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This class will meet 8:40-9:55. Please be sure to be on the e-mail list so I can warn
you which days class will take place.

Welcome back! Where we’re going this quarter: last quarter, we established the objects
of study: varieties or schemes. This quarter we’ll be mostly concerned with important
means of studying them: veeterbundles quasicoherent sheaves and cohomology thereof.
As a punchline for this quarter, I hope to say a lot of things about curves (Riemann sur-
faces) at the end of the quarter. However, in keeping with the attitude of last quarter, my
goal isn’t to make a beeline for the punchline. Instead we’ll have a scorched-earth policy
and try to cover everything between here and there relatively comprehensively. We start
with smeethness nonsingularity of schemes. Then weeter-bundles locally free sheaves,
quasicoherent sheaves and coherent sheaves. Then to line-bundles invertible sheaves,
and divisors. Then we’ll interpret these for projective schemes in terms of graded mod-
ules. We'll investigate pushing forward and pulling back quasicoherent sheaves. We'll
construct schemes using these notions, and for example define the notion of a projective
morphism. We’ll study differentials (e.g. the tangent bundle of smooth schemes, but also
for singular things). Then we’ll discuss cohomology (both Cech cohomology and derived
functor cohomology). Then curves! The punch line for today: Spec Z is a smeeth nonsin-
gular curve.

1. NONSINGULARITY (“SMOOTHNESS”) OF NOETHERIAN SCHEMES

One natural notion we expect to see for geometric spaces is the notion of when an
object is “smooth”. In algebraic geometry, this notion, called nonsingularity (or reqularity,
although we won't use this term) is easy to define but a bit subtle in practice. We will soon
define what it means for a scheme to be nonsingular (or reqular) at a point. A point that
is not nonsingular is (not surprisingly) called singular (“not smooth”). A scheme is said
nonsingular if all its points are nonsingular, and singular if one of its points is singular.
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The notion of nonsingularity is less useful than you might think. Grothendieck taught
us that the more important notions are properties of morphisms, not of objects, and there
is indeed a “relative notion” that applies to a morphism of schemes f : X — Y that is much
better-behaved (corresponding to the notion of submersion in differential geometry). For
this reason, the word “smooth” is reserved for these morphisms. We will discuss smooth
morphisms in the spring quarter. However, nonsingularity is still useful, especially in
(co)dimension 1, and we shall discuss this case (of discrete valuation rings) next day.

2. THE ZARISKI TANGENT SPACE

We begin by defining the notion of the tangent space of a scheme at a point. It will
behave like the tangent space you know and love at “smooth” points, but will also make
sense at other points. In other words, geometric intuition at the smooth points guides the
definition, and then the definition guides the algebra at all points, which in turn lets us
refine our geometric intuition.

This definition is short but surprising. The main difficulty is convincing yourself that
it deserves to be called the tangent space. I've always found this tricky to explain, and
that is because we want to show that it agrees with our intuition; but unfortunately, our
intuition is worse than we realize. So I'm just going to define it for you, and later try to
convince you that it is reasonable.

Suppose p is a prime ideal of a ring A, so [p] is a point of Spec A. Then [pA,] is a point
of the scheme Spec A,. For convenience, we let m := pA, C A, = B. Let k = B/m be the
residue field. Then m/m? is a vector space over the residue field k: it is an B-module, and
elements of m acts like 0. This is defined to be the Zariski cotangent space. The dual is
the Zariski tangent space. Elements of the Zariski cotangent space are called cotangent
vectors or differentials; elements of the tangent space are called tangent vectors.

Note that this definition is intrinsic. It doesn’t depend on any specific description of
the ring itself (such as the choice of generators over a field k, which is equivalent to the
choice of embedding in affine space). Notice that in some sense, the cotangent space is
more algebraically natural than the tangent space. There is a moral reason for this: the
cotangent space is more naturally determined in terms of functions on a space, and we
are very much thinking about schemes in terms of “functions on them”. This will come
up later.

I'll give two of plausibility arguments that this is a reasonable definition. Hopefully
one will catch your fancy.

In differential geometry, the tangent space at a point is sometimes defined as the vector
space of derivations at that point. A derivation is a function that takes in functions near
the point that vanish at the point, and gives elements of the field k, and satisfies the
Leibniz rule

(fg)"=f'g+g'f.
Translation: a derivation is a map m — k. But m? — 0, as if f(p) = g(p) = 0, then

(fg)'(p) =f'(p)g(p) + g'(p)f(p) =0.
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Thus we have a map m/m? — k, i.e. an element of (m/m?)V.

2.A. EXERCISE. Check that this is reversible, i.e. that any map m/m? — k gives a deriva-
tion. In other words, verify that the Leibniz rule holds.

Here is a second vaguer motivation that this definition is plausible for the cotangent
space of the origin of A™. Functions on A™ should restrict to a linear function on the
tangent space. What function does x? + xy + x + y restrict to “near the origin”? You
will naturally answer: x 4+ y. Thus we “pick off the linear terms”. Hence m/m? are the
linear functionals on the tangent space, so m/m? is the cotangent space. In particular,
you should picture functions vanishing at a point (lying in m) as giving functions on the
tangent space in this obvious a way.

2.1. Old-fashioned example. Here is an example to help tie this down to earth. Computing
the Zariski-tangent space is actually quite hands-on, because you can compute it just as
you did when you learned multivariable calculus. In A%, we have a curve cut out by
x+y+zZ+xyz = 0and x — 2y + z + x*y?z® = 0. (You know enough to check that
this is a curve, but it is not important to do so.) What is the tangent line near the origin?
(Is it even smooth there?) Answer: the first surface looks like x +y = 0 and the second
surface looks like x — 2y + z = 0. The curve has tangent line cut out by x +y = 0 and
x — 2y +z = 0. It is smooth (in the analytic sense). In multivariable calculus, the students
do a page of calculus to get the answer, because we aren’t allowed to tell them to just pick
out the linear terms.

Let’s make explicit the fact that we are using. If A is a ring, m is a maximal ideal, and
f € mis a function vanishing at the point [m] € Spec A, then the Zariski tangent space of
Spec A/(f) at m is cut out in the Zariski tangent space of Spec A (at m) by the single linear
equation f (mod m?). The next exercise will force you think this through.

2.B. IMPORTANT EXERCISE (“KRULL’S PRINCIPAL IDEAL THEOREM FOR THE ZARISKI
TANGENT SPACE”). Suppose A is a ring, and m a maximal ideal. If f € m, show that the
Zariski tangent space of A/f is cut out in the Zariski tangent space of A by f (mod m?).
(Note: we can quotient by f and localize at m in either order, as quotienting and localizing
“commute”.) Hence the dimension of the Zariski tangent space of Spec A at [m] is the
dimension of the Zariski tangent space of Spec A/(f) at [m], or one less.

Here is another example to see this principle in action: x +y + z* = 0 and x + y +
x? 4+ y* + z° = 0 cuts out a curve, which obviously passes through the origin. If I asked
my multivariable calculus students to calculate the tangent line to the curve at the origin,
they would do a reams of calculations which would boil down to picking off the linear
terms. They would end up with the equations x +y = 0 and x +y = 0, which cuts out
a plane, not a line. They would be disturbed, and I would explain that this is because
the curve isn’t smooth at a point, and their techniques don’t work. We on the other hand
bravely declare that the cotangent space is cut out by x +y = 0, and (will soon) define
this as a singular point. (Intuitively, the curve near the origin is very close to lying in the



plane x +y = 0.) Notice: the cotangent space jumped up in dimension from what it was
“supposed to be”, not down. We'll see that this is not a coincidence soon, in Theorem 3.1.

Here is a nice consequence of the notion of Zariski tangent space.

2.2. Problem. Consider the ring A = k[x,y, zl/(xy—2z?). Show that (x, z) is not a principal
ideal.

As dim A = 2 (by Krull’s Principal Ideal Theorem), and A/(x,z) = kly] has dimension
1, we see that this ideal is height 1 (as codimension is the difference of dimensions for
finitely generated k-domains). Our geometric picture is that Spec A is a cone (we can
diagonalize the quadric as xy —z* = ((x +y)/2)* — ((x —y)/2)*> — 2%, at least if char k # 2),
and that (x, z) is a ruling of the cone. (See Figure 1 for a sketch.) This suggests that we

look at the cone point.

FIGURE 1. V(x,z) C Specklx,y,z]/(xy — z?) is a ruling on a cone; (x, z)
not (x, z)-primary.

2is

Solution. Let m = (x,y,z) be the maximal ideal corresponding to the origin. Then
Spec A has Zariski tangent space of dimension 3 at the origin, and Spec A /(x, z) has Zariski
tangent space of dimension 1 at the origin. But Spec A/(f) must have Zariski tangent
space of dimension at least 2 at the origin by Exercise 2.B.

2.C. EXERCISE. Show that (x,z) C k[w, x,y, zl/(wz — xy) is a codimension 1 ideal that is
not principal. (See Figure 2 for a sketch.)

2.3. Morphisms and tangent spaces. Suppose f : X — Y, and f(p) = . Then if we
were in the category of manifolds, we would expect a tangent map, from the tangent
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FIGURE 2. The ruling V(x,z) on V(wz —xy) C P3.

space of p to the tangent space at q. Indeed that is the case; we have a map of stalks
Ov,q — Ox,p, which sends the maximal ideal of the former n to the maximal ideal of the
latter m (we have checked that this is a “local morphism” when we briefly discussed local-
ringed spaces). Thus n? — m?, from which n/n* — m/m?, from which we have a natural
map (m/m?)Y — (n/n?)V. This is the map from the tangent space of p to the tangent space
at g that we sought.

Here are some exercises to give you practice with the Zariski tangent space.

2.D. USEFUL EXERCISE (THE JACOBIAN CRITERION FOR COMPUTING THE ZARISKI TAN-
GENT SPACE). Suppose k is an algebraically closed field, and X is a finite type k-scheme.
Then locally it is of the form Speck[x1,...,xn)/(f1,..., fy). Show that the Zariski tangent
space at the closed point p (with residue field k, by the Nullstellensatz) is given by the
cokernel of the Jacobian map k" — k™ given by the Jacobian matrix

Sp) - (p)

(1) ] = : . :
S(p) oo A(p)

(This is just making precise our example of a curve in A3 cut out by a couple of equations,
where we picked off the linear terms, see Example 2.1 .) You might be alarmed: what
of

does 3 - mean?! Do you need deltas and epsilons? No! Just define derivatives formally,

e.g.

a—X](x% +x1%2 + X3) = 2% + x5.

(Hint: Do this first when p is the origin, and consider linear terms, just as in Example 2.1.
Note for future reference that you have not yet used the algebraic closure of k. Then in
the general case (with k algebraically closed), “translate p to the origin.”
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2.E. LESS IMPORTANT EXERCISE (“HIGHER-ORDER DATA”). In an earlier exercise, you
computed the equations cutting out the three coordinate axes of A3. (Call this scheme X.)
Your ideal should have had three generators. Show that the ideal can’t be generated by
fewer than three elements. (Hint: working modulo m = (x,y,z) won't give any useful
information, so work modulo m?.)

2.F. EXERCISE. Suppose X is a k-scheme. Describe a natural bijection Mory(Spec k[e]/(€?), X)
to the data of a point with residue field is k, necessarily a closed point.

2.G. EXERCISE. Find the dimension of the Zariski tangent space at the point [(2,x)] of
Z[2i] = ZI[x]/(x* + 4). Find the dimension of the Zariski tangent space at the point [(2, x)]
of Z[v/=2] = Z[x]/(x* + 2).

3. THE LOCAL DIMENSION IS AT MOST THE DIMENSION OF THE TANGENT SPACE

We are ready to define nonsingularity. The key idea is contained in the title of this
section.

3.1. Theorem. — Suppose (A, m) is a Noetherian local ring. Then dim A < dimy m/m?.

If equality holds, we say that A is a regular local ring. If a Noetherian ring A is regular
at all of its primes, we say that A is a regular ring.

A locally Noetherian scheme X is regular or nonsingular at a point p if the local ring
Oxp is regular. It is singular at the point otherwise. A scheme is regular or nonsingular
if it is regular at all points. It is singular otherwise (i.e. if it is singular at at least one point).

Proof of Theorem 3.1: Note that m is finitely generated (as A is Noetherian), so m/m? is
a finitely generated (A/m = k)-module, hence finite-dimensional. Say dimj;m/m? = n.
Choose a basis of m/m?, and lift them to elements f;, ..., f, of m. Then by Nakayama'’s
lemma (version 4), (fq,...,f,) =m.

We need here one fancy fact that I forgot to say last quarter. Krull’s Principal Ideal
Theorem states that the codimension of any irreducible component of the locus cut out by
one equation is at most one. There is a generalization to an arbitrary number of equations:
if A is a Noetherian ring, then any irreducible component of V(f;, ..., f,) has codimension
at most n. The proof isn’t much harder than Krull, but I haven’t given it to you. Sorry!
You can read a proof in Eisenbud (Theorem 10.2, p. 235).

3.A. EXERCISE. Prove this if A is an irreducible variety over a field. (Hint: this isn’t that
hard. Use the fact that codimension is the difference of dimensions in this happy case.)
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In our case, V((f1,...,fn)) = V(m) is just the point [m], so the codimension of m is
at most n. Thus the longest chain of prime ideals contained in m is at most n 4 1. But
this is also the longest chain of prime ideals in A (as m is the unique maximal ideal), so
n > dimA. O

3.B. EXERCISE. Show that if A is a Noetherian local ring, then A has finite dimension.
(Noetherian rings in general could have infinite dimension, as we saw in an earlier exer-
cise.)

In the case of finite type schemes over an algebraically closed field k, the Jacobian crite-
rion (Exercise 2.D) gives a hands-on method for checking for singularity at closed points.

3.C. EXERCISE. Suppose k is algebraically closed. Show that the singular closed points of

;c)he hypersurface f(x1,...,x,) = 0in A} are given by the equations f = % =...= % =

3.D. EXERCISE. Suppose k is algebraically closed. Show that A] and AZ are nonsingular.
(Make sure to check nonsingularity at the non-closed points! Fortunately you know what
all the points of A? are; this is trickier for A3.) Show that P} and P{ are nonsingular. (This
holds even if k isn’t algebraically closed, and in higher dimension.)

Let’s apply this technology to an arithmetic situation.

3.E. EASY EXERCISE. Show that SpecZ is a nonsingular curve.

Here are some fun comments: What is the derivative of 35 at the prime 5? Answer: 35
(mod 25), so 35 has the same “slope” as 10. What is the derivative of 9, which doesn’t
vanish at 5? Answer: the notion of derivative doesn’t apply there. You'd think that you’d
want to subtract its value at 5, but you can’t subtract “4 (mod 5)” from the integer 9. Also,
35 (mod 25) you might think you want to restate as 7 (mod 5), by dividing by 5, but that’s
morally wrong — you're dividing by a particular choice of generator 5 of the maximal
ideal of Zs (the 5-adics); in this case, one appears to be staring you in the face, but in
general that won’t be true. Follow-up fun: you can talk about the derivative of a function
only for functions vanishing at a point. And you can talk about the second derivative of a
function only for functions that vanish, and whose first derivative vanishes. For example,
75 has second derivative 75 (mod 125) at 5. It’s pretty flat.

3.F. EXERCISE. (This exercise is for those who know about the primes of the Gaussian
integers Z[i].) Note that Z[i] is dimension 1, as Z[x] has dimension 2 (problem set exercise),
and is a domain, and x* + 1 is not 0, so Z[x]/(x? + 1) has dimension 1 by Krull’s Principal
Ideal Theorem. Show that Spec Z[i] is a nonsingular curve.

3.G. EXERCISE. Show that there is one singular point of Spec Z[5i], and describe it.
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Let’s return to more geometric examples.

3.H. EXERCISE (THE EULER TEST FOR PROJECTIVE HYPERSURFACES). There is an analo-
gous Jacobian criterion for hypersurfaces f = 0 in P}. Suppose k is algebraically closed.
Show that the singular closed points correspond to the locus f = % =...= % =0. If
the degree of the hypersurface is not divisible by the characteristic of any of the residue
tields (e.g. if we are working over a field of characteristic 0), show that it suffices to check
% = ... = 5= = 0. (Hint: show that f lies in the ideal (aa—:], ..y o). (Fact: this will give
the singular points in general, not just the closed points. I don’t want to prove this, and I

won’t use it.)

3.I. EXERCISE. Suppose that k is algebraically closed. Show that y%z = x> — xz? in P is
an irreducible nonsingular curve. (This is for practice.) Warning: I didn’t say chark = 0,
so be careful when using the Euler test.

3.J. EXERCISE. Find all the singular closed points of the following plane curves. Here we
work over an algebraically closed field.

(@) y? = x? +x3. This is called a node.
(b) y? = x3. This is called a cusp.
(c) y? = x*. This is called a tacnode.

(I haven’t given a precise definition of a node, etc.)

3.K. EXERCISE. Show that the twisted cubic Proj k[w, x, y, z|/(wz — xy, wy — x?, xz — y?)
is nonsingular. (You can do this by using the fact that it is isomorphic to P'. I'd prefer you
to do this with the explicit equations, for the sake of practice.)

E-mail address: vakil@math.stanford.edu
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1. Discrete valuation rings: Dimension 1 Noetherian regular local rings 1

Last day, we discussed the Zariski tangent space, and saw that it was often quite com-
putable. We proved the key inequality dimA < dimym/m? for Noetherian local rings
(A, m). When equality holds, we said that the ring was regular (or nonsingular), and we
defined the notion of (non)singularity for locally Noetherian schemes.

1. DISCRETE VALUATION RINGS: DIMENSION 1 NOETHERIAN REGULAR LOCAL RINGS

The case of dimension 1 is important, because if you understand how primes behave
that are separated by dimension 1, then you can use induction to prove facts in arbitrary
dimension. This is one reason why Krull’s Principal Ideal Theorem is so useful.

A dimension 1 Noetherian regular local ring can be thought of as a “germ of a smooth

curve” (see Figure 1). Two examples to keep in mind are k[x] ) = {f(x)/g(x) : x f g(x)}
and Zsy ={a/b:5 /bl

/\\/

FIGURE 1. A germ of a curve

The purpose of this section is to give a long series of equivalent definitions of these
rings. We will eventually have seven equivalent definitions, (a) through (g).

1.1. Theorem. — Suppose (A, m) is a Noetherian local ring of dimension 1. Then the following
are equivalent.

(@) (A,m) is regular.
(b) m is principal.

Date: Monday, January 14, 2008.



Here is why (a) implies (b). If A is regular, then m/m? is one-dimensional. Choose any
element t € m — m?. Then t generates m/m?, so generates m by Nakayama’s lemma. We
call such an element a uniformizer. Warning: we need to know that m is finitely generated
to invoke Nakayama — but fortunately we do, thanks to the Noetherian hypothesis.

Conversely, if m is generated by one element t over A, then m/m? is generated by one
element t over A/m = k. Note that t ¢ m?, as otherwise m = m? and hece m = 0 by
Nakayama’s Lemma. O

We will soon use a useful fact, and we may as well prove it in much more generality
than we need, because the proof is so short.

1.2. Proposition. — If (A, m) is a Noetherian local ring, then Nym* = 0.

The geometric intuition for this is that any function that is analytically zero at a point
(vanishes to all orders) actually vanishes at that point.

It is tempting to argue that m(Nym') = Nym?, and then to use Nakayama’s lemma to
argue that Nym" = 0. Unfortunately, it is not obvious that this first equality is true: product
does not commute with infinite intersections in general.

Proof. Let I = Niym'. We wish to show that I ¢ mI; then as mI C I, we have I = ml, and
hence by Nakayama’s Lemma, I = 0. Fix a primary decomposition of mI. It suffices to
show that q contains I for any q in this primary decomposition, as then I is contained in
all the primary ideals in the decomposition of mI, and hence mI. Let p = /9.

If p # m, then choose x € m — p. Now x is not nilpotent in A/q, and hence is not a
zero-divisor. (Recall that q is primary if and only if in A /g, each zero-divisor is nilpotent.)
ButxICmlCgq,sol Cq.

On the other hand, if p = m, then as m is finitely generated, and each generator is in
v/q = m, there is some a such that m® C q. But I C m¢, so we are done. O

1.3. Proposition. — Suppose (A,m) is a Noetherian regular local ring of dimension 1 (i.e.
satisfying (a) above). Then A is an integral domain.

Proof. Suppose xy = 0, and x,y # 0. Then by Proposition 1.2, x € m*\ m**! for some i > 0,
so x = at' for some a ¢ m. Similarly, y = bt/ forsomej > 0andb ¢ m. Asa,b ¢ m, aand
b are invertible. Hence xy = 0 implies t*") = 0. But as nilpotents don’t affect dimension,

(1) dimA =dimA/(t) =dimA/m = dimk =0,
contradicting dim A = 1. O

1.4. Theorem. — Suppose (A, m) is a Noetherian local ring of dimension 1. Then (a) and (b) are
equivalent to:



(c) all ideals are of the form m™ or 0.

Proof. Assume (a): suppose (A, m, k) is a Noetherian regular local ring of dimension 1.
Then I claim that m™ # m™*! for any n. Otherwise, by Nakayama’s lemma, m™ = 0, from
which t™ = 0. But A is a domain, so t = 0, from which A = A/m is a field, which can’t
have dimension 1, contradiction.

I next claim that m™/m™"! is dimension 1. Reason: m™ = (t"). So m™ is generated as
as a A-module by one element, and m™/(mm™") is generated as a (A/m = k)-module by 1
element (non-zero by the previous paragraph), so it is a one-dimensional vector space.

So we have a chain of ideals A D m D m? D m® D --- with Nm* = (0) (Proposition 1.2).
We want to say that there is no room for any ideal besides these, because “each pair is
“separated by dimension 17, and there is “no room at the end”. Proof: suppose I C A is
an ideal. If I # (0), then there is some n such that I ¢ m™ but I ¢ m™*'. Choose some
u € I —m™" Then (u) C L. Butu generates m™/m™"!, hence by Nakayama it generates
m™, so we have m™ C I C m™, so we are done. Conclusion: in a Noetherian local ring of
dimension 1, regularity implies all ideals are of the form m™ or (0).

We now show that (c) implies (a). Assume (a) is false: suppose we have a dimension
1 Noetherian local domain that is not regular, so m/m? has dimension at least 2. Choose
any u € m — m?. Then (u,m?) is an ideal, but m C (u,m?) C m?. O

1.A. EASY EXERCISE. Suppose (A, m) is a Noetherian dimension 1 local ring. Show that
(a)—(c) above are equivalent to:

(d) A isa principal ideal domain.

1.5. Discrete valuation rings. We next define the notion of a discrete valuation ring.
Suppose Kis a field. A discrete valuation on K is a surjective homomorphismv : K* — Z
(homomorphism: v(xy) = v(x) + v(y)) satisfying

v(x +y) = min(v(x),v(y))

except if x +y = O (in which case the left side is undefined). (Such a valuation is called

non-archimedean, although we will not use that term.) It is often convenient to say v(0) =
oo. More generally, a valuation is a surjective homomorphism v : K* — G to a totally
ordered group G, although this isn’t so important to us. (Not every valuation is discrete.
Consider the ring of Puisseux series over a field k, K = Uys1k((x"™)), with v : K* — Q
given by v(x9) = q.)

Examples.

(i) (the 5-adic valuation) K = Q, v(r) is the “power of 5 appearing inr”, e.g. v(35/2) =1,
v(27/125) = —3.
(ii) K = k(x), v(f) is the “power of x appearing in f.”
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(iii) K = k(x), v(f) is the negative of the degree. This is really the same as (ii), with x
replaced by 1/x.

Then 0 U {x € K*: v(x) > 0} is a ring, which we denote O,,. It is called the valuation
ring of v.

1.B. EXERCISE. Describe the valuation rings in the three examples above. (You will notice
that they are familiar-looking dimension 1 Noetherian local rings. What a coincidence!)

1.C. EXERCISE. Show that 0 U {x € K* : v(x) > 1} is the unique maximal ideal of the
valuation ring. (Hint: show that everything in the complement is invertible.) Thus the
valuation ring is a local ring.

An integral domain A is called a discrete valuation ring (or DVR) if there exists a
discrete valuation v on its fraction field K = FF(A) for which O, = A.

Now if A is a Noetherian regular local ring of dimension 1, and t is a uniformizer (a
generator of m as an ideal, or equivalently of m/m? as a k-vector space) then any non-zero
element r of A lies in some m™ — m™"!, so r = t™u where u is a unit (as t™ generates m"
by Nakayama, and so does 1), so FF(A) = A, = A[1/t]. So any element of FF(A) can be
written uniquely as ut™ where u is a unit and n € Z. Thus we can define a valuation
v(iut™) = n.

1.D. EXERCISE. Show that v is a discrete valuation.

Thus (a)—(d) implies (e).

Conversely, suppose (A, m) is a discrete valuation ring.

