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1. WHERE WE ARE: SEGRE CLASSES OF VECTOR BUNDLES, AND SEGRE CLASSES OF

CONES

1.1. Segre classes of cones. Once again, the definition of a cone on a scheme X. Let
S· = ⊕i≥0S

i be a sheaf of graded OX-algebras. Assume OX → S0 is surjective, S1 is coher-
ent, and S· is generated (as an algebra) by S1. I’m happy calling this the cone. C = Spec S·.
Proj(S·) has a line bundle O(1). (The “underline” under Spec and Proj is meant to dis-
tinguish the “sheafy” version from the usual version of these constructions.) Define the
Segre class

s(C) := q∗(
∑

i≥0

c1(O(1))i
∩ [Proj(C ⊕ 1)])

where q is the morphism Proj(C ⊕ 1) = Proj(S·[t]) → X.

If X ↪→ Y is a closed immersion of schemes, the normal cone is
∑∞

n=0I
n/In+1. The Segre

class of X in Y is defined to be the Segre class of the normal cone. More on the normal
cone shortly. Last day we finished proving:

Proposition (“functoriality of Segre classes of subschemes”). Let f : Y ′ → Y be a
morphism of pure-dimensional schemes, X ⊂ Y a closed subscheme, X ′ = f−1(X) the
inverse image scheme, g : X ′ → X the induced morphism.
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(a) If f proper, Y irreducible, and f maps each irreducible component of Y ′ onto Y then

g∗(s(X
′, Y ′)) = deg(Y ′/Y)s(X, Y).

(b) If f flat, then

g∗(s(X ′, Y ′)) = s(X, Y).

2. WHAT THE “FUNCTORIALITY OF SEGRE CLASSES OF SUBSCHEMES” BUYS US

As a special case, this result shows that Segre classes have a fundamental birational
invariance: if f : Y ′ → Y is a birational proper morphism, and X ′ = f−1X, then s(X ′, Y ′)

pushes forward to s(X, Y).

From (a), we immediately have:

Corollary. With the same assumptions as the proposition, if X ′ is regular imbedded (=lci) in
Y ′ , with normal bundle N ′, then

g∗(c(N
′)−1

∩ [X ′]) = deg(Y ′/Y)s(X, Y).

If X ⊂ Y is also regularly imbedded, with normal bundle N, then

g∗(c(N
′)−1

∩ [X ′]) = deg(Y ′/Y)(c(N)−1
∩ [X]).

To see why the first part might matter: Suppose X ↪→ Y is a very nasty closed immer-
sion. Then blow up Y along X, to get Y ′ with exceptional divisor X ′. Then X ′ is regularly
imbedded (lci) in Y ′ — it is a Cartier divisor! This is the content of the next corollary.

Corollary. Let X be a closed subscheme of a variety Y. Let Ỹ be the blow-up of Y along X,

X̃ = PC the exceptional divisor, η : Ỹ → Y the projection. Then

s(X, Y) =
∑

k≥1

(−1)k−1η∗(X̃
k)

=
∑

i≥0

η∗(c1(O(1))i
∩ [PC])

In that first equation, the term X̃k should be interpreted as the kth self intersection of

the Cartier divisor X̃, also known as the exceptional divisor. In other words, it should be
interpreted as meaning the second line.

2.1. The multiplicity of a variety along a subvariety. We’ll now define them multiplicity
of a scheme Y along a subvariety X. (As a special case, this will define the multiplicity of
a variety at a closed (=old-fashioned) point. That special case is a fundamental commuta-
tive algebra notion due to Samuel.) If the general point of X is a smooth point of Y, we’ll
get 1. Definition: s(X, Y) ∈ A∗X. Then s(X, Y) = eXY[X] + lower order terms. eXY is the
multiplicity.
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Useful exercise: What is the multiplicity of (0, 0) in the cusp y2 − x3? Here the char-
acteristic is not 2 or 3. (Answer: 2. Hint: blow this up. The blow-up is Spec k[t] →
Spec k[x, y]/(y2 − x3) given by t 7→ (t2, t3).)

Example. If codim(X, Y) = n > 0, define the multiplicity eXY as follows. Let q be the
projection Proj(C ⊕ 1) → X and p be the projection Proj C → X.

eXY[X] = q∗(c1(1))n
∩ [Proj(C ⊕ 1)]

= p∗(c1(O(1))n−1
∩ [ProjC]

= (−1)n−1p∗(X̃
n)

Here X̃ is the exceptional divisor of the blow-up.

Back to the multiplicity of a variety at a closed (=old-fashioned) point: Let A be the
local ring of Y at our point, m the maximal ideal of A, A/m = k. Fact:

dimk

(

t∑

i=1

mi−1/mi

)

= lA(A/mt)

is a polynomial of degree n = dim Y in t for t � 0, whose leading term is (eXY)tn/n!.
This even works at a (non-closed) point; just take A to be the local ring of Y along X, and
n = codim(X, Y).

