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Hand in problem sets. Problem set policy: How does this sound? 11 or 12 sets
due, depending on Thanksgiving. Count best 8. If last 4 are great, then you’ll do
fine, but I’d strongly suggest you don’t rely on that.

(Note added later: Where I say “finite”, I might want to often say “generically
finite” instead.)

1. Rational maps

We can reinterpret the definition of separatedness as follows. Suppose I’m think-
ing of a morphism f : Y → X, where X is a variety. And suppose I tell you what
the morphism is on a non-empty open set U ⊂ Y , i.e. I tell you f |U : U → X.
Then there is only one way for you to recover the “full” morphism f . Because if you
have two different morphisms f1 and f2 extending f , then you have two morphisms
f1, f2 : Y → X which agree on a dense open set (the set U ; recall that dense means
that the closure of U is Y ), and agree on a closed set (as X is separated). Hence
they have to agree everywhere.

As an example, in an earlier problem set, I defined a map from the curve x2+y2 =
z2 in P2, minus a point, to P1, and asked you to extend it. As P1 is a variety, I
didn’t have to worry about different people extending it in different ways.

Morphisms from open sets come up a lot, as do questions about extending them,
so there is common terminology that is used.

This leads to a natural question: when can a morphism on an open set be
extended? The answer, as we shall see, is not always (we’ll see soon), but always
when the source Y is a smooth curve (which we’ll eventually define).
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Definition. A rational map of prevarieties Y → X is the data of a map f : U →
X (where U is a non-empty hence dense open set of Y ) modulo the equivalence
relation f1 : U1 → X is equivalent to f2 : U2 → X if there is a smaller non-empty
open set W ⊂ U1 ∩ U2 where f1 and f2 agree on W . A rational map is written
f : Y 99K X.

Remark. When the target X is a variety, we can take W = U1 ∩ U2; because
if f1 and f2 (considered as morphisms from U1 ∩ U2 to X) agree on a dense open
set W of U1 ∩ U2, and they both agree on the closure of W in U1 ∩ U2, i.e. all of
U1 ∩ U2.

Remark. Note that the elements of the function field correspond to rational maps
to A1.

Example of sloppy notation. Consider the rational map A2 99K A1, where
A2 has coordinates x, y and A1 has coordinates t, given by t = x/y, or if you
prefer, (x, y) 7→ x/y = t. You’ll have some natural questions: what is the open set
U ⊂ Y ? The obvious answer is D(y), where y isn’t zero. You clearly can’t extend
it further. And also, because the target A1 is separated, there is no question what
the morphism D(y)→ A1 is.

I might have been silly, and chosen D(yx), and you might have been silly and
chosen D(y(x− 1)), but we would have gotten together, and realized that we could
“glue together” our open sets. Also, by the separatedness property, which can be
thought of as a “uniqueness of extension” property, we know that our functions
agree on the overlap.

Observation from the example / Definition. Given a rational map Y 99K X
to a variety, there is a largest open set of definition U ⊂ Y . (This requires proof,
but isn’t hard.)

Example. Notice what goes wrong if X isn’t separated. Consider the rational
map A1 → X, where X is the line with the doubled origin, and the rational map is
given by A1 \ {0} → A1 \ {0} (by which I mean the obvious identity). Then it isn’t
clear how to extend this over 0.

Exercise. In all of the examples so far, if we have U ⊂ Y , and X a variety,
morphisms U → X have always been “extendable” to Y → X. Show that isn’t
always the case, by considering the case Y = A2, U = A2 \ {(0, 0)}, X = P1, and
U → X given by (x, y) 7→ (x; y). Show that there is no morphism Y → X extending
this.

Some more definitions.

Definition. A rational map of prevarieties f : Y 99K X is dominant if a repre-
sentative U → X has dense image. Examples: projection A2 → A1;

Proposition. A dominant rational map f : Y 99K X induces a morphism of
function fields k(X)→ k(Y ).
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Proof 1. Elements of k(X) are of the form (U, g ∈ OX(U)), i.e. functions defined
on an open set of X, subject to an equivalence relation (U, g ∈ OX(U)) ∼ (V, h ∈
OX(V )) if there is a smaller open in both U and V where g and h restrict to the
same function. Because the image of Y is dense, the preimage f−1(U) is non-
empty in Y , so we get a section (f−1(U), f∗g ∈ OY (f−1(U))). Then you just need
to check that if you pull back different representatives of an element of k(X), you
get representatives of the same element of k(Y ), which I’ll leave to you.

Here’s a different proof.

Proof 2. Note that you can compose dominant rational maps! Slightly more
generally, if you have Y 99K X 99K Z where Y 99K X is dominant, then there is a
composed map Y 99K Z; and if X 99K Z is also dominant, then the composition
is dominant too. Exercise: You can identify elements of k(Y ) with rational maps
from Y to A1. Hence given f : Y 99K X, given any element of k(X), i.e. a rational
map X 99K A1, you can compose them to get a rational map Y 99K P1, i.e. an
element of k(Y ).