1.E. EXERCISE. Show that (A, m) is a Noetherian regular local ring of dimension 1. (Hint:
Show that the ideals are all of the form (0) or I, = {r € A : v(r) > n}, and I, is the only
prime of the second sort. Then we get Noetherianness, and dimension 1. Show that I, /I,
is generated by the image of any element of I; — I,.)

Hence we have proved:

1.6. Theorem. — An integral domain A is a Noetherian local ring of dimension 1 satisfying

(a)—(d) if and only if

(e) A isadiscrete valuation ring.

1.E. EXERCISE. Show that there is only one discrete valuation on a discrete valuation ring.



Thus any Noetherian regular local ring of dimension 1 comes with a unique valuation
on its fraction field. If the valuation of an element is n > 0, we say that the element has a
zero of order n. If the valuation is —n < 0, we say that the element has a pole of order n.
We’ll come back to this shortly, after dealing with (f) and (g).

1.7. Theorem. — Suppose (A, m) is a Noetherian local ring of dimension 1. Then (a)—(e) are
equivalent to:

(f) A is a unique factorization domain,
(g) A isintegrally closed in its fraction field K = FF(A).

Proof. (a)—(e) clearly imply (f), because we have the following stupid unique factorization:
each non-zero element of r can be written uniquely as ut™ where n € Z=° and u is a unit.
Also, (f) implies (b), by an earlier easy Proposition, that in a unique factorization domain
all codimension 1 prime ideals are principal. (In fact, we could just have (b) & (f) from
the harder Proposition we proved, which showed that this property characterizes unique
factorization domains.)

(f) implies (g), because unique factorization domains are integrally closed in their frac-
tion fields (an earlier exercise).

It remains to check that (g) implies (a)—(e). We’ll show that (g) implies (b).

Suppose (A, m) is a Noetherian local domain of dimension 1, integrally closed in its
fraction field K = FF(A). Choose any nonzero r € m. Then S = A/(r) is a Noetherian
local ring of dimension 0 — its only prime is the image of m, which we denote n to avoid
confusion. Then n is finitely generated, and each generator is nilpotent (the intersection
of all the prime ideals in any ring are the nilpotents). Then n™ = 0, where N is the
maximum of the nilpotence order of the finite set of generators. Hence there is some n
such that n™ = 0 but n™' #£ 0.

Thus in A, m™ C (r) but m™' ¢ (r). Choose s € m™' — (r). Consider x = r/s. Then
x~' ¢ A, soas A is integrally closed, x' is not integral over A.

Now x'm ¢ m (or else x 'm C m would imply that m is a faithful A[x~']-module,
contradicting an Exercise from the Nakayama section that I promised we’d use). But
x~'m C A. Thus x 'm = A, from which m = xA, so m is principal. O

(At some point I'd like a different proof using a more familiar version of Nakayama,
rather than this version which people might not remember.)

1.8. Geometry of normal Noetherian schemes. = Suppose X is a locally Noetherian
scheme. Then for any regular codimension 1 points (i.e. any point p where Ox, is a
regular local ring of dimension 1), we have a discrete valuation v. If f is any non-zero
element of the fraction field of Ox,, (e.g. if X is integral, and f is a non-zero element of
the function field of X), then if v(f) > 0, we say that the element has a zero of order v(f),
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and if v(f) < 0, we say that the element has a pole of order —v(f). (We aren’t yet al-
lowed to discuss order of vanishing at a point that is not regular codimension 1. One can
make a definition, but it doesn’t behave as well as it does when have you have a discrete
valuation.)

So we can finally make precise the fact that the function (x — 2)*/(x — 3)* on A{, has
a double zero at x = 2 and a quadruple pole at x = 3. Furthermore, we can say that
75/34 has a double zero at 5, and a single pole at 2! (What are the zeros and poles of
x3(x +y)/(x* + xy)? on A2)

1.G. EXERCISE. Suppose X is an integral Noetherian scheme, and f € FF(X)* is a non-zero
element of its function field. Show that f has a finite number of zeros and poles. (Hint:
reduce to X = Spec A. If f = f;/f,, where f; € A, prove the result for f;.)

Suppose A is an Noetherian integrally closed domain. Then it is reqular in codimension
1 (translation: all its codimension at most 1 points are regular). If A is dimension 1, then
obviously A is nonsingular.

For example, Spec Z[i] is nonsingular, because it is dimension 1 (proved earlier —e.g. it
is integral over Spec Z), and Z[i] is a unique factorization domain. Hence Z[i] is normal, so
all its closed (codimension 1) points are nonsingular. Its generic point is also nonsingular,
as Z[i] is a domain.

Remark. A (Noetherian) scheme can be singular in codimension 2 and still be normal.
For example, you have shown that the cone x* + y? = z? in A% is normal (an earlier
exercise), but it is clearly singular at the origin (the Zariski tangent space is visibly three-
dimensional).

But singularities of normal schemes are not so bad. For example, we’ve already seen
Hartogs” Theorem for Noetherian normal schemes, which states that you could extend
functions over codimension 2 sets.

Remark: We know that for Noetherian rings we have implications
unique factorization domain — integrally closed = regular in codimension 1.
Hence for locally Noetherian schemes, we have similar implications:

regular in codimension 1 = normal = factorial.

Here are two examples to show you that these inclusions are strict.

1.H. EXERCISE. Let A be the subring k[x3,x?,xy,y] C klx,yl. (Informally, we allow all
polynomials that don’t include a non-zero multiple of the monomial x.) Show that A is not
integrally closed (hint: consider the “missing x”). Show that it is regular in codimension
1 (hint: show it is dimension 2, and when you throw out the origin you get something
nonsingular, by inverting x* and y respectively, and considering A,. and A,).
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1.I. EXERCISE. You have checked that k[w, x,y, z]/(wz — xy) is integrally closed (at least
if k is algebraically closed of characteristic not 2, an earlier exercise). Show that it is not
a unique factorization domain. (One possibility is to do this “directly”. This might be
hard to do rigorously — how do you know that x is irreducible in k[w, x, y, z|] /(wz — xy)?
Another possibility, faster but less intuitive, is to use the intermediate result that in a
unique factorization domain, any height 1 prime is principal, and considering the exercise
from last day that the cone over a ruling is not principal.)

E-mail address: vakil@math.stanford.edu
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1. VALUATIVE CRITERIA FOR SEPARATEDNESS AND PROPERNESS

We now come to a topic that I regret bringing up. It is useful in practice, although to
be honest, I've never used it myself in any meaningful way, and we will not use it later in
this course. In fairness, I should say that many people love this fact, and the reason I felt
compelled to discuss is was that I feared I would be cast out of the algebraic geometric
if I didn’t talk about it. But in retrospect I think you shouldn’t see it soon after seeing
separatedness the first time. In particular, you probably should just ignore this section.

In good circumstances, it is possible to verify separatedness by checking only maps
from spectra of discrete valuations rings.

There are two reasons you might like it (even if you never use it). First, it gives use-
tul intuition for what separated morphisms look like. Second, given that we understand
schemes by maps to them (the Yoneda philosophy), we might expect to understand mor-
phisms by mapping certain maps of schemes to them, and this is how you can interpret
the diagram you'll see soon.

We begin with a valuative criterion that applies in a case that will suffice for the interests
of most people, that of finite type morphisms of Noetherian schemes. We’ll then give a
more general version for more general readers.

1.1. Theorem (Valuative criterion for separatedness for morphisms of finite type of Noetherian
schemes). — Suppose f : X — Y is a morphism of finite type of Noetherian schemes. Then f
is separated if and only if the following condition holds. For any discrete valuation ring A with
function field K, and any diagram of the form

(1) Spec K —— X

open imm. \l:\ fl

SpecA ——=Y

Date: Wednesday, January 16, 2008.



(where the vertical morphism on the left corresponds to the inclusion A — K), there is at most one
morphism Spec A — X such that the diagram

2) Spec K —— X
. j <1 .7 l
open imm. P f
SpecA ——=Y
commutes.

A useful thing to take away from this statement is the intuition behind it. We think
of Spec A as a “germ of a curve”, and SpecK as the “germ minus the origin”. Then this
says that if we have a map from a germ of a curve to Y, and have a lift of the map away
from the origin to X, then there is at most one way to lift the map from the entire germ.
In the case where Y is a field, you can think of this as saying that limits of one-parameter
families are unique (if they exist).

For example, this captures the idea of what is wrong with the map of the line with the
doubled origin over k: we take Spec A to be the germ of the affine line at the origin, and
consider the map of the germ minus the origin to the line with doubled origin. Then
we have two choices for how the map can extend over the origin. (I drew pictures here,
which I have not yet latexed up: the map of the line with doubled origin to a point; the
map of the line with the doubled origin to a line; and the map of the line with doubled
origin to itself. In the first two cases, we could see the valuative criterion failing. In the
last case, it did not fail.)

1.A. EXERCISE. Make this precise: show that map of the line with doubled origin over k
to Spec k fails the valuative criterion for separatedness.

1.2. Note on moduli spaces and the valuative criterion of separatedness. I said a little
more about separatedness of moduli spaces, for those familiar such objects. Suppose we
are interested in a moduli space of a certain kind of object. That means that there is a
scheme M with a “universal family” of such objects over M, such that there is a bijection
between families of such objects over an arbitrary scheme S, and morphisms S — B. (One
direction of this map is as follows: given a morphism S — B, we get a family of objects
over S by pulling back the universal family over B.) The separatedness of the moduli
space (over the base field, for example, if there is one) can be interpreted as follows. Fix
a valuation ring A (or even discrete valuation ring, if our moduli space of of finite type)
with fraction field K. We interpret Spec intuitively as a germ of a curve, and we interpret
Spec K as the germ minus the “origin” (an analogue of a small punctured disk). Then we
have a family of objects over Spec K (or over the punctured disk), or equivalently a map
SpecK — M, and the moduli space is separated if there is at most one way to fill in the
family over the origin, i.e. a family over Spec A.

* The rest of this section should be ignored upon first reading.
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Proof. (This proof is more telegraphic than I'd like. I may fill it out more later. Because
we won't be using this result later in the course, you should feel free to skip it, but you
may want to skim it.) One direction is fairly straightforward. Suppose f : X — Y is
separated, and such a diagram (1) were given. suppose g; and g, were two morphisms
Spec A — X making (2) commute. Then g = (g1, 92) : Spec A — X Xy X is a morphism,
with g(SpecK) contained in the diagonal. Hence as SpecK is dense in Spec A, and g is
continuous, g(Spec A) is contained in the closure of the diagonal. As the diagonal is closed
(the separated hypotheses), g(Spec A) is also contained set-theoretically in the diagonal.
As Spec A is reduced, g factors through the induced reduced subscheme structure of the
diagonal. Hence g factors through the diagonal:

Spec A —= X —2 X xy X,

which means g; = g, by our earlier exercise about maps from a reduced schemed to a
separated scheme.

Suppose conversely that f is not separated, i.e. that the diagonal A C X xy X is not
closed. Note that X xy X is Noetherian (X is Noetherian, and X xy X — Xis finite type as
it is obtained by base change from the finite type X — Y), As Aisn’t a closed subset, there
is a point in A — A and another point in A so that the first (say z) is in the closure of the
second (say a). (I believe we checked earlier in our discussion of Chevalley’s theorem that
for Noetherian schemes, a subset is closed if and only if it is closed under specialization.)
By the Noetherian condition, there is a maximal chain of closed subsets

acbc---Cz

(where q, ..., z are the generic points). Thus we can find two “adjacent” points (say p and
q, so codimgp = 1) such that ¢ € Aand p ¢ A. Let Q be the scheme obtained by giving
the induced reduced subscheme structure to q. Then p is a codimension 1 point on Q; let
A’ = Ogq, be the local ring of Q at p. Then A’ is a Noetherian local domain of dimension
1. Let A” be the normalization of A. Choose any point p” of Spec A” mapping to p;
such a point exists because the normalization morphism Spec A — Spec A’ is surjective
(normalization is an integral extension, hence surjective by the Going-up theorem). Now
A" is Noetherian (I need to explain why... if R < R’ is an integral extension of rings, then
R is Noetherian if and only if R” is Noetherian, by the going down theorem...). Let A be
the localization of A” at p”. Then A is a normal Noetherian local domain of dimension
1, and hence a discrete valuation ring. Let K be its fraction field. Then Spec A — X xy X
does not factor through the diagonal, but Spec K — X xy X does, and we are done. O

With a more powerful invocation of commutative algebra, we can prove a valuative
criterion with much less restrictive hypotheses.

1.3. Theorem: Valuative criterion of separatedness. — Suppose f : X — Y is a quasiseparated
morphism. Then f is separated if and only if the following condition holds. For any valuation
ring A with function field X, and any diagram of the form (1), there is at most one morphism
Spec A — X such that the diagram (2) commutes.
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Because I've already proved something useful that we’ll never use, I feel no urge to
prove this harder fact. The proof of one direction, that separated implies that the criterion
holds, is identical. The other direction is similar: get P and Q. Then use an algebra fact.

There is a valuative criterion for properness too. I've never used it personally, but it
is useful, both directly, and also philosophically. I'll make statements, and then discuss
some philosophy.

1.4. Theorem (Valuative criterion for properness for morphisms of finite type of Noetherian schemes).
— Suppose f : X — Y is a morphism of finite type of locally Noetherian schemes. Then f is proper
if and only if the following condition holds. For any discrete valuation ring A with function field
K, and or any diagram of the form

3) Spec K — X
|
SpecA ——=Y

(where the vertical morphism on the left corresponds to the inclusion A — K), there is exactly
one morphism Spec A — X such that the diagram

4) Spec K — X
[
Spec A —Y

commutes.

Recall that the valuative criterion for separatedness was the same, except that exact was
replaced by at most.

In the case where Y is a field, you can think of this as saying that limits of one-parameter
families always exist, and are unique.

I discussed the moduli interpretation of this criterion.

1.B. EXERCISE. Use the valuative criterion of properness to prove that P} — SpecA is
proper if A is Noetherian. (This is a difficult way to prove this fact!)

1.5. Theorem (Valuative criterion of properness). — Suppose f : X — Y is a quasiseparated,
finite type (hence quasicompact) morphism. Then f is proper if and only if the following condition
holds. For any valuation ring R with function field K, and or any diagram of the form (3), there is
exactly one morphism Spec R — X such that the diagram (4) commutes.

Uses: (1) intuition. (2) moduli idea: exactly one way to fill it in (stable curves). (3)
motivates the definition of properness for stacks.

E-mail address: vakil@math.stanford.edu
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Quasicoherent and coherent sheaves are natural generalizations of the notion of a vec-
tor bundle. In order to help motivate them, we first discuss vector bundles, and how they
can be interpreted in terms of locally free shaves.

In a nutshell, a free sheaf on X is an Ox-module isomorphic to O' where the sum is
over some index set I. A locally free sheaf X is an Ox-module locally isomorphic to a free
sheaf. This corresponds to the notion of a vector bundle. A quasicoherent sheaf on X
may be defined as an Ox-module which may be locally written as the cokernel of a map
of free sheaves. These definitions are useful for ringed spaces in general. We will instead
start with two other definitions of quasicoherent sheaf which better highlight the parallel
between this notion and that of modules over a ring, and make it easy to work with a
scheme by considering an affine cover.

1. VECTOR BUNDLES AND LOCALLY FREE SHEAVES

As motivation, we discuss vector bundles on real manifolds. Examples to keep in mind
are the tangent bundle to a manifold, and the Mobius strip over a circle.

Arithmetically-minded readers shouldn’t tune out! Fractional ideals of the ring of in-
tegers in a number field will turn out to be an example of a “line bundle on a smooth
curve”.

A rank n vector bundle on a manifold M is a fibration 7 : V. — M with the structure of
an n-dimensional real vector space on 7' (x) for each point x € M, such that for every
x € M, there is an open neighborhood U and a homeomorphism

¢:UxRY— (U
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over U (so that the diagram

(1) (W) U x R™
m ”k %ion to first factor
u

commutes) that is an isomorphism of vector spaces over eachy € U.

An isomorphism (1) is called a trivialization over U.

In this definition, n is called the rank of the vector bundle. A rank 1 vector bundle
is called a line bundle. (It is sometimes convenient to be agnostic about the rank of the
vector bundle, so it can have different ranks on different connected components. It is also
sometimes convenient to consider infinite-rank vector bundles.)

1.1. Transition functions. Given trivializations over U; and U,, over their intersection,
the two trivializations must be related by an element T;; of GL(n) with entries consisting
of functions on U; N U,. If {U;} is a cover of M, and we are given trivializations over each
U;, then the {Tj;} must satisfy the cocycle condition:

2) fijlusnu g © Fidununue = fudunu nug -
Note that this implies T;; = Tj{]. The data of the T;; are called transition functions for the

trivialization.

Conversely, given the data of a cover {U;} and transition functions Tj; (an element of
GL(n) with entries that are functions on U; N U;), we can recover the vector bundle (up to
unique isomorphism) by “gluing together the U; x R™ along over U; N U; using fy;”.

1.2. Sheaf of sections. Fix a rank n vector bundle V. — M. The sheaf of sections F of V is
an Op-module — given any open set U, we can multiply a section over U by a function
on U and get another section.

Moreover, given a U and a trivialization, the sections over U are naturally identified
with n-tuples of functions of U.

u x R"
W\U\ f=an n-tuple of functions

u

~

Thus given a trivialization, over each open set U;, we have an isomorphism Fly, =
O We say that F is a locally free sheaf of rank n. (As stated earlier, a sheaf F is free
of rank n if 7 = 0%

1.3. Transition functions for the sheaf of sections. Suppose we have a vector bundle on
M, along with a trivialization over an open cover U;. Suppose we have a section of the
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vector bundle over M. (This discussion will apply with M replaced by any open subset.)
Then over each U, the section corresponds to an n-tuple functions over U;, say f;.

1.A. EXERCISE. Show that over U; N Uj, the vector-valued function f; is related to fj by

the transition functions:
Tijfi = fj

Given a locally free sheaf F with rank n, and a trivializing neighborhood of F (an
open cover {U;} such that over each U;, Fly, = Of‘i“ as O-modules), we have transition
functions T;; € GL(n, O(U; N'U;)) satisfying the cocycle condition (2). Thus in conclusion
the data of a locally free sheaf of rank n is equivalent to the data of a vector bundle of
rank n.

A rank 1 locally free sheaf is called an invertible sheaf. We'll see later why it is called
invertible; but it is still a somewhat heinous term for something so fundamental.

1.4. Locally free sheaves on schemes.

Suitably motivated, we now become rigorous and precise. We can generalize the notion
of locally free sheaves to schemes without change. A locally free sheaf of rank n on
a scheme X is an Ox-module F that is locally trivial of rank n. Precisely, there is an
open cover {U;} of X such that for each U;, Fly, = Oﬁ?. A locally free sheaf may be
described in terms of transition functions: the data of a cover {U;} of X, and functions
Ty € GL(n, O(U; N U;)) satisfying the cocycle condition (2). As before, given this data,
we can find the sections over any open set U. Informally, they are sections of the free
sheaves over each U N U; that agree on overlaps. More formally, for each i, they are

s}
st = : e (U N U;, Ox)", satisfying T8 = 87 on U N Uy N U
Sn

You should think of these “as” vector bundles, but just keep in mind that they are
not the “same”, just equivalent notions. We will later define the “total space” of the
vector bundle V' — X (a scheme over X) in terms of the sheaf version of Spec (precisely,
Spec Sym V*). But the locally free sheaf perspective will prove to be more useful. As one
example: the definition of a locally free sheaf is much shorter than that of a vector bundle.

As in our motivating discussion, it is sometimes convenient to let the rank vary among
connected components, or to consider infinite rank locally free sheaves.

1.5. Useful constructions.

We now give some useful constructions in the form of a series of exercises. Most will
later generalize readily to quasicoherent sheaves.

1.B. EXERCISE. Suppose s is a section of a locally free sheaf F on a scheme X. Define the
notion of the subscheme cut out by s = 0. (Hint: given a trivialization over an open set
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U, s corresponds to a number of functions f;, ...on U; on U, take the scheme cut out by
these functions.)

1.C. EXERCISE. Suppose F and G are locally free sheaves on X of rank m and n respec-
tively. Show that Hom(F, G) is a locally free sheaf of rank mn.

1.D. EXERCISE. If € is a locally free sheaf of rank n, show that €Y := Hom(&, O) is also a
locally free sheaf of rank n. This is called the dual of £. Given transition functions for &,
describe transition functions for £V. (Note that if £ is rank 1 (i.e. invertible), the transition
functions of the dual are the inverse of the transition functions of the original.) Show
that & = £VV. (Caution: your argument showing that if there is a canonical isomorphism
(FY)Y = F better not also show that there is a canonical isomorphism FV = F! We'll see
an example soon of a locally free F that is not isomorphic to its dual. The example will
be the line bundle O(1) on P'.)

1.E. EXERCISE. If F and G are locally free sheaves, show that 7 @ G is a locally free sheaf.
(Here ® is tensor product as Ox-modules, defined last quarter) If F is an invertible sheaf,
show that F @ FV = Ox.

1L.E. EXERCISE. Recall that tensor products tend to be only right-exact in general. Show
that tensoring by a locally free sheaf is exact. More precisely, if F is a locally free sheaf,
and G’ — G — G" is an exact sequence of Ox-modules, then thensois G’ ® F - G F —
G"®F.

1.G. EXERCISE. If £ is a locally free sheaf, and F and G are Ox-modules, show that
Hom(F,G® &) = Hom(F ® &Y, G).

1.H. EXERCISE AND IMPORTANT DEFINITION. Show that the invertible sheaves on X, up
to isomorphism, form an abelian group under tensor product. This is called the Picard
group of X, and is denoted Pic X. (For arithmetic people: this group, for the Spec of the
ring of integers R in a number field, is the class group of R.)

1.6. Random concluding remarks.

We define rational and regular sections of a locally free sheaf on a scheme X.

1.I. LESS IMPORTANT EXERCISE. Show that locally free sheaves on Noetherian normal
schemes satisfy “Hartogs” theorem”: sections defined away from a set of codimension at
least 2 extend over that set.

1.7. Remark. Based on your intuition for line bundles on manifolds, you might hope that
every point has a “small” open neighborhood on which all invertible sheaves (or locally
free sheaves) are trivial. Sadly, this is not the case. We will eventually see that for the
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curve y2 — x> — x = 0 in A%, every nonempty open set has nontrivial invertible sheaves.

(This will use the fact that it is an open subset of an elliptic curve.)

1.J. EXERCISE (FOR ARITHMETICALLY-MINDED PEOPLE ONLY — I WON’T DEFINE MY TERMS).
Prove that a fractional ideal on a ring of integers in a number field yields an invertible
sheaf. Show that any two that differ by a principal ideal yield the same invertible sheaf.
Show that two that yield the same invertible sheaf differ by a principal ideal. The class
group is defined to be the group of fractional ideals modulo the principal ideals. This ex-
ercises shows that the class group is (isomorphic to) the Picard group. (This discussion
applies to the ring integers in any global field.)

1.8. The problem with locally free sheaves.

Recall that Ox-modules form an abelian category: we can talk about kernels, cokernels,
and so forth, and we can do homological algebra. Similarly, vector spaces form an abelian
category. But locally free sheaves (i.e. vector bundles), along with reasonably natural
maps between them (those that arise as maps of Ox-modules), don’t form an abelian
category. As a motivating example in the category of differentiable manifolds, consider
the map of the trivial line bundle on R (with co-ordinate t) to itself, corresponding to
multiplying by the co-ordinate t. Then this map jumps rank, and if you try to define a
kernel or cokernel you will get yourself confused.

This problem is resolved by enlarging our notion of nice Ox-modules in a natural way,
to quasicoherent sheaves.

Ox-modules O quasicoherent sheaves O  locally free sheaves
abelian category abelian category not an abelian category

Similarly, finite rank locally free sheaves will sit in a nice smaller abelian category, that
of coherent sheaves.

quasicoherent sheaves O coherent sheaves O finite rank locally free sheaves
abelian category abelian category not an abelian category

2. TOWARD QUASICOHERENT SHEAVES: THE DISTINGUISHED AFFINE BASE

Schemes generalize and geometrize the notion of “ring”. It is now time to define the
corresponding analogue of “module”, which is a quasicoherent sheaf.

One version of this notion is that of an Ox-module. They form an abelian category, with
tensor products.

We want a better one — a subcategory of Ox-modules. Because these are the analogues
of modules, we're going to define them in terms of affine open sets of the scheme. So let’s
think a bit harder about the structure of affine open sets on a general scheme X. I'm going
to define what I'll call the distinguished affine base of the Zariski topology. This won’t be a
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base in the sense that you're used to. (For experts: it is a first example of a Grothendieck

topology.)

The open sets are the affine open subsets of X. We’ve already observed that this forms
a base. But forget about that.

We like distinguished open sets Spec Ay — Spec A, and we don’t really understand
open immersions of one random affine open subset in another. So we just remember the
“nice” inclusions.