Useful exercise: See that this works in for the cusp point (the previous useful exercise).
Note that as a vector space k[x, y]/(y2 − x3) = ⊕n≥0,n6=1ktn; note that the n = 2 term is kx,
the n = 3 term is ky, the n = 4 term is kx2, the n = 5 term is kxy, and the n = 6 term is
kx3 = ky2.

3. DEFORMATION TO THE NORMAL CONE

We next come to the central construction. There’s not much for us to do here, as we’ve
built up all the necessary machinery, and even seen the construction.

Here is the main goal. Suppose X → Y is a closed immersion of schemes. The idea is
that C = CXY “looks like Y near X”; it “is like a tubular neighborhood”. But it is nicer than
Y near X; in particular it is a cone.

Goal: We will define a specialization homomorphism σ : AkY → AkC.

I’ll try to give you an intuitive idea for what this means. (Try it.)

3.1. The construction. Here’s how we do it. Let me set some notation. If W ↪→ Z is a
closed immersion, recall that BlW Z is the blow-up of Z along W. For the purposes of the
next few lectures, let EWZ be the exceptional divisor, and let IWZ be the ideal sheaf. Then
recall:

• BlW Z = Proj⊕(IWZ)n

• EWZ = Proj⊕(IWZ)n/(IWZ)n+1
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• EWZ ↪→ BlWZ is a closed immersion, and describes EWZ as an effective Cartier
divisor, in fact in class OProj⊕(IW Z)n(1). The closed immersion is visible at the level
of graded algebras

Suppose now that X ↪→ Y is a closed immersion. (Other notation: when Fulton says
“imbedding”, we will say “closed immersion”.) Let’s blow up Y × P

1 along X× 0 and see
what we get. (Here let t be a coordinate on P

1. Notational caution: Fulton prefers to blow
up X × ∞.) We certainly have a morphism to P

1:

BlX×0(Y × P
1) → Y × P

1 → P
1.

Away from t = 0, the blow-up doesn’t do anything: BlX×0 Y|t6=0 = Y × (P1 − 0).

So what is the fiber over t = 0? I claim it is the union of two things, that we can
identify. One “piece” is BlX Y, with exceptional (Cartier) divisor EXY. The other piece is
Proj(CXY ⊕ 1); this has a Cartier divisor “P(CXY ⊕ 1)” = CXY ⊕ PCXY ∼= EXY. We glue
these two pieces together along EXY.

I want to convince you that we really get these two pieces. If you’ve never seen this
before, I want to convince you that we get those two pieces, and you can be happy with
that. At the end I’ll explain how to verify that we get nothing else.

Consider the morphism BlX×0 Y × P
1 → Y × P

1. Away from the X× 0 on the target, this
is an isomorphism. The exceptional divisor is

EX×0

(

Y × P
1
)

= Proj⊕
(

(IX×0Y × P
1)n/(IX×0Y × P

1)n+1
)

∼= Proj
(

⊕(IXY)n/(IXY)n+1
)

[t]

∼= P(CXY ⊕ 1).

So we see the projective completion of the normal cone in this blow-up.

Let’s next see the piece BlX Y. Translation: we want a morphism BlX Y to BlX×0(Y × P
1)

that lies in the scheme-theoretic fiber t = 0, and we want this to be a closed immersion.
I will just show you that the morphism exists; as usual we use the universal property.
Consider the map BlX Y → Y × P

1 obtained via BlX Y → Y × 0 ↪→ Y × P
1. The pullback of

X × 0 is an effective Cartier divisor EXY. Thus by the universal property of blowing-up,
we get a morphism BlX Y → BlX×0(Y × P

1).

So I’ve given you an indication that we see both the projective completion of the normal
cone, and BlX Y, in the central fiber (t = 0) of BlX×0(Y × P

1). How would you show that
this is all we get, and that they are glued together along EXY? This is a local question,
so we can take Y = Spec A, and X = Spec A/I. Then the question becomes completely
explicit: Y × A

1 = Spec A[t]. (We can work locally in P
1 as well.) Then BlX×0(Y × P

1)

locally is Proj⊕(I, t)n. We are interested in the fiber over t = 0, so we mod out by t:

ρ−1(0) = Proj ((⊕(I, t)n) / (t (⊕(I, t)n))) .

We want to show that this is the union of

EX×0(Y × P
1) = Proj

(

⊕(I, t)n/(I, t)n+1
)
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and

BlXY = Proj⊕In

glued along

EXY = Proj⊕
(

In/In+1
)

.

Consider ordered pairs of elements of the second and third graded rings, that are required
to give the same element in the fourth graded ring. Show that this ring is the same as the
first graded ring. Finally, realize that this algebraic statement is precisely the geometric
statement you want to prove. (I’m not going to give the details.)

