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1. PROOF OF KEY RESULT OF CHAPTER 2

Our goal now is to prove the key result of Chapter 2. It’s not impressive in and of itself,
but we used it to do a lot of other things.

Big Theorem 2.4. Let D and D ′ be Cartier divisors on an n-dimensional variety X. Then
D · [D ′] = D ′ · [D] in An−1(|D| ∩ |D ′|).

Last time, I discussed the case where D and D ′ have no common components, so |D| ∩
|D ′| is codimension 2. I didn’t prove it, but argued that it boils down to algebra. So the
real problem is what to do if D and D ′ have a common component.

The proof involves an extremely clever use of blowing up. Given the background of
the people in this class, I’ve had to make some decisions as to what arguments to include,
and I think I’d most like to give you some feeling for blowing up, and then to outline the
proof, rather than getting into the gory details.

1.1. Crash course in blowing up. Last time I began to talk about blowing up. Let X

be a scheme, and I ⊂ OX a sheaf of ideals on X. (Technical requirement automatically
satisfied in our situation: I should be a coherent sheaf, i.e. finitely generated.) Here is
the “universal property” definition of blowing-up. Then the blow-up of OX along I is a

morphism π : X̃ → X satisfying the following universal property. f−1IOX̃ (the “inverse
ideal sheaf”) is an invertible sheaf of ideals, i.e. an effective Cartier divisor, called the
exceptional divisor. (Alternatively: the scheme-theoretic pullback of the subscheme O/I

is a closed subscheme of X̃ which is (effective) Cartier, and this is called the exceptional
(Cartier) divisor E.) If f : Z → X is any morphism such that (f−1I)OZ is an invertible sheaf
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of ideals on Z (i.e. the pullback of O/I is an effective Cartier divisor), then there exists a

unique morphism g : Z → X̃ factoring f.
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In other words, if you have a morphism to X, which, when you pull back the ideal I, you

get an effective Cartier divisor, then this factors through X̃ → X.

As with all universal property statements, any two things satisfying the universal prop-
erty are canonically isomorphic.

Theorem: Blow-ups exist. The proof is by construction: show that Proj⊕d≥0I
d satisfies

the universal property. (See Hartshorne II.7, although his presentation is opposite.)

This construction shows that in fact π is projective (hence proper).

Example 1. The “typical” first example is the blow-up of the plane at a point, Bl0A
2.

Let X = {(p ∈ A
2, ` line in plane through p and 0 }. Note that (i) X is smooth (it is an A

1-
bundle = total space of a line bundle over the P

1 parametrizing the possible `), (ii) it has a
map π to A

2, (iii) π is an isomorphism away from p, and π−1p ∼= P
1. This P

1 is codimension
1 on a smooth space, hence an effective Cartier divisor. Fact: This satisfies the universal
property, hence is a blow-up. More generally, if you blow up a point on a smooth surface,
the same story happens. More generally still, if you blow up a smooth variety X along a
smooth subvariety V of codimension k, you get something that is isomorphic away from
V , and the preimage of V is a P

k−1-bundle over V ; it is the projectivized normal bundle
(i.e. points of the exceptional divisor E correspond to points of V along with a line in the
normal bundle to V in X.)

Weirder things can happen.

Example 2. If you blow up X along an effective Cartier divisor D, then nothing changes.
(X, D) → X already satisfies the universal property, tautologically.

Example 3. If you blow up X along itself, it disappears. For example, consider X = A
1,

and I = 0. Then there is no way to pullback this ideal sheaf and get a Cartier divisor,
which is codimension 1. Well, there is one way: via the morphism ∅ → X.

Example 3a. If you blow up X along one of its components, the component is blown
away (disappears), and the rest will be affected too (blown up along their intersection
with the old component).

Fun Example 4. Consider the cone, and blow it up along a line. The line is not a Cartier
divisor, as we showed last day. Hence the blow-up does something. Moreover, it does
nothing away from cone point. It turns out that this does indeed smooth out the cone! (It
does the same thing as blowing up the cone point by itself.)
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Remark. If X is a variety and Y 6= X, then X̃ → X is birational.

1.2. Back to the proof. D and D ′ are two Cartier divisors, cut out locally by a single

equation. Let D ∩ D ′ be the intersection scheme of D and D ′. Let π : X̃ → X be the
blow-up of X along D ∩ D ′, and let E = π−1(D ∩ D ′) be the exceptional divisor. The local
equations for π∗D and π∗D ′ are divisible by the local equation for E. Translation: D and
D ′ both lie in the ideal sheaf of D∩D ′, hence their pullback lies in the (Cartier) ideal sheaf
of E. Hence we can write equalities of Cartier divisors:

π∗D = E + C, π∗D ′ = E + C ′.

