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Problem sets can be picked up at my office; I'll also bring them in on Thursday.

This class is an aside!

1. SCHEMES

Given what we know about prevarieties, we can define schemes, and morphisms
between them. Prevarieties can be interpreted as a special case (a very important
one).

Tune out if you want.

If you tune in, here’s what you should do. For the rest of the semester, try to
follow everything I say about prevarieties and varieties in the language of schemes.
In general, the proofs will “essentially” be the same. But watch out when I invoke
the Nullstellensatz, which doesn’t really generalize to schemes.

As references, I'd suggest (i) Mumford Ch. 2, (ii) Hartshorne II, and/or (iii)
Eisenbud-Harris. Mumford Ch. 2 is the closest reference; as a caution, when his
“prescheme” is my “scheme”, and his “scheme” is my “separated scheme” (not that
I'll discuss separatedness today); terminology has settled on the latter. (If you ever
read Grothendieck, you have to watch out for this as well. If you follow what I say
in the rest of the semester, but transpose everything to schemes, you’'ll essentially
do Ch. 2.
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If you’re thinking of roaring ahead, especially if you’ve seen some of this stuff be-
fore, or if you're thinking of going deeper into the field, you might prefer Hartshorne,
which is much denser and more complete.

And Eisenbud-Harris is at least worth browsing; I'm a little less familiar with the
beginning, so I can’t specifically recommend particular parts, but the perspective is
intuitive and geometric, and should link our perspective with Hartshorne’s emphasis
on theory.

Like prevarieties, schemes have points, topologies, and structure sheaves. Like
prevarieties, we start by defining affine schemes.

I don’t think you’ll find the definitions extremely hard.

1.1. Affine schemes. Given a ring R. (Special case: a nilpotent-free finitely
generated k-algebras which are integral domains, which will essentially give us affine
varieties. Nilpotent-free finitely generated k-algebras will essentially give us (affine)
algebraic sets.)

Examples: k[z,y], k[x]/22, Z. Prevarieties turn out to be affine schemes. More
precisely, to every prevariety over k one can associate a scheme in a natural way.
Most precisely, there is a functor from the category of prevarieties over k to the cat-
egory of schemes (explain), which expresses the first category as a full subcategory
of the second.

We define the topological space, denoted Spec R.
Points are the prime ideals of R, denote Spec R.

Ezercise. Describe the points of Spec R[z] (and compare to the points of C and
R).

In 3 examples: k[x,y], have old-fashioned points, corresponding to maximal
ideals (Nullstellensatz). Have prime ideals like (y — 3z2), which correspond in-
tuitively (and later, more precisely) to irreducible curves; this prime ideal is the
generic point (move later). And have the prime ideal (0).

Each point p has a residue field: R, is a local ring, with maximal ideal pR, and
residue field R, /pR,. This is perhaps better described as the fraction field
of the domain R/p; I didn’t say this in class.

We now define the topology on Spec R. The closed subsets are declared to be:
given an ideal I, primes containing the ideal; we can call this V(I), as we did
before with prevarieties, once we’'ve described the value of elements of R at points
of Spec R.



Ezample. If p is the point of Spec k[x, y] corresponding to the prime ideal (y —
3z?%), show that {p} is not a closed subset in the Zariski topology, i.e. p is not a
closed point. Hint: p is not a maximal ideal.

Can check that the closure of a point p is an irreducible subset X; those prime
ideals containing the ideal p. (Explain in case of k[z,y] and Z.) Conversely, each
irreducible closed subset corresponds to an ideal that you can check is prime. Hence
points correspond to irreducible subsets, and the point corresponding to X is called
the generic point of X.

Regular functions on an affine scheme.

Before getting down to brass tacks and defining the structure sheaf, it will be
easier to get explicit and talk about regular functions, because these are a little
weird.

In the case of prevarieties over k, a regular function was a function to k with nice
properties (locally quotient of polynomials). But with Spec, there is no particular
k. Functions take values in different fields at different points.

Examples: The function 24 on SpecZ. A function on Spec of the dual numbers.
The functions on Spec k[z, y].

The structure sheaf Ox .
Theorem. There exists a sheaf Ox such that Ox(D(f)) = Ry.
Proof omitted.