Definition. The distinguished affine base of a scheme X is the data of the affine open
sets and the distinguished inclusions.

In other words, we are remembering only some of the open sets (the affine open sets),
and only some of the morphisms between them (the distinguished morphisms). For ex-
perts: if you think of a topology as a category (the category of open sets), we have de-
scribed a subcategory.

We can define a sheaf on the distinguished affine base in the obvious way: we have a
set (or abelian group, or ring) for each affine open set, and we know how to restrict to
distinguished open sets.

Given a sheaf F on X, we get a sheaf on the distinguished affine base. You can guess
where we're going: we’ll show that all the information of the sheaf is contained in the
information of the sheaf on the distinguished affine base.

As a warm-up, we can recover stalks as follows. (We will be implicitly using only the
following fact. We have a collection of open subsets, and some subsets, such that if we
have any x € U,V where U and V are in our collection of open sets, there is some W
containing x, and contained in U and V such that W — U and W — V are both in our
collection of inclusions. In the case we are considering here, this is the key fact that given
any two affine open sets Spec A, Spec B in X, Spec A N Spec B could be covered by affine
open sets that were simultaneously distinguished in Spec A and Spec B. This is a cofinal
condition.)

The stalk F, is the direct limit li_rr)1(f € F(U)) where the limit is over all open sets
contained in U. We compare this to li_n)l(f € F(U)) where the limit is over all affine open
sets, and all distinguished inclusions. You can check that the elements of one correspond
to elements of the other. (Think carefully about this! It corresponds to the fact that the
basic elements are cofinal in this directed system.)

2.A. EXERCISE. Show that a section of a sheaf on the distinguished affine base is deter-
mined by the section’s germs.

2.1. Theorem. —



(a) A sheaf on the distinguished affine base F° determines a unique sheaf F, which when
restricted to the affine base is F°. (Hence if you start with a sheaf, and take the sheaf on
the distinguished affine base, and then take the induced sheaf, you get the sheaf you started
with.)

(b) A morphism of sheaves on a distinguished affine base uniquely determines a morphism of
sheaves.

(c) An Ox-module “on the distinguished affine base” yields an Ox-module.

This proof is identical to our argument showing that sheaves are (essentially) the same
as sheaves on a base, using the “sheaf of compatible germs” construction. The main
reason for repeating it is to let you see that all that is needed is for the open sets to form a
cofinal system (or better, that the category of open sets and inclusions we are considering
is cofinal).

For experts: (a) and (b) are describing an equivalence of categories between sheaves on
the Zariski topology of X and sheaves on the distinguished affine base of X.

Proof. (a) Suppose FP is a sheaf on the distinguished affine base. Then we can define
stalks.

For any open set U of X, define the sheaf of compatible germs
F(U) :=={(fx € F))xeu:Vx € U, U, withx C U, C U, F* € FO(U,) : F = fy vy € Uy}

where each U, is in our base, and F}j means “the germ of F* at y”. (As usual, those who
want to worry about the empty set are welcome to.)

This is a sheaf: convince yourself that we have restriction maps, identity, and gluability,
really quite easily.

I next claim that if U is in our base, that F(U) = F°(U). We clearly have a map F°(U) —

F(U). This is an isomorphism on stalks, and hence an isomorphism by an Exercise from
last quarter.

2.B. EXERCISE. Prove (b).

2.C. EXERCISE. Prove (c). OJ
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We began by recalling the distinguished affine base.

Definition. The distinguished affine base of a scheme X is the data of the affine open
sets and the distinguished inclusions.

0.1. Theorem. —

(@) A sheaf on the distinguished affine base F° determines a unique sheaf F, which when
restricted to the affine base is F°. (Hence if you start with a sheaf, and take the sheaf on
the distinguished affine base, and then take the induced sheaf, you get the sheaf you started
with.)

(b) A morphism of sheaves on a distinguished affine base uniquely determines a morphism of
sheaves.

(c) An Ox-module “on the distinguished affine base” yields an Ox-module.

1. QUASICOHERENT SHEAVES

We now define the notion of quasicoherent sheaf. In the same way that a scheme is de-
fined by “gluing together rings”, a quasicoherent sheaf over that scheme is obtained by
“gluing together modules over those rings”. We will give two equivalent definitions; each
definition is useful in different circumstances. The first just involves the distinguished

topology.

The first definition is more directly “sheafy”. Given an A-module M, we defined a
sheaf M on Spec A long ago — the sections over D(f) were M.

Definition A. An Ox-module F is a quasicoherent sheaf if for every affine open Spec A,

f|SpecA = F(SpeCA)f)-
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(The “wide tilde” is supposed to cover the entire right side I'(Spec A, F).) This isomor-
phism is as sheaves of Ox-modules.

Hence by this definition, the sheaves on Spec A correspond to A-modules. Given an
A-module M, we get a sheaf M. Given a sheaf F on Spec A, we get an A-module I'(X, F).
These operations are inverse to each other. So in the same way as schemes are obtained
by gluing together rings, quasicoherent sheaves are obtained by gluing together modules
over those rings.

The second definition really focuses on the distinguished affine base, and is reminiscent
of the Affine Covering Lemma.

Definition B. Suppose Spec A¢ — Spec A C X is a distinguished open set. Let ¢ :
I'(Spec A, F) — T'(Spec A, F) be the restriction map. The source of ¢ is an A-module,
and the target is an A-module, so by the universal property of localization, ¢ naturally
factors as:

I'(Spec A, F) I'(Spec A¢, F)

T~

I'(Spec A, F)¢

An Ox-module F is a quasicoherent sheaf if for each such distinguished Spec A¢ —
Spec A, « is an isomorphism.

Thus a quasicoherent sheaf is the data of one module for each affine open subset (a
module over the corresponding ring), such that the module over a distinguished open set

Spec A¢ is given by localizing the module over Spec A. This will be an easy criterion to
check.

1.1. Proposition. — Definitions A and B are the same.

Proof. Clearly Definition A implies Definition B. (Recall that the definition of M was in
terms of the distinguished topology on Spec A.) We now show that Definition B implies
Definition A. By Definition B, the sections over any distinguished open Spec A¢ of M on

Spec A is precisely I'(Spec A, M)y, i.e. the sections of I'(Spec A, M) over Spec Ay, and the
restriction maps agree. Thus the two sheaves agree. O

We like Definition B because it says that to define a quasicoherent Ox-module is that
we just need to know what it is on all affine open sets, and that it behaves well under
inverting a single element.

One reason we like Definition A is that it works well in gluing arguments, as in the
proof of the following fact.



1.2. Proposition (quasicoherence is an affine-local notion). — Let X be a scheme, and F an Ox-

—_—

module. Then let P be the property of affine open sets that Flsyec o = I'(Spec A, F). Then P is an
affine-local property.

Before we prove this, we give an exercise to show its utility.

1.A. EXERCISE. Show that locally free sheaves are quasicoherent.

Proof. By the Affine Communication Lemma, we must check two things. Clearly if Spec A
has property P, then so does the distinguished open Spec A: if M is an A-module, then

Mlspec A, = My as sheaves of Ogpec a,-modules (both sides agree on the level of distin-
guished open sets and their restriction maps).

We next show the second hypothesis of the Affine Communication Lemma. Suppose
we have modules My, ..., M,,, where M, is an A¢,-module, along with isomorphisms ¢y; :
(Mi)f, — (M), of At r,-modules, satisfying the cocycle condition. We want to construct

an M such that M gives us M; on D(fi) = Spec Ay, or equivalently, isomorphisms p; :
I'(D(fi), M) — M, so that the bottom triangle of

1)

\M
A

M]i

/\
/\/
\(/\

My)

—

commutes.

We already know that M should be the sections of F over Spec A, as F is a sheaf.
Consider elements of M x - - - x M,, that “agree on overlaps”; let this set be M. Then

O—)M%I\/h><---><Mn—>M1z><M13><---><M(n,1)n

is an exact sequence (Where My = (M), = (M;j)y,, and the latter morphism is the “dif-
ference” morphism). So M is a kernel of a morphism of A-modules, hence an A-module.
We are left to show that M; = My, (and that this isomorphism satisfies (1)).

For convenience we assume i = 1. Localization is exact, so
2)
0 My, My x (Ma)f, X -+ X (My)¢

——= M x - x (Ma)fy X - X (Mmn_1n)

1

is an exact sequence of A, -modules.

We now identify many of the modules appearing in (2) in terms of M;. First of all, f;
is invertible in Ay, so (M;)y, is canonically M;. Also, (Mj)f, = (M), via ¢y. Hence if

3



4,j #1, (My)f, = (My)gg, via ¢1; and ¢y; (here the cocycle condition is implicitly used).
Furthermore, (M1i)f, = (M), via ¢1;. Thus we can write (2) as

3)

0 My, Mi x (My)g, X - X (M1)g, —= (M1)g, X -+ X (My)g, X (M) gy X -« (M1, 1

2 2 n

By assumption, Flspec A, is quasicoherent, so by considering the cover of
Spec A, = Spec A, U Spec A¢,, U Spec Ag ¢, U--- U Spec Ag, 5,

(which indeed has a “redundant” first term), and identifying sections of F over Spec Ay,
in terms of sections over the open sets in the cover and their pairwise overlaps, we have
an exact sequence of A -modules

0 M, My x (M), X"'X(Ml)fn—(S)(Ml)fzX"'X(M1)an(Ml)fzf3 X - (My)¢

nflfn

which is very similar to (3). Indeed, the final map {3 of the above sequence is the same as
the map o of (3), so ker « = ker 3, i.e. we have an isomorphism M; = My,.

Finally, the triangle of (1) is commutative, as each vertex of the triangle can be identified
as the sections of F over Spec Ay, ¢,. O

1.B. IMPORTANT EXERCISE. Suppose X is a quasicompact and quasiseparated scheme
(i.e. covered by a finite number of affine open sets, the pairwise intersection of which
is also covered by a finite number of affine open sets). Suppose F is a quasicoherent
sheaf on X, and let f € I'(X,Ox) be a function on X. Show that the restriction map
resx,cx : I'(X, F) — T'(X¢, F) (here Xy is the open subset of X where f doesn’t vanish) is pre-
cisely localization. In other words show that there is an isomorphism I'(X, F)¢ — T'(X¢, F)
making the following diagram commute.

resx . cx

r'(X,F) I'(X¢, F)

I'(X,F)¢

All that you should need in your argument is that X admits a cover by a finite number
of open sets, and that their pairwise intersections are each quasicompact. (Hint: cover by
affine open sets. Use the sheaf property. A nice way to formalize this is the following.
Apply the exact functor ® aA¢ to the exact sequence

0 —=T(X,F) = &l'(Uy, F) — &I (Ui, F)

where the U; form a finite cover of X and Uy form an affine cover of U; N U;.)

1.C. LESS IMPORTANT EXERCISE. Give a counterexample to show that the above state-
ment need not hold if X is not quasicompact. (Possible hint: take an infinite disjoint union
of affine schemes. The key idea is that infinite direct sums do not commute with localiza-
tion.)



1.D. IMPORTANT EXERCISE (COROLLARY TO EXERCISE 1.B). Suppose m: X — Yisa
quasicompact quasiseparated morphism, and F is a quasicoherent sheaf on X. Show that
7. F is a quasicoherent sheaf on Y.

1.E. UNIMPORTANT EXERCISE (NOT EVERY Ox-MODULE IS A QUASICOHERENT SHEAF).
(a) Suppose X = Speckl[t]. Let F be the skyscraper sheaf supported at the origin [(t)],
with group k(t) and the usual k[t]-module structure. Show that this is an Ox-module that
s not a quasicoherent sheaf. (More generally, if X is an integral scheme, and p € X that
is not the generic point, we could take the skyscraper sheaf at p with group the function
tield of X. Except in a silly circumstances, this sheaf won’t be quasicoherent.)

(b) Suppose X = Specklt]. Let F be the skyscraper sheaf supported at the generic point
[(0)], with group k(t). Give this the structure of an Ox-module. Show that this is a quasi-
coherent sheaf. Describe the restriction maps in the distinguished topology of X.

2. QUASICOHERENT SHEAVES FORM AN ABELIAN CATEGORY

The category of A-modules is an abelian category. Indeed, this is our motivating ex-
ample of our notion of abelian category. Similarly, quasicoherent sheaves form an abelian
category. I'll explain how.

When you show that something is an abelian category, you have to check many things,
because the definition has many parts. However, if the objects you are considering lie in
some ambient abelian category, then it is much easier. As a metaphor, there are several
things you have to do to check that something is a group. But if you have a subset of
group elements, it is much easier to check that it forms a subgroup.

You can look at back at the definition of an abelian category, and you’ll see that in
order to check that a subcategory is an abelian subcategory, you need to check only the
following things:

(i) 0isin your subcategory
(ii) your subcategory is closed under finite sums
(iii) your subcategory is closed under kernels and cokernels

In our case of
{quasicoherent sheaves} C {Ox-modules},
the first two are cheap: 0 is certainly quasicoherent, and the subcategory is closed under
finite sums: if F and G are sheaves on X, and over SpecA, 7 = M and G = N, then
F®G=MaN,soF @G is a quasicoherent sheaf.

We now check (iii). Suppose « : F — G is a morphism of quasicoherent sheaves.
Then on any affine open set U, where the morphism is given by § : M — N, define
(ker ) (U) = ker f and (coker o) (U) = coker 3. Then these behave well under inversion of
a single element: if

0O—=K—-M-=-N—=-P-=0
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is exact, then so is

0— Kf— My — Ny — Pr— 0,
from which (ker )¢ = ker(f¢) and (coker B)s = coker(f¢). Thus both of these define
quasicoherent sheaves. Moreover, by checking stalks, they are indeed the kernel and
cokernel of « (exactness can be checked stalk-locally ). Thus the quasicoherent sheaves
indeed form an abelian category.

2.A. EXERCISE. Show that a sequence of quasicoherent sheaves 7 — G — H on X is
exact if and only if it is exact on each open set in an affine cover of X. (In particular,
taking sections over an affine open Spec A is an exact functor from the category of qua-
sicoherent sheaves on X to the category of A-modules. Recall that taking sections is only
left-exact in general.) In particular, we may check injectivity or surjectivity of a morphism
of quasicoherent sheaves by checking on an affine cover.

Warning: If 0 - F — G — H — 0 is an exact sequence of quasicoherent sheaves, then
for any open set
0— F(U) —g(u) — H(U)
is exact, and we have exactness on the right is guaranteed to hold only if U is affine. (To
set you up for cohomology: whenever you see left-exactness, you expect to eventually
interpret this as a start of a long exact sequence. So we are expecting H'’s on the right,
and now we expect that H'(Spec A, F) = 0. This will indeed be the case.)

2.B. EXERCISE (CONNECTION TO ANOTHER DEFINITION). Show that an Ox-module F
on a scheme X is quasicoherent if and only if there exists an open cover by U; such that
on each U;, Fly, is isomorphic to the cokernel of a map of two free sheaves:

I
Of = Of) = Flu, = 0

is exact. We have thus connected our definitions to the definition given at the very start
of the chapter.

We then began to discuss module-like constructions for quasicoherent sheaves, and I've
left these for the next day’s notes, so all of our discussion on that topic is in one place.

E-mail address: vakil@math.stanford.edu
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1. MODULE-LIKE CONSTRUCTIONS

In a similar way, basically any nice construction involving modules extends to quasico-
herent sheaves.

As an important example, we consider tensor products.

1.A. EXERCISE. If F and G are quasicoherent sheaves, show that 7 ® G is a quasi-
coherent sheaf described by the following information: If Spec A is an affine open, and
I'(SpecA,F) =M and I'(SpecA,G) = N, then I'(Spec A, F ® G) = M ® N, and the restric-
tion map I'(Spec A, F®G) — T'(Spec A, F®G) is precisely the localization map M@ N —
(M®aN)¢ = M¢®a, Ny. (We are using the algebraic fact that (M ®grN)¢ = M¢®g, Nt. You
can prove this by universal property if you want, or by using the explicit construction.)

Note that thanks to the machinery behind the distinguished affine base, sheafification
is taken care of. This is a feature we will use often: constructions involving quasicoherent
sheaves that involve sheafification for general sheaves don’t require sheafification when
considered on the distinguished affine base. Along with the fact that injectivity, surjec-
tivity, kernels and so on may be computed on affine opens, this is the reason that it is
particularly convenient to think about quasicoherent sheaves in terms of affine open sets.

1.B. EASY EXERCISE. Show that the stalk of the tensor product of quasicoherent sheaves
at a point is the tensor product of the stalks.
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Given a section s of F and a section t of G, we have a section s ® t of F ® G. If either
F or G is an invertible sheaf, this section is denoted st.

1.1. Tensor algebra constructions.

For the next exercises, recall the following. If M is an A-module, then the tensor algebra
T*(M) is a non-commutative algebra, graded by Z=°, defined as follows. T°(M) = A,
THM) = M ®a --- ®4 M (where n terms appear in the product), and multiplication is
what you expect. The symmetric algebra Sym* M is a symmetric algebra, graded by Z=°,
defined as the quotient of T*(M) by the (two-sided) ideal generated by all elements of
the form x ® y —y ® x for all x,y € M. Thus Sym™ M is the quotient of M ® --- @ M
by the relations of the form m; ® --- ® my, — mj ® --- ® m], where (m},...,m/)) is a
rearrangement of (my, ..., my,). The exterior algebra A\*M is defined to be the quotient of
T*M by the (two-sided) ideal generated by all elements of the form x ® y +y ® x for
all x,y € M. Thus A™M is the quotient of M ® --- ® M by the relations of the form
m® - @my— (=1 m) ® - -+ @ Mg(n) where o is a permutation of {1,...,n}. It
is a “skew-commutative” A-algebra. It is most correct to write T;(M), Sym) (M), and
/N4 (M), but the “base ring” A is usually omitted for convenience. (Better: both Sym
and A\ are defined by universal properties. For example, Symy (M) is universal among
modules such that any map of A-modules M®™ — N that is symmetric in the n entries
factors uniquely through Sym} (M).)

1.C. EXERCISE. Suppose F is a quasicoherent sheaf. Define the quasicoherent sheaves
Sym"™ F and A"F. (One possibility: describe them on each affine open set.) If F is locally
free of rank m, show that T"F, Sym™ ¥, and A™F are locally free, and find their ranks.

You can also define the sheaf of non-commutative algebras T*F, the sheaf of commuta-
tive algebras Sym” F, and the sheaf of skew-commutative algebras A*F.

1.D. EXERCISE (POSSIBLE HELP FOR LATER PROBLEMS). Suppose(0 — F' = F — F" =0
is a short exact sequence of locally free sheaves on X. Suppose U = Spec A is an affine

open set where 7', F" are free, say F'lspecA = Ae F "lspec A = AP. Show that F is also
free, and that 0 — 7' — F — F” — 0 can be interpreted as coming from the tautological
exact sequence 0 — A% — A% — AP — 0. Show that given such an open cover, the
transition matrices of 7 may be interpreted as block upper-diagonal matrices, where thet
top a x a block are transition matrices for 7', and the bottom b x b blocks are transition
matrices for F”.

1.E. IMPORTANT EXERCISE. Suppose 0 — F' — F — F” — 0 is an exact sequence of
locally free sheaves. Show that for any r, there is a filtration of Sym" F

Sym"F=F°DOF DO...DF O>FT =0

with subquotients
FP/FPT = (SymP F') @ (Sym™ P F").
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(Possible hint for this, and Exercise 1.G: It suffices to consider a small enough affine open

set Spec A, where F’, F, F" are free, and to show that your construction behaves well
with respect to localization at an element f € A. In such an open set, the sequence is
0 — AP — APT9 — A9 — 0 by the Exercise 1.D. Let ey, ..., e, be the standard basis of A™,
and fy, ..., fq be the the standard basis of A9. Letey, ..., e{j be denote the images of e;,
s, epIin AP Letff, ..., fy be any lifts of fy, ..., f4 to AP*4. Note that f{ is well-defined
modulo ej, ..., . Note that

s ~ s i s—i N
Sym f|SpecA — @izo Sym F |SpecA ®OSPQCA Sym F ’Spec A-

Show that FP := Di, Sym' F’ |Spec A @O pec SymStF” spec A gives a well-defined (locally
free) subsheaf that is independent of the choices made, e.g. of the basis e;, ..., e, (this is
in GL,(A)), 1, ..., fq (thisisin GL4(A)), and the lifts f7, ..., f;.)

1.F. EXERCISE.  Suppose F is locally free of rank n. Then A™F is called the deter-
minant (line) bundle or (perhaps better) determinant locally free sheaf. Show that
N'F x A\MTF — AVF is a perfect pairing for all r.

1.G. EXERCISE. Suppose 0 — F' — F — F"” — 0 is an exact sequence of locally free
sheaves. Show that for any v, there is a filtration of A" F:

NF=F2F 2. --DF>F* =0
with subquotients
FD/FD—H ~ (/\pf-/) ® (/\r—pf-//)

for each p. In particular, det F = (det F') ® (det F”). In fact we only need that F” is
locally free.

1.H. EXERCISE (DETERMINANT LINE BUNDLES BEHAVE WELL IN EXACT SEQUENCES).
Suppose 0 — F; — --- — F, — 0 is an exact sequence of finite rank locally free sheaves
on X. Show that “the alternating product of determinant bundles is trivial”:

det(F;) @ det(F2)Y @ det(F3) @ det(Fa)V @ - - - = Ox.

1.2. Torsion-free sheaves (a stalk-local condition). Recall that an A-module M is torsion-
free if rm = 0 implies r = 0 or m = 0. An Ox-module F is said to be torsion-free if F, is
a torsion-free Ox ,-module for all p.

1.I. EXERCISE. Show that if M is a torsion-free A-module, then so is any localization of
M. Hence show that M is a torsion free sheaf on Spec A.

1.J. UNIMPORTANT EXERCISE (TORSION-FREENESS IS NOT AFFINE LOCAL FOR STUPID
REASONS). Find an example on a two-point space showing that M := A might not

be torsion-free on Spec A even though Ogpec o = M is torsion-free.
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2. FINITENESS CONDITIONS ON QUASICOHERENT SHEAVES: FINITE TYPE
QUASICOHERENT SHEAVES, AND COHERENT SHEAVES

There are some natural finiteness conditions on an A-module M. I will tell you three.
In the case when A is a Noetherian ring, which is the case that almost all of you will ever
care about, they are all the same.

The first is the most naive: a module could be finitely generated. In other words, there
is a surjection A? — M — 0.

The second is reasonable too. It could be finitely presented — it could have a finite
number of generators with a finite number of relations: there exists a finite presentation

A9 5 AP - M = 0.

The third notion is frankly a bit surprising, and I'll justify it soon. We say that an A-
module M is coherent if (i) it is finitely generated, and (ii) whenenver we have a map
AP — M (not necessarily surjective!), the kernel is finitely generated.

Clearly coherent implies finitely presented, which in turn implies finitely generated.

2.1. Proposition. — If A is Noetherian, then these three definitions are the same.

Before proving this, we take this as an excuse to develop some algebraic background.

2.2. Noetherian conditions for modules. If A is any ring, not necessarily Noetherian, we say
an A-module is Noetherian if it satisfies the ascending chain condition for submodules.
Thus for example A is a Noetherian ring if and only if it is a Noetherian A-module.

2.A. EXERCISE. Show that if M is a Noetherian A-module, then any submodule of M is
a finitely generated A-module.

2.B. EXERCISE. If0 — M’ — M — M” — 0 is exact, show that M’ and M” are
Noetherian if and only if M is Noetherian. (Hint: Given an ascending chain in M, we
get two simultaneous ascending chains in M’ and M". Possible further hint: prove that if
M/ ——> M —2> M” isexact,and N,N’ ¢ M, and NNM’ = N'nM’ and d(N) = d(N’),
then N = N".)

2.C. EXERCISE. Show that if A is a Noetherian ring, then A™ is a Noetherian A-module.

2.D. EXERCISE. Show that if A is a Noetherian ring and M is a finitely generated A-
module, then M is a Noetherian module. Hence by Exercise 2.A, any submodule of a
finitely generated module over a Noetherian ring is finitely generated.
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Proof of Proposition 2.1. As we observed earlier, coherent implies finitely presented im-

plies finitely generated. So suppose M is finitely generated. Take any AP —— M . Then
ker o is a submodule of a finitely generated module over A, and is thus finitely generated
by Exercise 2.D. Thus M is coherent. g

Hence most normal people can think of these three notions as the same thing.

2.3. Proposition. — The coherent A-modules form an abelian subcategory of the category of
A-modules.

The proof in general is given in §3 in a series of short exercises.

Proof if A is Noetherian. Recall from our discussion a few classes ago that we must check
three things:

(i) The O-sheaf is coherent.
(ii) The category of coherent modules is closed under finite sums.
(iii) The category of coherent modules is closed under kernels and cokernels

The first two are clear. For (iii), suppose that f : M — N is a map of finitely generated
modules. Then coker f is finitely generated (it is the image of N), and ker f is too (it is a
submodule of a finitely generated module over a Noetherian ring, Exercise 2.D). O

2.E. EASY EXERCISE (ONLY IMPORTANT FOR NON-NOETHERIAN PEOPLE). Show A is
coherent as an A-module if and only if the notion of finitely presented agrees with the
notion of coherent.

