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1. WHERE WE ARE

We’ve covered a lot of ground so far. I want to remind you that we’ve essentially de-
fined a very few things, and spent all our energy on showing that they behave well with
respect to each other. In particular: proper pushforward, flat pullback, c·, s·, s·(X, Y).
Gysin pullback for divisors; intersecting with pseudo-divisors. Gysin pullback for 0-
sections of vector bundles.

We know how to calculate the Segre class of a cone.

s(C) := q∗

(

∑

i≥0

c1(O(1))i ∩ [Proj(C ⊕ 1)]

)

where q is the morphism Proj(C ⊕ 1) → X.

Last day, Andy talked about linear systems.

1.1. Deformation to the normal cone. This is the central construction. Suppose X → Y is
a closed immersion of schemes.

Goal: We will define a specialization homomorphism σ : AkY → AkC where C is the normal
cone

∑∞
n=0I

n/In+1.

If W ↪→ Z is a closed immersion, recall that BlW Z is the blow-up of Z along W. For the
purposes of the next few lectures, let EWZ be the exceptional divisor, and let IWZ be the
ideal sheaf. Then recall:
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• BlW Z = Proj⊕(IWZ)n

• EWZ = Proj⊕(IWZ)n/(IWZ)n+1

• EWZ ↪→ BlWZ is a closed immersion, and describes EWZ as an effective Cartier
divisor, in fact in class OProj⊕(IW Z)n(1). The closed immersion is visible at the level
of graded algebras.

Blow up Y × P
1 along X × 0. The central fiber turns into BlX Y, union (the exceptional

divisor of the blow-up) Proj(CXY ⊕ 1) = CXY
∐

PCXY ∼= EXY. We glue these two pieces
together along EXY.

We throw out BlX Y: let M◦ = BlX×0(Y × P
1) − BlX Y. (A picture is helpful here.) Away

from 0, M◦ is still Y×A
1. Over 0, we see the normal cone CXY. So we have really deformed

Y to the normal cone. Let i : C ↪→ M◦ be the closed immersion of the normal cone, and let
j : Y × (P1 − 0) ↪→ M◦ be the open immersion of the complement.

The argument from last week was slick enough that I’m going to repeat it (quickly).
Consider the following diagram:

Ak+1C
i∗ // Ak+1M

◦

i∗Gysin map for divisors

��

j∗ // Ak+1(Y × A
1) // 0

AkC AkY.

∼

OO

The top row is the excision exact sequence. The right column is flat pullback and is an
isomorphism, as flat pullback to the total space of a line bundle is always an isomorphism.
The left column is the Gysin pullback map to divisors.

We have shown i∗i∗ : Ak+1C → AkC is the same as capping with c1 of the normal
(line) bundle to the divisor C in M◦. (Reminder for future use: if i : W ↪→ Z is the
closed immersion of W into a vector bundle over W, as the zero section, then the map
i∗i

∗ : A∗W → A∗W is capping with the top Chern class of the vector bundle.) In this case
the normal line bundle is trivial: it is the pullback of the normal bundle to t = 0 in P

1.
Thus i∗i∗ = 0. Hence Ak+1M

◦ → AkC descends to a map Ak+1(Y ×A
1) → AkC, and hence

we get a map σ : AkY → AkC, which is what we wanted! The final diagram:

Ak+1C
i∗ //

i∗i∗=0 %%KKKKKKKKKK
Ak+1M

◦

i∗

��

j∗ // Ak+1(Y × A
1) //

∴

wwoooooooooooo
0

AkC AkY.

∼

OO

∴σ
oo

1.2. Gysin pullback for local complete intersections. We already had defined the Gysin
pullback or Gysin homomorphism in the case where Y is a vector bundle over X: AkY →
Ak−dX. We now extend it to when “Y looks like a vector bundle over X”: when X is a
local complete intersection inside Y. Define the Gysin pullback i∗ : AkY → Ak−d as the
composition

AkY
σ // AkN

s∗N // Ak−dX
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where s∗N is the old Gysin morphism for vector bundles. We’re going to generalize this
further soon!

I showed that the two definitions agree, by observing that the normal cone to a the zero
section of a vector bundle is the vector bundle itself (which is true). Also, we showed
earlier that the Gysin pullback for vector bundles satisfied all sorts of nice properties; if
we show that σ satisfies these nice properties too, then we’ll know it for Gysin pullbacks
to local complete intersections.

Note: i∗i∗(α) = cd(N) ∩ α. Reason: we know this for vector bundles.

Note also: If Y is purely n-dimensional, notice that i∗[Y] = [X]. Because σ[Y] = [C], and
s∗N[C] = [X].

I concluded with:

1.3. Intersection products on smooth varieties. If X is an n-dimensional variety which
is smooth over the ground field, then the diagonal morphism ∆ : X → X × X is a local
complete intersection of codimension n. Then we get an intersection product on A∗X!

ApX ⊗ AqX
× // Ap+q(X × X)

∆∗

// Ap+q−nX.

(Notice that we don’t need X to be proper!)

I should probably be a bit clearer about that first map, which might reasonably be called
�. (You can see a discussion in Chapter 1 if you want.) Here’s what we need: consider
the map

ZpX ⊗ ZqY
× // Zp+q(X × Y)

defined on varieties by [V] × [W] = [V × W], and defined generally by linearity. (We’ll
take X = Y, but we might as well do this in some generality.) We want this to descend to
the level of Chow classes:

Lemma. If α ∼ 0 (or, symmetrically, β ∼ 0) then α × β ∼ 0.

