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Homework due on Monday:

1. Find the order of y/x at origin in y2 = x3 using the length definition.

2. In no more than half a page, explain why Bezout’s Theorem for plane curves is true
(i.e. explicate Fulton’s Example 1.4.1). Feel free to assume that F is irreducible.

You can also get a “bye” for two weeks of homework by (at some point in the future)
explaining to me the “rational equivalence pushes forward under proper morphisms”
result (Prop. 1.4).

We’re in the process of seeing that cycles (proper) pushforward and (flat) pullback, and
that rational equivalences do to.

We need a lot of algebra to set ourselves up. This will decrease in later chapters.

Also, Rob will give Wednesday’s class; he’ll end Chapter 1 and start Chapter 2.

1. PROPER PUSHFORWARDS

1.1. For any subvariety V of X, let W = f(V) be the image; it is closed (image of closed
is closed for proper morphisms). I want to define f∗V . If dim W < dim V , define f∗V =

0. Otherwise, R(V) is a finite field extension of R(W) (both are field extensions of K of
transcendence degree dim V). Set

deg(V/W) = [R(V) : R(W)].
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In the complex case, this degree is what you think it is: it’s the number of preimages of
a general point. In positive characteristic, this needn’t be true; K[tp] → K[t] gives a map
of schemes that is degree p but is one-to-one on points.

Define f∗ZkX → ZkY by

f∗[V] = deg(V/W)[W] .

Note: If X
f

// Y
g

// Z , then (g ◦ f)∗ = g∗f∗.

Example: the parabola example (what happens to points, and to the entire parabola).
Normalization.

Big Theorem. If f : X → Y is a proper morphisms, and α is a k-cycle on X which is
rationally equivalent to zero, then f∗α is rationally equivalent to zero on Y.

Hence there is a pushforward for Chow groups: f∗ : AkX → AkY.

I’m not going to prove this; I’ll only point out that we can reduce this statement to
something simpler:

Littler theorem. Let f : X → Y be a proper surjective morphism of varieties, and let
r ∈ R(X)∗. Then

(a) f∗[div(r)] = 0 if dim Y < dim X

(b) f∗[div(r)] = [div N(r)] if dim Y = dim X

In (b), R(X) is a finite extension of R(Y), and N(r) is the norm of r.

This is a really natural reduction. We need only to prove it for a generator of rational
equivalence, which involves X ′

↪→ X of dimension k + 1, and α = div(r) for r ∈ K(X ′).
We can just work on X ′ instead. We can also replace Y by f(X), because this construction
doesn’t care about anything else.

So we can now deal with two varieties. ...

Here are some consequences.

Bonus 1. We can now define the degree of a dimension 0 cycle class (= cycle mod rational
equivalence) on something proper over K. (Definition: complete = proper over K. This is a
common word, but I may try to avoid it.)

Definition. If α =
∑

nPP is a zero-cycle on X, define the degree of α to be
∑

nP deg[P/K]

(the sum of the degree extensions). Example: Spec Q[x]/(x2 + 2) over Spec Q, there is one
point, that counts for 2.

Definition/theorem. If X is a complete scheme then define the degree of an element of
A0X to be the degree of the pushforward to a point Spec K. This makes sense by the big
theorem.
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Homework: As a corollary, “prove” Bezout’s theorem for plane curves. Fulton essen-
tially does this in Example 1.4.1, so read what he has to say, and write it up in your own
words. (Less than a page is fine.)

Bonus 2. Recall that we were annoyed at having to working out ordOV,X
(r) for r ∈ R(X),

and needing to use lengths, and not what we know about DVR’s. This theorem tells us

we don’t have to. We could pull r back to the normalization X̃ of X, which is regular in
codimension 1. We work out how it vanishes on all the divisors mapping to V . (There are
a finite number, by finiteness of normalization, which I said earlier.)

Exercise. Check your answer to ord(y/x) at (0, 0) on y2 = x3, i.e. k[x, y]/(y2 − x3) by
pulling it back to the normalization, which is k[t], given by t 7→ (t2, t3).