2.F. EXERCISE. If f € A, show that if M is a finitely generated (resp. finitely presented,
coherent) A-module, then M is a finitely generated (resp. finitely presented, coherent)
A¢module. (The “coherent” case is the tricky one.)

2.G. EXERCISE. If (fy,...,f) = A, and My, is finitely generated (resp. coherent) Ay,-
module for all i, then M is a finitely generated (resp. coherent) A-module.

Definition. A quasicoherent sheaf F is finite type (resp. coherent) if for every affine
open Spec A, I'(Spec A, F) is a finitely generated (resp. coherent) A-module.

Thanks to the affine communication lemma, and the two previous exercises 2.F and 2.G,
it suffices to check this on the open sets in a single affine cover.

I want to say a few words on the notion of coherence. I see Proposition 2.3 as a good
motivation for this definition: it gives a small (in a non-technical sense) abelian category
in which we can think about vector bundles.
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There are two sorts of people who should care about the details of this definition (as
opposed to working in a Noetherian world and always thinking that coherent equals
finite type). Complex geometers should care. They consider complex-analytic spaces
with the classical topology. One can define the notion of coherent Ox-module in a way
analogous to this. Then Oka’s theorem states that the structure sheaf is coherent, and
this is very hard.

The second sort of people who should care are the sort of arithmetic people who some-
times are forced to consider non-Noetherian rings. For example, the ring of adeles is non-
Noetherian.

Warning: it is common in the later literature to incorrectly define coherent as finitely
generated. Please only use the correct definition, as the wrong definition only causes
confusion. I will try to be scrupulous about this. Besides doing this for the reason of
honesty, it will also help you see what hypotheses are actually necessary to prove things.
And that always helps you remember what the proofs are — and hence why things are
true.

3. COHERENT MODULES OVER NON-NOETHERIAN RINGS *x

This section is intended for people who might work with non-Noetherian rings, or who
otherwise might want to understand coherent sheaves in a more general setting. Read this
only if you really want to!

Suppose A is aring. Recall that an A-module M is finitely generated if there is a surjection
A™ — M — 0. It is finitely presented if there is a presentation A™ — A™ - M — 0. And
M is coherent if (i) M is finitely generated, and (ii) every map A™ — M has a finitely
generated kernel. The reason we like this third definition is that coherent modules form
an abelian category.

Here are some quite accessible exercises working out why these notions behave well.
Some repeat earlier discussion in order to keep this section self-contained.

3.A. EXERCISE. Show that coherent implies finitely presented implies finitely generated.
(This was discussed in the previous section.)

3.B. EXERCISE. Show that 0 is coherent.

Suppose for problems 3.C-3.1 that
(1) 0—-M—->N—->P—>0

is an exact sequence of A-modules. In thise series of problems, we will show that if two
of (1) are coherent, the third is as well, whiich will prove very useful.
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Hint x. Here is a hint which applies to several of the problems: try to write

O—>Ap—>Ap+q—>AQ—>O

T

0 M N P 0

and possibly use the Snake Lemma.

3.C. EXERCISE. Show that N finitely generated implies P finitely generated. (You will
only need right-exactness of (1).)

3.D. EXERCISE. Show that M, P finitely generated implies N finitely generated. (Possible
hint: %.) (You will only need right-exactness of (1).)

3.E. EXERCISE. Show that N, P finitely generated need not imply M finitely generated.
(Hint: if I is an ideal, wehave 0 - 1 - A — A/I — 0.)

3.F. EXERCISE. Show that N coherent, M finitely generated implies M coherent. (You
will only need left-exactness of (1).)

3.G. EXERCISE. Show that N, P coherent implies M coherent. Hint for (i):

(You will only need left-exactness of (1).)

3.H. EXERCISE. Show that M finitely generated and N coherent implies P coherent. (Hint
for (ii): *.)

3.I. EXERCISE. Show that M, P coherent implies N coherent. (Hint: x.)
3.J. EXERCISE. Show that a finite direct sum of coherent modules is coherent.

3.K. EXERCISE. Suppose M is finitely generated, N coherent. Then if ¢ : M — N is any
map, then show that Im ¢ is coherent.



3.L. EXERCISE.  Show that the kernel and cokernel of maps of coherent modules are
coherent.

At this point, we have verified that coherent A-modules form an abelian subcategory
of the category of A-modules. (Things you have to check: 0 should be in this set; it should
be closed under finite sums; and it should be closed under taking kernels and cokernels.)

3.M. EXERCISE. Suppose M and N are coherent submodules of the coherent module P.
Show that M + N and M N N are coherent. (Hint: consider the right map M @& N — P.)

3.N. EXERCISE. ~ Show that if A is coherent (as an A-module) then finitely presented
modules are coherent. (Of course, if finitely presented modules are coherent, then A is
coherent, as A is finitely presented!)

3.0. EXERCISE. If M is finitely presented and N is coherent, show that Hom(M, N) is
coherent. (Hint: Hom is left-exact in its first entry.)

3.P. EXERCISE. If M is finitely presented, and N is coherent, show that M @ N is coherent.

3.Q. EXERCISE. If f € A, show that if M is a finitely generated (resp. finitely presented,
coherent) A-module, then M is a finitely generated (resp. finitely presented, coherent)
A¢-module. (Hint: localization is exact.) (This exercise appeared earlier as Exercise 2.F.)

3.R. EXERCISE. Suppose (fi,...,fn) = A. Show that if My, is finitely generated for all i,
then M is too. (Hint: Say My, is generated by my; € M as an A -module. Show that the
my; generate M. To check surjectivity ©;;A — M, it suffices to check “on D(f;)” for all i.)

3.S. EXERCISE. Suppose (fi,...,fn) = A. Show that if My, is coherent for all i, then M is
too. (Hint: if ¢ : A2 — M, then (ker ¢)¢, = ker(dy, ), which is finitely generated for all 1.
Then apply the previous exercise.)

3.T. EXERCISE. Show that the ring A := k[x;,x;,...] is not coherent over itself. (Hint:
consider A — A with x4,%;,... — 0.) Thus we have an example of a finitely presented
module that is not coherent; a surjection of finitely presented modules whose kernel is
not even finitely generated; hence an example showing that finitely presented modules
don’t form an abelian category.

4. PLEASANT PROPERTIES OF FINITE TYPE AND COHERENT SHEAVES

4.A. EXERCISE. Suppose F is a coherent sheaf on X, and § is a quasicoherent sheaf on
X. Show that Hom(F,G). (Hint: Describe it on affine open sets, and show that it be-
haves well with respect to localization with respect to f. To show that Homa (M, N)¢ =
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Homa, (My, N¢), take a presentation A9 — AP — M — 0, and apply Hom(:,N) and lo-
calize. You will use the fact that p and q are finite.) If further G is coherent, show that
Hom(F, G) is also coherent. Show that Hom is a left-exact functor in both variables.

Recall that Hom(F, Ox) is called the dual of F, and is denoted FV.

4.B. USEFUL EXERCISE: GEOMETRIC NAKAYAMA. Suppose X is a scheme, and F is a
finite type quasicoherent sheaf. Show that if x € U C X is a neighborhood of x in X
and ay,...,a, € F(U) so that the images @y, ..., a, € F, generate 7 ® k(x), then there
is a neighborhood x C V C U of x so that aily, ..., anlv generate Fly. In particular, if
Fy @ k(x) = 0, then there exists V such that 7|y = 0.

4.C. LESS IMPORTANT EXERCISE. Suppose F and G are finite type sheaves such that
F ® G = Ox. Then F and G are both invertible (Hint: Nakayama.) This is the reason
for the adjective “invertible”: these sheaves are the invertible elements of the “monoid of
finite type sheaves”.

4.1. The support of a finite type sheaf is closed. = Recall the definition of support of a
section of a sheaf, and of a sheaf.

Suppose F is a sheaf of abelian groups (resp. Ox-module) on a topological space X
(resp. ringed space (X, Ox)). Define the support of a section s of F to be

Supps ={p € X:s, #0in F,}.
I think of this as saying where s “lives”. Define the support of F as
Supp F =1{p € X: F,, #0}.

It is the union of “all the supports of sections on various open sets”. I think of this as
saying where F “lives”. Caution. This is where the germ(s) are nonzero, not where the
value(s) are nonzero.

Support is a stalk-local notion, and hence behaves well with respect to restriction to
open sets, or to stalks.

4.D. EXERCISE.  The support of a finite type quasicoherent sheaf on a scheme X is a
closed subset. (Hint: Reduce to the case X affine. Choose a finite set of generators of the
corresponding module.) Show that the support of a quasicoherent sheaf need not be
closed. (Hint: If A = C[t], then C[t]/(t — a) is an A-module supported at a. Consider
®accClt]/(t—a). Warning: this example won’t work if & is replaced by | [, so be careful!)

4.2. Rank of a finite type sheaf at a point.

The rank F of a finite type sheaf at a point p is dimy F,,/mF, where m is the maximal
ideal corresponding to p. More explicitly, on any affine set Spec A where p = [p] and
F(SpecA) = M, then the rank is dimgra,p) Mp/pM,. The rank is finite because of the
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finite type hypothesis. By Nakayama’s lemma (again using the finite type condition), this
is the minimal number of generators of M, as an A,-module.

If F is quasicoherent (not necessarily finite type), then F,,/mF, can be interpreted as
the fiber of the sheaf at the point. A section of F over an open set containing p can be said
to take on a value at that point, which is an element of F,,/mF,,.

4.E. EXERCISE. Show that at any point, rank(F @ G) = rank(F) + rank(G) and rank(F ®
G) = rank Frank G at any point. (Hint: Show that direct sums and tensor products com-
mute with ring quotients and localizations, i.e. (M @& N) ®g (R/I) = M/IM @ N/IN,
(M ®r N) ®@r (R/I) = (M ®g R/I) ®g/1 (N @r R/I) = M/IM ®g/1 N/IM, etc.)

4.F. EXERCISE.  Show that rank(F) is an upper semicontinuous function on X. (Hint:
Generators at P are generators nearby:.)

Note that this definition of rank is consistent with the notion of rank of a locally free
sheaf. In the locally free case, the rank is a (locally) constant function of the point. The
converse is sometimes true, as is shown in Exercise 4.G below.

4.G. IMPORTANT HARD EXERCISE. (a) If X is reduced, F is coherent, and the rank is
constant, show that F is locally free. (Hint: choose a point p € X, and choose generators
of the stalk 7,,. Let U be an open set where the generators are sections, so we have a
map ¢ : OF™ — Flu. The cokernel and kernel of ¢ are supported on closed sets by Exer-
cise 4.D. Show that these closed subsets don’t include p. Make sure you use the reduced
hypothesis!) Thus (as rank is uppersemicontinuous, Exercise 4.F) coherent sheaves are
locally free on a dense open set. Hint: Reduce to the case where X is affine, say Spec A, so
the closed points are dense. Then show it in a neighborhood of a closed point [m]. Choose
my, ..., M, generators of M/mM, and lift them to elements of M. Then they generate M,
by Nakayama’s Lemma. Let ¢ : A™ — M with (ry,...,1,) — >_1im;. Let K be the
cokernel, which is finitely generated. Then K., = 0 (because ®A., is right-exact), so there
is an f € A such that K¢ = 0 (take the product of the annihilators of a finite generating set
of K). Replace A by As. We now have that coker ¢ = 0, and we want to prove ker ¢ = 0.
Otherwise, say (r1,...,Ty) is in the kernel, with ry # 0. As 1y # 0, there is some p where
T1 ¢ p — here we use the reduced hypothesis. Then r; is invertible in A, so M, has fewer
than n generators, contradicting the constancy of rank.

(b) Show that part (a) can be false without the condition of X being reduced. (Hint:
Speck[x]/x?, M = k.)

You can use the notion of rank to help visualize finite type sheaves, or even quasico-
herent sheaves. I drew some pictures in class, but I haven’t figured out yet how to latex
them up.

E-mail address: vakil@math.stanford.edu
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Effective Cartier divisors invertible ideal sheaves

1. QUASICOHERENT SHEAVES OF IDEALS, AND CLOSED SUBSCHEMES

The point of this section is that closed subschemes correspond precisely to quasicoher-
ent sheaves of ideals.

Recall that if i : X < Y is a closed immersion, then we have a surjection of sheaves on
Y: Oy —=1.0x . (The i, is often omitted, as we are considering the sheaf on X as being
a sheaf on Y.) The sheaf i,Ox is quasicoherent on Y; this is in some sense the definition of
“closed subscheme”. The kernel Zx y is a “sheaf of ideals” in Y: for each open subset of
Y, the sections form an ideal in the ring of functions of Y. As quasicoherent sheaves on Y
form an abelian category, Zx v is a quasicoherent sheaf of ideals.

Conversely, a quasicoherent sheaf of ideals 7 — Oy defines a closed subscheme. This
was stated in slightly different language in Exercise 1. Precisely, 7 is quasicoherent pre-
cisely if, for each distinguished open Spec A — Spec A, Z(Spec A¢) = Z(Spec A)¢ (Defini-
tion B of quasicoherent sheaves), and this was one criterion for when ideals in affine open
sets define a closed subscheme (Exercise 1). (An example of a non-quasicoherent sheaf of
ideals was given in an earlier Exercise.)

We call
(1) O—)IX/Y—) Oy—)l*Ox—)O

the closed subscheme exact sequence corresponding to X — Y.

Date: Monday, January 28, 2008. Mild correction Feb. 19 (thanks Nathan!).
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2. INVERTIBLE SHEAVES (LINE BUNDLES) AND DIVISORS

We next develop some mechanism of understanding invertible sheaves (line bundles)
on a given scheme X. Recall that Pic X is the group of invertible sheaves on X. Our
goal will be to develop convenient and powerful ways of describing and working with
invertible sheaves.

We begin by describing invertible sheaves on projective space (over a field). We then
discuss sheaves of ideals that happen to be invertible (effective Cartier divisors). Partially
motivated by this insight that invertible sheaves correspond to “codimension 1 informa-
tion”, we will discuss the theory of Weil divisors, and use this to actually compute Pic X
in a number of circumstances.

3. SOME LINE BUNDLES ON PROJECTIVE SPACE

We now describe a family of invertible sheaves on projective space over a field k.

As a warm-up, we begin with the invertible sheaf OPL (1) on P, = Projklxo,x1]. (The
subscript P} refers to the space on which the sheaf lives, and is often omitted when it is
clear from the context.) We describe the invertible sheaf O(1) using transition functions.
It is trivial on the usual affine open sets Uy = D(xo) = Speck[x; ] and Uy = D(x; =
Spec klxq,1]. (We continue to use the convention x; ; for describing coordinates on patches
of projective space.) Thus the data of a section over Uy is a polynomial in x;,. The
transition function from U, to U, is multiplication by xo1 = x]_/]o. The transition function

from U; to U, is hence multiplication by x1 0 = x;, -

This information is summarized below:

open cover Uy = Spec k[x1 o] Uy = Speck[xo,1]
XX0/1 :Xi/]o
trivialization and transition functions k[x1 0] k[xo,1]
X1 /0%

To test our understanding, let’s compute the global sections of O(1). This will be anal-
ogous to our hands-on calculation that I'(P}, Op1) = k. A global section is a polynomial
f(x1,0) € klx1,0] and a polynomial g(xq,1)ink[xo,1] such that f(1/xq,1)x0,1 = g(x01). A
little thought will show that f must be linear: f(x;,0) = ax;, + b, and hence f(xo,1) =
a-+ on/] . Thus

dimT(P, O(1)) =2 # 1 =dim (P}, O).

Thus O(1) is not isomorphic to O, and we have constructed our first (proved) example of
a nontrivial line bundle!



We next define more generally O (n) on P}. It is defined in the same way, except that
the transition functions are the nth powers of those for O(1).

open cover Uy = Spec k[x1 o U; = Specklxo,1]

n T
XX0/17%1 /0

trivialization and transition functions k[x1,0] k[xo1]

n —n
XX1707%0 /1

In particular, thanks to the explicit transition functions, we see that O(n) = O(1)®™ (with
the obvious meaning if n is negative: (O(1)®(-™)V). Clearly also O(m) ® O(n) = O(m +
n).

3.A. IMPORTANT EXERCISE. Show that I'(P',O(n)) =n + 1if n > 0, and 0 otherwise.

Long ago, we warned that sheafification was necessary when tensoring Ox-modules:
if 7 and G are two Ox-modules on a ringed space, then it is not necessarily true that
F(X) ®oyx) G(X) = (F ® G)(X). We now have an example: let X = P}, F = O(1),
g =0(-1).

3.B. EXERCISE. Show thatif m # n, then O(m) % O(n). Hence conclude that we have an
injection of groups Z — PicP} givenby n — O(n).

It is useful to identify the global sections of O(n) with the homogeneous polynomials
of degree n in xo and x;, i.e. with the degree n part of k[x,, x4]. Can you see this from your
solution to Exercise 3.A? We will see that this identification is natural in many ways. For
example, we will later see that the definition of O(n) doesn’t depend on a choice of affine
cover, and this polynomial description is also independent of cover. As an immediate
check of the usefulness of this point of view, ask yourself: where does the section x3 —xox?
of O(3) vanish? The section x, + x; of O(1) can be multiplied by the section x5 of O(2) to
get a section of O(3). Which one? Where does the rational section x3(x1 +xo)/x] of O(—2)
have zeros and poles, and to what order? (We will rigorously define the meaning of zeros
and poles shortly, but you should already be able to intuitively answer these questions.)

We now define the invertible sheaf Opm (n) on the projective space P}*. On the usual
affine open set U; = Speck[xoi, - . ., Xm/il/(xi1—1) = Spec Aj, it is trivial, so sections (as an
Ai-module) are isomorphic to A;. The transition function from U; to U; is multiplication

by xis = x; . Note that these transition functions clearly satisfy the cocycle condition.

U; = Specklxoyi, -+« Xmil/(xia — 1) U; = Speck[xq/j, - -, Xmyl/ (%55 — 1)
XX =X %
KXoty -« oy Xmpl/ (xis — 1) Speckxo, - .-, Xmyl/ (%55 — 1)

XXt =x;
j/iT Y]
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3.C. ESSENTIAL EXERCISE. Show that dimy '(PF, Opm (n)) = (™).

You will notice that, as in the P! case, sections of O(m) on P} are naturally identified
with forms degree m polynomials in our n + 1 variables. Thus x +y + 2z is a section of
O(1) on P2. Itisn’t a function, but I can say where this section vanishes — precisely where
x+y+2z=0.

m+in

Also, notice that for fixed n, (™) is a polynomial in m of degree n for m > 0 (or
better: for m > —m — 1). This should be telling you that this function “wants to be a
polynomial” but has not succeeded. We will later define h(P}, O(m)) := I'(PE, O(m)),
and later still we will define higher cohomology groups, and we will define the Euler
characteristic x (P}, O(m)) := Y 2 (—=1)*h(Py, O(m)) (cohomology will vanish in degree
higher than n). We will discover the moral that the Euler characteristic is better-behaved
than h® and so we should now suspect (and later prove) that this polynomial is in fact
the Euler characteristic, and the reason that it agrees with h° for m > 0 because all the

other cohomology groups should vanish.

We finally note that we can define O(n) on P} for any ring A: the above definition
applies without change.

4. EFFECTIVE CARTIER DIVISORS “=" INVERTIBLE IDEAL SHEAVES

In the previous section, we produced a number of interesting invertible sheaves on pro-
jective space by explicitly giving transition functions. We now give a completely different
means of describing invertible sheaves on a scheme.

Suppose D — X is a closed subscheme such that corresponding ideal sheaf 7 is an
invertible sheaf. Then D is called an effective Cartier divisor. Suppose D is an effective
Cartier divisor. Then 7 is locally trivial; suppose U is a trivializing affine open set Spec A.
Then the closed subscheme exact sequence

027 —>0x—>0Op—0

corresponds to
0-I—->A—-A/I—0

with I = A as an A-module. Thus I is generated by a single element, say a, and this exact
sequence starts as

xXa
0—A—A

As multiplication by a is injective, a is not a zero-divisor. We conclude that D is locally
cut out by a single equation, that is not a zero-divisor. This was the definition of effective
Cartier divisor given before. This argument is clearly reversible, so we now have a quick
new definition of effective Cartier divisor (that Z is invertible).

4.A. EASY EXERCISE. Show that a is unique up to multiplication by a unit.
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In the case where X is locally Noetherian, and we can use the language of associated
points, we can restate this definition as: D is locally cut out by a single equation, not
vanishing at any associated point of X.

We now define an invertible sheaf corresponding to D. The seemingly obvious defini-
tion would be to take Zp, but instead we define the invertible sheaf O(D) corresponding
to an effective Cartier divisor to be the dual: Z}j. The ideal sheaf itself is sometimes de-
noted O(—D). We have an exact sequence

0—-0(-D)—> 0O — Op —0.

The invertible sheaf O(D) has a canonical section sp: Tensoring 0 — Z — O with 7V
gives us O — ZV. (Easy unimportant fact to check: instead of tensoring Z — O with ZV,
we could have dualized 7 — O, and we would get the same section.)

4.B. SURPRISINGLY TRICKY EXERCISE. Recall that a section of a locally free sheaf on X
cuts out a closed subscheme of X. Show that this section sp cuts out D.

This construction has a converse.

4.C. EXERCISE. Suppose L is an invertible sheaf, and s is a section that is not locally a
zero divisor (make sense of this!). Show that s = 0 cuts out an effective Cartier divisor D,
and O(D) = L. (Again, if X is locally Noetherian, “not locally a zero divisor” translate to
“does not vanish at an associated point”.)

4.D. EXERCISE. Suppose I and J are invertible ideal sheaves (hence corresponding to
effective Cartier divisors, say D and D’ respectively). Show that Z.7 is an invertible ideal
sheaf. (First make sense of this notation!) We define the corresponding Cartier divisor to
be D + D’. Verify that O(D + D’) = O(D) ® O(D’).

Thus the effective Cartier divisors form a semigroup. Thus we have a map of semi-
groups, from effective Cartier divisors to invertible sheaves with sections not locally zero-
divisors (and hence also to the Picard group of invertible sheaves).

Hence we can get a bunch of invertible sheaves, by taking differences of these two. In
fact we “usually get them all”! It is very hard to describe an invertible sheaf on a finite
type k-scheme that is not describable in such a way. For example, we will see soon that
there are none if the scheme is nonsingular or even factorial. We will see later that there
are none if X is quasiprojective. over a field.

We thus have an important correspondence between effective Cartier divisors (closed
subschemes whose ideal sheaves are invertible, or equivalently locally cut out by one
non-zero-divisor, or in the locally Noetherian case locally cut out by one equation not
vanishing at an associated point) and ordered pairs (£, s) where L is an invertible sheaf,
and s is a section that is not locally a zero-divisor (or in the locally Noetherian case, not
vanishing at an associated point). This is an isomorphism of semigroups.
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An effective Cartier divisor is pure codimension 1 by Krull’s Principal Ideal Theorem.
This correspondence of “invertible sheaf with section” with “codimension one informa-
tion” is a powerful theme that we will explore further in the next section.

E-mail address: vakil@math.stanford.edu
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1. Invertible sheaves and Weil divisors 1

1. INVERTIBLE SHEAVES AND WEIL DIVISORS

In the previous section, we saw a link between line bundles and codimension 1 infor-
mation. We now continue this theme. The notion of Weil divisors will give a great way
of understanding and classifying line bundles, at least on Noetherian normal schemes.
Some of what we discuss will apply in more general circumstances, and the expert is
invited to consider generalizations.

For the rest of this section, we consider only Noetherian schemes. We do this because
we want to discuss codimension 1 subsets, and also have decomposition into irreducibles
components.

Define a Weil divisor as a formal sum of codimension 1 irreducible closed subsets of X.
In other words, a Weil divisor is defined to be an object of the form

Z ny[Y]
Y C X codimension 1
the ny are integers, all but a finite number of which are zero. Weil divisors obviously form

an abelian group, denoted Weil X.

For example, if X is a curve (such as the Spec of a Dedekind domain), the Weil divisors
are linear combination of points.

We say that [Y] is an irreducible (Weil) divisor. A Weil divisor is said to be effective if
ny > 0 for all Y. In this case we say D > 0, and by D; > D, we mean D; — D, > 0. The
support of a Weil divisor D is the subset Uy, »oY. If U C X is an open set, there is a natural
restriction map Weil X — Weil U, where } nvy[Y] — } e nylY N uj.

