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1. RATIONAL EQUIVALENCE ON BUNDLES

Last time I stated:

Theorem. Let E be a vector bundle of rank r = e + 1 on a scheme X, with projection
π : E → X. Let PE be the associated projective bundle, with projection p : PE → X. Recall
the definition of the line bundle O(1) = OPE(1) on PE.

(a) The flat pullback π∗ : Ak−rX → AkE is an isomorphism for all k.

(b) Each β ∈ AkPE is uniquely expressible in the form

β =

e∑

i=0

c1(O(1))i ∩ p∗αi,

for α ∈ Ak−e+iX. Thus there are canonical isomorphisms

θE : ⊕e
i=0Ak−e+iX

∼

→ AkPE.

θE : ⊕αi 7→
∑e

i=0 c1(OPE(1))ip∗αi.

Proof. Here’s the plan: π∗ surjective, θE surjective, θE injective, π∗ injective. So the proof is
a delicate interplay between E and PE.

We’ll make repeated use of something Rob stated, from the end of the first Chapter: the
“excision exact sequence”. Suppose X is a scheme, U an open set, and Z the complement
(a closed subset). Then the following sequence is exact:

AkZ → AkX → AkU → 0.

I’ll now show surjectivity of π∗ and θE. First reduction: it suffices to deal with the case
where E is the trivial bundle. Proof by the induction on the dimension of X. Here’s the π∗

argument:
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Let U be a dense open set where E is trivial. Then its complement Y is of dimension
strictly smaller than X.

A∗Y //

��

A∗X //

��

A∗U //

��

0

A∗(π
−1Y) //

��

A∗E //

?

��

A∗(π
−1U) //

��

0

0 0 0

The two horizontal rows are exact. By the inductive hypothesis, the left column is exact.
We’re assuming we know the result for trivial vector bundles, so the right column is also
exact. Then the central vertical row is exact, by a quick diagram chase.

The same argument works for θE. Here’s the exact sequence:

A∗Y //

��

A∗X //

��

A∗U //

��

0

⊕A∗(p
−1Y) //

��

⊕A∗PE //

?

��

⊕A∗(p
−1U) //

��

0

0 0 0

So let’s show surjectivity of π∗ and θE in the case where E is a trivial bundle. I’ll show
both by induction on the rank of E. In the case where the rank is 0, both are clearly
surjective. (In fact, π∗ is tautologically an isomorphism, and PE is the empty set, and the
left side of θE is the empty direct sum!)

We assume the result for E and prove it for E ⊕ 1.

The surjectivity of π∗ in the trivial bundle was shown in Chapter 1, so for the sake of
time I’ll omit it. (The atomic statement that needs to be shown: AkX → Ak+1(X × A

1) is
surjective. Then by induction AkX → Ak+1(X × A

n) is surjective.)

Recall that P(E ⊕ 1) = PE
∐

E, where PE is a closed subset and E is an open subset; let
i : PE ↪→ P(E ⊕ 1) be the closed immersion, and j : E ↪→ P(E ⊕ 1) be the open immersion.
(In fact PE is a Cartier divisor, in class OP(E⊕1)(1); this was one of my definitions of O(1).)
Let q be the morphism P(E ⊕ 1) → X. The excision exact sequence gives us:

AkPE
i∗ // AkP(E ⊕ 1) // AkE // 0

Ak−rX

q∗

OO
π∗

88
r

r
r

r
r

r
r

r
r

r

You may feel like drawing an arrow Ak−rX → AkP, but that’s not right; the morphism is
of course Ak−rX → Ak−1P, as the fiber dimension of AkPE → Ak−r is r − 1.
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Remark: For any α ∈ A∗X, c1(OP(E⊕1)(1)) ∩ q∗α = i∗p
∗α. Reason: I’ll show this for any

cycle α ∈ Z∗X. Then we can interpret the left side as pulling the cycle back to P(E ⊕ 1),
and intersecting with the Cartier divisor PE. But that’s exactly the same as the right side.
(That’s basically how we defined c1 of a line bundle!)

Suppose β ∈ A∗P(E⊕1). Then we can write j∗β = π∗α for some α ∈ A∗X (by surjectivity
of π∗). Then β−q∗α maps to 0 in AkE, so it is in AkPE by our excision exact sequence. Then
by our inductive assumption that we already know surjectivity for smaller-dimensional
schemes, we know:

β − q∗α = i∗

(

e∑

i=0

c1(OPE(1))i ∩ p∗αi

)

for some αi ∈ A∗X. As i∗OP(E⊕1) = OPE(1):

· · · = β − q∗α = i∗

(

e∑

i=0

i∗c1(OPE⊕1(1))i ∩ p∗αi

)

Then by the projection formula we get

· · · = β − q∗α =

e∑

i=0

c1(OPE⊕1(1))i ∩ i∗p
∗αi

=

e∑

i=0

c1(OPE⊕1(1))i ∩ c1(OPE⊕1(1) ∩ q∗αi

(the last step by using the remark). Thus we see that θE⊕1 is surjective.

We next show that θE is an isomorphism. Suppose we have a relation
e∑

i=0

c1(OPE(1))i ∩ p∗αi = 0.

If the αi are not all zero, then let k be the largest integers with αk 6= 0. Then

p∗(c1(OPE(1))e−k ∩

e∑

i=0

c1(OPE(1))i ∩ p∗αi) = αk

by our Segre class theorem, giving a contradiction.

Finally, we’ll show that π∗ is an isomorphism. I claim that as before, it suffices to do
this for trivial bundles. The argument is by Noetherian induction again.

0

��

0

��

0

?
��

A∗Y //

��

A∗X //

��

A∗U //

��

0

A∗(π
−1Y) //

��

A∗E //

��

A∗(π
−1U) //

��

0

0 0 0
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Now we’ll do it by induction on the rank. So we want to show that AkX ↪→ Ak+1X ×

A
1

↪→ Ak+2X × A
2

↪→ · · · : we just need to show the rank 1 case. Suppose α ∈ AkX and
π∗α ∈ Ak+1(X×A

1) = 0. Consider q∗α ∈ Ak+1(X×P
1). As θE is an isomorphism, we have

q∗α = i∗(p
∗α0 + c1(OP1(1)) ∩ p∗α1).

(One nice thing about P
1 is that OP1(1)2 = 0: the intersection of two distinct points is

empty!) Using our remark:

q∗α = c1(OP1(1)) ∩ q∗α0 + c1(OP1(1))2 ∩ p∗α1.

(Thus by injectivity of θE (which is uniqueness of α0 and α1) we have α1 = 0.) But the
first part of the Segre class theorem stated that if we take a class α downstairs, pull it back
to a projective bundle, and cap it with the right number of O(1)’s (corresponding to the
projective bundle), and push it forward, we’ll get α again. Hence

α = q∗(c1(OP1(1)) ∩ q∗α)

= c1(OP1(1))2 ∩ q∗α0 + c1(OP1(1))3 ∩ p∗α1

= 0

�

E-mail address: vakil@math.stanford.edu

4


