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1. RATIONAL EQUIVALENCE ON BUNDLES

Last time we mostly proved:

Theorem. Let E be a vector bundle of rank r = e + 1 on a scheme X, with projection
π : E → X. Let PE be the associated projective bundle, with projection p : PE → X. Recall
the definition of the line bundle O(1) = OPE(1) on PE.

(a) The flat pullback π∗ : Ak−rX → AkE is an isomorphism for all k.

(b) Each β ∈ AkPE is uniquely expressible in the form

β =

e∑

i=0

c1(O(1))i
∩ p∗αi,

for α ∈ Ak−e+iX. Thus there are canonical isomorphisms

θE : ⊕e
i=0Ak−e+iX

∼
→ AkPE.

θE : ⊕αi 7→
∑e

i=0 c1(OPE(1))ip∗αi.

Proof. Our plan was to prove this in the following order: π∗ surjective, θE surjective, θE

injective, π∗ injective. The proof is a delicate interplay between E and PE. We had done all
but the last step, and we had reduced the last step to the case where E is a trivial bundle,
i.e. we wanted to show that A∗X ↪→ A∗(X×A

r). By induction, we needed to deal with the
case where E had rank 1.
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We repeatedly used the “excision exact sequence”. Suppose X is a scheme, U an open
set, and Z the complement (a closed subset). Then the following sequence is exact:

AkZ → AkX → AkU → 0.

A construction we used throughout the proof was the following: Note that P(E ⊕ 1) =

PE
∐

E, where PE is a closed subset and E is an open subset; let i : PE ↪→ P(E ⊕ 1) be the
closed immersion, and j : E ↪→ P(E ⊕ 1) be the open immersion. (In fact PE is a Cartier
divisor, in class OP(E⊕1)(1); this was one of my definitions of O(1).) Let q be the morphism
P(E ⊕ 1) → X. The excision exact sequence gives us:

AkPE
i∗ // AkP(E ⊕ 1) // AkE // 0

Ak−rX

q∗

OO
π∗

88
r

r
r

r
r

r
r

r
r

r

We showed the following useful Remark: For any α ∈ A∗X, c1(OP(E⊕1)(1))∩q∗α = i∗p
∗α.

So we want to show that AkX ↪→ Ak+1(X×A
1) ↪→ Ak+2(X×A

2) ↪→ · · · . By induction we
just need to show the rank 1 case: AkX ↪→ Ak+1(X×A

1). Rather than starting this proof in
the middle, I’ll let you read it in the book; it is relative straightforward, compared to the
rest of the argument.

1.1. Intersecting with the zero-section of a vector bundle. We can already intersect with
the zero-section of a line bundle (i.e. an effective Cartier divisor); we get a map AkX →
Ak−1D, which we’ve called the Gysin pullback.

Definition: Gysin pullback by zero section of a vector bundle. Let s = sE denote the
zero section of a vector bundle E. s is a morphism from X to E with π◦s = idX. By part (a)
of the Chern class theorem allows us to define Gysin homomorphisms s∗ : AkE → Ak−rX,
r = rank E, by s∗(β) := (π∗)−1(β).

This ability to intersect with zero sections of vector bundles will be the basis for many
important future constructions.

You should think of this as intersecting with the zero-section of a vector bundle. This
should be a codimension r intersection. In fact there is “excess” intersection — the actual
intersection is codimension 0 — but there is a class of the right dimension.

Proposition. Let β ∈ AkE, and let β be any element of Ak(P(E ⊕ 1)) which restricts to β

in AkE. Then s∗(β) = q∗(cr(Q)∩β) where q is the projection from P(E⊕ 1) to X, and Q is
the universal (rank r) quotient bundle of q∗(E ⊕ 1).

Proof omitted (but is in book, and isn’t too long). Note that cr is the “top” Chern class.

Example If s is the zero section of a vector bundle E of rank r on X, then s∗s∗(α) =

cr(E) ∩ α. This is a special case of the excess intersection formula.
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2. CONES AND SEGRE CLASSES OF SUBVARIETIES

2.1. Introduction. If X is a subvariety of a variety Y, the Segre class s(X, Y) of X in Y

is a class in A∗X defined as follows. C = CXY is the normal cone to X in Y, PC is the
projectivized normal cone, p the projection from PC to X. I’ll define the normal cone
soon. Then

s(X, Y) =
∑

k≥0

p∗(c1(O(1))i
∩ [PC]).