Suppose now that X is reqular in codimension 1 (and Noetherian). We add this hypothesis
because we will use properties of discrete valuation rings. Suppose that £ is an invertible

Date: Wednesday, January 30 and Friday, February 1, 2008.
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sheaf, and s a rational section not vanishing on any irreducible component of X. (Ra-
tional sections are given by a section over a dense open subset of X, with the obvious
equivalence.) Then s determines a Weil divisor

div(s) := Y valy(s)[Y]
Y

called the divisor of zeros and poles. To determine the valuation valy(s) of s along Y,
take any open set U containing the generic point of Y where L is trivializable, along with
any trivialization over U; under this trivialization, s is a function on U, which thus has a
valuation. Any two such trivializations differ by a unit, so this valuation is well-defined.
(valy(s) = O for all but finitely many Y, by an earlier exercise.) This map gives a group
homomorphism

div : {(L£, s)} — Weil X.
A unit has no poles or zeros, so this descends to a group homomorphism

(1) div : {(L, s)}/T(X, Ox)" — Weil X.

1.A. EXERCISE. () (divisors of rational functions) Verify that on A}, div(x3/(x + 1)) =
3[0)] = [(x + 1)] = 3[0] — [-1].

(b) (divisor of a rational sections of a nontrivial invertible sheaf) On P}, there is a rational
section of O(1) “corresponding to” x?/(x + y). Figure out what this means, and calculate
div(x?/(x +v)).

We want to classify all invertible sheaves on X, and this homomorphism (1) will be the
key. Note that any invertible sheaf will have such a rational section (for each irreducible
component, take a non-empty open set not meeting any other irreducible component;
then shrink it so that £ is trivial; choose a trivialization; then take the union of all these
open sets, and choose the section on this union corresponding to 1 under the trivializa-
tion). We will see that in reasonable situations, this map div will be injective, and often
even an isomorphism. Thus by forgetting the rational section (taking an appropriate quo-
tient), we will have described the Picard group of all line bundles. Let’s put this strategy
into action.

1.1. Proposition. — If X is normal and Noetherian then the map div is injective.

Proof. Suppose div(L, s) = 0. Then s has no poles. Hence by Hartogs” lemma for invertible
sheaves, s is a regular section. Now s vanishes nowhere, so s gives an isomorphism
Ox — L (givenby 1 +— s). O

Motivated by this, we try to find the inverse map to div.

1.2. Important Definition. Suppose D is a Weil divisor. If U C X is an open subscheme,
recall that FF(U) is the field of total fractions of U, i.e. the product of the stalks at the
minimal primes of U (in this case that X is normal). If U is irreducible, this is the function
field. Define FF(U)* to be those rational functions not vanishing at any generic point of
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U, that is, not vanishing on any irreducible component of U. Define the sheaf Ox(D) by
I'(U, Ox(D)) :={s € FF(U)" : divs 4+ DJy > 0}.

The subscript will often be omitted when it is clear from the context. Define a rational
section sp of Ox(D) corresponding to 1 € FF(U)*.

It may seem more reasonable to consider those s such that divs > DJy. The reason for
the convention we use is the following exercise.

1.B. IMPORTANT EXERCISE. Show that divsp = D.

We connect this to the important example of projective space that we have recently
studied:

1.C. IMPORTANT EXERCISE. Let D = {xo = 0} be a hyperplane divisor on P}}. Show that
O(nD) = O(n). (For this reason, O(1) is sometimes called the hyperplane class in Pic X.)

1.3. Proposition. — Suppose L is an invertible sheaf, and s is a rational section not vanishing on
any irreducible component of X. Then there is an isomorphism (L, s) = (O(div s),t), where t is
the canonical rational section described above.

Proof. We first describe the isomorphism O(divs) = L. Over open subscheme U C X,
we have a bijection I'(U, £) — I'(U, O(divs)) given by s’ — s’/s, with inverse obviously
given by t’ — st’. Clearly under this bijection, s corresponds to the section 1 in FF(U)*;
this is the section we are calling t. O

We denote the subgroup of Weil X corresponding to divisors of rational functions the
subgroup of principal divisors, which we denote Prin X. Define the class group of X,
ClX, by Weil X/ Prin X. If X is normal, then by taking the quotient of the inclusion (1)
by Prin X, we have the inclusion PicX — CIX. This is summarized in the convenient
diagram

div : {(£, s)}/T(X, Ox)* = Weil X
l/{(ox ,8)} l/Prin X

Pic X {L)C C1X

This diagram is very important, and although it is short to say, it takes some time to inter-
nalize. (If X is Noetherian and regular in codimension 1 but not necessarily normal, then
we have a similar diagram, except the horizontal maps are not necessarily inclusions.)

We can now compute of Pic X in a number of interesting cases!

1.D. EXERCISE. Suppose that A is a Noetherian domain. Show that A is a Unique Fac-
torization Domain if and only if A is integrally closed and ClSpec A = 0. (One direction
is easy: we have already shown that Unique Factorization Domains are integrally closed
in their fraction fields. Also, an earlier exercise showed that all codimension 1 primes
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of a Unique Factorization Domain are principal, so that implies that Cl1Spec A = 0. It
remains to show that if A is integrally closed and ClSpec A = 0, then all codimension
1 prime ideals are principal, as this characterizes Unique Factorization Domains. Har-
togs’ lemma may arise in your argument.) This is the third important characterization of
unique factorization domains promised long ago.

Hence CI(A}) = 0, so | Pic(A}) = 0| Geometers will find this believable: “C™ is a con-
tractible manifold, and hence should have no nontrivial line bundles”.

Removing subset of X of codimension greater 1 doesn’t change the Class group, as it
doesn’t change the Weil divisor group or the principal divisors.

Removing a subset of codimension 1 changes the Weil divisor group in a controllable
way. For example, suppose Z is an irreducible codimension 1 subset of X. Then we clearly
have an exact sequence:

1= [Z] .
0 —Z— Weil X — Weil(X — Z) —0.
When we take the quotient by principal divisors, we lose exactness on the left, and get:

1—=[Z]
(2) Z ClX Cl(X—Z)——0.

1.E. EASY EXERCISE. Suppose X — A™is an open subset. Show that Pic X = {0}.

For example, let X = IP}}, and Z be the hyperplane xo = 0. We have
Z — ClPy — CIAY — 0
from which C1P} = Z[Z] (which is Z or 0), and Pic P} is a subgroup of this.

By Exercise 1.C, [Z] — O(1). Hence Pic P}y — CIlP} is anisomorphism, and | Pic P} = Z

with generator O(1). The degree of an invertible sheaf on P™ is defined using this:
deg O(d) :=d.

More generally:

1.4. Proposition. — If X is Noetherian and factorial (all stalks are unique factorization domains)
then for any Weil divisor D, O(D) is invertible, and hence the map Pic X — Cl1X is an isomor-
phism.

Proof. 1t will suffice to show that [Y] is effective Cartier if Y is any irreducible divisor. Our
goal is to cover X by open sets so that on each open set U there is a function whose divisor
is [YNU]. One open set will be X —Y, where we take the function 1. Next, we find an open
set U containing an arbitrary x € Y, and a function on U. As Ox  is a unique factorization
domain, the prime corresponding to 1 is codimension 1 and hence principal (by an earlier
Exercise). Let f € FF(A) be a generator. Then f is regular at x. f has a finite number of
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zeros and poles, and through x there is only one 0, notably [Y]. Let U be X minus all the
others zeros and poles. O

I will now mention a bunch of other examples of class groups and Picard groups you
can calculate.

First, notice that you can restrict invertible sheaves on X to any subscheme Y, and this
can be a handy way of checking that an invertible sheaf is not trivial. For example, if
X is something crazy, and Y = P!, then we're happy, because we understand invertible
sheaves on P'. Effective Cartier divisors sometimes restrict too: if you have effective
Cartier divisor on X, then it restricts to a closed subscheme on Y, locally cut out by one
equation. If you are fortunate and this equation doesn’t vanish on any associated point
of Y, then you get an effective Cartier divisor on Y. You can check that the restriction of
effective Cartier divisors corresponds to restriction of invertible sheaves.

1.5. Fun with hypersurface complements.

1.E. EXERCISE: A TORSION PICARD GROUP. Show that Y is an irreducible degree d hyper-
surface of P™. Show that Pic(P™ —Y) = Z/d. (For differential geometers: this is related to
the fact that iy (P —Y) = Z/d.)

As a very explicit example, we can consider the plane minus a conic (n = d = 2).

The next two exercises explore its consequences, and provide us with some examples
we have been waiting for.

1.G. EXERCISE. Keeping the same notation, assume d > 1 (so Pic(P™ —Y) # 0), and let
Ho, ..., Hn be the n + 1 coordinate hyperplanes on P™. Show that P™ — Y is affine, and
P™ —Y — H; is a distinguished open subset of it. Show that the P — Y — H; form an open
cover of P™ — Y. Show that Pic(P™ — Y — H;) = 0. Then by Exercise 1.D, each P™ —Y — H;
is the Spec of a unique factorization domain, but P™ —Y is not. Thus the property of being
a unique factorization domain is not an affine-local property — it satisfies only one of the
two hypotheses of the affine communication lemma.

1.H. EXERCISE. Keeping the same notation as the previous exercise, show that on P™" -,
H; (restricted to this open set) is an effective Cartier divisor that is not cut out by a single
equation. (Hint: Otherwise it would give a trivial element of the class group.)

1.6. Quadric surfaces.

1.I. EXERCISE. Let X = Proj k[w, x,y, z|/(wz — xy), a smooth quadric surface (Figure 1).
Show that Pic X = Z @ Z as follows: Show that if L and M are two lines in different rulings
(e.g. L= V(w,x) and M = V(w,y)), then X — L — M = AZ. This will give you a surjection



7Z.®7Z — ClX. Show that O(L) restricts to O on L and O(1) on M. Show that O(M) restricts
to O on M and O(1) on L. (This is a bit longer to do, but enlightening.)

/
I/ \|

FIGURE 1. Finding all line bundles on the quadric surface

1.J. EXERCISE. Let X = Speck[w,x,y,z]/(xy — z?), a cone. show that PicX = 1, and
Cl1X = Z/2. (Hint: show that the ruling Z = {x = z = 0} generates C1 X by showing that
its complement is isomorphic to AZ. Show that 2[Z] = div(x) (and hence principal), and
that Z is not principal (an example we did when learning how to use the Zariski tangent
space).

1.7. Nagata’s Lemma »x.

I mentioned earlier that I only know a few ways of checking that a ring is a unique
factorization domain. Nagata’s Lemma is the last, and least useful.

1.K. EXERCISE. Prove Nagata’s Lemma: Suppose A is a Noetherian domain, x € A an
element such that (x) is prime and A[1/x] is a unique factorization domain. Then A is a
unique factorization domain. (Hint: Exercise 1.D. Use the short exact sequence [(x)] —
ClSpec A — CIA[1/x] — 0 (2) to show that ClSpec A = 0. Show that A[1/x] is integrally
closed, then show that A is integrally closed as follows. Suppose T" + a, 1T + .- +
ap = 0, where a; € A, and T € FF(A). Then by integral closure of A[1/x], we have that
T =1/x™, where if m > 0, then r ¢ x. Then we quickly get a contradiction if m > 0.)

This leads to a remarkable algebra fact. Suppose k is an algebraically closed field of
characteristic not 2. Let A = k[x1,...,xnl/(x 4+ - -+ +x2) where m < n. When m < 2, we
get some special behavior. (If m = 0, we get affine space; if m = 1, we get a non-reduced
scheme; if m = 2, we get a reducible scheme that is the union of two affine spaces.) If
m > 3, we have verified that Spec A is normal, in an earlier exercise.

In fact, if m > 3, then A is a unique factorization domain unless m = 4. The failure at 4
comes from the geometry of the quadric surface: we have checked that in Spec klw, x, y, z|/(wx—
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yz), there is a codimension 1 prime ideal — the cone over a line in a ruling — that is not
principal.

We already understand success at 3:A = k[x,y,z, w1, ..., wn_3l/(x*+y?—2z?) isa unique
factorization domain, as it is normal and has class group 0 (as verified above).

1.L. EXERCISE (THE CASE m > 5). Suppose that k is algebraically closed of characteristic
not 2. Show that if m > 3, then A = k[a,b,x1,...,%x.]/(ab — x5 — -+ — x2 ) is a unique
factorization domain, by using the Nagata’s Lemma with x = a.

E-mail address: vakil@math.stanford.edu
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Today, we will discuss the relationship between quasicoherent sheaves on projective
A-schemes and graded modules.

1. THE QUASICOHERENT SHEAF CORRESPONDING TO A GRADED MODULE

We now describe quasicoherent sheaves on a projective A-scheme. Recall that a pro-
jective A-scheme is produced from the data of Z=°-graded ring S., with So = A, and S
tinitely generated as an A-module. The resulting scheme is denoted Proj S..

Let X = ProjS,. Suppose M, is a graded S, module, graded by Z. (While reading the
next section, you may wonder why we don’t grade by Z*. You'll see that it doesn’t really
matter either way. The reason to prefer a Z-grading is when we produce an M, from a

quasicoherent sheaf on ProjS,.) We define the quasicoherent sheaf M, as follows. For

each f of positive degree, we define a quasicoherent sheaf M, (f) on the distinguished
open D(f) = {p : f(p) # 0} by

M.(f) = (M)o.
The subscript 0 here means “the 0-graded piece”. We have obvious isomorphisms of the

restriction of M, (f) and M,(g) to D(fg), satisfying the cocycle conditions. (Think through
this yourself, to be sure you agree with the word “obvious”!) Then by an earlier problem
set problem telling how to glue sheaves, these sheaves glue together to a single sheaf on

Mv. on X. We then discard the temporary notation M,(f).

This is clearly quasicoherent, because it is quasicoherent on each D(f), and quasicoher-
ence is local.

Date: Monday, February 4, 2008.



1.A. EXERCISE.  Show that the stalk of M, at a point corresponding to homogeneous
prime p C S, is isomorphic to the Oth graded piece of (M,),.

1.B. UNIMPORTANT EXERCISE. Use the previous exercise to give an alternate definition
of M, in terms of “compatible stalks”.

Given a map of graded modules ¢ : M, — N,, we we get an induced map of sheaves
M. — N,. Explicitly, over D(f), the map M, — N, induces M,[1/f] — N,[1/f], which
induces ¢ : (M,[1/f])o — (N4[1/f])o; and this behaves well with respect to restriction to
smaller distinguished open sets, i.e. the following diagram commutes.

(ML [1/61)0 —2— (NL[1/f])o

L

(ML[1/(fg)])o — (No[1/(fg)])o.

Thus ~ is a functor from the category of graded S.,-modules to the category of quasicoher-
ent sheaves on ProjS,. We shall see that this isn’t quite an isomorphism, but it is close.
The relationship is akin to that between presheaves and sheaves, and the sheafification
functor.

1.C. EASY EXERCISE. Show that ~ is an exact functor.

1.D. EXERCISE.  Show that if M, and M, agree in high enough degrees, then M, =

M. Thus the map from graded S,-modules to quasicoherent sheaves on Proj S, is not a
bijection.

1.E. EXERCISE. Describe a map of Sy-modules My — F(I\W., X). (This foreshadows the
“saturation map” that takes a graded module to its saturation.)

1.E EXERCISE. Show that M, ® N, = M./@?;./ N.. (Hint: describe the isomorphism of
sections over each D(f), and show that this isomorphism behaves well with respect to
smaller distinguished open sets.)

1.1. Graded ideals of S, give closed subschemes of ProjS,. Recall that a graded ideal
I, C S, yields a closed subscheme. Proj S,/I, — Proj S,.

For example, suppose S, = k[w, x,y, z, so ProjS. = P3. The ideal I, = (wz — xy,x* —

wy, y% — xz) yields our old friend, the twisted cubic.

1.G. EXERCISE. Show that if the functor ~ is applied to the exact sequence of graded
S.-modules

0—=1,—S.—S./I. =0
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we obtain the closed subscheme exact sequence for Proj S,/I, — ProjS..

We will soon see (§4.E) that all closed subschemes of Proj S, arise in this way.

2. INVERTIBLE SHEAVES (LINE BUNDLES) ON PROJECTIVE A-SCHEMES

Suppose that S, is generated in degree 1. By an earlier exercise, this is not a huge
assumption, as we can change the grading by some multiple to arrange that this is the
case. Suppose M, is a graded S,-module. Define the graded module M(n), so that

M(n)m = My 4m. Thus the quasicoherent sheaf M (n), satisfies

F(D(f),Mn)s) = (M¢)n
where here the subscript means we take the nth graded piece. (These subscripts are ad-
mittedly confusing!)

2.A. IMPORTANT EXERCISE. If S, is generated in degree 1, show that Op,s,(n) is an
invertible sheaf.

2.B. EXERCISE. If S, = k[xo,...,Xml, so ProjS, = P, show that this definition of O(n)
agrees with our earlier definition involving transition functions.

If F is a quasicoherent sheaf on Proj S,, define 7(n) := F ® O(n). This is often called
twisting F by O(n). More generally, if £ is an invertible sheaf, then 7 ® L is often called
“twisting F by L”.

e~

2.C. EXERCISE. Show that M,(n) = M(n)..

2.D. EXERCISE. Show that O(m +n) = O(m) ® O(n).

2.1. Unimportant remark. Even if S, is not generated in degree 1, then by Exercise , S,
is generated in degree 1 for some d. In this case, we may define the invertible sheaves
O(dn) for n € Z. This does not mean that we can’t define O(1); this depends on S,. For
example, if S, is the polynomial ring k[x, y] with the usual grading, except without linear
terms, then S,, and S3, are both generated in degree 1, meaning that we may define O(2)
and O(3). There is good reason to call their “difference” O(1).

3. GENERATION BY GLOBAL SECTIONS, AND SERRE’S THEOREM

3.1. Generated by global sections. Suppose X is a scheme, and F is a Ox-module. We
say that F is generated by global sections at a point p if we can find ¢ : O%' — F that is
surjective at the stalk of p: ¢, : OF' — F,, is surjective. (Some what more precisely, the
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stalk of F at p is generated by global sections of F. The global sections in question are
the images of the 1’s in || factors of O;'.) We say that F is generated by global sections or
globally generated if it is generated by global sections at all p, or equivalently, if we can we
can find O%" — F that is surjective. (By our earlier result that we can check surjectivity
at stalks, so this is the same as saying that it is surjective at all stalks.) If I can be taken to
be finite, we say that F is generated by a finite number of global sections. We'll see soon
why we care.

3.A. EASY EXERCISE. If quasicoherent sheaves F and G are generated by global sections
at a point p, then so is 7 ® G. (This exercise is less important, but is good practice.)

3.B. EAsy EXERCISE. If F is a finite type sheaf, show that F is generated by global
sections at p if and only if “the fiber of F is generated by global sections at p”, i.e. the
map from global sections to the fiber F,,/mF,, is surjective, where m is the maximal ideal
of Ox . (Hint: Geometric Nakayama.)

3.C. EASY EXERCISE. An invertible sheaf £ on X is generated by global sections if and
only if for any point x € X, there is a section of £ not vanishing at x. We'll soon discuss
classifying maps to projective space in terms of invertible sheaves generated by global
sections, and we’ll see then why we care about such notions.

3.D. EASY EXERCISE. If F is finite type, and X is quasicompact, show that F is generated
by global sections if and only if it is generated by a finite number of global sections.

3.2. Lemma. — Suppose F is a finite type sheaf on X. Then the set of points where F is generated
by global sections is an open set.

Proof. Suppose F is generated by global sections at a point p. Then it is generated by
a finite number of global sections, say m. This gives a morphism ¢ : O™ — F, hence
im¢ — F. The support of the (finite type) cokernel sheaf is a closed subset not containing
P. ]

3.E. IMPORTANT EXERCISE (AN IMPORTANT THEOREM OF SERRE). Suppose Sy is a Noe-
therian ring, and S, is generated in degree 1. Let F be any finite type sheaf on ProjS..
Show that for some integer ny, for all n > ny, F(n) can be generated by a finite number
of global sections.

I'm going to sketch how you should tackle this exercise, after first telling you the reason
we will care.

3.3. Corollary. — Any coherent sheaf F on Proj S, can be presented as:
@ﬁniteo(_n) — F = 0.



We’re going to use this a lot! One clue of how this might be useful: we can use this to
build a resolution of F:

-o- = B0(—,) = &0(—my) - F — 0.

We understand the O(n)’s pretty well, so we can use this to prove things about coherent
sheaves (such as vector bundles) in general.

This Corollary is false for quasicoherent sheaves in general; consider ®,,<oO(m).

Proof. Suppose we have m global sections sy, ..., s;,, of F(n) that generate 7(n). This
gives a map

POmO —— F(n)

given by (f;,...,fn) — fis1 +--- + fis;, Oon any open set. Because these global sections
generate F, this is a surjection. Tensoring with O(—n) (which is exact, as tensoring with
any locally free is exact) gives the desired result. O

Here is now a hint/sketch for the Serre exercise 3.E.

Suppose degf = 1. Say Flp) = M, where M is a (S.[1/f])o-module, generated by m;,
..., My. As these elements generate the module, they clearly generate all the stalks over
all the points of D(f). They are sections over this (“big”) distinguished open set D(f). It
would be wonderful if we knew that they had to be restrictions of global sections, i.e. that
there was a global section m; that restricted to m; on D(f). If that were always true, then
we would cover X with a finite number of each of these D(f)’s, and for each of them, we
would take the finite number of generators of the corresponding module. Sadly this is
not true.

However, we will see that fNm “extends”, where m is any of the my’s, and N is suf-
ficiently large. We will see this by (easily) checking first that f™m extends over another
distinguished open D(g) (i.e. that there is a section of F(N) over D(g) that restricts to
fNmon D(g) N D(f) = D(fg)).

So we're done, right? Wrong — we still don’t that these extensions on various open
sets glue together, and in fact they might not! More precisely: we don’t know that the
extension over D(g) and over some other D(g’) agree on the overlap D(g) N D(g’) =
D(gg’). But after multiplying both extensions by fN' for large enough N’, we will see that
they agree on the overlap. By quasicompactness, we need to to extend over only a finite
number of D(g)’s, and to make sure extensions agree over the finite number of pairs of
such D(g)’s, so we will be done.

Let’s now begin to make this precise. We first investigate what happens on D(g) =
Spec A, where the degree of g is also 1. Say Flp(g) = N. Let f' = f/g be “the function
corresponding to f on D(g)”. We have a section over D(f’) on the affine scheme D(g),
i.e. an element of Ny, i.e. something of the form n/(f")™ for some n € N. So then if we
multiply it by f'N, we can certainly extend it! So if we multiply by a big enough power of
f, m certainly extends over any D(g).



As described earlier, the only problem is, we can’t guarantee that the extensions over
D(g) and D(g’) agree on the overlap (and hence glue to a single extensions). Let’s check
on the intersection D(g) N D(g’) = D(gg’). Say m = n/(f")N = n’/(f )N where we can
take N = N’ (by increasing N or N’ if necessary). We certainly may not have n = n’,
but by the (concrete) definition of localization, after multiplying with enough f”’s, they
become the same.

In conclusion: after multiplying with enough f’s, our sections over D(f) extend over
each D(g). After multiplying by even more, they will all agree on the overlaps of any two
such distinguished affine. Exercise 3.E is to make this precise.

4. EVERY QUASICOHERENT SHEAF ON A PROJECTIVE A-SCHEME ARISES FROM A
GRADED MODULE

We have gotten lots of quasicoherent sheaves on Proj S, from graded S,-modules. We’ll
now see that we can get them all in this way.

We want to figure out how to “undo” the ~ construction. When you do the Exercise
computing the space of global sections of O(m) on P}, you will suspect that in good
situations,

M,, = I'(Proj S., M(n)).
Motivated by this, we define
Ih(F) :=T(ProjS., F(n)).

Then I,(F) is a graded S.-module, and we can dream that I,(F)~ = F. We will see that
this is indeed the case!

4.A. EXERCISE. Show that I, gives a functor from the category of quasicoherent sheaves
on Proj S, to the category of graded S.-modules. In other words, show thatif 7 — Gisa
morphism of quasicoherent sheaves on Proj S,, describe the natural map I, (F) — T.(G),
and show that such natural maps respect the identity and composition.

Note that ~ and I, cannot be inverses, as ~ can turn two different graded modules into
the same quasicoherent sheaf (see for example Exercise 1.D).

P

Our initial goal is to show that there is a natural isomorphism I, (F) — F, and that there

—~

is a natural map M, — I',(M,). The latter map is called the saturation map, although this
language isn’t important to us. We will show something better: that ~ and I', are adjoint.

We start by describing the saturation map M, — T.(M,). We describe it in degree n.

Given an element m,,, we seek an element of I'(Proj S,, Mv.(n)) = ['(Proj Se, M(n4e)). By
shifting the grading of M, by n, we can assume n = 0. For each D(f), we certainly have
an element of (M[1/f])o (namely m), and they agree on overlaps, so the map is clear.
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4.B. EXERCISE. Show that this canonical map need not be injective, nor need it be sur-
jective. (Hint: S, = k[x], M, = k[x] /x?or M, = { polynomials with no constant terms }.)

