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The webpage http:/ /math.stanford.edu/~vakil /245/ is up, and has last day’s notes.

The new times starting next week will be Mondays 9-10:50 and Wednesdays 10-10:50.
So there will be a class on Friday.

To do: read the summaries of Chapters 1 and 2.

Looking over today’s notes, I realize that what will be newest and most disconcerting
for those who haven’t seen schemes is the fact that we can localize at the generic point
of a subvariety X of a scheme Y. What this means is that we are considering the ring
of rational functions defined in a neighborhood of the generic point of X in Y; in other
words, they are defined on a dense open subset of X. This is indeed a ring (you can add
and multiply). The dimension of this ring is the difference of the dimensions of X and Y (or
more precisely dimensions of X and “Y near X”). Recall that the points of Y correspond to
irreducible subvarieties of Y; the “old-fashioned” (“before schemes”) points are the closed
points in the Zariski topology. So what are the points of Spec Ox y, or equivalently, what
are the prime ideals of the ring Ox y? They are the irreducible subvarieties of Y containing
X. The maximal ideal of this local ring corresponds to X itself.

1. LAST DAY

1.1. Examples. Ishowed you some examples. For example: Parabola x = y? projected
to t-line. Q[t] — Qlx,yl/(x —y?) via t — x. (I'm letting my field be Q for the moment.)
Intersecting parabola with a vertical line x = oc. We get the scheme

Spec Q[x, yl/(x —y% x — &) = Spec QIyl/(y* — )
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which is length 2 over the base field Q. If « = 1, we get 2 points:

Qul/(v?> — &) = (Klyl/(y + 1) @ (K[yl/(y — 1))
If « =0, we get 1 point, with multiplicity 2:

Qlyl/(y?)

has only one maximal ideal. If « = 2, we get 1 point with multiplicity 1, but this point has
“degree 2 over Q”; the residue field is a degree 2 extension of Q.

1.2. Strategy. We're going to define Chow groups of a variety X as cycles modulo
“homotopy” (called rational equivalence). Dimension k cycles are easy: they are dimension
k subvarieties of X. More subtle is rational equivalence.

(1) Two points on P! are defined to be rationaly equivalent.

(2) If X — Y is flat then there is a pullback. mw: X — Y, dimX = dimY + d, then
7 Hu(Y) = Hisa(X).

(3) If X — Y is proper (new definition!) then we have a pushforward: X — Y, m, :
Hn(X) — Ha(Y).

Just to be clear before we start: throughout this course we’ll work over a field, to be
denoted K. We’ll consider schemes X that are sometimes called algebraic schemes over K.
They are schemes of finite type over K. This means that you get them by gluing together
a finite number of affine schemes of the form SpecK[xy,...,x,]/I. Mild generalization
of algebraic variety. All morphisms between algebraic schemes are separated and of finite
type. In this language, a variety is a reduced irreducible algebraic scheme. We’ll end up
localizing schemes: this leads to the notation of “essentially of finite type” = localizations
of schemes/rings of finite type.

2. ZEROS AND POLES

Given a rational function on an irreducible variety X, I'll define its order of pole or zero
along a codimension 1 variety. (A rational function is a(n algebraic) function on some dense
(Zariski-)open set. )

An irreducible codimension 1 variety is called a Weil divisor.
Example: (x — 1)%(x* — 2)/(x — 3) over C. Over Q. Weil divisors.

If X is generically nonsingular=smooth along Weil divisor, then “the same thing will
work”. More precicsely, in this case the local ring along the subvariety is dimension 1,
with m/m? =1, i.e. it is a discrete valuation ring, which I'll assume you’ve seen.

Discrete valuation rings are certain local rings (A, m). Here are some characterizations:

e an integral domain in which every ideal is principal over K
e aregular local ring of dimension 1
e a dimension 1 local ring that is integrally closed in its fraction field
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e etc.

If generator of m is 7, then the ideals are all of the form (") or 0. The corresponding
scheme as 2 points; it is “the germ of a smooth curve”.

Examples: K[x,y], localized along divisor x = 0. We get rational functions of the form
f(x,y)/g(x,y) where x is not a factor of g. This is a local ring, and it is a DVR! Given any
rational function, you can tell me the order of poles or zeros. (Ask: (x* — 3y)/(x* + x*y)?)
Then this also works if x is replaced by some other irreducible polynomial, e.g. x* — 3y.
This is nice and multiplicative.