Note that this is a class, not an operator.

In the case when X is a smooth subvariety of a smooth variety, C is the normal bundle.
More generally, if Y is arbitrary, then X is a local complete intersection (hereafter lci) in Y

(what Fulton calls a regular imbedding) if it is scheme-theoretically cut out by r equations,
where r is the codimension of X in Y. (Example 1: X is a smooth subvariety of a smooth
variety. Example 2: any Cartier divisor. Example 3: the union of the x and y axes in A

3.) If
X is a regular imbedding (=lci) in X, then X still has a normal bundle, defined as follows:
if I is the ideal sheaf cutting out X, then I/I2 is a vector bundle of rank r. This is the
conormal bundle, and its dual is the normal bundle. (Warning: in differential geometry, if
X ↪→ Y, then X has a tubular neighborhood that looks like the normal bundle. In algebraic
geometry, there are no such small neighborhoods, but in some sense it is even worse: in
example 3, the total space Y = A

3 is smooth, but the total space of the normal bundle — a
vector bundle over a nodal curve — is singular.)

If X is regularly imbedded (=lci) in Y, then the definition of s(X, Y) turns into

s(X, Y) = s(N) ∩ [X] = c(N)−1
∩ [X].

More generally still, if X is arbitrarily horrible in arbitrarily horrible Y, it still has a
normal cone. I’ll define that shortly. Whatever it is, we’ll have the same equation

s(X, Y) = s(N) ∩ [X] = c(N)−1
∩ [X].

These Segre classes have a fundamental birational invariance: if f : Y ′ → Y is a bira-
tional proper morphism, and X ′ = f−1X, then s(X ′, Y ′) pushes forward to s(X, Y). The
coefficient of [X] in s(X, Y) is the multiplicity of Y along X. This magical invariance will be
the main result of Chapter 4.

2.2. Cones. I’ll now define cone. Let X be a scheme, and let S· = ⊕i≥0S
i be a sheaf of

graded OX-algebras. Assume OX → S0 is surjective, S1 is coherent, and S· is generated
(as an algebra) by S1. This sounds complicated, but it isn’t. It is defined so you can take
Proj(S·), and that this makes sense, and has a line bundle O(1).

Here’s how it works: over any affine open set Spec R of X, S· is a graded R-algebra,
generated in degree 1. Then we can take Proj of this graded R-algebra. The fact that
the algebra is generated in degree 1 (by R1 say) means that we have a surjective map of
graded rings

Symi R1 → ⊕iR
i
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which, upon applying Proj, becomes

X ′
↪→ X × P(R1)∨

where P(R1)∨ is an honest projective bundle. So the morphism X ′ → X is projective
and has a line bundle called O(1). You can do this over each affine, and glue the result
together, and the O(1)’s also glue together.

Example 1: say let E be a vector bundle, and Si = Symi(E∨). Then Proj S· = PE.

Example 2: Say T i = Symi(E∨⊕ 1) = Si⊕ Si−1z, so (better) T · = S·[z]. Then Proj T · = PE.

Example 3: The blow-up can be described in this way, and it will be good to know
this. Suppose X is a subscheme of Y, cut out by ideal sheaf I. (In our situation where
all schemes are finite type, I is a coherent sheaf.) Then let S· = ⊕iI

i, where I is the ith
power of the ideal I. (I0 is defined to be OX.) Then BlX Y ∼= Proj S·. A short calculation
shows that the exceptional divisor class is O(−1). The exceptional divisor turns out to be
Proj⊕In/In+1. (Note that this is indeed a graded sheaf of algebras.) As ⊕In → ⊕In/In+1

is a surjective map of rings, this indeed describes a closed subscheme of the blow-up.
(Remember this formula — it will come up again soon!)

Now I’ll finally define cone. Let S· be a sheaf of graded OX-algebras as before. Then
C = Spec(S·) is a cone. (We can construct Spec(S·) of a sheaf of algebras in the same way
as we can construct Proj; in fact it is a logically prior construction.)

Remember that P(E⊕1) = E
∐

PE. The direct generalization is: Proj(S·[z]) = C
∐

Proj(S·) =

Spec S·
∐

Proj(S·). The argument is just the same. The right term is a Cartier divisor in
class OProj(S·[z])(1).