(This is Prop. 1.10 (a) in the book.) Likely exercise: finish this proof.

2. INTERSECTION PRODUCTS

We’re now ready to discuss the last chapter in the core of the book, on intersection
products. We’ll define the intersection product, and then we’ll verify that it has a host of
properties. This verification will involve lots of diagram-chasing and symbol-pushing, so
I’m going to try to concentrate on helping you keep your eye on the big picture.

What we know so far: proper pushforward, flat pullback, s· of cones, e.g. s·(X, Y), c·.
Gysin pullbacks have gotten more and more complicated: i) X ↪→ Y as a divisor. More
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generally

V

��
X
eff. Car. div.// Y

Then X
loc. com. int.// Y . Now we go to the logical extreme:

V

��
X

loc. comp. int.
// Y

.

Here’s the context in which we’ll work. i : X ↪→ Y will be a local complete intersection
of codimension d. Y is arbitrarily horrible. Suppose V is a scheme of pure dimension k,
with a map f : V → Y. Here I am not assuming V is a closed subscheme of Y. Then define
W to be the closed subscheme of V given by pulling back the equations of X in Y:

W
cl. imm.//

g

��

V

f
��

X
cl. imm. // Y

(notice definiton of g). We’ll define the intersection product X · V ∈ Ak−dW. (We’ll most
obviously care about the case where V ↪→ Y, but you’ll see that this more general case will
be handy too!)

The cone of X in Y is in fact a vector bundle (as X ↪→ Y is a local complete intersection);
call it NXY. The cone CWY to W in Y may be quite nasty; but we’ll see (in just a moment)
that it lives in the pullback of the normal bundle: CWY ↪→ g∗NXY. Then we can define

X · V = s∗[CWV]

where s : W → g∗NXY is the zero-section. (Recall that the Gysin pullback lets us map
classes in a vector bundle to classes in the base, dropping the dimension by the rank.)

Let’s check that CWV ↪→ g∗NXY: The ideal sheaf I of X in Y generates the ideal sheaf J
of W in V , hence there is a surjection

⊕nf∗(In/In+1) → ⊕nJ
n/J n+1.

This determines a closed imbedding of the normal cone CWV into the vector bundle N.

Algebraic fact (black box from appendix): as V is purely k-dimensional scheme, CWV

is also. Then we may define X · V as I said we would: X · V = s∗CW/V.

Proposition. If ξ is the universal quotient bundle of rank d on P(g∗NX/Y ⊕ 1), and
q : P(g∗NX/Y ⊕ 1) → W is the projection, then

X · V = q∗(cd(ξ) ∩ [P(CW/V ⊕ 1)]).
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Proof. Let C = CW/V.

C
cl. imm. //

open imm.
��

N

open imm.
��

C
∐

PC
cl. imm. //

=

��

N
∐

PN

=

��
P(C ⊕ 1)

cl. imm.//

q

��

P(N ⊕ 1)
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We want to take the cone C and intersect it with the zero section s of the vector bundle
N (the top row of this diagram). We we can do this on the second row of the diagram.
Recall that we proved: if β ∈ AkN and β ∈ Ak(P(N ⊕ 1)) which restricts to β. Then
s∗β = q∗(cr(ξ) ∩ β) where ξ is the universal (rank r) quotient bundle of q∗(N ⊕ 1). Then
we’re done. �

Proposition. X · V = {c(g∗NX/Y) ∩ s(W, V)}k−d. (Here {·}k−d means “take the dimension
k − d piece of ·.)

Proof. Consider the universal (or tautological) exact sequence

0 → O(−1) → q∗N ⊕ 1 → ξ → 0

on P(N ⊕ 1). By the Whitney sum formula, c(ξ)c(O(−1)) = c(q∗N). Hence

q∗(cd(ξ) ∩ [P(C ⊕ 1)]) = {q∗(c(ξ) ∩ [P(C ⊕ 1)])}k−d

(essentially the previous proposition, but note that we’ve replaced cd(ξ) with c(ξ))

= {q∗(c(q
∗N)s(O(−1)) ∩ [P(C ⊕ 1)])}k−d

(using Whitney sum formula)

= {c(N) ∩ q∗(s(O(−1)) ∩ [P(C ⊕ 1)])}k−d

(projection formula)

= {c(N) ∩ s(C)}k−d

(definition of Segre class of a cone). �

Proposition. If d = 1 (X is a Cartier divisor on Y), V is a variety, and f is a closed
immersion, then X ·V is the intersection class we defined earlier (“cutting with a pseudo-
divisor g∗X”).

Proof omitted.

3. REFINED GYSIN HOMOMORPHISMS

We now come to the last fundamental construction of the subject.
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Let i : X → Y be a local complete intersection of codimension d as before, and let
f : Y ′ → Y be any morphism.

X ′ //

��

Y ′

��
X // Y

As before, the normal cone C ′ = CX′Y ′ is a closed subcone of g∗NXY. Define the refined
Gysin homomorphism i! (pronounced i shriek, which is what people sometimes do when
they first hear about this) as the composition:

AkY
′ σ // AkC

′ // AkN
s∗ // Ak−dX ′ .

Note what we can now do: we used to be able to intersect with a local complete intersec-
tion of codimension d. Now we can intersect in a more general setting.

We’ll next show that these homomorphisms behave well with respect to everything
we’ve done before.

E-mail address: vakil@math.stanford.edu

6