Let

ε(D, D ′) := max{ordV(D) ordV(D ′) : codim(V, X) = 1}.

Note that we know the result when ε = 0. We’re going to work by induction on ε.

Omitted Lemma. (a) C and C ′ are disjoint. (This is a special case of Hartshorne Exercise
II.7.12.) (b) If ε(D, D ′) > 0, then ε(C, E), ε(C ′, E) < ε(D, D ′).

Proof is omitted. But caution: something very interesting is going on here. I’ll give
three examples to show you this. First, suppose L1, L2, and L3 are three general lines in
P

2. If D = L1 and D ′ = L1+L3, then D∩D ′ = L1, and the blow-up does nothing. However,
E = L1, and then C = ∅ and C ′ = L3.

Next, suppose D = L1 + L2 and D ′ = L1 + L3. Then the trouble occurs because D ∩ D ′

includes L1. But the blow-up does something else; it blows up L2 ∩ L3. Let E23 be the
exceptional divisor of the blow-up of L2∩L3. Then the exceptional divisor of the blow-up
that we care about is L1 + E23. Then we get C is the proper transform of L2 and C ′ is the
proper transform of L3.

Finally, suppose D = 2L1+L2 and D ′ = L1 +L3. Then the scheme-theoretic intersection
D∩D ′ consists of the point L2∩L3, as well as L1, but also some additional “fuzz” where L1

meets L3! When you blow this up, what happens? (Well, I can tell you what happens in
this case — it’s the same as blowing up the two points L1∩L3 and L2∩L3 — but in general
this is quite complicated. I find it fascinating that we don’t ever have to know precisely
what happens to prove this lemma.)

Lemma. If D, D ′ are Cartier divisors on X, π : X̃ → X is a proper birational morphism

of varieties, π∗D = B ± C, π∗D = B ′ ± C ′, for Cartier divisors B, C, B ′, C ′ on X̃ with
|B| ∪ |C| ⊂ π−1(|D|), |B ′| ∪ |C ′| ⊂ π−1(|D ′|), and the theorem holds for each pair (B, B ′),

(B, C ′), (C, B ′), (C, C ′) on X̃, then the theorem holds for (D, D ′) on X.

3



Proof.

D · [D ′] = π∗((B ± C) · [B ′ ± C ′]) (projection formula, note π∗([B
′ ± C ′]) = [D ′])

= π∗(B · [B ′] ± B · [C ′] ± C · [B ′] ± C · [C ′]) (linearity)

= π∗(B
′ · [B] ± C ′ · B ± [B ′] · [C] ± C ′ · [C]) (hypothesis)

= π∗((B
′ ± C ′) · [B ± C]) (linearity)

= D ′ · [D] (projection formula)

�

Now let’s finish off the proof of the big theorem.

Case D and D ′ effective. We do this by induction on ε(D, D ′). The case ε = 0 is already
done (or more precisely, assumed!), as described earlier. If ε(D, D ′) > 0, then blow up
X along D ∩ D ′. Then the omitted lemma asserts that the theorem holds for (E, C ′) and
(C, E). The theorem also holds for (E, E) stupidly (clearly E · [E] = E · [E]), and also for
(C, C ′) for different stupid reasons (C · [C ′] = 0 = C ′ · [C]). So the above lemma completes
this proof.

Case D ′ effective. Let J be the ideal sheaf of denominators of D. (Translation: locally, on
an open set Spec A, is consists of those functions who, when multiplied by the generator
of D in R(X), turn it into a regular function.) Blow up X along J . Then π∗D = C−E where
E is the exceptional divisor, and C is an effective Cartier divisor. Then the previous case

covers (C, π∗D ′) and (E, π∗D ′) on X̃, so we’re done by the Lemma.

General case. Blow up X along the ideal sheaf of denominators of D ′. Then the pairs
(π∗D, C) and (π∗D, E) are covered by the previous case, so we’re done by the Lemma. �

2. VECTOR BUNDLES, AND SEGRE AND CHERN CLASSES

In the next chapter, we’re going to generalize the notion of the first Chern class of a
line bundle to the notion of an arbitrary Chern class on an arbitrary vector bundle. These
Chern classes will have similar properties to those you may have seen elsewhere, but we
get at them in a strangely backwards way, by defining Segre classes first. The generating
function for Segre classes will be inverse to that of Chern classes.

When you look through this chapter, you’ll note that only a very small portion of it
consists of propositions and theorems. The rest is full of useful examples.

2.1. Segre classes of vector bundles. Let E be a vector bundle of rank e+1 on an algebraic
scheme X. Let P = PE be the P

e-bundle of lines on E, and let p = pE : P → X be the
projection. Note that it is both flat and proper (explain).

