b) as a subspace of k

n
. Using the

isomorphism θ′, this is the same as the dimension of the subspace (b + a2)/(a2) of
a/a2.
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(You should check: R is a ring, m is a maximal ideal, Rm localization. Then
R/m ∼= Rm/mRm

∼= k, R/m2 ∼= Rm/m
2Rm, and m/m2 ∼= mRm/m

2Rm. Exercise on
Problem Set 8.)

Now the local ring OY,p of p on Y is obtained by modding out by b and localizing
at the maximal ideal a. Thus if m is the maximal ideal of OY,p, then m/m2 ∼=
a/(b + a2). Counting dimensions of vector spaces, dimm/m2 + rkJ = n.

Now the dimension of the local ring OY,p (as a ring) is the dimension of Y (as a
variety), so OY,p is regular if and only if dimm/m2 = r. But this is equivalent to
rkJ = n− r, which says that p is a nonsingular point of Y .

Important observation from Theorem (**). Notice that the elements of m/m2

are naturally identified with linear functions on An. Now An can canonically be
identified with the tangent space of An at the origin. So we’ve made an identification
of m/m2 with the cotangent space of An at the origin.

Based on this observation we made the following definition:

Definition. Let (A,m) be the local ring of a point p ∈ Y . Call m/m2 the Zariski
co-tangent space to Y at p, and (m/m2)∗ the Zariski tangent space.

Exercise. Suppose f : X → Y is a morphism of varieties, with f(p) = q. Show
that there are natural morphisms f∗ : mq/m

2
q → mp/m

2
p (the induced map on

cotangent spaces) and f∗ : (mp/m
2
p)∗ → (mq/m

2
q)∗ (the induced map on tangent

spaces). (If you imagine what is happening on the level of tangent spaces and
cotangent spaces of smooth manifolds, this is quite reasonable.) If φ is the vertical
projection of the parabola x = y2 onto the x-axis, show that the induced map of
tangent spaces at the origin is the zero map.

1.2. Examples. It isn’t hard to check for singular points, especially on hypersur-
faces in An. For example, consider the plane curve y2 = x3 − x2. (Do it.)

Exercise. Hartshorne Ex. I.5.1. Find the singular points, and sketch the follow-
ing plane curves: (a) x2 = x4 + y4, (b) xy = x6 + y6, (c) x3 = y2 + x4 + y4, (d)
x2y + xy2 = x4 + y4. Hartshorne Ex. I.5.2, some two-dimensional examples.

Hypersurfaces in projective space are also easy, because there is a trick.

Exercise. Suppose the characteristic of k is 0. Suppose a hypersurface Y ⊂ Pn is
given by f(x0, . . . , xn) = 0. Show that the locus of points p ∈ Pn where ∂f/∂xi(p) =
0 for all i are precisely the singular points of Y . (In particular, if ∂f/∂xi(p) = 0
for all i, then f(p) = 0, i.e. p ∈ Y ! To see why, calculate

∑
i ∂f/∂xi.)

As an example, consider y2z − x3 = 0. The only singular point is (x; y; z) =
(0; 0; 1).
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Scheme examples.

Exercise. (a) Show that both SpecZ and SpecZ[i] are nonsingular curves. (b)
Let m = (1 + i) in Z[i]. Then under the map f : SpecZ[i]→ Z, f(m) = (2). Check
that the map on cotangent spaces (or equivalently, that the dual map on tangent
spaces) is the zero-map. For all other primes of Z[i], calculate the map on cotangent
spaces.

1.3. The singular points form a closed subset. Theorem. Let Y be a pre-
variety. Then the set of singular points SingY is a closed subset of Y .

In the proof, we’ll use the following (which will come up in the Commutative
Algebra course).

Commutative Algebra Fact. If A is a noetherian local ring with maximal
ideal m and residue field k, then dimk m/m2 ≥ dimA.

Remark. It is also true that Sing Y 6= Y , but I won’t prove this fact.

Proof of Theorem. First step: reduce to the affine case. It suffices to show that
for some open covering Y = ∪Yi of Y , that Sing Yi is closed for each i. So assume
that Y is affine.

By the above C.A. fact, we know that the rank of the Jacobian matrix is at
most n− r, so the set of singular points is the set of points where the rank is less
than n − r. Thus Sing Y is the set defined by the ideal I(Y ) together with all
determinants of (n − r) × (n − r) submatrices of (∂fi/∂xj)i,j , which is a closed
set.

2. Curves: Valuation rings and nonsingular points, take 1

Dimension 1 varieties, or curves, are particularly simple, and most of the rest of
the course will concentrate on them.

We saw that nonsingularity has to do with local rings, so we’ll discuss one-
dimensional local rings.

First we’ll recall some facts about discrete valuation rings and Dedekind domains.

Definition. Let K be a field. A discrete valuation of K is a map v : K \
{0} → Z such that for all x, y non-zero in K, we have: v(xy) = v(x) + v(y),
v(x + y) ≥ min(v(x), v(y)). Notice that the set R = {x ∈ K|v(x) ≥ 0} ∪ {0} is
a subring of K; call this the discrete valuation ring, or DVR, of K. The subset
m = {x ∈ K|v(x) > 0} ∪ {0} is an ideal in R, and (R,m) is a local ring. A discrete
valuation ring is an integral domain which is the discrete valuation ring of some
valuation of its quotient field. If k is a subfield of K such that v(x) = 0 for all
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x ∈ k \ {0}, then we say v is a discrete valuation of K/k, and R is a discrete
valuation ring of K/k.

I’ll need to patch this to prevent pathologies such as the “zero valuation”. More
on this next day.

Example. Let K = k(t), and for f ∈ K, let v(f) be the order of the zero of f at
t = 0 (negative if f has a pole). Check all properties. Notice that discrete valuation
ring of of v are those quotients of polynomials whose denominator doesn’t vanish
at 0, i.e. k[t](t). In geometric language, it is the stalk of the structure sheaf of A1

at the origin.

Also, k[t](t) is a discrete valuation ring: it is indeed an integral domain, and it
is the valuation ring of some valuation in its quotient field k(t).

Similarly, we could get other valuations by replacing 0 with any other element
of k. Have we found all the valuations? No:

Example. Let K = k(t) as before. For f ∈ K, write f in terms of u = 1/t, and
let v(f) be the order of zero of f at u = 0. Again, it is indeed a valuation, and
it has geometric meaning. (Ask them.) It corresponds to the point of P1 “at ∞”
(when looking at it with respect to the t-coordinate).

Fact (that we’ll later prove). These are all the valuations of k(t), the function
field of P1. They naturally correspond to the points of P1.

Example. Let K = Q. (Ask for valuations.) If f ∈ Q, let v(x) be the highest
power of 2 dividing x, so v(14) = 2, v(3) = 0, v(13/12) = −2. Check all properties.
What’s the discrete valuation ring? Those fractions with no 2’s in the denominators.
Geometrically, Q is the function field of SpecZ, and the valuations turn out to
correspond to the maximal prime ideals of Z, i.e. the “closed points” of SpecZ.

Coming soon. Describing discrete valuation rings in many ways. Integral
closure. Dedekind domains.
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