MATH 113 PRACTICE MIDTERM

The actual midterm will have the same number of questions with the same instructions. They are of similar difficulty.

You may use only pens/pencils and scrap paper; calculators are not allowed (and also should not be useful), and this is a closed-book exam. The "A" problems just require answers, and no proofs or explanations. (Hint: they each have fast solutions, so don't dive into messy algebra.) They are each worth 2 points. For the "B" problems, justify your answers completely. They are each worth 6 points.

A1. Suppose $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}$ are four vectors in \mathbb{F}^{5}. What are the possible values of

$$
\operatorname{dim} \operatorname{span}\left(\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}\right) ?
$$

Give an example of each possibility.
A2. Suppose $\{\vec{v}\}$ is a linearly dependent set \mathbb{F}^{4}. Find \vec{v}.
A3. Find the column rank of

$$
\left(\begin{array}{ccccccc}
9 & 1 & 3 & 2 & 0 & 8 & 0 \\
1 & 2 & 0 & 9 & 0 & 3 & 9 \\
-2 & 2 & 0 & 9 & 12 & 9 & 2
\end{array}\right) .
$$

B1. Suppose $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{7}$ are vectors in a ten-dimensional vector space V. Show that they do not span V.

B2. Find a basis for the subspace

$$
\operatorname{span}((1,2) \otimes(1,2),(1,1) \otimes(1,1),(1,0) \otimes(1,0),(0,1) \otimes(0,1))
$$

of $\mathbb{F}^{2} \otimes \mathbb{F}^{2}$.
B3. Suppose W is a subspace of V, and V is a finite-dimensional vector space. Show that W and V / W are both finite-dimensional, and $\operatorname{dim} W+\operatorname{dim} V / W=\operatorname{dim} V$.

B4 (power series). (Try this one only if you are done with the earlier problems.) A power series with coefficients in \mathbb{F} is something of the form $a_{0}+a_{1} x+a_{2} x^{2}+\cdots$ where $a_{i} \in \mathbb{F}$. (Unlike a polynomial, this sum isn't assumed to stop.)
(a) Show that the space of all power series (called $\mathbb{F}[[x]]$) is a vector space over \mathbb{F}.
(b) You can multiply power series by the following rule:

$$
\begin{gathered}
\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots\right)\left(b_{0}+b_{1} x+b_{2} x^{2}+\cdots\right) \\
=\left(a_{0} b_{0}\right)+\left(a_{0} b_{1}+a_{1} b_{0}\right) x+\left(a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right) x^{2}+\cdots .
\end{gathered}
$$

Date: January 30, 2006.

If f is a power series, show that multiplication by f gives a linear transformation $\mathbb{F}[[x]] \rightarrow$ $\mathbb{F}[[x]]$. For which f is this linear transformation invertible?

E-mail address: vakil@math.stanford.edu