2. FLAT PULLBACK

2.1. Crash course in flat morphisms. A morphism f : X → Y is flat if locally it can be
written as f : Spec A → Spec B (so B → A) where A is flat B-module. A B-module M is flat
if for every exact sequence

0 → P → Q → R → 0,

the sequence

0 → M ⊗ P → M ⊗ Q → M ⊗ R → 0

is also exact. (The only issue is the inclusion M ⊗ P ↪→ M ⊗ Q.)

Idea “flat morphisms are nice”. They are more general than fibrations, but have all the
same properties.

Easy facts to know:

• flatness is preserved by base change
• anything is flat over a point (as all modules over a field are flat!)
• the composition of flat morphisms is again flat
• open immersions are flat. projections from a vector bundle or An-bundles are flat

(R[x1, . . . , xn] is a flat R-module). The projection Y × Z → Z is flat (using base
change and the 2nd bullet point).

Harder facts to know:

• A dominant morphism X → Y from a variety to a smooth curve is flat.
• More generally, a morphism from a scheme to a smooth curve is flat iff all associ-

ated points of X map to the generic point of Y.
• Hence: If X → Y is a morphism of varieties, there is no “dimension-jumping”.

(Otherwise, if X → Y has dimension-jumping, basechange to a smooth curve that
“sees” the dimension-jumping, and then use this fact.)

• More general fact still: If X → Y is a morphism of schemes, then associated points
of X map to associated points of Y.
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Joe asked about another useful fact: in the case of morphisms of finite type, flat mor-
phisms are open, i.e. the image of an open set is an open set.

Examples of flat morphisms: the map of the parabola to the line is one. Reason: k[x] is
a flat k[x2]-module, as it is a free k[x2]-module.

(Draw also a family of nodal curves.)

Goal: flat pullbacks exist. In other words, we’ll define out how cycles pullback, and
then we’ll check that rational equivalences pull back to rational equivalences.

You can see why we don’t like dimensional jumping. But it’s interesting that we don’t
mind degenerations as in the family of nodal curves, or in the parabola example.

Definition. Let Y be a pure k-dimensional scheme, with irreducible components Y1, . . . ,
Yq. Then define the fundamental cycle [Y] to be

∑q

1 mi[Yi] in Zk(Y). where mi is the length
of OYi,Y. (The local rings OYi,Y are “local Artin rings”, corresponding to zero-dimensional
local schemes.)

Example: k[x, y]/(y2(x+y)3). The length of the local rings at the two generic points are
2 and 3 respectively.

(Note: if Y is a subscheme of X, then [Y] is naturally in Zk(X) of course; Zk[Y] ↪→ Zk[X]

of course.)

Definition (pulling back cycles). Suppose f : X → Y is flat of relative dimension n. If
V is an irreducible subvariety of Y, let f∗[V] := [f−1(V)]. Then by linearity, I know how to
pull back any linear combination of subvarieties. Hence I’ve defined f∗ : ZkY → Zk+nX.

What’s wrong with that? Well, we don’t know that (gf)∗ = f∗g∗. Example (picture
omitted in notes): branched double cover of a branched double cover. Fortunately we get
4 both ways. But does this work in general?

Lemma (pulling back fundamental classes). If f : X → Y is flat, then for any equidi-
mensional subscheme Z of Y, f∗[Z] = [f−1(Z)]. In other words, the pullback of a funda-
mental class of a scheme is the fundamental class of the pullback of a scheme.

(Direct algebra from the appendix; omitted.)

This makes us happy, because schemes pullback nicely; f−1g−1(Z) = (gf)−1(Z). Thus
pullbacks are functorial.

Proposition (Flat pullback commutes with proper pushforward). Let

X ′
g′

//

f′

��

X

f

��

Y ′
g

// Y
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be a fibered square, with g flat and f proper (so g ′ flat and f ′ proper). Then f ′

∗
g ′∗α =

g∗f∗α.

This is on the level of cycles. We don’t yet know that we can flat-pullback cycle classes.

Proof also by direct algebra. Reduce first to the case where X and Y are varieties, and
f is surjective. Here are the reductions: it suffices to do this for a generator of ZkX, so
α = [V] where V is a variety. f(V) is also a variety (remember f is proper, hence f(closed)

is closed). Base change the entire square by f(V) → Y. Then we can assume f(V) = Y.
Next base change the upper arrow by V → X:

X ′ ×X V //

��

V

��

X ′

f′

��

g′

// X

f

��

Y ′
g

// Y

Then turn this into a calculation involving local rings (omitted). �

We’ll next show that rational equivalences flat-pullback to rational equivalences. Hence
we’ll have shown that we have flat pullback of Chow groups.

