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The new times will be Mondays 9–10:50 and Wednesdays 10–10:50. Because this is an
advanced course, I won’t have office hours; I’m happy to talk about it at any time. My
210 office hours are MW2:05–3 in case you want a specific time when I’ll definitely be in
my office.

1. LAST DAY

Some comments on last day:

I should have been clearer on what I meant by “numbers of zeros and poles of a rational
function r ∈ R(X) along a Weil divisor (codimension 1 subvariety).” I meant the function
ordV(r). I defined it as follows. If r is actually defined at the generic point of V , we have

ordV(r) = lOV,X
(OV,X/(r))

and then we define additively for quotients of two such: ordV(r/s) = ordV(r) − ordV(s).
Recall “length” is the one more than the length of the longest series of nested modules
you can fit in a row, so the “length” of a vector space over K is its dimension.

The algebraic fact from Fulton shows that this function is well-defined. In doing the
following exercise, use this definition.

Exercise. Consider y/x on y2 = x3. What is the order of this pole/zero?

I then defined the Chow group.

ZkX =
{∑

ni[Vi], ni ∈ Z

}
.

is the group of k-cycles. A cycle is positive if all ni ≥ 0, some ni > 0. (I may have forgotten
to say this.)
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The homotopies, or “rational equivalences” among k-cycles, were generated as follows.
For any (k + 1)-dimensional subvariety W of X, and any nonzero rational function r ∈

R(W)∗, define a K-cycle on X by

[div(r)] =
∑

ordV(r)[V].

This generates a subgroup Ratk X, the subgroup of cycles rationally equivalent to 0.

Then Ak(X) = ZkX/ Ratk X.

2. PROPER, PROJECTIVE, FINITE

2.1. Proper, projective, finite morphisms. Crash course in proper morphisms: A mor-
phism f : X → Y is said to be proper if it is separated (true in our case of algebraic schemes),
of finite type (true in our case), and universally closed. (Closed: takes closed sets to closed
sets. Universally closed: for any Y ′ → Y, X ×Y Y ′ → Y ′ is closed.)

Some pictures: f : A
1 → Spec K is not proper. f is certainly separated and of finite type

and closed, so what’s the problem? Consider the fibered diagram:

P
1 × A

1 //

��

A
1

f
��

P
1 // Spec K

The projection on the left isn’t closed: consider the graph of A
1

↪→ P
1.

First approximation of how to think of proper morphisms, if you are a complex geome-
ter: fibers are compact in the analytic topology. Warning: A

1
↪→ P

1 isn’t proper (it isn’t
closed), so I need to say something a bit more refined.

Key examples: projective morphisms are proper. As I said last day, a morphism f : X → Y

is projective if Y can be covered by opens such that on each open U, f−1(X) ×Y U → U

factors f−1(X) ×Y U ↪→ P
k × U → U where the left morphism is a closed immersion.

Finite morphisms are projective, hence proper. A morphism is finite if for each affine
open U = Spec S, f−1(U) is affine = Spec R, and the corresponding map of rings S → R

is a finite ring extension, i.e. R is a finitely generated S-module (which is stronger than
a finitely generated S-algebra!). I’ll repeat the example from last time: parabola double-
covering line. (How to recognize: finite implies each point of target has finite number of
preimages. Reverse implication isn’t true. finite = proper plus this property.) Another
example: closed immersion.

Third (important) example: normalization (in good cases, such as those we’ll consider).
This requires a theorem in algebra! Normalization of an affine algebraic scheme Spec R

is Spec R̃, where R̃ is the normalization of R in its function field. Normalization of an
algebraic scheme X in general is obtained by gluing. (Theorem: this is possible, and also
independent of what affine cover you take of X.)
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Crash course in normalization: given a variety W, define its normalization as follows.

If A is affine, let Ã be its integral closure in its function field R(A) = R(W). We have

Spec Ã → Spec A. Do this for every open affine set of W. Fact: they all glue together.

The result is called the normalization. Fact: The normalization map W̃ → W is finite
(algebra fact, Hartshorne Thm I.3.9A), hence proper. Hence: normalizations are regular in
codimension 1. (Proof: all local rings are integrally closed; in particular true for dimension
1 rings = codimension 1 subvarieties; hence any dimension 1 local rings (A, m) is a discrete
valuation ring, which (thanks to an earlier crash course) satisfies dimA/m m/m2 = 1, which
is the definition of nonsingularity.

Finite, projective, and proper morphisms are preserved by base change: if f is one of
them, then f ′ is too in the following fiber diagram:

W
f′

//

��

X

��

Y
f

// Z

(They are also preserved by composition: f, g proper implies g ◦ f is too. Ditto for
projective and finite.)

3. PROPER PUSHFORWARDS

3.1. For any subvariety V of X, let W = f(V) be the image; it is closed (image of closed
is closed for proper morphisms). I want to define f∗V . If dim W < dim V , define f∗V =

0. Otherwise, R(V) is a finite field extension of R(W) (both are field extensions of K of
transcendence dgree dim V). Set

deg(V/W) = [R(V) : R(W)].

Define f∗ZkX → ZkY by

f∗[V] = deg(V/W)[W] .

Note: If X
f

// Y
g

// Z , then (g ◦ f)∗ = g∗f∗.

E-mail address: vakil@math.stanford.edu

3