So what if X is singular along that divisor (dimm/m? > 1)? Example: y* = x> — x?, the
rational function y/x.

Exercise. Consider y/x on y? = x>. What is the order of this pole/zero? (This will be
homework, due date TBA.)

Patch 1: If V is a Weil divisor, and 7 is a rational function that gives an element of the
local ring Ovx, then define

OI‘d\/(T) = dlmK ny/(T) .

(What it means to be in the local ring, intuitively: at a general point of V it is defined.
More precisely: there is an open set meeting V — not necessarily containing it — where
the rational function is an actual function. For example, x/y on SpecK[x,y] is defined
near the generic point of x = 0. Language of generic points.) Then given a general rational
function, f, we can always write it as f = r1/1,, where 17 and 1, lie in the local ring.

(But we need to check that if we write f as a fraction in two different ways, then the
answer is the same. That’s true. More on that in a minute.)

Technical problem: If you have a dimension 1 local ring (A, m) with quotient field K, then
A isn’t necessarily a K-vector space. Zy), pZ(p). (Exercise: Find an example in character-
istic 0.)

Better:

ordy(r) = lo, , (Ovx/(T)) |

Recall “length” is the one more than the length of the longest series of nested modules
you can fit in a row. So the “length” of a vector space over K is its dimension.

Fact: ord is well-defined (Appendix A.3): If ab = cd then (A/(a)) + L(A/(b)) =
L(A/(c)) + L(A/(d)). Hence this thing is well-defined.

Facts about facts. (I will pull facts out of Fulton’s appendix as black boxes. But if you
take a look at the appendix, you'll see that these results are very easy. The vast majority
of proofs in A.1-A.5 are no longer than a few lines. With the exception of the section on
determinantal identities — which we likely won’t use in this course — I think almost no
proof is longer than half a page. He even has a crash course in algebraic geometry in
Appendix B.)



Fact: finiteness of zeros and poles (Appendix B.4.3). For a given r, there are only a
finite number of Weil divisors V where ordy(r) # 0.

3. THE CHOW GROUP

Let X be an algebraic scheme (again: finite type over field K). Recall: A k-cycle is a finite
formal sum ) ny[Vil, ni € Z. A cycle is positive if all ny > 0, some ny > 0. (I forgot to
mention this.) Call this Z\[X], the group of k-cycles.

zdX) ={Y nivi, mez}.

For any (k + 1)-dimensional subvariety W of X, and any nonzero rational function
T € R(W)*, define a K-cycle on X by

[div(r)] = ) ordy(r)[VI.
This generates a subgroup Raty X, the subgroup of cycles rationally equivalent to 0.

(You can probably see where I'm going to go with this.) Define

Ar(X) = Zi[X]/ Raty[X]

(Say visually.)

Note: this definition doesn’t care about any nonreduced structure on X: A [X] = A[Xred].

4. PROPER PUSHFORWARDS

Next day we’ll see that rational equivalence pushes forward under proper maps. First:

4.1. Crash course in proper morphisms:. A morphism f : X — Y is said to be proper
if it is separated (true in our case of algebraic schemes), of finite type (true in our case),
and universally closed. (Closed: takes closed sets to closed sets. Universally closed: for
any Y — Y, X xyY" — Y’ is closed.) Key examples: projective morphisms are proper. A
morphism f : X — Y is projective if Y can be covered by opens such that on each open U,
f~1(X) xy U — U factors f1(X) xy U < P* x U — U where the left morphism is a closed
immersion.

Finite morphisms are projective, hence proper. A morphism is finite if for each affine
open U = Spec S, f'(U) is affine = Spec R, and the corresponding map of rings S — Risa
finite ring extension, i.e. R is a finitely generated S-module (which is stronger than a finitely
generated S-algebra!). Example: parabola double-covering line. (How to recognize: finite
implies each point of target has finite number of preimages. Reverse implication isn’t
true. finite = proper plus this property.) Another example: closed immersion.
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Finite, projective, and proper morphisms are preserved by base change: if f is one of
them, then f’ is too in the following fiber diagram:

Wf—/>X

L,

Y—Z

(They are also preserved by composition: f, g proper etc. implies g o f is too.)

E-mail address: vakil@math.stanford.edu



