
INTERSECTION THEORY CLASS 17

RAVI VAKIL

CONTENTS

1. Where we are 1

1.1. Refined Gysin homomorphisms i! 2

1.2. Excess intersection formula 4

2. Local complete intersection morphisms 6

Where we’re going, by popular demand: Grothendieck Riemann-Roch (15); compari-
son to Borel-Moore homology (chapter 19).

1. WHERE WE ARE

We defined the Gysin pullback i! and a rather general intersection product. Let i : X ↪→

Y be a local complete intersection of codimension d. Y is arbitrarily horrible. Suppose V

is a scheme of pure dimension k, with a map f : V → Y. Here I am not assuming V is a
closed subscheme of Y. Then define W to be the closed subscheme of V given by pulling
back the equations of X in Y:

W
cl. imm.//

g

��

V

f
��

X
cl. imm. // Y

(notice definition of g).

The cone of X in Y is in fact a vector bundle (as X ↪→ Y is a local complete intersection);
call it NXY. The cone CWY to W in Y may be quite nasty; but we saw that CWY ↪→ g∗NXY.
Then we define

X · V = s∗[CWV]

where s : W → g∗NXY is the zero-section. (Recall that the Gysin pullback lets us map
classes in a vector bundle to classes in the base, dropping the dimension by the rank.
Algebraic black box from appendix: as V is purely k-dimensional scheme, CWV is also.)

Last time I proved:
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Proposition. If ξ is the universal quotient bundle of rank d on P(g∗NX/Y ⊕ 1), and
q : P(g∗NX/Y ⊕ 1) → W is the projection, then

X · V = q∗(cd(ξ) ∩ [P(CW/V ⊕ 1)]).

and

Proposition. X · V = {c(g∗NX/Y) ∩ s(W, V)}k−d. (Here {·}k−d means “take the dimension
k − d piece of ·.)

and stated (without proof):

Proposition. If d = 1 (X is a Cartier divisor on Y), V is a variety, and f is a closed
immersion, then X ·V is the intersection class we defined earlier (“cutting with a pseudo-
divisor g∗X”).

1.1. Refined Gysin homomorphisms i!. Let i : X → Y be a local complete intersection of
codimension d as before, and let f : Y ′

→ Y be any morphism.

X ′ //

��

Y ′

��
X // Y

As before, C ′ = CX′Y ′
↪→ g∗NXY. Define the refined Gysin homomorphism i! as the compo-

sition:

AkY
′

σ // AkC
′ // AkN

s∗ // Ak−dX ′ .

Note what we can now do: we used to be able to intersect with a local complete intersec-
tion of codimension d. Now we can intersect in a more general setting.

We’ll next show that these homomorphisms behave well with respect to everything
we’ve done before. These are all important, but similar to what we’ve done before, so I’ll
state the various results. I’ll just sporadically give proofs.

Handy fact: Say we want to prove something about i![V]. Consider

X ′ ∩ V //

h
��

V

��
X ′ //

g

��

Y ′

��
X // Y

Then

i![V] = c(g∗NX/Y) ∩ h∗s(X
′
∩ V, V).

Reason we like this: we already know Chern and Segre classes behave well. So we can
reduce calculations about i! to things we’ve already proved. Reason for fact: Calculate
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X · V using

X ′ ∩ V //

g◦h

��

V

��
X // Y

We get c(h∗g∗N) ∩ s(X ′ ∩ V, V). Push this forward to X ′:

h∗(c(h
∗g∗N) ∩ s(X ′

∩ V, V)) = c(g∗N) ∩ h∗s(X
′
∩ V, V))

using the projection formula. We now have to show that this really gives i![V]. (Fulton
uses this second version as the original definition.) Omitted.

Refined Gysin commutes with proper pushforward and proper pullback. Consider the
fiber diagram

X ′′
i′′ //

q

��

Y ′′

p

��
X ′

i′ //

g

��

Y ′

f

��
X

i // Y

where i is a locally closed intersection of codimension d.

(a) If p is proper and α ∈ AkY
′′, then i!p∗(α) = q∗(i

!α) in Ak−dX ′. (Caution: i! means
two different things here!)

(b) If p is flat of relative dimension n, and α ∈ AkY
′, then i!p∗(α) = q∗(i!α) in

Ak+n−dX ′′.

Proof. (a) We may assume α = [V ′] (on Y ′′). Let V = p(V ′) (on Y ′).

i!p∗α = deg(V ′/V){c(g∗NX/Y) ∩ s(X ′
∩ V, V)}k−d previous proposition

= {c(g∗NX/Y) ∩ q∗s(X
′′
∩ V ′, V ′)}k−d Segre classes push forward well

= q∗{c(q
∗g∗NX/Y) ∩ s(X ′′

∩ V ′, V ′)}k−d projection formula

= q∗i
![V ′]

Compatibility. If i ′ is also a local complete intersection of codimension d, and α ∈ AkY
′′,

then i!α = (i ′)!α in Ak−dX ′′.

It suffices to verify that g∗NXY ∼= NX′Y ′. Reason: If I and I ′ are the respective ideal
sheaves, the canonical epimorphism g∗(I/I2) → I ′/(I ′)2 must be an isomorphism. (De-
tails omitted. X is locally cut out in Y by d equations. X ′ is cut out in Y ′ by (the pullbacks
of) the same d equations.)
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1.2. Excess intersection formula. Consider the same fiber diagram as before

X ′′
i′′ //

q

��

Y ′′

p

��
X ′

i′ //

g

��

Y ′

f
��

X
i′ // Y

where now i is still a locally closed intersection of codimension d, and i ′ is also a locally
closed intersection, of possibly different dimension d ′. Let N and N ′ be the two normal
bundles; as before we have a canonical closed immersion N ′

↪→ g∗N. Let E = g∗N/N ′ be
the quotient vector bundle, of rank d = d − d ′.