It is also true that a morphism of function fields induces a dominant rational
map; the following example will help convince you of this, although a general proof
is of course required. See Hartshorne p. 26.

Exercise. Consider two varieties, P1 and A1. Let one of the affine covers of P1

have coordinate x. For A1, let the coordinate be t. Find a dominant rational map
f : P1 99K A1 corresponding to the morphism of function fields k(A1) = k(x) →
k(P1) = k(t) given by x→ t2.

Hence there is a correspondence between dominant rational maps Y 99K X and
maps of function fields in the opposite direction.

Definition. A rational map f : Y 99K X is a birational map if it has a repre-
sentative U → X that is an open immersion. If such a map exists, we say that Y
and X are birational. If X is birational to An, X is said to be rational.

Through the correspondence between dominant rational maps Y 99K X and
maps of function fields, one can show that a variety is rational if and only if its
function field is a pure transcendental extension of k, i.e. isomorphic to k(t1, . . . , tn).

Exercise. In an earlier problem set (4, question 3), you showed that the function
field of the hypersurface wx = yz in A4 was isomorphic to k(t1, t2, t3). By my
previous comments, you’d expect the hypersurface to be birational to A3. Prove
that it is.

Definition. If f : Y → X is dominant and induces a morphism k(X) → k(Y )
that is an inclusion and a finite degree d field extension, then we say that f is
a degree d rational map. (Possibly mention “generically finite” here; “degree d
rational map” might be bad notation.)
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Exercise (on next problem set). Let C be the projective variety in P2 defined by
x2 + y2 + z2 = 0. Find the degree of f : C → P1 given by [x; y; z]→ [x; y].

2. Dimension: a beginning

I’ll repeat the statement of most of these results on Tuesday.

A long time ago, I defined dimension. Here, again, is the definition. As always,
we’ll fix an algebraically closed field k.

Definition. If X is a prevariety defined over k, define dimX = tr.d.kk(X). If
Z is a closed subset of X, then Z has pure dimension r if each of its components
has dimension r. A variety of dimension 1 is a curve, a variety of dimension 2 is a
surface, a variety of dimension n is an n-fold.

If R is a domain over k, we might as well define tr.d.R to be the transcendence
degree of the quotient field.

Note immediately that if U is open in X, then dimU = dimX, and dimX =
0⇔ k(X) = k ⇔ X is a point.

We’ll need some facts from basic commutative algebra, which are covered for
example in Steve Kleiman’s Commutative Algebra course that some of you are in.
The rest of you can take these as black boxes.

First, a relatively straightforward algebraic fact (although I didn’t explain the
proof well in class).

Lemma. Let R be an integral domain over k, p ⊂ R a prime ideal. Then
tr.d.kR ≥ tr.d.kR/p, with equality iff P = {0} or both sides are infinite.

Proof. Say p 6= 0, and the the right side is n < ∞. If the statemetn is false,
then there are n elements x1, . . . , xn in R such that their imagse in R/P are
algebraically independent over k. Choose any non-zero q ∈ p. Then q and the xi
can’t be algebraically independent over k, so there is a polynomial f(z, y1, . . . , yn)
(with coefficients in k; this is what I flubbed in class) such that f(q, x1, . . . , xn) = 0;
R is a domain, so assume f is irreducible. Now f can’t be a multiple of z, as q
is non-zero; hence the reduction of f(0, x1, x2, . . . , xn) = 0 mod p (remember that
the co-efficients are in k, and aren’t affected by this) imposes a nontrivial algebraic
relation on the images of x1, . . . , xn in R/p. But we said they were algebraically
independent, yielding a contradiction.

This gives us something geometrically very quickly:

Proposition. If Y is a closed subprevariety of X, then dimY < dimX.
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(I’ll start dropping the “pre”s, but you can check that most things I say still
apply in the general prevariety case.)

Definition. Call the difference the codimension of Y in X.

So for example, if the codimension is 1, there are no other subvarieties in between
Y and X.

Proof. Choose an affine subset U of X that meets Y . Let R be its coordinate
ring, and p the prime ideal corresopnding to U ∩ Y . Now p 6= 0, as U ∩ Y 6= U .
Then k(X) is the quotient field of R, and k(Y ) is the quotient field of R/p, so we’re
done by the Lemma.

For our next result, we’ll need a result from commutative algebra:

Theorem (Krull’s Hauptidealsatz, or Principal Ideal Theorem). Sup-
pose R is a finitely generated integral domain over k, f ∈ R, p a minimal prime
of (f) (i.e. minimal among the prime ideals containing it). Then if f 6= 0,
tr.d.R/p = tr.d.R− 1. (Proof omitted.)

In geometrical situations, this is very reasonable. For example, let R = k[x, y, z],
and let f be some polynomial, say xy(x − y3 − z4). Notice that the vanishing
set V (f) = {f = 0} consists of two planes and this weird surface. The minimal
primes containing (f) correspond to maximum subvarieties of A3 contained in the
vanishing set of f , so there are 3 of them. Intuitively, it is reasonable that all 3
have dimension 2.

Coming soon: More on dimension. Non-singularity. Curves.
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