The natural map ILF — F is more subtle, but will have the advantage of being an
isomorphism.

4.C. EXERCISE. Describe the natural map ILF — F as follows. First describe it over
D(f). Note that sections of the left side are of the form m/f™ where m € I 4¢ ¢F, and
m/f* = m’/f" if there is some N with fN(f*m — f*m’) = 0. Show that your map
behaves well on overlaps D(f) N D(g) = D(fg).

4.D. LONGER EXERCISE. Show that the natural map I\F — F is an isomorphism, by
showing that it is an isomorphism over D(f) for any f. Do this by first showing that it is
surjective. This will require following some of the steps of the proof of Serre’s theorem
(Exercise 3.E). Then show that it is injective.

4.1. Corollary. — Every quasicoherent sheaf arises from this tilde construction.

4.E. EXERCISE. Show that each closed subscheme of Proj S, arises from a graded ideal
I, C S.. (Hint: Suppose Z is a closed subscheme of Proj S,. Consider the exact sequence
0 —Zz — Oprojs. — Oz — 0. Apply T, and then ~.)

4.F. EXERCISE (I, AND ~ ARE ADJOINT FUNCTORS, PART 1). Prove part of the statement

~

that I, and ~ are adjoint functors, by describing a natural bijection Hom(M,, I, (F)) =
Hom(M,, F). For the map from left to right, start with a morphism M, — T,(F). Apply
~, and postcompose with the isomorphism I, 7 — F, to obtain

M, = ILF — F.

Do something similar to get from right to left. Show that “both compositions are the
identity in the appropriate category”.

4.G. EXERCISE (I, AND ~ ARE ADJOINT FUNCTORS, PART 2) . Show that I, and ~ are
adjoint.

4.2. Saturated S,-modules. We end with a remark: different graded S,-modules give the
same quasicoherent sheaf on Proj S,, but the results of this section show that there is a
“best” (saturated) graded module for each quasicoherent sheaf, and there is a map from

—~

each graded module to its “best” version, M, — I,(M,). A module for which this is an
isomorphism (a “best” module) is called saturated. We won'’t use this term later.
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This “saturation” map M, — N(M,) is analogous to the sheafification map, taking
presheaves to sheaves. For example, the saturation of the saturation equals the satura-
tion.

There is a bijection between saturated quasicoherent sheaves of ideals on Proj S, and
closed subschemes of Proj S,.

E-mail address: vakil@math.stanford.edu
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1. PUSHFORWARDS AND PULLBACKS OF QUASICOHERENT SHEAVES

There are two things you can do with modules and a ring homomorphism B — A. If
M is an A-module, you can create an B-module Mg by simply treating it as an B-module.
If N is an B-module, you can create an A-module N ®g A.

These notions behave well with respect to localization (in a way that we will soon make
precise), and hence work (often) in the category of quasicoherent sheaves (and indeed
always in the category of modules over ringed spaces, see Remark 3.7, although this will
not concern us here). The two functors are adjoint:

Homa (A ®g N, M) = Homg(N, M3g)
(where this isomorphism of groups is functorial in both arguments), and we will see that

this remains true on the scheme level.

One of these constructions will turn into our old friend pushforward. The other will be
a relative of pullback, whom I'm reluctant to call an “old friend”.

2. PUSHFORWARDS OF QUASICOHERENT SHEAVES

The main message of this section is that in “reasonable” situations, the pushforward of
a quasicoherent sheaf is quasicoherent, and that this can be understood in terms of one of
the module constructions defined above. We begin with a motivating example:

2.A. EXERCISE. Let f: Spec A — Spec B be a morphism of affine schemes, and suppose

M is an A-module, so M is a quasicoherent sheaf on Spec A. Show that f.M = Ms.
(Hint: There is only one reasonable way to proceed: look at distinguished open sets!)

Date: Wednesday, February 6, 2008.



In particular, f,M is quasicoherent. Perhaps more important, this implies that the push-
forward of a quasicoherent sheaf under an affine morphism is also quasicoherent. The
following result, proved in an earlier Exercise, generalizes this statement.

2.1. Theorem. — Suppose f : X — Y is a quasicompact quasiseparated morphism, and F is a
quasicoherent sheaf on X. Then f.F is a quasicoherent sheaf on Y.

2.B. EXERCISE. Give an example of a morphism of schemes 7t : X — Y and a quasico-
herent sheaf F on X such that 7, F is not quasicoherent. (Possible answer: Y = A, X =
countably many copies of A'. Then let f = t. X, has a global section (1/t,1/t%,1/t3,...),
where the ith entry is the function on the ith component of X. The key point here is that
infinite direct products do not commute with localization.)

Coherent sheaves don’t always push forward to coherent sheaves. For example, con-
sider the structure morphism f : A]]( — Speck, given by k — kl[t]. Then f, OAi is the k[t],
which is not a finitely generated k-module. Under especially good situations, coherent
sheaves do push forward. For example:

2.C. EXERCISE. Suppose f : X — Y is a finite morphism of Noetherian schemes. If F is
a coherent sheaf on X, show that f,F is a coherent sheaf. (Hint: Show first that f,Ox is

finite type.)

Once we define cohomology of quasicoherent sheaves, we will quickly prove that if
F is a coherent sheaf on P}, then I'(P}, F) is a finite-dimensional k-module, and more
generally if F is a coherent sheaf on ProjS., then I'(ProjS,, ) is a coherent A-module
(where Sp = A). This is a special case of the fact the “pushforwards of coherent sheaves by
projective morphisms are also coherent sheaves”. We will first need to define “projective
morphism”! This notion is a generalization of Proj S, — Spec A.

More generally, pushforwards of coherent sheaves by proper morphisms are also co-
herent sheaves. I'd like to give a proof of this, at least in the notes, at some point.

3. PULLBACK OF QUASICOHERENT SHEAVES

I find the notion of the pullback of a quasicoherent sheaf to be confusing on first (and
second) glance. I will try to introduce it in two ways. One is directly in terms of thinking
of quasicoherent sheaves in terms of modules over rings corresponding to affine open
sets, and is suitable for direct computation. The other is elegant and functorial in terms of
adjoints, and applies to ringed spaces in general. Both perspectives have advantages and
disadvantages, and it is worth having some experience working with both.

We note here that pullback to a closed subscheme or an open subscheme is often called
restriction.



3.1. Construction/description of the pullback. Let us now define the pullback functor
precisely. Suppose X — Y is a morphism of schemes, and G is a quasicoherent sheaf on
Y. We will describe the pullback quasicoherent sheaf f*G on X by describing it as a sheaf
on a variant of the distinguished affine base. In our base, we will permit only those affine
open sets U C X such that f(Ul) is contained in an affine open set of Y. The distinguished
restriction map will force this sheaf to be quasicoherent.

Suppose U C X, V C Y are affine open sets, with f(Ul) C V, U = SpecA, V = Spec B.
Suppose Fly = N. Then define I'(U, f3,.F) := A ®p N®g. Our main goal will be to show
that this is independent of our choice of V.

We begin as follows: we fix an affine open subset V C Y, and use it to define sections
over any affine open subset U C f~'(V). We show that this gives us a quasicoherent sheaf
3G on f~1(V), by showing that these sections behave well with respect to distinguished
restrictions. First, note that if D(f) C U is a distinguished open set, then

FD(f), L F) =N@pAr=(N®gA)®a A =T (U, f{F) ®a As.
Define the restriction map I'(U, f3,F) — I'(D(f), f{,F) by
(1) M3 F, U) = T(fyF, U) @ Ag

(with « — o ® 1 of course). Thus on the distinguished affine topology of Spec A we have
defined a quasicoherent sheaf.

To sum up: we have defined a quasicoherent sheaf on f~'(V), where V is an affine open
subset of Y.

We want to show that this construction, as V varies over all affine open subsets of Y,
glues into a single quasicoherent sheaf on X.

3.A. EXERCISE. Do this. (Possible hint: possibly use the idea behind the affine cover-
ing lemma. Begin by showing that the sheaf on f~'(Spec A) restricted to the preimage
of the distinguished open subset f~'(Spec A,) is canonically isomorphic to the sheaf on
f~1(Spec Ay4). Another possible hint: figure out what the stalks should be, and define it as
a sheaf of compatible germs.)

Hence we have described a quasicoherent sheaf f*G on X whose behavior on affines
mapping to affines was as promised.

3.2. Theorem. —

(1) The pullback of the structure sheaf is the structure sheaf.

(2) The pullback of a finite type sheaf is finite type. Hence if f : X — Y is a morphism of locally
Noetherian schemes, then the pullback of a coherent sheaf is coherent. (It is not always true
that the pullback of a coherent sheaf is coherent, and the interested reader can think of a
counterexample.)

(3) The pullback of a locally free sheaf of rank r is another such. (In particular, the pullback of
an invertible sheaf is invertible.)



(4) (functoriality in the morphism) Ty F = (113 0 71¢)* F

(5) (functoriality in the quasicoherent sheaf) If w: X — Y, then 7* is a functor from the cate-
gory of quasicoherent sheaves on Y to the category of quasicoherent sheaves on Y. (Hence
as a section of a sheaf F on Y is the data of a map Oy — F, by (1) and (6), if s : Oy — F
is a section of F then there is a natural section 7*s : Ox — " F of m*F. The pullback of
the locus where s vanishes is the locus where the pulled-back section *s vanishes.)

(6) (stalks)Ifrt: X — Y, mt(x) =y, then there is an isomorphism (10*F), — Fy Qoy,, Oxx .
(7) (fibers) Pullback of fibers are given as follows: if t: X — Y, where mt(x) =y, then

ﬂ*F/mX,XT[*F = (f/mY,y]:) ®(’)y,y /My y OX,X/mX,X

(8) (tensor product) m"(F ® G) = m*'F @ m*G
(9) pullback is a right-exact functor

All of the above are interconnected in obvious ways.

In fact much more is true, that you should be able to prove on a moment’s notice, such
as for example that the pullback of the symmetric power of a locally free sheaf is naturally
isomorphic to the symmetric power of the pullback, and similarly for wedge powers and
tensor powers.

Most of these are left to the reader. It is convenient to do right-exactness early; it is
related to right-exactness of ®. For the tensor product fact, show that (M®sR)®(N®sR) =
(M ® N) ®s R, and that this behaves well with respect to localization. The proof of the
fiber fact is as follows. (S,n) — (R, m).

S——R

L

S/n—R/m

(N®sR)®@r (R/m) = (N®s (S/n)) ®s/m (R/m) as both sides are isomorphic to N ®s (R/m).
3.B. EXERCISE. Prove the Theorem.

3.C. UNIMPORTANT EXERCISE.  Verify that the following is a example showing that
pullback is not left-exact: consider the exact sequence of sheaves on A', where p is the
origin:

0= O (—=p) = Op1 — O, — 0.

(This is a closed subscheme exact sequence. Algebraically, we have k[t]-modules 0 —
tk[t] — k[t] — k — 0.) Restrict to p.

3.3. Remark. After proving the theorem, you'll see the importance of right-exactness.
Given m : X — Y, if the functor 7* from quasicoherent sheaves on Y to quasicoherent
sheaves on X is also left-exact (hence exact), we will say that 7t is a flat morphism. This is
an incredibly important notion, and we will come back to it later, next quarter.
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3.4. A second definition, that doesn’t always apply. Suppose 7 : X — Y is a quasi-
compact quasiseparated morphism, so 7, is a functor from quasicoherent sheaves on X to
quasicoherent sheaves on Y. Then 7* and 7, are adjoints. More precisely:

3.5. Three more “definitions”. Pullback is left-adjoint of the pushforward. If it exists,
then it is unique up to unique isomorphism by Yoneda nonsense. One can thus take
this as a definition of pullback, at least if 7t is quasicompact and quasiseparated. This
defines the pullback up to unique isomorphism. The problem with this is that pullbacks
should exist even without these hypotheses on 7. And in any case, any proof by universal
property requires an explicit construction as well, so we are led once again to our earlier
constructive definition.

3.6. Theorem. — Suppose 7t : X — Y is a quasicompact, quasiseparated morphism. Then pullback
is left-adjoint to pushforward. More precisely, Hom(nn*G, ) = Hom(G, 7. F).

More precisely still, we describe natural homomorphisms that are functorial in both ar-
guments. We show that it is a bijection of sets, but it is fairly straightforward to verify that
it is an isomorphism of groups. Not surprisingly, we will use adjointness for modules.

Proof. Let’s unpack the right side. What’s an element of Hom(G, f,F)? For every affine
Vin Y, we get an element of Hom(G(V), F(f~'(V))), and this behaves well with respect
to distinguished open sets. Equivalently, for every affine Vin Y and U in (V) C X,
we have an element Hom(G(V), F(U)), that behaves well with respect to localization to
distinguished open sets on both affines. By the adjoint property, this corresponds to ele-
ments of Hom(G (V) ®oe, (v) Ox(U), F(U)), which behave well with respect to localization.
And that’s the left side. 0

3.7. Pullback for ringed spaces . (This is actually conceptually important but distracting
for our exposition; we encourage the reader to skip this, at least on the first reading.)
Pullbacks and pushforwards may be defined in the category of O-modules over ringed
spaces. We define pushforward in the usual way, and then define the pullback of an O-
module using the adjoint property. Then one must show that (i) it exists, and (ii) the
pullback of a quasicoherent sheaf is quasicoherent.

Here is a construction that always works. Suppose we have a morphism of ringed
spaces 7t : X — Y, and an Oy-module G. Then define f*G = f1G ®¢10, Ox. We will not
show that this definition is equivalent to ours, but the interested reader is welcome to try
this as an exercise.

3.D. EXERCISE FOR INTERESTED READERS. Show that 7" and 7, are adjoint functors
between the category of Ox-modules and the category of Oy-modules. Hint: Justify the
following.

Homo, (f7'G ®¢ 10, Ox, F) = Homg 1o, (f7'G,F)
= Homo, (G, f.F)



The statements of Theorem 3.6 apply in this more general setting.

In particular, by uniqueness of adjointness, this “sheaf-theoretic” definition of pullback
agrees with our scheme-theoretic definition of pullback when 7t is quasicompact and qua-
siseparated. The interested reader may wish to show it in general.

3.E. UNIMPORTANT EXERCISE. Show that the scheme-theoretic definition of pullback
agrees with the sheaf-theoretic definition in terms of O-modules.

E-mail address: vakil@math.stanford.edu
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1. IMPORTANT EXAMPLE: INVERTIBLE SHEAVES AND MAPS TO PROJECTIVE SCHEMES

Theorem 1.1 will give one reason why line bundles are crucially important: they tell us
about maps to projective space, and more generally, to quasiprojective A-schemes. Given
that we have had a hard time naming any non-quasiprojective schemes, they tell us about
maps to essentially all schemes that are interesting to us.

Before stating the theorem, we begin with some motivation. Recall that the data of a
map to A™ corresponds to the choice of n functions, which could be called “coordinate
functions”. (The case n = 1 was an earlier exercise, and the general case is no harder.)
Our goal is to give a similar characterization of maps to P™. We have already seen that
a choice of n + 1 functions on X with no common zeros yields a map to P™. However,
this can’t give all maps to P™ suppose n > 0 and consider the identity map P} — P}.
This map can’t be described in terms of n + 1 functions on X with no common zeros, as
the only functions on P™ are constants, so they only maps P}} — P} that can be described
in terms of n functions with no common zeros are constant maps. The resolution of this
problem is by considering not just functions — sections of the trivial invertible sheaf —
but sections of any invertible sheaf.

1.1. Important theorem. — Maps to P™ correspond to n + 1 sections of a line bundle, not all
vanishing at any point (i.e. generated by global sections), modulo global sections of O%.

This is one of those important theorems in algebraic geometry that is easy to prove, but
quite subtle in its effect on how one should think. It takes some time to properly digest.

The theorem describes all morphisms to projective space, and hence by the Yoneda
philosophy, this can be taken as the definition of projective space: it defines projective
space up to unique isomorphism.

Every time you see a map to projective space, you should immediately simultaneously
keep in mind the invertible sheaf and sections.

Date: Friday, February 8, 2008.



Maps to projective schemes can be described similarly. For example, if Y — PZ is the
curve x3xg = x7—x7x§, then maps from a scheme X to Y are given by an invertible sheaf on

X along with three sections sy, s1, s2, with no common zeros, satisfying s3so—s3+s1s3 = 0.

Here more precisely is the correspondence of Theorem 1.1. If you have n + 1 sections,
then away from the intersection of their zero-sets, we have a morphism. Conversely, if
you have a map to projective space f : X — P™, then we have n + 1 sections of Opn (1),
corresponding to the hyperplane sections, Xy, ..., Xn4+1. then f*xo, ..., f*x,,1 are sections
of f*Opn (1), and they have no common zero.

So to prove this, we just need to show that these two constructions compose to give the
identity in either direction.

Proof. Given n + 1 sections sy, ..., sy of an invertible sheaf. We get trivializations on the
open sets where each one vanishes. The transition functions are precisely s;/s; on U; N U,;.
We pull back O(1) by this map to projective space, This is trivial on the distinguished
open sets. Furthermore, f*D(x;) = D(s;). Moreover, si/s; = f*(xi/x;). Thus starting with
the n + 1 sections, taking the map to the projective space, and pulling back O(1) and
taking the sections xy, ..., X, we recover the s;’s. That’s one of the two directions.

Correspondingly, given a map f : X — P, let s; = f*x;. The map [so; - - - ; sy] is precisely
the map f. We see this as follows. The preimage of U, is D(s;) = D(f*x;) = f*D(x;). So
the right open sets go to the right open sets. And D(s;) — D(x;) is precisely by s;/s; =
f*Xj/Xi. ]

Here is some convenient language. A linear system on a k-scheme X is a k-vector space
V (usually finite-dimensional), an invertible sheaf £, and a linear map A : V — T'(X, £).
Such a linear system is often called “V”, with the rest of the data left implicit. If the map A
is an isomorphism, it is called a complete linear system, and is often written |£|. Given a
linear system, any point x € X on which all elements of the linear system V vanish, we say
that x is a base-point of V. If V has no base-points, we say that it is base-point-free. The
union of base-points is called the base locus. The base locus has a scheme-structure — the
(scheme-theoretic) intersection of the vanishing loci of the elements of V (or equivalently,
of a basis of V). In this incarnation, it is called the base scheme of the linear system.

A linear system is sometimes called a linear series. I'm not sure of the distinction
between these two terms, so I'll not use this second terminology.

1.A. EXERCISE (AUTOMORPHISMS OF PROJECTIVE SPACE). Show that all the automor-
phisms of projective space P} correspond to (n + 1) x (n + 1) invertible matrices over
k, modulo scalars (also known as PGL,1(k)). (Hint: Suppose f : P} — P} is an auto-
morphism. Show that f*O(1) = O(1). Show that f* : T'(P™, O(1)) — I'(P™, O(1)) is an
isomorphism.)

Exercise 1.A will be useful later, especially for the case n = 1. In this case, these auto-
morphisms are called fractional linear transformations.



(A question for experts: why did I not state that previous exercise over an arbitrary
base ring A? Where does the argument go wrong in that case?)

Here are some more examples of these ideas in action.

Example 1. Consider the n + 1 functions x, ..., x, on A™"! (otherwise known as n +
1 sections of the trivial bundle). They have no common zeros on A™ — 0. Hence they
determine a morphism A™' — 0 — P". (We've talked about this morphism before. But
now we don’t have to worry about gluing.)

Example 2: the Veronese morphism is [Opn(d)|. Consider the line bundle Opn(m)
on P". We’ve checked that the number of sections of this line bundle are (“:;m), and
they correspond to homogeneous degree m polynomials in the projective coordinates for
P™. Also, they have no common zeros (as for example the subset of sections x{*, xT%,

..., Xy have no common zeros). Thus the complete linear system is base-point-free, and

determines a morphism P™ — P("+")1. This is called the Veronese morphism. For
example, if n = 2 and m = 2, we get a map P? — P°.

We have checked earlier that this is a closed immersion. How can you tell in general if
something is a closed immersion, and not just a map? Here is one way.

1.B. EXERCISE. Suppose m : X — P} corresponds to an invertible sheaf £ on X, and
sections sy, ..., sn. Show that 7 is a closed immersion if and only if

(i) each open set X, is affine, and
(ii) for each i, the map of rings Alyo, ..., ynl = I'(X,, O) given by y; — s;/s; is surjec-
tive.

Example 3: The rational normal curve. Recall that the image of the Veronese mor-
phism when n = 1 is called a rational normal curve of degree m. Our map is P! — P™
given by [x;y] — [x™x™ My; - xy™ i y™.

1.C. EXERCISE. If the image scheme-theoretically lies in a hyperplane of projective space,
we say that it is degenerate (and otherwise, non-degenerate). Show that a base-point-
free linear system V with invertible sheaf £ is non-degenerate if and only if the map
V — T'(X, £) is an inclusion. Hence in particular a complete linear system is always non-
degenerate.

1.D. EXERCISE.  Suppose we are given a map 7 : P] — P} where the corresponding
invertible sheaf on P} is O(d). (We will later call this a degree d map.) Show that if d < n,
then the image is degenerate. Show that if d = n and the image is nondegenerate, then the
image is isomorphic (via an automorphism of projective space, Exercise 1.A) to a rational
normal curve.



Example 4: The Segre morphism in terms of a linear system. The Segre morphism can
also be interpreted in this way. This is a useful excuse to define some notation. Suppose
F is a quasicoherent sheaf on a Z-scheme X, and G is a quasicoherent sheaf on a Z-scheme
Y. Let 7tx, 7ty be the projections from X x 7 Y to X and Y respectively. Then F X G is defined
to be i F ® myG. In particular, Opm «pn (a, b) is defined to be Opm (a) X Opn (b) (over any
base Z). The Segre morphism P™ x P* — P™™*" corresponds to the complete linear
system for the invertible sheaf O(1,1).

When we first saw the Segre morphism, we saw (in different language) that this com-
plete linear system is base-point-free. We also checked by hand that it is a closed immer-
sion, essentially by Exercise 1.B.

1.E. FUN EXERCISE. Show that any map from projective space to a smaller projective
space is constant (over a field). Hint: show that if m < n then m non-empty hypersurfaces
in P™ have non-empty intersection. For this, use the fact that any non-empty hypersurface
in P} has non-empty intersection with any subscheme of dimension at least 1.

1.F. EXERCISE. Show that a base-point-free linear system V on X corresponding to £
induces a morphism to projective space X — PV* = Proj &,L®™. The resulting morphism

. ) \'
is often written X —— P™.
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In these two lectures, we will use universal properties to define two more useful con-
structions, Spec of a sheaf of algebras A, and Proj of a sheaf of graded algebras A, on a
scheme X. These will both generalize (globalize) our constructions of Spec and Proj of
A-algebras and graded A-algebras. We'll see that affine morphisms are precisely those of
the form Spec. A — X, and so we’ll define projective morphisms to be those of the form
Proj A, — X.

1. RELATIVE SPEC OF A (QUASICOHERENT) SHEAF OF ALGEBRAS

Given an A-algebra, B, we can take its Spec to get an affine scheme over Spec A: Spec B —
Spec A. We will now see universal property description of a globalization of that notation.
Consider an arbitrary scheme X, and a quasicoherent sheaf of algebras A on it. We will
define how to take Spec of this sheaf of algebras, and we will get a scheme Spec A — X
that is “affine over X”, i.e. the structure morphism is an affine morphism.

You can think of this in two ways. First, and most concretely, for any affine open set
Spec A C X, I'(Spec A, A) is some A-algebra; call it B. Then above Spec A, Spec A will be
Spec B.

Second, it will satisfy a universal property. We could define the A-scheme Spec B by
the fact that maps to Spec B (from an A-scheme Y, over Spec A) correspond to maps of
A-algebras B — T'(Y,Oy). The universal property for Spec.A is similar. More precisely,
we describe a universal property for the morphism  : Spec A — X along with an iso-
morphism ¢ : A — B,Ogpec 41 to each morphism 7t : Y — X along with a morphism of
Ox-modules -

«: A— m0Oy,
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there is a unique map f : Y — Spec A factoring 7, i.e. so that the following diagram
commutes

Y 2. Spec A

A

where « is the composition

A —d; B*O%A —_— B*f*OY = H*OY

(For experts: we need to work with Ox-modules, and to leave our category of quasicoher-
ent sheaves on X, because we only showed that the pushforward of quasicoherent sheaves
are quasicoherent for quasicompact quasiseparated morphisms, and we don’t need such
hypotheses here.) This bijection Hom(A — 7,Oy) < Morx(Y, Spec A) is natural in Y, i.e.
given Y’ — Y the diagram -

Hom(A — m,.0y) <— Morx(Y, Spec A)

| |

Hom(A — m,Oy/) <— Morx(Y’, Spec A)

commutes. By universal property nonsense, this determines Spec A up to unique isomor-
phism, assuming of course that it exists.