2.3. Segre class of a cone. The Segre class of a cone C on X, denoted s(C), is the class in
A∗X defined by the formula

s(C) = q∗

(

∑

i≥0

c1(O(1))i
∩ [Proj(C ⊕ 1)]

)

.

This is very much the same definition as for vector bundles, except in the vector bundle
case we get operators on Chow groups. In this case we get elements of Chow groups
themselves: we are capping with a fundamental class!

Proposition (a) If E is a vector bundle on X, then s(E) = c(E)−1 ∩ [X], where c(E) is
the total Chern class of X, r = rank(E). c(E) = 1 + c1(E) + · · · + cr(E). (I would write
s(E) = s(E) ∩ [X], but the two uses of s(E) are confusing!) This is basically our definition
of Segre/Chern classes.

(b) Let C1, . . . , Ct be the irreducible components of C, mi the geometric multiplicities of

Ci in C. Then s(C) =
∑t

i=1 mis(Ci). (Note that the Ci are cones as well, so s(Ci) makes
sense.) In other words, we can compute the Segre class piece by piece.
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Sketch of proof of (b). This is because each of the Ci is a cone. [Proj(C⊕1)] = ∪mi[Proj(Ci⊕

1)]. �

Example. For any cone C, s(C ⊕ 1) = s(C). (In the language of Dan’s talk last week, the
Segre class of a cone depends on its stable equivalence class.)

2.4. The Segre class of a subscheme. Let X be a closed subscheme of a scheme Y (not
necessarily lci).

I told you that I/I2 is the conormal bundle of a local complete intersection subscheme.
In general, it is the conormal sheaf.

Consider
∑∞

n=0I
n/In+1. (Recall that Proj of this sheaf gives us the exceptional divisor

of the blow-up.) Define the normal cone C = CXY by

C = Spec

∞∑

n=0

I
n/In+1.

Define the Segre class of X in Y as the Segre class of the normal cone:

s(X, Y) = s(CXY) ∈ A∗X.

Proposition Let f : Y ′ → Y be a morphism of pure-dimensional schemes, X ⊂ Y a closed
subscheme, X ′ = f−1(X) the inverse image scheme, g : X ′ → X the induced morphism.

(a) If f is proper, Y irreducible, and f maps each irreducible component of Y ′ onto Y then

g∗(s(X
′, Y ′)) = deg(Y ′/Y)s(X, Y).

(b) If f is flat, then

g∗(s(X ′, Y ′)) = s(X, Y).

Let me point out why I find this a remarkable result. X ′ is a priori some nasty scheme;
even if it is nice, its codimension in Y ′ isn’t necessarily the same as the codimension of
X in Y. The argument is quite short, and shows that what we’ve proved already is quite
sophisticated.

I will give the proof next time. Today I gave most of the proof, by describing the dia-
gram around which everything revolves.

Let me assume that Y ′ is irreducible. (It’s true in general, and I may deal with the
general case later.)
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Let me first write the diagram on the board, and then explain it.

OProj(C′⊕1)(1) = G∗OProj(C⊕1)(1)

**UUUUUUUUUUUUUUUUU

OProj(C⊕1)(1)

**UUUUUUUUUUUUUUUUU

Proj(C ′ ⊕ 1)
Cartier div.//

G

��

q′

yyrr
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

BlX′×0(Y
′ × A

1)

F

��
Proj(C ⊕ 1)

Cartier div.//

q

xxqq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q

BlX×0(Y × A
1)

X ′

g

��
X

Explanation: We blow up Y ×A
1 along X× 0, and similarly for Y ′ and X ′. The exceptional

divisor of BlX×0(Y×A
1) is Proj(C⊕1), and similarly for Y ′ and X ′. The universal property

of blowing up Y × A
1 shows that there exists a unique morphism G from the top excep-

tional divisor to the bottom. Moreover, by construction, the exceptional divisor upstairs
is the pullback of the exceptional divisor downstairs (that’s the statement about the two
O(1)’s in the diagram). Let q be the morphism from the exceptional divisor Proj(C ⊕ 1)

to X, and similarly for q ′. That square commutes: q ◦ G = g ◦ q ′ (basically because that
morphism G was defined by the universal property of blowing up).

We’ll finish the proof next time (and I’ll describe this diagram once again).
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