4. SPECIALIZATION TO THE NORMAL CONE

Let X ↪→ Y be a closed subscheme of a scheme, and C = CXY the normal cone to X in Y.
Recall our goal: to define specialization homomorphism σ : AkY → AkC.

Let me now do it. Let M◦ = BlX×0(Y × P
1) − BlX Y. A picture is helpful here. Away

from 0, M◦ is still Y×A
1. Over 0, the big blow-up was the projectivized completion of the

normal cone CXY
∐

PCXY glued to BlX Y along EXY = PCXY. We’re throwing out BlX Y,
so the central fiber is now just the normal cone CXY. So we have really deformed Y to the
normal cone. Hence this scheme M◦ is often called the “deformation to the normal cone”.
Let i : C ↪→ M◦ be the closed immersion of the normal cone, and let j : Y × (P1 − 0) ↪→ M◦

be the open immersion of the complement.

Consider the following diagram:

Ak+1C
i∗ // Ak+1M

◦

i∗Gysin map for divisors

��

j∗ // Ak+1(Y × A
1) // 0

AkC AkY.

∼

OO

The top row is the excision exact sequence. The right column is flat pullback and is an
isomorphism, as flat pullback to the total space of a line bundle is always an isomorphism.
The left column is the Gysin pullback map to divisors.

Now we have shown i∗i∗ : Ak+1C → AkC is the same as capping with c1 of the normal
(line) bundle to the divisor C in M◦. But in this case the normal line bundle is trivial: it is
the pullback of the normal bundle to t = 0 in P

1. Thus i∗i∗ = 0. Hence Ak+1M
◦ → AkC

descends to a map Ak+1(Y × A
1) → AkC, and hence we get a map σ : AkY → AkC, which

is what we wanted! Here’s the final diagram:

Ak+1C
i∗ //

i∗i∗=0 %%K
KK

K
K

KK
K

K
K

Ak+1M
◦

i∗

��

j∗ // Ak+1(Y × A
1) //

∴

wwoooooooooooo

0

AkC AkY.

∼

OO

∴σ
oo

Remark We could define this morphism more explicitly as follows. Define σ : ZkY → ZkC

by σ([V]) = [CV∩XV] where V is a subvariety of Y. (Extend this to ZkY by linearity.) Note
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that CV∩XV ↪→ CXY, so this makes sense. Proposition. This descends to the morphism
AkY → AkC I just defined. Sketch of proof. In the bottom row of that last big diagram, it
suffices to verify that [V] 7→ [CV∩XV]. Hence it suffices to show that in the “southwest”
morphism in the big diagram (marked “∴”), [V × A

1] maps to [CV∩XV]. We take the
subvariety V × A

1
↪→ Y × (P1 − 0), take its closure in M◦, and intersect with the Cartier

divisor (t = 0) = C. We can do this explicitly locally on Y, using Y = Spec A, X = Spec A/I,
etc.; I’ll omit this since I don’t think we’ll need this fact.

Corollary. Suppose i : X ↪→ Y is a locally complete intersection (regular imbedding) of
codimension d, with normal bundle N. Define the Gysin homomorphism or Gysin pullback

i∗ : AkY → Ak−dX

as the composition

AkY
σ // AkN

s∗
N // Ak−dX.

4.1. Gysin pullback for local complete intersections. We already had defined the Gysin
pullback or Gysin homomorphism in the case where Y is a vector bundle over X. This
extends it to when “Y looks like a vector bundle over X”. Notice that the two definitions
agree; one needs to check that the normal cone to a the zero section of a vector bundle
is the vector bundle itself (which is true). Also, we showed that the Gysin pullback for
vector bundles satisfied all sorts of nice properties; if we show that σ satisfies these nice
properties too, then we’ll know it for Gysin pullbacks to local complete intersections.

Note: i∗i∗(α) = cd(N) ∩ α. Reason: we know this for vector bundles.

Note also: If Y is purely n-dimensional, notice that i∗[Y] = [X]. Because σ[Y] = [C], and
s∗N[C] = [X].

4.2. Intersection products on smooth varieties! If X is an n-dimensional variety which
is smooth over the ground field, then the diagonal morphism ∆ : X → X × X is a local
complete intersection of codimension n. Then we get an intersection product on A∗X!

ApX ⊗ AqX
× // Ap+q(X × X)

∆∗

// Ap+q−nX.

(Notice that we don’t need X to be proper!)

I should probably be a bit clearer about that first map, which might reasonably be called
�. (You can see a discussion in Chapter 1 if you want.) Here’s what we need: consider
the map

ZpX ⊗ ZqY
× // Zp+q(X × Y)

defined on varieties by [V] × [W] = [V × W], and defined generally by linearity. (We’ll
take X = Y, but we might as well do this in some generality.)

Lemma. If α ∼ 0 (or, symmetrically, β ∼ 0) then α × β ∼ 0.

(This is Prop. 1.10 (a) in the book.)
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