1.A. EXERCISE. Show that if X is affine, say Spec A, and A = B, where B is an A-algebra,
then Spec B — Spec A satisfies this universal property. (Hint: recall that maps to an affine
scheme correspond to maps of rings of functions in the opposite direction.) Show that
this affine construction behaves well with respect to “affine base change”: given a map
g : Spec A’ — Spec A, then describe a canonical isomorphism Spec g* A = Spec A’ ® A B.

1.1. Remark. In particular, if p is a point of Spec A, k(p) is the residue field at p, and
Speck(p) — SpecA is the inclusion, then the fiber of Spec B — SpecA is canonically
identified (as a scheme) with Spec B ® o k(p). This is the motivation for our construction
below.

We define Spec A by describing the points, then the topology, and then the structure
sheaf. (Experts: where does the quasicoherence of A come in?)

First the points: above the point p € X, the points of Spec A are defined to be the points
of Spec(A ® k(p)). (For example, take the stalk, and mod out by the maximal ideal. Or
take any affine open neighborhood of p, and apply the construction of Remark 1.1.

We topologize this set as follows. Above the affine open subset Spec A C X, the points
are identified with the points of SpecI'(Spec A, A), by Remark 1.1. We impose that this be
an open subset of Spec A, and the topology restricted to this open set is required to be the
Zariski topology on SpecI'(Spec A, A).



1.B. EXERCISE. Show that this topology is well-defined. In other words, show that if
Spec A and Spec A’ are affine open subsets of X, then the topology imposed on ' (Spec AN
Spec A’) by the construction using Spec A agrees with the topology imposed by Spec A’.
(Some ideas behind the Affine Communication Lemma may be helpful. For example, this
question is much easier if Spec A’ is a distinguished open subset of Spec A.)

Next, we describe the structure sheaf, and the description is precisely what you might
expect: on 3" (Spec A) C Spec A, the sheaf is isomorphic to the structure sheaf on Spec I'(Spec A, A).

1.C. EXERCISE. Rigorously define the structure sheaf. How do you glue these sheaves
on small open sets together? Once again, the ideas behind the Affine Communication
Lemma may help.

1.D. EXERCISE. Describe the isomorphism ¢ : A — B.Ogpec. 4. Show that given any
m: Y — X, this construction yields the isomorphism Morx(Y, Spec A) — Hom(A — m.Oy)
via the composition

A—2B.Ospeca —— B.£.0y = m,0y.

1.E. EXERCISE. Show that Spec A satisfies the desired universal property. (Hint: figure
out how to reduce to the case X affine, Exercise 1.A.)

We make some quick observations, some verified in exercises. First Spec .4 can be “com-
puted affine-locally on X”.

Second, this gives an important way to understand affine morphisms. Note that Spec A —
Xis an affine morphism. The “converse” is also true:

1L.F. EXERCISE. Show that if f : Z — X is an affine morphism, then we have a natural
isomorphism Z = Spec f, Oz of X-schemes.

Hence we can recover any affine morphism in this way. More precisely, a morphism is
affine if and only if it is of the form Spec A — X.

1.G. EXERCISE (Spec BEHAVES WELL WITH RESPECT TO BASE CHANGE). Suppose f:Z —
X is any morphism, and A is a quasicoherent sheaf of algebras on X. Show that there is a
natural isomorphism Z xx Spec A = Spec f*A.

An important example of this Spec construction is the total space of a finite rank locally
free sheaf F, which we define to be Spec Sym*® F".

3



1.H. EXERCISE. Show that this is a vector bundle, i.e. that given any point p € X, there is
a neighborhood p € U C X such that Spec Sym® FV|; = Al\. Show that F is isomorphic to
the sheaf of sections of it.

In particular, if F is a free sheaf of rank n, then Spec Sym* FV is called A}, generalizing
our earlier notions of A}. As the notion of a free sheave behaves well with respect to base
change, so does the notion of A}, i.e. given X — Y, A} xy X = A%

Here is one last fact that can be useful.

1.I. EXERCISE. Suppose f : Spec. A — X is a morphism. Show that the category of quasi-

coherent sheaves on Spec A is “essentially the same as” (i.e. equivalent to) the category of

quasicoherent sheaves on X with the structure of .4-modules (quasicoherent A-modules
on X).

The reason you could imagine caring is when X is quite simple, and Spec A is compli-
cated. We’ll use this before long when X = P!, and Spec A is a more complicated curve.

1.J. IMPORTANT EXERCISE: THE TAUTOLOGICAL BUNDLE ON P™ IS O(—1). Define the
subset X C A" x P corresponding to “points of A}"' on the corresponding line of P,
so that the fiber of the map 7t : X — P™ corresponding to a point 1 = [xo; - - - ;Xn] is the line
in A" corresponding to 1, i.e. the scalar multiples of (xo, ..., x). Show that 7t: X — P"
is (the line bundle corresponding to) the invertible sheaf O(—1). (Possible hint: work first
over the usual affine open sets of P™, and figure out transition functions.) (For this reason,
O(—1) is often called the tautological bundle of P™.)

2. RELATIVE PROJ OF A SHEAF OF GRADED ALGEBRAS

In parallel with Spec, we will define a relative version of Proj, denoted Proj.

Suppose now that S, is a quasicoherent sheaf of graded algebras of X. We require that
S. is locally generated in degree 1 (i.e. there is a cover by small affine open sets, where for
each affine open set, the corresponding algebra is generated in degree 1), and S; is finite
type. We will define Proj S, by describing a universal property, and the constructing it.

In order to understand the universal property, let’s revisit maps to Proj S, (over a base
ring A), satisfying the analogous assumptions. Suppose S; is generated by X1, ..., Xn.
Recall that maps from an A-scheme to projective space

Y Proj S,

N T

Spec A

correspond to invertible sheaves £ on Y and sections s, ..., sn,
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(i) with no common zeros (they are a base-point-free linear system),

4

(ii) satistying “the same relations as x1, ..., x,”.

It is helpful to write this map as

[s1538a] .
YLSISI"OJS..

The condition that sy, ..., sy, satisfy the same conditions as x1, ..., X, can be formalized to
say that there is a map of graded A-algebras

N(Y, L) := @2, I(Y, L2 <— S,
given by x; — s;. This will yield a “relative” version of (ii).

We now describe a relative version of (i).

2.1. Definition. Given a morphism 7 : Y — X, an invertible sheaf £ on Y is relatively
base-point-free (with respect to ) if for every point of y € Y, there is an open subset
U C X and a section s of £ above U (s € T'(t~'(U), £)) such that s(y) # 0.

2.A. EASY EXERCISE. If X = SpecA, and L is base-point-free, show that L is relatively
base-point-free.

Thus £ is relatively base-point-free if it is “base-point-free over an affine cover X”.

2.B. EXERCISE. Suppose 7t is quasicompact and quasiseparated (so 7, sends quasicoher-
ent sheaves to quasicoherent sheaves). Show that L is basepoint free if the canonical map
', L — L is surjective.

More generally, if F is a quasicoherent and quasiseparated, we say that a quasicoherent
sheaf F on X is relatively generated (with respect to m) if the canonical map *'n,.F — F
is surjective. We won't be using this notion.

2.C. EXERCISE. Describe why this is the relative version of generated by global sections.

Having defined relative versions of (i) and (ii) above, we are now ready to define Proj.

2.2. Definition. Suppose S, is a graded quasicoherent sheaf of algebras on a scheme X,
locally generated in degree 1. In analogy with Spec, we define

(B:ProjSe — X,0(1),d:Se — ®npO0(M))

by the following universal property. (Here ¢ is a map of graded sheaves, and is not
required to be an isomorphism.)



Maps

Y f Proj S,
X

correspond to maps « : S — B L™, where L is an invertible sheaf on Y, « factors as

S.—23B.OM) —> BB.FLE™ = B, LO™,

and the image of S; is relatively base-point free. (You might be worried about what hap-
pens if 7t is not quasicompact and quasiseparated, in which case we don’t know that 7, is
a quasicoherent sheaf. This isn’t a problem: we can work with Ox-modules. This won't
cause any complication.)

Asusual, if (B : ProjSe — X, 0(1), ¢ : S¢ = ®,.0(n)) exists, it is unique up to unique
isomorphism. We now show that it exists, in analogy with Spec.

2.D. EXERCISE. Show the result if X is affine by restating what we know about the Proj
construction.

Note that this construction behaves well with respect to affine base change.

Motivated by this, we define the points of Proj S, over a point p € X as the points of
Proj(S. @ k(p)).

2.E. EXERCISE. Define a topology on this set as follows: above each affine open subset
of Spec A C X, take the Zariski topology on ProjI'(Spec A, S,). Be sure to show this is
well-defined.

2.F. EXERCISE. Define the structure sheaf on this topological space as follows: above each
affine open subset of Spec A C X, take the structure sheaf of Proj I'(Spec A, S, ). Be sure to
show this is well-defined.

2.G. EXERCISE. Define the map ¢ : S = ¢O(n).
2.H. EXERCISE. Show that your construction satisfies the universal property.

2.1. EXERCISE (Proj BEHAVES WELL WITH RESPECT TO BASE CHANGE). Suppose S, is a
quasicoherent sheaf of graded algebras on X satisfying the required hypotheses above for
Proj S, to exist. Let f : Y — X be any morphism. Give a natural isomorphism

(PI‘Oj f*S., O@f*s.(‘l)) = (Y Xx PI'Oj S., g*Omg.(]))
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where g is the natural morphism in the base change diagram

Y xx Proj S, 2—~ Proj S,

l l

Y X.

2.3. Definition. If F is a finite rank locally free sheaf on X. Then Proj Sym® F is called
its projectivization. If F is a free sheaf of rank n + 1, then we define P} := Proj Sym® F.
(Then Pg,.. o agrees with our earlier definition of P}.) Clearly this notion behaves well
with respect to base change.

This “relative O(1)” we have constructed is a little subtle. Here are couple of exercises
to give you practice with the concept.

2.J. EXERCISE.  Proj(S.[t]) = SpecS, | [ ProjS., where Spec S, is an open subscheme,
and Proj S, is a closed subscheme. Show that Proj Sx is an effective Cartier divisor, cor-
responding to the invertible sheaf Op,,;n(1). (This is the generalization of the projective
and affine cone.) o

2.K. EXERCISE. Suppose L is an invertible sheaf on X, and S, is a quasicoherent sheaf of
graded algebras on X satisfying the required hypotheses above for Proj S, to exist. Define
S! = Bn=oSn ® L,,. Give a natural isomorphism of X-schemes

(Proj S, Oprojs;(1)) = (Proj Sa, Oprojs, (1) @ L),

where 7 : ProjS, — X is the structure morphism. In other words, informally speaking,
the Proj is the same, but the O(1) is twisted by L.

3. PROJECTIVE MORPHISMS

In §1, that we reinterpreted affine morphisms: X — Y is an affine morphism if there is
an isomorphism X = Spec A of Y-schemes for some quasicoherent sheaf of algebras A on
Y. We now define the notion of a projective morphism similarly.

3.1. Definition. A morphism X — Y is projective if there is an isomorphism

X - Proj S,
Y

for a quasicoherent sheaf of algebras S, on Y. X is said to be a projective Y-scheme, or
projective over Y. This generalizes the notion of a projective A-scheme.

7



3.2. Warnings. First, notice that O(1), an important part of the definition of Proj, is not
mentioned. As a result, the notion of affine morphism is affine-local on the target, but this
notion is not affine-local on the target. (In nice circumstances it is, as we’ll see later. We’ll
also see an example where this is not.)

Second, Hartshorne gives a different definition; we are following the more general def-
inition of Grothendieck. These definitions turn out to be the same in nice circumstances.

We now establish a number of properties of projective morphisms.

Note first that projective morphisms are proper. (Reason: properness is local on the
base, and we’ve seen earlier that projective A-schemes are proper over A.) Equivalently
(by definition of properness!) they are separated, finite type, and universally closed.

3.A. IMPORTANT EXERCISE: FINITE MORPHISMS ARE PROJECTIVE. Show that finite mor-
phisms are projective as follows. Suppose Y — Xis finite, and that Y = Spec A where A
is a finite type quasicoherent sheaf on X. Describe a sheaf of graded algebras S, where
So = Oxand S,, = A for n > 0. (What is the multiplication in this algebra?) Describe an
X-isomorphism Y = Proj S,.

In particular, closed immersions are projective. We have the sequence of implications
for morphisms

closed immersion = finite = projective = proper.

3.B. EXERCISE. Show that a morphism (over Speck) from a projective k-scheme to a
separated k-scheme is always projective. (Hint: the Cancellation Theorem for properties
of morphisms.)

3.C. EXERCISE. Show that the property of a morphism being projective is preserved by
base change.

3.D. HARDER EXERCISE. Show that the property of being projective is preserved by
composition. (Ask me for a hint. The main thing is to figure out a candidate O(1).)

The previous two exercises imply that the property of being projective is preserved by
products: if f : X — Y and f' : X’ — Y are projective, thensois f x f': X x X" =Y x Y’
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3. Cohomology of line bundles on projective space 9

In these two lectures, we will define Cech cohomology and discuss its most important
properties, although not in that order.

1. INTRODUCTION

As T'(X,-) is a left-exact functor, if 0 - F — G — H — 0 is a short exact sequence of
sheaves on X, then

0— F(X) = G(X) = H(X)
is exact. We dream that this sequence continues off to the right, giving a long exact se-
quence. More explicitly, there should be some covariant functors H* (i > 0) from qua-

sicoherent sheaves on X to groups such that H® = T, and so that there is a “long exact
sequence in cohomology”.

1) 0 — H(X, F) —= H(X,G) — H°(X, H)

— H'(X, F) —H'(X,§) — H'(X, ") — -~

(In general, whenever we see a left-exact or right-exact functor, we should hope for this,
and in good cases our dreams will come true. The machinery behind this is sometimes
called derived functor cohomology, which we will discuss shortly.)

Before defining cohomology groups of quasicoherent sheaves explicitly, we first de-
scribe their important properties. Indeed these fundamental properties are in some ways
more important than the formal definition. The boxed properties will be the important
ones.

Date: Friday, February 22 and Monday, February 25, 2008.
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Suppose X is a separated and quasicompact A-scheme. (The separated and quasicom-
pact hypotheses will be necessary in our construction.) For each quasicoherent sheaf F
on X, we will define A-modules H'(X, F). In particular, if A = k, they are k-vector spaces.

Q) |HO(X, F) =T(X, F) |

(ii) Each H' is a |covariant functor in the sheaf F| extending the usual covariance for
HO(X,-): F — G induces T'(X, F) — I'(X, G).

(iii) f 0 - F — G — H — 0 is a short exact sequence of quasicoherent sheaves

on X, then we have a |long exact sequence | (1). The maps H'(X,F) — HYX,G) come

from covariance, and similarly for H'(X,G) — HYX,G). The connecting homomorphisms
Hi(x, H) — HY'(X, F) will have to be defined.

(iv) If f : X — Y is any morphism, and F is a quasicoherent sheaf on X, then there is
a natural morphism HY(Y, f,F) = HY(X, F) extending I'(Y, f.F) — I'(X, F). We will later
see this as part of a larger story, the Leray spectral sequence. If G is a quasicoherent sheaf
on Y, then setting F := f*G and using the adjunction map G — f,.f*G and covariance of
(ii) gives a natural pullback map H(Y,G) — HY(X, f*G) (via HY(Y,G) — HYY,f.f*G) —
HY(X, f*G)) extending I'(Y,G) — T'(X,f*G). In this way, H' is a “contravariant functor in
the space”.

(v) If f : X — Y is an affine morphism, and F is a quasicoherent sheaf on X, the natural

map of (iv) is an isomorphism: | HY(Y, f,F) — HY(X, F) || When f is a closed immer-

sion and Y = P, this isomorphism will translate calculations on arbitrary projective
A-schemes to calculations on P}.

(vi) If X can be covered by n affines, then HYX,F)=0|fori> nforall F. In partic-

ular, all higher (i > 0) quasicoherent cohomology groups on affine schemes vanish. The
vanishing of H' in this case, along with the long exact sequence (iii) implies that I" is an
exact functor for quasicoherent sheaves on affine schemes, something we already knew.
It is also true that if dim X = n, then H}(X, F) = 0 for all i > n and for all F (dimensional
vanishing). We will prove this for quasiprojective A-schemes, but we won't use this fact
in general, and hence won't prove it. (A proof is given in Hartshorne (Thm. II1.2.7) for
derived functors, and we show in a week or two that this agrees with Cech cohomology.)

(vii) The functor H' behaves well under direct sums, and more generally under colimits:
HY(X, liny 75) = lim H'(X, 7).

(viii) We will also identify the cohomology of all O(m) on P}:
1.1. Theorem. —

o H(PR, Opn (m)) is a free A-module of rank (™) if i = 0 and m > 0, and 0 otherwise.
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o H™Y(Px, Opn (M) is a free A-module of rank (7;:“;11) ifm < —n— 1, and 0 otherwise.
o HY(PR, Opy (m)) =0if0 <i<m.

We already have shown the first statement in an Essential Exercise (class 27 end of
section 3).

Theorem 1.1 has a number of features that will be the first appearances of things that
we’ll prove later.

e The cohomology of these bundles vanish above n ((vi) above)

e These cohomology groups are always finitely-generated A-modules. This will be
true for all coherent sheaves on projective A-schemes (Theorem 1.2(i)).

e The top cohomology group vanishes for m > —n — 1. (This is a first appearance of
Kodaira vanishing.)

e The top cohomology group is one-dimensional for m = —n — 1if A = k. This is
the first appearance of the dualizing sheaf.

e There is a natural duality

HYX,O(m)) x H* Y(X,O(— — 1 —m)) = H"(X, O(—m — 1)).

This is the first appearance of Serre duality.

Before proving these facts, let’s first use them to prove interesting things, as motivation.

By an earlier Theorem from last quarter (class 30 Corollary 3.3), for any coherent sheaf
F on P} we can find a surjection O(m)® — F, which yields the exact sequence

(2) 0—=2G—-0m¥ =sF =0

for some coherent sheaf G. We can use this to prove the following.

1.2. Theorem. — (i) For any coherent sheaf F on a projective A-scheme where A is Noetherian,
h'(X, F) is a coherent (finitely generated) A-module.

(i1) (Serre vanishing) Furthermore, for m > 0, HY(X, F(m)) = 0 for all i, even without Noether-
ian hypotheses.

A non-Noetherian generalization of the coherence statement is given in Exercise 1.A.

Proof. Because cohomology of a closed scheme can be computed on the ambient space
(see (v) above), we may immediately reduce to the case X = P}.
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(i) Consider the long exact sequence:

0 HO(PR, ) HO(PR, O(m)®) HO(PR, F) —

H'(PR,G) H'(PR, O(m)®) H(PR, F) —— -
s —=H" (PR, G) —= H" (PR, O(m)¥) —= H" (PR, F) ——

H™(PX, G)

H™(PR, O(m)?)

HY (PR, F) ——0

The exact sequence ends here because P} is covered by n + 1 affines ((vi) above). Then
H™(P%, O(m)¥) is finitely generated by Theorem 1.1, hence H™(P}, F) is finitely gener-
ated for all coherent sheaves 7. Hence in particular, H™(IP}, G) is finitely generated. As
H™ 1 (P%, O(m)®) is finitely generated, and H™(P%, G) is too, we have that H™" ' (P}, F) is
finitely generated for all coherent sheaves 7. We continue inductively downwards.

(ii) Twist (2) by O(N) for N > 0. Then
H™Y(PR, O(m + N)#) = @;H™ (PR, O(m +N)) =0

(by (vii) above), so H™(P%, F(N)) = 0. Translation: for any coherent sheaf, its top coho-
mology vanishes once you twist by O(N) for N sufficiently large. Hence this is true for G
as well. Hence from the long exact sequence, H" ' (P%, F(N)) = 0 for N > 0. As in (i),
we induct downwards, until we get that H'(P%, F(N)) = 0. (The induction proceeds no
further, as it is not true that HO(P%}, O(m+N)®) = 0 for large N — quite the opposite.) O

1.A. EXERCISE ONLY FOR THOSE WHO LIKE WORKING WITH NON-NOETHERIAN RINGS.
Prove part (i) in the above result without the Noetherian hypotheses, assuming only that
A is a coherent A-module (A is “coherent over itself”). (Hint: induct downwards as be-
fore. Show the following in order: H™(IP, F) finitely generated, H™(P}%, G) finitely gener-
ated, H"(P%, F) coherent, H™(P%, G) coherent, H™ ! (P}, F) finitely generated, H™ ' (P}, G)
finitely generated, etc.)

In particular, we have proved the following, that we would have cared about even
before we knew about cohomology.

1.3. Corollary. — Any projective k-scheme has a finite-dimensional space of global sections. More
generally, if F is a coherent sheaf on a projective A-scheme, then HO(X, F) is a finitely generated
A-module.

This is true more generally for proper k-schemes, not just projective k-schemes, but this
requires more work.



Here is three important consequences. They can also be shown directly, without the
use of cohomology, but with much more elbow grease.

1.B. EXERCISE. Suppose X is a projective integral scheme over an algebraically closed
field. Show that h°(X,Ox) = 1. Hint: show that H°(X, Ox) is a finite-dimensional k-
algebra, and a domain. Hence show it is a field. (For experts: the same argument holds
with the weaker hypotheses where X is proper, geometrically connected, and reduced
over an arbitrary field.)

1.C. CRUCIAL EXERCISE (PUSHFORWARDS OF COHERENTS ARE COHERENT). Suppose
f : X = Y is a projective morphism, and Oy is coherent over itself (true in all reasonable
circumstances). Show that the pushforward of a coherent sheaf on X is a coherent sheaf
onY.

Finite morphisms are affine (from the definition) and projective (shown earlier, class
33/34 Exercise 3.A). We can now show that this is a characterization of finiteness.

1.4. Corollary. — If m: X — Y is projective and affine and Oy is coherent, then Tt is finite.

In fact, more generally, if 7t is universally closed and affine, then 7t is finite, by Atiyah-
Macdonald Exercise 5.35 (thanks Joe!). We won’t use this, so I won’t explain why.

Proof. By Exercise 1.C, 7t,Ox is coherent and hence finitely generated. O

1.D. EXERCISE. Suppose 0 — F — G — 'H — 0 is an exact sequence of coherent sheaves
on projective X with F coherent. Show that for n > 0,

0 — H(X, F(n)) = H%(X,G(n)) = HY(X,H(n)) — 0
is also exact. (Hint: for n > 0, H'(X, F(n)) =0.)

2. DEFINITIONS AND PROOFS OF KEY PROPERTIES

This section could be read much later; the facts we will use are all stated in the previous
section. However, the arguments aren’t that complicated, so you may feel like reading
this right away. As you read this, you should go back and check off all the facts, to assure
yourself that I've shown all that I've promised.

2.1. Cech cohomology. Cech cohomology in general settings is often defined using a
limit over finer and finer covers of a space. In our algebro-geometric setting, the situation
is much cleaner, and we can use a single cover.

Suppose X is quasicompact and separated, e.g. X is quasiprojective over A. In particu-
lar, X may be covered by a finite number of affine open sets, and the intersection of any
two affine open sets is also an affine open set (by separatedness, Class 17 Proposition
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1.2). We'll use quasicompactness and separatedness only in order to ensure these two
nice properties.

Suppose F is a quasicoherent sheaf, and U/ = {U;}I*, is a finite set of affine open sets
of X covering U. For I C {1,...,n} define U; = Nic;U;, which is affine by the separated
hypothesis. Consider the Cech complex

©) 0— P F(Up)— - — b F(Uy) — P F(Up) — -
=1 =1 I =i+1

The maps are defined as follows, in terms of the summands. The map from F(U;) —
F(Uj)isOunless I C J,i.e. ] = LU{j}. If j is the kth element of ], then the map is (—1)*"!
times the restriction map resy; v, .

2.A. EASY EXERCISE (FOR THOSE WHO HAVEN’T SEEN ANYTHING LIKE THE CECH COM-
PLEX BEFORE). Show that the Cech complex isindeed a complex, i.e. that the composition
of two consecutive arrows is 0.

Define H},(U, F) to be the ith cohomology group of the complex (3). Note that if X is
an A-scheme, then H},(X, F) is an A-module. We have almost succeeded in defining the

Cech cohomology group H', except our definition seems to depend on a choice of a cover
u.

2.B. EASY EXERCISE. Show that HY (X, F) = I'(X, F). (Hint: use the sheaf axioms for F.)

2.C. EXERCISE. Suppose 0 — F; — F, — F3 — 0 is a short exact sequence of sheaves
on a topological space, and U/ is an open cover such that on any intersection of open
subsets in U, the sections of F, surject onto F3. Show that we get a long exact sequence of
cohomology. (Note that this applies in our case!)

2.2. Theorem/Definition. — Recall that X is quasicompact and separated. H;,(U, F) is indepen-
dent of the choice of (finite) cover {U;}. More precisely,

(*) for all k, for any two covers {Ui} C {Vi} of size at most k, the maps H}Vi}(X,]-" ) —
Hiw, (X, F) induced by the natural maps of Cech complexes (3) are isomorphisms.