The line bundle O(1). On P there is a canonically defined line bundle, called the tau-
tological bundle, denoted O(−1) or OE(−1). For any point of P, I’ll need to give you a
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one-dimensional vector space in some natural way. But each point of P corresponds to a
line of E.

Define O(1) as the dual of O(−1), and let O(n) be O(1)⊗n (with the obvious convention
if n is nonpositive).

Here’s a second “definition” of O(1). This is somewhat informal; making it precise
it a bit inefficient. Define the “projective completion” of E to be the projective bundle
“compactifying” E. As sets, it is E

∐
PE. It can also be described as P(E + 1) where 1 is

the trivial line bundle. (1 is slightly unfortunate notation; but I’m following Fulton.) It is
a P

e+1-bundle. On it, PE is an effective Cartier divisor, and this divisor class is OP(E+1)(1).
Restricting this divisor class to PE gives OPE(1). (Note that this is not automatically an
effective Cartier divisor class on PE.)

Remark. On P
e, there is a line bundle / invertible sheaf O(1), and indeed OE(1) restricts

to each of the fibers to give O(1). But this doesn’t determine the class OE(1). Indeed, if
I pull back any line bundle on X to P, I get a line bundle trivial on each of the fibers, so
OE(1) ⊗ L has this property for any invertible sheaf L.

Definition. Define homomorphisms

si(E)∩ : AkX → Ak−iX

by α 7→ p∗(c1(O(1))e+i ∩ p∗α). Note that this indeed maps from AkX → Ak−iX.

Warm-up proposition. (First Segre class of a line bundle) If E is a line bundle on X,
α ∈ A∗X, then

s1(E) ∩ α = −c1(E) ∩ α.

Proof. In this case PE = X, and OE(−1) = E so OE(1) = E∨, hence s1(E) ∩ α = c1(OE(1) ∩
α) = −c1(E) ∩ α. �

Segre class Theorem. (a) for all α ∈ AkX, (i) si(E)∩α = 0 for i < 0, and (ii) s0(E)∩α = α.

(b) (commutativity) If E and F are vector bundles on X, and α ∈ AkX, then for all i, j,

si(E) ∩ (sj(F) ∩ α) = sj(F) ∩ (si(E) ∩ α).

(c) (Segre classes behave well with respect to proper pushforward) If f : X ′ → X is
proper, E a vector bundle on X, α ∈ A∗X

′, then for all i,

f∗(si(f
∗E) ∩ α) = si(E) ∩ f∗(α).

(d) (Segre classes behave well with respect to flat pullback) If f : X ′ → X is flat, E a
vector bundle on X, α ∈ A∗X

si(f
∗E) ∩ f∗α = f∗(si(E) ∩ α).
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Corollary. The flat pullback p∗ : AkX → Ak+e(PE) is a split monomorphism: by (a) (ii), an
inverse is β 7→ p∗(c1(OE(1))e ∩ β).

Corollary. It makes sense to multiply by various polynomials in Segre classes of various
bundles, by the commutativity part (b).

Proof of theorem. I’ll prove a smattering of these.

(c) Suppose f : X ′ → X is proper, E a vector bundle on X. There is a fibre square

P(f∗E)
f′

//

p′

��

PE

��

X ′ // X

with f ′∗OE(1) = Of∗E(1). (All morphisms here are proper, the top one because proper
morphisms are preserved by fibred squares.) Then

f∗(si(f
∗E) ∩ α) = f∗p

′
∗(c1(OPf∗E(1))e+i ∩ p ′∗α) (def’n of si∩)

= p∗f
′
∗(c1(f

′∗OPE(1))e+i ∩ p ′∗α) (commutativity of proper pushforwards)

= p∗(c1(OPE(1))e+i ∩ f ′
∗p

′∗α)

(proj. formula for c1, i.e. behaves well w.r.t. pr. push.)

= p∗(c1(OPE(1))e+i ∩ p∗f∗α) (pr. push. and flat pull. commute)

= si(E) ∩ f∗α (def’n of si∩)

(d) Exercise.

(a) We may assume that α = [V]. Then by (c), using the (proper) closed immersion
V ↪→ X, we may assme X = V . Then for i < 0, si(E) ∩ [V] ∈ AdimV−iX = 0, so (i) is done.
Similarly,

s0(E) ∩ [V] = p∗(c1(OPE(1))e ∩ [P]) = m[V]

for some m. We will show that m = 1. We can check this on an open set of V , so restrict
to an open set where E is a trivial bundle. Then P = PE = X × P

e, and O(1) has sections
whose zero scheme is X×P

e−1. Then c1(O(1))∩ [X×P
e] = [X×P

e−1] (from earlier theorem
on c1 of an effective Cartier divisor). Repeat this e times to get the desired result.

(b) next day...
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