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Today I’m going to try to finish the proof of Grothendieck-Riemann-Roch in the case
of projective morphisms from smooth varieties to smooth varieties. We’ll see that we’re
essentially going to prove it more generally for projective lci morphisms.

1. RECAP OF LAST DAY

Recall the definition of the Chern character and Todd class. Suppose F is a coherent
sheaf. Let α1, . . . , αn be the Chern roots of the vector bundle, so α1 + · · · + αn = c1(F),
etc. Define ch(F) =

∑r

i=1 exp(αi) This is additive on exact sequences. For vector bundles,
we have ch(E ⊗ E ′) = ch(E) · ch(E ′).

The Todd class td(E) of a vector bundle is defined by td(E) =
∏r

i=1 Q(αi) where

Q(x) =
x

1 − e−x
= 1 +

1

2
x +

∞∑

k=1

(−1)k−1 Bk

(2k)!
x2k.

It is multiplicative in exact sequences.

We defined the Grothendieck groups K0X and K0X. They are vector bundles, respec-
tively coherent sheaves, modulo the relation [E] = [E ′] + [E ′′]. We have a pullback on
K0: f∗ : K0X → K0Y. K0X is a ring: [E] · [F] = [E ⊗ F]. We have a pushforward on K0:
f∗[F ] =

∑
i≥0(−1)i[Rif∗F ].

We obviously have a homomorphism K0X → K0X. K0X is a K0X-module: K0X⊗K0X → X

is given by [E] · [F ] = [E ⊗ F ]. Unproved fact: If X is nonsingular and projective, the map
K0X → K0X is an isomorphism. (Reason: If X is nonsingular, then F has a finite resolution
by locally free sheaves.)
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The Chern character map descends to K(X): ch : K(X) → A(X)Q. This does not commute
with proper pushforward; Grothendieck-Riemann-Roch explains how to fix this.

1.1. New facts. Here are some useful facts, that I didn’t mention last time. We have
an excision exact sequence for K0: If Z ↪→ X is a closed immersion, and U is the open
complement, we have an excision exact sequence

K0(Z) → K0(X) → K0(U) → 0.

The proof is similar to our proof for Chow; this is Hartshorne Exercise II.6.10(c).

Similarly, we have K0(A
1 × Y) ∼= K(Y).

Last time I showed: Lemma. The group K0(P
m) is generated by the classes [OPm(n)],

with 0 ≤ n ≤ m.

(Incidentally, I mentioned an interesting algebraic problem coming out of my previous
proof. Joe gave a nice proof of it. If I have time, I’ll type it up and put it in the posted
notes.)

I’d like to do it differently today. Instead, I’ll show it is generated by the classes
[OPm(−n)], with 0 ≤ n ≤ m.

Using the excision exact sequence for K-theory, and P
m = A

0
∐

A
1
∐

· · ·
∐

A
m, we get

inductively: K0(P
m) is generated by n + 1 things: [OP0 ], [OP1 ], . . . , [OPm ].

I’ll now express these in terms of OPm(n)’s. From

0 → OPm(−1) → OPm → OPm−1 → 0

shows [OPm−1 ] = [OPm ] − [OPm(−1)]. Similarly,

[OPm−2 ] = [OPm−1 ] − [OPm−1(−1)]

= ([OPm ] − [OPm(−1)]) − ([OPm(−1)] − [OPm(−2)])

= [OPm ] − 2[OPm(−1)] − [OPm(−2)]

and you see the pattern (established by the obvious induction). �

Important philosophy behind Riemann-Roch: K(Pm) and A∗(P
m) are both m-dimensional

vector spaces; Chern character provides an isomorphism between them. Multiplying by
the Todd class provides a “better” isomorphism between them.

More generally, the identical proof shows that for any Y, K(Y) ⊗ K(Pm) → K(Pm× Y) is
surjective: cut up P

m × Y into Y
∐

A
1 × Y

∐
· · ·

∐
A

m × Y, and proceed as before.
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2. STATEMENT OF THE THEOREM

Grothendieck-Riemann-Roch Theorem. Suppose f : X → Y is a proper morphism of
smooth varieties. Then for any α ∈ K(X),

ch(f∗α) · td(TY) = f∗(ch(α) · td(TX)).