Preliminary Algebraic Lemma. Let X be a purely n-dimensional scheme, with irre-
ducible components X1, . . . , Xr, and geometric multipliciteis m1, . . . , mr. Let D be an effec-
tive Cartier divisor on X. Let Di = D∩Xi be the restriction of D to Xi. Then [D] =

∑
mi[Di]

in Zn−1(X).

(An effective Cartier divisor is a subscheme locally cut out by a single function that is not
a zero-divisor.)

This is certainly reasonable! (Draw a picture, when D doesn’t have a component along
the intersection of two of the Xi’s.) I omitted this explanation in class due to time.

Proof. One checks this along each Weil divisor V of X. Immediately reduces to algebra.
Let me get us to the algebra. We’ll check that each codimension one subvariety V of X

appears with the same multiplicity on both sides of the equation. We reduce to the local
situation: let A be the local ring of X along V , and a ∈ A a local equation for D. The
minimal prime ideals pi in A correspond to the irreducible components Xi of X which
contain V .

mi = lApi
(Api

). The multiplicity of [V] in [D] is lA(A/aA). The multiplicity of [V] in
[Di] is lA/pi

(A/(pi + aA)). So we want to show:

lA(A/aA) =
∑

milA/pi
(A/pi + aA).

This is shown in the appendix. � �
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Preliminary Geometric Lemma. A cycle α in ZkX is rationally equivalent to zero if
and only if there are (k + 1)-dimensional subvarieties V1, . . . , Vt of X × P1, such that the
projections from Vi to P1 are dominant, with

α =

t∑

i=1

([Vi(0)] − [Vi(∞)])

(Draw picture.)

Before I get into it, notice that flatness is already in the picture here: each Vi → P1 is
flat. We’ll see that [Vi(0)] is the flat pullback of 0, and ditto for ∞.

Proof. (I only roughly sketched this proof in class.) If there are such subvarieties, then
α ∼ 0: Certainly the classes on X × P1 are each rationally equivalent to 0 by the definition
of rational equivalence. The projection X × P1 → X is proper (because P1 → pt is proper,
and properness is preserved by base change).

Now for the other direction. We need to show this for a generator of rational equiva-
lence on X, so there is a subvariety W of dimension k + 1 in X, and a rational function on
W r ∈ R(W)∗. This gives a rational map W 99K P1. Let V be the closure of the graph of
this rational map, so V ⊂ W × P1

↪→ X × P1. (The generic point of W maps to the generic
point of P1, so the same is true of V .) V maps birationally and properly onto W. That
morphism is degree 1. If f is the induced morphism to P1, then div(r) = p∗[div(f)] by our
big theorem on proper pushforwards, which in turn equals [V(0)] − [V(∞)]. �

Theorem. Let f : X → Y be flat of relative dimension n, and α ∈ Zk(Y) which is
rationally equivalent to 0. Then f∗α is rationall equivalent to 0 in Zn+kX.

Thus we get flat pullbacks f∗ : AkY → Ak+nX.

Proof. (I did not give this proof in class.) We may deal with a generator of rational equiv-
alence. Thanks to the geometric lemma, we can take our generator to be of the form
α = [V(0)] − [V(∞)].

W =

h

��
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

(f × 1)−1(V)
cl. imm.

//

flat

��

X × P1

flat
��

p

flat prop.
// X

fflat

��

V

g

��

cl. imm.
// Y × P1

q

flat prop.
//

wwoooooooooooo

Y

P1

We have a cycle α that is rationally equivalent to 0 on Y. It is the proper pushforward of
[g−1(0)] − [g−1(∞)] from V . When we pull back this class from Y to X, we want to see that
it is rationally equivalent to 0. But by our lemma showing that proper pushforwards and
flat pullbacks commute, that’s the same as pulling back to W, and pushing forward to X.
The pullback to W is [h−1(0)] − [h−1(∞)].
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We feel like we’re done: we just push this forward to X, and that should be it. But: W

may not be a variety (it may be reducible and nonreduced), so we don’t (yet) know that
this class is rationally equivalent to 0. This is why we need our algebraic lemma. Let
[W] =

∑
mi[Wi]. Since

[h−1
i (0)] − [h−1

i (∞)] = div(hi)]

is ratinoally equivalent to 0, it suffices to verify that [h−1(P)] =
∑

mi[h
−1
i (P)] (and then

plug in P = 0 and ∞). And that’s precisely what the algebraic lemma tells us. �

3. PARSIMONIOUS DEFINITION OF CHOW GROUPS

(I discussed this aside rather quickly.)