For any α ∈ AkY
′′, note that i!(α) and (i ′)!(α) differ in dimension by e. What is their

relationship? Answer:

Excess intersection formula. For any α ∈ AkY
′′, i!(α) = ce(q

∗E) ∩ (i ′)!(α) in Ak−dX ′′.

(Proof short but omitted.)

Immediate corollary. Specialize to the case where the top row is the same as the middle
row, and i ′ is an isomorphism:

X ′
∼

i′
//

g

��

Y ′

��
X

i // Y

Then i!α = cd(g∗N) ∩ α. Specialize again to X ′ = Y ′ = X to get the self-intersection
formula: i∗i∗α = cd(N) ∩ α.

Intersection products commute with Chern classes. Let i : X → Y be a locally closed
intersection of codimension d,

X ′
i′ //

��

Y ′

��
X

i
// Y

a fiber square, and F a vector bundle on Y ′. Then for all α ∈ AkY
′ and all m ≥ 0,

i!(cm(F) ∩ α) = cm(i ′
∗

F) ∩ i!α

in Ak−d−m(X ′)

Proof omitted.

Refined Gysin homomorphisms commute with each other. Let i : X → Y be a locally
closed intersection of codimension d, j : S → T a locally closed intersection of codimen-
sion e. Let Y ′ be a scheme, f : Y ′

→ Y, g : Y ′
→ T two morphisms. Form the fiber

4



diagram

X ′′ //

��

Y ′′

j′

��

// S

��
X ′

i′
//

��

Y ′

f

��

g
// T

X
i

// Y

.

Then for all α ∈ AkY
′, j!i!α = i!j!α in Ak−d−eX

′′.

Proof (long!) omitted. Idea: by blowing up to reduce to the case of divisors, as we did
when we showed that the intersection of two divisors was independent of the order of
intersection, long ago.

Functoriality.

The refined Gysin homomorphisms for a composite of locally closed intersections is the
composite of the refined Gysin homomorphisms of the factors.

Consider a fiber diagram

X ′

h
��

i′ // Y ′

g

��

j′
// Z ′

f
��

X
i

// Y
j

// Z.

If i (resp. j) is a locally closed intersection of codimension d (resp. e), then ji is a locally
closed intersection of codimension d + e, and for all α ∈ AkZ

′, (ji)!α = i!j!α in Ak−d−eX
′.

Proof omitted. Similarly:

Second functoriality proposition. Consider a fiber diagram

X ′

h

��

i′ // Y ′

g

��

p′

// Z ′

f

��
X

i
// Y p

// Z.

(a) Assume that i is a locally closed intersection of codimension d, and that p and pi

are flat of relative dimensions n and n − d. Then i ′ is a locally closed intersection
of codimension d, p ′ and p ′i ′ are flat, and for α ∈ AkZ

′,

(p ′i ′)∗α = i!p ′∗α

in Ak+n−dX ′.
(b) Assume that i is a locally closed intersection of codimension d, p is smooth of

relative dimension n, and pi is locally closed intersection of codimension d − n.
Then for all α ∈ AkZ

′,
(pi)!α = i!(p ′∗α)

in Ak+n−dX ′.
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Short proof, omitted.

2. LOCAL COMPLETE INTERSECTION MORPHISMS

A morphism f : X → Y is called a lci morphism of codimension d if it factors into a
locally closed intersection X → P followed by a smooth morphism p : X → Y. Examples:
families of nodal curves over an arbitrary base; families of surfaces with mild singulari-
ties. Reason we care: often we want to consider families of things degenerating. We won’t
need this in the next two weeks, but it’s worth at least giving the definition.

For any lci morphism f : X → Y of codimension d, and any morphism h : Y ′
→ Y, we

have the fiber square

X ′
f′

//

h′

��

Y ′

h

��
X

f
// Y

We want to define a refined Gysin homomorphism

f! : AkY
′
→ Ak−dX ′.

Here’s how. Factor f into p◦i where p : P → Y is a smooth morphism of relative dimension
d + e and i : X ↪→ P is a local complete intersection of codimension e. Then form the fiber
diagram

X ′

h′

��

i′ // P ′

��

p′

// Y ′

h

��
X

i
// P p

// Y.

Then p ′ is smooth (smooth morphisms behave well under base change), and we define
f!α = i!((p ′)∗α) (smooth morphisms are flat; this is part of the definition).

Proposition (a) The definition of f! is independent of the factorization of f. (!!!) (b) If f

is both lci and flat, then f! = f ′∗. (c) The assertions earlier (pushforward and pullback
compatibility; commutativity; functoriality) for locally closed intersections are valid for
arbitrary lci morphisms. There is also an excess intersection formula, that I won’t bother
telling you precisely.

Because (a) seems surprising, and the roof is short, I’ll give it to you. If X
i1 // P1

p1 // Y

is another factorization of f, compare them both with the diagonal:

P1

p1

��?
??

??
??

?

X
(i,i1)

// P ×Y P1

;;vvvvvvvvv
//

$$HH
HH

HH
HH

HH
Y.

P

p

??~~~~~~~~
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Use the second functoriality proposition (b).

Then (b) follows from (a). (c) is omitted.

E-mail address: vakil@math.stanford.edu
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