Interesting exercise: how do you make sense of this when X and Y are singular? For
example, what if X → Y is a smooth morphism, we get ch(f∗α)· = f∗(ch(α) · td(TX/Y))

where X/Y is the relative tangent bundle. As another example, what if X → Y is a com-
plete intersection? Then TX and TY don’t make sense, but NX/Y is a vector bundle, and
then ch(f∗α) · td(NX/Y) = f∗(ch(α)). Combining these two, you can now make sense of
GRR in the case when f is an lci morphism (i.e. closed immersion followed by a smooth
morphism).

The theorem may be interpreted to say that the homomorphism

τX : K(X) → A(X)Q

given by τX(α) = ch(α) · td(TX) commutes with proper pushforward: f∗ ◦τX = τY◦f∗. Last

time we showed that this implies Lemma. Given X
f

// Z
g

// Y . Suppose GRR holds
for f and g. Then it holds for g ◦ f.

Hence the strategy is now to show GRR for Y × P
m → Y, and for closed immersions.

We’ll use this interpretation of the theorem to show

Theorem. GRR is true for P
m × Y → Y.

Proof. We showed last time that this is true in the case where Y is a point. Consider the
following diagram.

K(Y) ⊗ K(Pm)
τY⊗τPm

//

×

��

A(Y)Q ⊗ A(Pm)Q

×

��

K(Y × P
m)

τY×τPm
//

f∗
��

A(Y × P
m)Q

f∗
��

K(Y)
τY

//
τY

// A(Y)Q

(I won’t be using anything special about P
m now.) We want to show that the bottom

square commutes.

Note that the top square commutes. Reason: TY×Pm = p∗
1TY ⊕ p∗

2TPm (where p1 and p2

are the projections) from which td(TY×Pm) = td(p∗
1TY) × td(p∗

2TPm).

Moreover the upper left vertical arrow is surjective.

So it suffices to show that the big rectangle commutes. But it does because we’ve al-
ready shown that GRR holds for P

m → pt. �
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2.1. GRR for a special case of closed immersions f : X → Y = P(N ⊕ 1). Suppose f is a
closed immersion into a projective completion of a normal bundle. Let d = rank N. We
want to prove GRR for a vector bundle E. As the vector bundles generate K(X), this will
suffice.

This example comes the closest to telling me why the Todd class wants to be what it is.
Let p : Y = P(N ⊕ 1) → X be the projection. Let OY(−1) be the tautological line bundle
on Y = P

(N ⊕ 1). Then as in previous lectures we have a tautological exact sequence of
vector bundles on Y:

0 → OY(−1) → p∗(N ⊕ 1) → Q → 0

where Q is the universal quotient bundle. (Recall that f∗Q = NX/Y.) Here is something
you have to think through, although we’ve implicitly used it before. We have a natural
section of p∗(Q ⊕ 1), the 1. This gives a section s of Q. This section vanishes precisely

(scheme-theoretically) along X. In particular, for any α ∈ A(Y), f∗(f
∗α) = cd(Q) · α . (This

was one of our results about the top Chern class. f∗f
∗ will knock the degree down by d,

and we found that this operator was the same as capping with the top Chern class.)

Lemma. We can resolve the sheaf f∗OX on Y by

(1) 0 // ∧dQ∨ // · · · // ∧2Q∨ // Q∨ s∨
// OY

// f∗OX
// 0.

Note that everything except f∗OX is a vector bundle on Y.

Proof. Rather than proving this precisely, I’ll do a special case, to get across the main
idea. This in fact becomes a proof, once the “naturality” of my argument is established.

Suppose Y = Spec k[x1, . . . , xn], so OY = k[x1, . . . , xn] (a bit sloppily) and X = ~0 ⊂ Y. Then
let’s build a resolution of OX. We start with

OY → OX → 0.

We have a big kernel obviously: the ideal sheaf of OX. So our next step is:

OYx1 ⊕OYx2 · · · ⊕ OYxn → OY → OX → 0.

We still have a kernel; (−x2x1, x1x2, 0, · · · , 0) is in the kernel, for example. So our next step
is:

OYx1x2 ⊕ · · · ⊕ OYxn−1xn →

(We need to check that we’ve surjected onto the kernel! But that’s not hard; you can try
to prove that yourself.) And the pattern continues. We get:

0 → OYx1 · · ·xn → ⊕n
i=1OYx1 · · · x̂i · · ·xn → · · · → ⊕n

i=1OYxi → OY → OX → 0.

And this is what we wanted (in this special case).