I’d promised earlier that Chow groups would satisfy 3 conditions: (a) 0 would be ratio-
nally equivalence to ∞ in P1. (b) They would satisfy flat pullbacks. (c) They would satisfy
proper pushforward.

We’ve shown this. Now note that these three things define Chow groups. Translation:
anything satisfying these three things is a quotient of the Chow group, so the Chow group
is the “minimal” thing satisfying these three conditions. To prove this, all we have to do
is show that if W is a (k + 1)-dimensional subvariety of X, and r is a rational function on
W, then div(r) is forced to be 0. W 99K

r P1. Pullback (0) − (∞). Pushforward by closed
immersion W → X.

Something else to point out: the divisor of zeros and poles of a rational function r on a
variety W is easy to understand if W is regular in codimension 1. It was a pain otherwise.
Here’s an alternate way of computing it.

Pull back the function r to W̃. Do the calculation there. Then take proper pushforward.

4. THINGS ROB WILL TELL YOU ABOUT ON WEDNESDAY

4.1. Excision exact sequence. Proposition. Let Y be a closed subscheme of X, and let
U = X − Y. Let i : Y ↪→ X be the closed immersion (proper!) and j : U → X be the open
immersion (flat!). Then

AkY
i∗

// AkX
j∗

// AkU // 0

is exact for all k.

(Aside: you certainly expect more on the left!)

Proof. We quickly check that

ZkY
i∗

// ZkX
j∗

// ZkU // 0

is exact. (Do it!) Hence we get exactness on the right in our desired sequence. We also get
the composition of the two left arrows in our sequence is zero.
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Next suppose α ∈ ZkX and j∗α = 0. That means j∗α =
∑

i div ri where each ri ∈ R(Wi)
∗,

where Wi are subvarieties of U. So ri is also a rational function on R(Wi) where Wi is the
closure in X. To be clearer, call this rational function ri Hence j∗(α −

∑
[div(ri)]) = 0 in

ZkU, and hence j∗(α −
∑

[div(ri)]) ∈ ZkY, and we’re done. �

Rob will also state:

Definition. Y → X is an affine bundle of rank n over X if there is an open covering ∪Uα

of X such that f−1(Ui) ∼= Ui × An → Ui. This is a flat morphism.

Proposition. Let p : E → X be an affine bundle of rank n. Then the flat pullback
p∗ : AkX → Ak+nE is surjective for all k.

Proof omitted.

Immediate corollary: AkAn = 0 for k 6= n.

He may not state the rest:

Exercise: Example 1.9.3 (a). Show that Ak(P
n) is generated by the class of a k-dimensional

linear space. (Hint: use the excision exact sequence.)

Example 1.9.4: Let H be a reduced irreducible hypersurface of degree d in Pn. Then
[H] = d[L] for L a hyperplane, and An−1(P

n−H) = Z/d/Z. Thus the codimension 1 Chow
group is torsion. (Caution: where are you using reduced and irreducible?)

ZkX ⊗ ZlY → Zk+l(X × Y) by [V] × [W] = [V × W].

Proposition.

(a) if α ∼ 0 then α × β ∼ 0. There are exterior products AkX ⊗ AlY → Ak+l(X × Y).
(b) If f and g are proper, then so is f × g, and (f × g)∗(α × β) = f∗α × g∗β. Hence

exterior product respects proper pushforward.
(c) If f and g are flat of relative dimensions m and n, (so f×g is flat of relative dimen-

sion m + n), then
(f × g)∗(α × β) = f∗α × g∗β.

Hence exterior product respects flat pullback.

E-mail address: vakil@math.stanford.edu
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