You can recover a sheaf from its sections on a base, so this lets you recover the
entire sheaf. Proof is in Hartshorne 1.2, and in Mumford II.

Stalk at a point if Rj.

Definition. An affine scheme is the data of a topological space X with a struc-
ture sheaf Oy, where X is homeomorphic to Spec R for some R, and (via this
homeomorphism) Ogpec r = Ox .

Ezample. The rational functions (z—2)/(x—1) on Spec k[x]; and 9/4 on Spec Z.
If an affine scheme is irreducible, then one can define its function field in the same
way as we did for prevarieties: k(Spec R) is the quotient field of R, or the same
construction with any affine open. Example: SpecZ, get Q. Note that this is the
residue field at the generic point; you can check that the function field is this in
general. Discuss both examples.

1.2. Schemes. A scheme is the data (X, Ox), where X is a topological space, and
Ox is a sheaf, such that X can be expressed as a union of Uy, where (Uy, Oy, ) is
an affine scheme.



(Note: we no longer require connectedness, or finiteness of the cover.)

1.3. Morphisms of affine schemes. Remember that affine varieties over k cor-
responded to rings over k with certain nice properties, and that morphisms between
them corresponded to ring maps (over k), except the arrows were reversed.

In the same way, we’ll define morphisms of affine schemes Spec.S — Spec R to
correspond to morphisms f*: R — S.

Explain where do points go: p in S goes to f*p. Check that it is prime. Do
example of projection corresponding to k[t] — k[z,y], t — x.

You can check that this is a continuous map: if I is an ideal, then f*I is also an
ideal.

Exercise. Suppose p is a prime ideal of some ring R. Then the ring morphism
R — R, corresponds to a map of schemes 7 : Spec R, — Spec R. Show that 7
is injective. Thus the points of R, form a subset of the points of R; which prime
ideals of R do they correspond to? (Feel free to quote results from commutative
algebra if you want.)

Ezercise. The ring morphism Z — Z[i] corresponds to a map of schemes f :
SpecZli] — SpecZ. Suppose (p) is a prime ideal of Z (warning: p could be 0).
Find the points of f~1(p) in SpecZ[i]. Compare the degree of the residue field
extensions with the number of points of f~1(p); one prime (not 0) will be a special
case.

Definition. If R — S is surjective, then the morphism Spec.S — SpecR is a
closed immersion of affine schemes.

Ezercise (not on PS). The induced map on sets is an inclusion, and a homeomor-
phism from Spec .S onto a closed subset of R (with the induced subspace topology).

Ezxample: Galois. Describe Galois for C over R, or more generally any Galois
extension.

1.4. Morphisms of general schemes. Recall that with prevarieties, we essen-
tially had two definitions. One was easier to use, involving covers, and the other
was more clearly well-defined. You’ll see that reflected here.

There is one new twist here. With prevarieties, morphisms were defined as maps
of points, and using maps of points, we could pull back functions. We will now
need to add that “pullback” to the data of the morphism.

Definition version 1. If (X, Ox) and (Y, Oy ) are two schemes, a morphism from
X to Y is a continuous map f: X — Y, plus a collection of homomorphisms (one
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for each open V in Y):
fo 1Oy (V) = Ox(f71(V))
satisfying:

a) commutes with restriction Whenever Vi C Va are two opens, the following
diagram commutes:
fo, 0 Ov(Va) — Ox(f7H(V2))
| res | res
o Oy(i) — Ox(f71(W))

b) If V C Y isopen and x € f~1(V), and a € Oy (V), then a(f(x)) = 0 implies
fi(a)(xz) = 0. (Remind what that means!)

One has to show that this definition, when X and Y are affine, is just the
definition given earlier.

There is a Definition version 2 involving covering X and Y with affines, which
one tends to use in practice. Again, a proof of equivalence is necessary.

Can define open immersions and closed immersions just as in the case of preva-
rieties.

1.5. Scheme-theoretic fibres of a morphism. (This is a special case of fibre-
products, but we haven’t discussed fibre-products yet in the category of prevari-
eties.)

We’ll do this by example. Do projection of parabola z = y? down to z-axis; look
where x # 0 is a closed point; z = 0; and generic point.

Ezercise: Play around with SpecZ[i] — SpecZ, corresponding to the inclusion
7 — Zli].
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