(All that is missing for this to be a proof is to realize that ⊕n
i=1OYxi → OY is canonically

Q∨.) �
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If E is a vector bundle on X, then we have an explicit resolution of f∗E, by tensoring (1)
with p∗E:

0 // ∧dQ∨ ⊗ p∗E // · · · // Q∨ ⊗ p∗E
s∨

// p∗E // f∗E // 0.

(Tensoring with a vector bundle is exact, and (p∗E) ⊗OX
∼= f∗E.)

Therefore

ch f∗[E] =

d∑

p=0

(−1)p ch(∧pQ∨) · ch(p∗E).

Lemma.
d∑

p=0

(−1)p ch(∧pQ∨) = cd(Q) · td(Q)−1.

This tells you why the Todd class is what it is!

Proof. This is remarkably easy. Let α1, . . . , αd be the Chern roots of Q. Then the Chern

roots of ∧pQ∨ are −
∑

αi1 · · ·αip . Hence ch(∧pQ∨) =
∑

e−
∑

αi1
···αip from which

d∑

p=0

(−1)p ch(∧pQ∨) =

d∑

p=0

(−1)p
∑

e−αi1 · · · e−αip

=

d∏

i=1

(1 − e−αi)

= (α1 · · ·αd)

d∏

i=1

1 − e−αi

αi

= cd(Q) · · · td(Q)−1.

�

Hence

ch f∗[E] = cd(Q) td(Q)−1 · ch(p∗E)

= f∗(f
∗ td(Q)−1 · f∗ ch(p∗E)) (using cd(Q) ∩ β = f∗(f

∗β), see 1st par of Section 2)

= f∗(td(NX/Y)
−1 ch(E)) (using f∗Q = NX/Y, f∗p∗E = E)

= f∗(td(TX)f∗ td(TY)−1 ch(E))

= td(TY)f∗(td(TX) ch(E)) (projection formula)

as desired!

This ends the proof of GRR for a closed immersion of X into the projective completion
of a normal bundle. �
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2.2. GRR for closed immersions in general. Suppose f : X → Y is a closed immersion.
We’ll prove GRR in this case; again, we need only to consider a generator of K(X), a vector
bundle E on X.

We’ll show GRR by deformation to the normal cone.

Let M = BlX×{∞} Y × P
1. (Draw picture.) Recall that the fiber over ∞ is M∞ =

BlX Y
∐

P(N ⊕ 1).

X

f

��

// X × P
1

F
��

Xoo

��

Y = M0

��

// M = BlX×0 Y × P
1

��

M∞ = BlX Y
∐

P(N ⊕ 1)oo

��

{0} //
P

1 {∞}oo

Define F (above), p : X × P
1 → X. Resolve p∗E on M:

0 → Gn → Gn−1 → · · · → G0 → F∗(p
∗E) → 0.

Both X × P
1 and M are flat over P

1 (recall that dominant morphisms from irreducible
varieties to a smooth curve are always flat), so restriction of these exact sequences to
the fibers M0 and M∞ (also known as tensoring with the structure sheaves of the fibers)
preserves exactness.

Let j0 : Y ∼= M0 ↪→ M, j∞ : BlX Y ∪ P(N ⊕ 1) = M∞ ↪→ M, k : P(N ⊕ 1) ↪→ M,
l : BlX Y ↪→ M.

Now j∗0G· resolves f∗ on Y = M0. So

j0 ∗ (ch(f∗E)) = j0∗ ch(j∗0G·)

= ch(G·) ∩ j0∗[Y] (proj. formula)

= ch(G·) ∩ j∞∗[M∞] (pulling back rat’l equivalence 0 ∼ ∞ ∈ P
1)

= ch(G·) ∩ (k∗[P(N ⊕ 1)] + l∗[BlX Y])

Now G· is exact away from X × P
1, so it is exact on BlX Y, so the Chern character of the

complex (the alternating sums of the Chern characters of the terms) is 0. Hence:

= ch(G·) ∩ (k∗[P(N ⊕ 1)])

Using the projection formula again:

= k∗(ch(f∗E) ∩ [P(N ⊕ 1)])

(where f is the map X ↪→ P(N ⊕ 1)). (We’re writing this as k∗(ch(f∗E).) So now we’re
dealing with the case X ↪→ P(N ⊕ 1)! We’ve already calculated that this is f∗(td(N)−1 ·

ch(E)). As [N] = [f∗TY] − [TX]:

ch(f∗E) td(TY) = f∗(ch(E) td(TX))

and we’re done! �
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