Define the Cech cohomology group H'(X, F) to be this group.

The dependence of k in the statement is there because we will prove it by induction on
k.

(For experts: maps of complexes inducing isomorphisms are called quasiisomorphisms.
We are actually getting a finer invariant than cohomology out of this construction; we are
getting an element of the derived category of A-modules.)
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Proof. We prove this by induction on k. The base case k = 1 is trivial. We need only prove
the result for {U;}l* ; C {U;}I*,, where the case k = n is assumed known. Consider the
exact sequence of complexes

SP)
— II=1-1 F(Up) —— I =1 F(Uy) —— I=1i+1 F(Up) ——
oelc{o,...,n} 0elIc{o,...,n} oelc{o,...,n}
SP)
— |I=i-1 FU) —— I =1 FU) ———  [II=i+1 F(U) —
I1c{o,..., nj} 1co,..., n} I1c{o,..., n}
(S5 SP) (S5
_— I=i-1 FlU) —— I =1 F(U) ———— I=i+1 F(U) ——
Ic{i,..., nj} Icq{1,..., n} Ic{1,..., n}
0 0 0

The bottom two rows are Cech complexes with respect to two covers. We get a long exact
sequence of cohomology from this short exact sequence of complexes. Thus we wish
to show that the top row is exact. But the ith cohomology of the top row is precisely
Hiu nugt, (Wi, F) except at step 0, where we get 0 (because the complex starts off 0 —
F(Uo) — @i, F(UpNU;)). So it suffices to show that higher Cech groups of affine schemes
are 0. Hence we are done by the following result. O

2.3. Theorem. — The higher Cech cohomology Hy,(X, F) of an affine A-scheme X vanishes (for
any affine cover U, 1 > 0, and quasicoherent F).

Serre describes this as a partition of unity argument.

Proof. We want to show that the “extended” complex

(4) 0= F(X) = @y F(Uy) = EpaF(Up) — -

(where the global sections are appended to the front) has no cohomology, i.e. is exact. We
do this with a trick.



Suppose first that some U;, say Uy, is X. Then the complex is the middle row of the
following short exact sequence of complexes

0 0 B=1,0e1F (U) — Bz 0e1F (Uy) — - -
0 F(X) B F(Uyp) D2 F(Up) —— - -

l |

0 F(X) D=1 0e1F (Uy) — B2, 0¢1F (Up) —— - -

The top row is the same as the bottom row, slid over by 1. The corresponding long exact
sequence of cohomology shows that the central row has vanishing cohomology. (Topo-
logical experts will recognize this as a mapping cone construction.)

We next prove the general case by sleight of hand. Say X = Spec R. We wish to show
that the complex of A-modules (4) is exact. It is also a complex of R-modules, so we
wish to show that the complex of R-modules (4) is exact. To show that it is exact, it
suffices to show that for a cover of SpecR by distinguished open sets D(f;) (1 <1 < 1)
(i.e. (fy,...,f;) = 1in R) the complex is exact. (Translation: exactness of a sequence of
sheaves may be checked locally.) We choose a cover so that each D(f;) is contained in
some U; = Spec A;. Consider the complex localized at f;. As

I'(Spec A, F)¢ =T'(Spec(A;j)¢, F)

(as this is one of the definitions of a quasicoherent sheaf), as U; N D(f;) = D(f;), we are in
the situation where one of the U;’s is X, so we are done. ]

We have now proved properties (i)-(iii) of the previous section.

2.D. EXERCISE (PROPERTY (v)). Suppose f : X — Y is an affine morphism, and Y is
a quasicompact and separated A-scheme (and hence X is too, as affine morphisms are
both quasicompact and separated). If F is a quasicoherent sheaf on X, describe a natural
isomorphism HY(Y, f.F) = HYX,F). (Hint: if & is an affine cover of Y, “f~'(U)” is an
affine cover X. Use these covers to compute the cohomology of F.)

2.E. EXERCISE (PROPERTY (iv)). Suppose f : X — Y is any quasicompact separated
morphism, F is a quasicoherent sheaf on X, and Y is a quasicompact quasiseparated A-
scheme. The hypotheses on f ensure that f,F is a quasicoherent sheaf on Y. Describe a
natural morphism H(Y, f.F) — HY(X, F) extending I'(Y, f,.F) — T(X, F).

2.F. UNIMPORTANT EXERCISE. Prove Property (vii) of the previous section.

2.4. Useful facts about cohomology for k-schemes.
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2.G. EXERCISE (COHOMOLOGY AND CHANGE OF BASE FIELD). Suppose X is a projective
k-scheme, and F is a coherent sheaf on X. Show that

ho(X, F) = h®(X Xgpeck Spec K, F @y K)

where K/k is any field extension. Here F @y k means the pullback of F to X Xgpec« Spec K.
Note: the two sides of this equality are dimensions of vector spaces over different fields!

(This is useful for relating facts about k-schemes to facts about schemes over algebraically
closed fields.)

2.5. Theorem. — Suppose X is a projective k-scheme, and F is a quasicoherent sheaf on X. Then
HY(X,F) =0 fori> dimX.

In other words, cohomology vanishes above the dimension of X. We will later show
that this is true when X is a quasiprojective k-scheme.

Proof. Suppose X — PN, and let n = dim X. We show that X may be covered by n affine
open sets. A key Exercise from a couple of months ago shows that there are n effective
Cartier divisors on PN such that their complements U,, ..., U, cover X. Then U, is affine,
so U; N X is affine, and thus we have covered X with n affine open sets. O

Remark. We actually need n affine open sets to cover X, but I don’t see an easy way to
prove it. One way of proving it is by showing that the complement of an affine set is
always pure codimension 1.

3. COHOMOLOGY OF LINE BUNDLES ON PROJECTIVE SPACE

We will finally prove the last promised basic fact about cohomology, property (viii) of
§1, Theorem 1.1.

We saw earlier (Essential Exercise in class 27, end of section 3, and the ensuing discus-
sion) that H°(P}, Opn (m)) should be interpreted as the homogeneous degree m polyno-
mials in x, ..., xn (With A-coefficients). Similarly, H"(P}, Opr (m)) should be interpreted
as the homogeneous degree m Laurent polynomials in xy, ..., X,, where in each mono-
mial, each x; appears with degree at most —1.

Proof of Theorem 1.1. As stated above, we showed the H° case earlier.

Rather than consider O(m) for various m, we consider them all at once, by considering
F = ®nO(m).

We take the standard cover Uy, = D(xo), ..., U, = D(xn) of Px. Notice that if I C
{1,...,m}, then F(U;) corresponds to the Laurent monomials where each x; for i ¢ I
appears with non-negative degree.

We first consider the H™ statement. H™(IP}y, F) is the cokernel of the surjection
DioF (Up

~~~~~~~~~~
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e n —1 | -1 —1 —1
B OAIXO, o Xy Xy e e ey Xy e X ] = ALX0y ey Xy X e ey Xy

y M y M

This cokernel is precisely as described.

We last consider the H' statement (0 < i < n). (Strangely, the vanishing of these H' is
the hardest part of the Theorem.) We prove this by induction on n. The casesn = 0 and 1
are trivial. Consider the exact sequence of quasicoherent sheaves:

XXn

0—>F—>F —=F —0

where F' is analogous sheaf on the hyperplane x,, = 0 (isomorphic to PX ). (This exact
sequence is just the direct sum over all m of the exact sequence

O—>Op2(m—1)XX_TL)OPR(m)—)OPR*](m)—>O)

which in turn is obtained by twisting the closed subscheme exact sequence

0 — Opy (=1) = Oy — Ot —0
by Opy (m).)

The long exact sequence in cohomology yields

X Xn

0 — HO(P%, F)

HO(PR, F)

HO(PYT, )

XXn

H'(PR, F)

H'(PR, F)

H'(PY, F')
X Xn

- ——H" (P}, F) —> H" (P}, F) —= H" (P, F)

XXn

H™ (PR, ) H™ (PR, )

We will now show that this gives an isomorphism
(5) XXn : H(P%, F) —= HY(P%, F)
for 0 < i < n. The inductive hypothesis gives us this except fori = 1 and i = n—1, where

we have to be more careful. For the first, note that HO(P%, F) — HO(Py~', F') is sur-

jective: this map corresponds to taking the set of all polynomials in x,, ..., X,,, and setting
xn = 0. The last is slightly more subtle: H™ (PR1 F') — HY(P}, F) is injective, and cor-
responds to taking a Laurent polynomial in Xy, ..., Xn—1 (Where in each monomial, each
x; appears with degree at most —1) and multiplying by x;;', which indeed describes the

X Xn

kernel of H*(P%, F) —= H™(P%, F) . (This is a worthwhile calculation! See Exercise 3.A
below.) We have thus established (5) above.

We will now show that the localization H(P%, F),, = 0. (Here’s what we mean by
localization. Notice H'(P%, F) is naturally a module over Alxo, ..., x,] — we know how
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to multiply by elements of A, and by (5) we know how to multiply by x;. Then we localize
this at x,, to get an Alxo, . . ., Xnlx, -module.) This means that each element & € H'(P%, F)
is killed by some power of x;. But by (5), this means that « = 0, concluding the proof of
the theorem.

Consider the Cech complex computing H'(P%, F). Localize it at x,,. Localization and
cohomology commute (basically because localization commutes with operations of tak-
ing quotients, images, etc.), so the cohomology of the new complex is H'(P%, F),,.. But
this complex computes the cohomology of F,, on the affine scheme U, and the higher
cohomology of any quasicoherent sheaf on an affine scheme vanishes (by Theorem 2.3
which we’ve just proved — in fact we used the same trick there), so HY(P%, F),, = 0 as
desired. O

3.A. EXERCISE. Verify that H* (PR, ') — H™(P}, F) is injective (likely by verifying
that it is the map on Laurent monomials we claimed above).

E-mail address: vakil@math.stanford.edu
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1. APPLICATION OF COHOMOLOGY: HILBERT POLYNOMIALS AND FUNCTIONS,
RIEMANN-ROCH, DEGREES, AND ARITHMETIC GENUS

We have now seen some powerful uses of Cech cohomology, to prove things about
spaces of global sections, and to prove Serre vanishing. We will now see some classical
constructions come out very quickly and cheaply.

In this section, we will work over a field k. Define hi(X, F) := dim; HY(X, F).

Suppose F is a coherent sheaf on a projective k-scheme X. Define the Euler character-
istic
dim X o
XX, F) =Y (=1'h{(X, 7).
i=0
We will see repeatedly here and later that Euler characteristics behave better than indi-
vidual cohomology groups. As one sign, notice that for fixed n, and m > 0,

n+m) _(m+D(m+2)---(m+mn)
m /) nl

RO(BY, O(m)) = (

Notice that the expression on the right is a polynomial in m of degree n. (For later
reference, notice also that the leading coefficient is m™/n!.) But it is not true that

(m+1)(m+2)---(m+mn)
n!
for all m — it breaks down for m < —n — 1. Still, you can check that

(m+1)(m+2)---(m+mn)

n! '
So one lesson is this: if one cohomology group (usual the top or bottom) behaves well in
a certain range, and then messes up, likely it is because (i) it is actually the Euler char-
acteristic which is behaving well always, and (ii) the other cohomology groups vanish in
that range.

h(PR, O(m)) =

x(Py, O(m)) =

Date: Wednesday, February 27, 2008.



In fact, we will see that it is often hard to calculate cohomology groups (even h°), but
it can be easier calculating Euler characteristics. So one important way of getting a hold
of cohomology groups is by computing the Euler characteristics, and then showing that
all the other cohomology groups vanish. Hence the ubiquity and importance of vanishing
theorems. (A vanishing theorem usually states that a certain cohomology group vanishes
under certain conditions.) We will see this in action when discussing curves.

The following exercise shows another way in which Euler characteristic behaves well:
it is additive in exact sequences.

1.A. EXERCISE. Show thatif 0 - F — G — H — 0 is an exact sequence of coherent
sheaves on X, then x(X, G) = x(X, F) + x(X, H). (Hint: consider the long exact sequence
in cohomology.) More generally, if

O—=Fr—=-—=F,—0

is an exact sequence of sheaves, show that
D (=X, F) =0.

i=1

1.1. The Riemann-Roch Theorem for line bundles on a nonsingular projective curve.
Suppose L is an invertible sheaf on a projective curve C over k. We tentatively define the
degree of L as follows. Let s be a non-zero rational section on C. Let D be the divisor of
zeros and poles of s:
D=} vy(s)p)
peC

Then define deg £ := degD = }_v,(s) degp. Here degp is the degree of the residue field
of Oc atp, i.e. dim kO, = degp. Itisn’t yet clear deg L is well-defined: a priori it depends
on the choice of s. Nonetheless you should prove the following.

1.B. EXERCISE: THE RIEMANN-ROCH THEOREM FOR LINE BUNDLES ON A NONSINGULAR
PROJECTIVE CURVE. Show that

X(C, L) =deg L+ x(C,Oc).

Here is a possible hint. Suppose p € C is a closed point of C, of degree d. Then twisting
the closed exact sequence

0—= Oc(—p) 2 Oc— 0, =0
by £ (as ®L is an exact functor) we obtain
0—=L(-p)=L—-0,—0

(where we are using a non-canonical isomorphism L|,, = O¢|, = O,,). Use the additivity
of x in exact sequences to show that the result is true for £ if and only if it is true for
L(—p). The result is also clearly true for £ = O. Then argue by “induction” that it is true
for all £.



In particular, deg £ is well-defined!

1.C. EXERCISE. If £ and M are two line bundles on a nonsingular projective curve C,
show that deg £L ® M = deg L + deg M. (Hint: choose rational sections of £ and M.)

In fact we could have defined the degree of a line bundle £ on a nonsingular projective
curve Ctobex(C, £)—x(C, O¢). Then Riemann-Roch would be true by definition; but we
would still want to relate this notion of degree to the classical notion of zeros and poles,
which we would do by the argument in the previous paragraph. Otherwise, for example,
Exercise 1.C isn’t obvious from the cohomological definition.

Definition. Suppose C is a reduced projective curve (pure dimension 1, over a field k).
If £ is a line bundle on C, define deg £ = x(C, £) — x(C, Oc¢). If C is irreducible, and F is
a coherent sheaf on C, define the rank of 7, denoted rank F, to be its rank at the generic
point of C.

1.D. EASY EXERCISE. Show that the rank is additive in exact sequences: if 0 = F — G —
H — 0is an exact sequence of coherent sheaves, show that rank 7 — rank G + rank H = 0.

Definition. Define
(1) deg F = x(C, F) — (rank F)x(C, O¢).
If F is a line bundle, we can drop the hypothesis of irreducibility in the definition.

This generalizes the notion of the degree of a line bundle on a nonsingular curve.

1.E. EASY EXERCISE. Show that degree is additive in exact sequences.

The statement (1) is often called Riemann-Roch for coherent sheaves (or vector bundles)
on a projective curve.

If F is a coherent sheaf on X, define the Hilbert function of F:
hz(n) :=ho(X, F(n)).

The Hilbert function of X is the Hilbert function of the structure sheaf. The ancients
were aware that the Hilbert function is “eventually polynomial”, i.e. for large enough n,
it agrees with some polynomial, called the Hilbert polynomial (and denoted p#(n) or
px(n)). This polynomial contains lots of interesting geometric information, as we will
soon see. In modern language, we expect that this “eventual polynomiality” arises be-
cause the Euler characteristic should be a polynomial, and that for n > 0, the higher
cohomology vanishes. This is indeed the case, as we now verify.

1.2. Theorem. — If F is a coherent sheaf on a projective k-scheme X — P, x(X,F(m)) is a
polynomial of degree equal to dim Supp F. Hence by Serre vanishing (Theorem 1.2(ii) in the class

3



35/36 notes), for m > 0, h°(X, F(m)) is a polynomial of degree dim Supp F. In particular, for
m > 0, h°(X, Ox(m)) is polynomial with degree = dim X.

Here Ox(m) is the restriction or pullback of Opr (1). Both the degree of the 0 polynomial
and the dimension of the empty set is defined to be —1. In particular, the only coherent
sheaf Hilbert polynomial 0 is the zero-sheaf.

Proof. Define pr(m) = x(X,F(m)). We will show that pz(m) is a polynomial of the
desired degree.

Step 1. Assume first that k is infinite. (This is one of those cases where even if you
are concerned with potentially arithmetic questions over some non-algebraically closed
field like FF},, you are forced to consider the “geometric” situation where the base field is
algebraically closed.)

F has a finite number of associated points. Then there is a hyperplane x = 0 (x €
I'(X, O(1))) missing this finite number of points. (This is where we use the algebraic clo-
sure, or more precisely, the infinitude of k.)

Then the map F(—1) >~ F is injective (on any affine open subset, F corresponds to

amodule, and x is not a zero-divisor on that module, as it doesn’t vanish at any associated
point of that module). Thus we have a short exact sequence

(2) 0= F(-1) = F—-G—0

where G is a coherent sheaf.

1.F. EXERCISE. Show that Supp G = SuppF N V(x).

Hence dim Supp G = dim Supp F — 1 by Krull’s Principal Ideal Theorem unless F = 0
(in which case we already know the result, so assume this is not the case).

Twisting (2) by O(m) yields
0O—=F(m—-1)—=Fm)—G(m)—0

Euler characteristics are additive in exact sequences, from which pz(m) —pz(m —1) =
pg(m). Now pg(m) is a polynomial of degree dim Supp F — 1.

The result follows from a basic fact about polynomials.

1.G. EXERCISE. Suppose f and g are functions on the integers, f(m + 1) — f(m) = g(m)
for all m, and g(m) is a polynomial of degree d > 0. Show that f is a polynomial of degree
d+ 1.

Step 2: k finite.



1.H. EXERCISE. Complete the proof using Exercise 2.G from the notes from class 35/36
(on cohomology and change of base field), using K = k.

O

Definition. p(m) was defined in the above proof. If X C P™ is a projective k-scheme,
define px(m) := po, (m).

m+imn
n

Example 1. ppn (m) = (
n)/nl.

), where we interpret this as the polynomial (m+1) - - (m +

Example 2. Suppose H is a degree d hypersurface in P™. Then from the closed sub-
scheme exact sequence

0— O]pn(—d) — O[pm — OH — O,

pi(m) = pen () — pon (m — d) = (m: “) _ (m e d).

we have

1.I. EXERCISE. Show that the twisted cubic (in P?) has Hilbert polynomial 3m + 1.

1.J. EXERCISE. Find the Hilbert polynomial for the dth Veronese embedding of P™ (i.e.
the closed immersion of P™ in a bigger projective space by way of the line bundle O(d)).

From the Hilbert polynomial, we can extract many invariants, of which two are par-
ticularly important. The first is the degree. Classically, the degree of a complex projective
variety of dimension n was defined as follows. We slice the variety with n generally cho-
sen hyperplane. Then the intersection will be a finite number of points. The degree is
this number of points. Of course, this requires showing all sorts of things. Instead, we
will define the degree of a projective k-scheme of dimension n to be leading coefficient of the
Hilbert polynomial (the coefficient of m™) times n!.

Using the examples above, we see that the degree of P™ in itself is 1. The degree of the
twisted cubic is 3.

1.K. EXERCISE. Show that the degree is always an integer. Hint: by induction, show that
any polynomial in m of degree k taking on only integral values must have coefficient of
m¥ an integral multiple of 1/k!. Hint for this: if f(x) takes on only integral values and is
of degree k, then f(x + 1) — f(x) takes on only integral values and is of degree k — 1.

1.L. EXERCISE.  Show that the degree of a degree d hypersurface is d (preventing a
notational crisis).

1.M. EXERCISE. Suppose a curve C is embedded in projective space via an invertible
sheaf of degree d. In other words, this line bundle determines a closed immersion. Show
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that the degree of C under this embedding is d (preventing another notational crisis).
(Hint: Riemann-Roch, Exercise 1.B.)

1.N. EXERCISE. Show that the degree of the dth Veronese embedding of P™is d™.

1.0. EXERCISE (BEZOUT’S THEOREM). Suppose X is a projective scheme of dimension
at least 1, and H is a degree d hypersurface not containing any associated points of X.
(For example, if X is a projective variety, then we are just requiring H not to contain any
irreducible components of X.) Show that degH N X = d deg X.

This is a very handy theorem! For example: if two projective plane curves of degree m
and degree n share no irreducible components, then they intersect in mn points, counted
with appropriate multiplicity. The notion of multiplicity of intersection is just the degree
of the intersection as a k-scheme.

We trot out a useful example we have used before: let k = Q, and consider the parabola
x = y?. We intersect it with the four lines, x = 1, x = 0, x = —1, and x = 2, and see that
we get 2 each time (counted with the same convention as with the last time we saw this
example).

If we intersect it with y = 2, we only get one point — but that’s of course because this
isn’t a projective curve, and we really should be doing this intersection on P — and in
this case, the conic meets the line in two points, one of which is “at co”.

]

1.P. EXERCISE.  Show that the degree of the d-fold Veronese embedding of P™ is d™
in a different way (from Exercise 1.N) as follows. Let vq : P™ — PN be the Veronese
embedding. To find the degree of the image, we intersect it with n hyperplanes in PN
(scheme-theoretically), and find the number of intersection points (counted with multi-
plicity). But the pullback of a hyperplane in P™ to P™ is a degree d hypersurface. Perform
this intersection in P™, and use Bezout’s theorem (Exercise 1.0).

There is another nice important of information residing in the Hilbert polynomial. No-
tice that px(0) = x(X, Ox), which is an intrinsic invariant of the scheme X, which does not
depend on the projective embedding.

Imagine how amazing this must have seemed to the ancients: they defined the Hilbert
function by counting how many “functions of various degrees” there are; then they no-
ticed that when the degree gets large, it agrees with a polynomial; and then when they
plugged 0 into the polynomial — extrapolating backwards, to where the Hilbert function
and Hilbert polynomials didn’t agree — they found a magjic invariant!

Now we can finally see a nonsingular curve over an algebraically closed field that is
provably not P'! Note that the Hilbert polynomial of P! is (m+1)/1 =m+1,s0 x(Op ) =



1. Suppose C is a degree d curve in P2, Then the Hilbert polynomial of C is
ppz(m) —pp(m—d)=(Mm+1)(m+2)/2—(m—d+1)(m—d+2)/2.

Plugging in m = 0 gives us —(d? — 3d)/2. Thus when d > 2, we have a curve that cannot
be isomorphic to P'! (I think I gave you an earlier exercise that there is a nonsingular
degree d curve.)

Now from 0 — Op(—d) = Op — Oc — 0, using h'(Op:2(d)) = 0, we have that
h%(C,0¢) =1. Ash® — h! = x, we have

h'(C,0c) = (d—1)(d—2)/2.

Motivated by geometry, we define the arithmetic genus of a scheme X as 1—x(X, Ox). This
is sometimes denoted p(X). In the case of nonsingular complex curves, this corresponds
to the topological genus. For irreducible reduced curves (or more generally, curves with
ho(X, Ox) = k), pa(X) = h'(X, Ox). (In higher dimension, this is a less natural notion.)

We thus now have examples of curves of genus 0, 1, 3, 6, 10, ... (corresponding to degree
lor2,3,4,5,...).

This begs some questions, such as: are there curves of other genera? (We’ll see soon
that the answer is yes.) Are there other genus 1 curves? (Not if k is algebraically closed,
but yes otherwise.) Do we have all the curves of genus 3? (Almost all, but not quite.) Do
we have all the curves of genus 6? (We're missing most of them.)

Caution: The Euler characteristic of the structure sheaf doesn’t distinguish between
isomorphism classes of nonsingular projective schemes over algebraically closed fields
— for example, P! x P! and P? both have Euler characteristic 1, but are not isomorphic —
PicP? = Z while PicP' x P' = Z @ Z.

Important Remark. We can restate the Riemann-Roch formula for curves (Exercise 1.B)
as:

hO(C, L) —h"(C,L) =deg L —pa + 1.
This is the most common formulation of the Riemann-Roch formula.

If C is a nonsingular irreducible projective complex curve, then the corresponding
complex-analytic object, a compact Riemann surface, has a notion called the genus g, which
is the number of holes. It turns out that g = p, in this case, and for this reason, we will
often write g for p, when discussing nonsingular (projective irreducible) curves, over any
field.

1.3. Complete intersections. We define a complete intersection in P™ as follows. P™ is a
complete intersection in itself. A closed subscheme X, — P™ of dimension r (with r < n)
is a complete intersection if there is a complete intersection X,;;, and X, is an effective
Cartier divisor in class Ox,, , (d).



1.Q. EXERCISE.  Show that if X is a complete intersection of dimension r in P™, then
HY(X,Ox(m)) = 0 for all 0 < i < r and all m. Show that if r > 0, then H(P™, O(m)) —
HO(X, O(m)) is surjective. (Hint: long exact sequences.)

Now X, is the divisor of a section of Ox, ,(m) for some m. But this section is the
restriction of a section of O(m) on P™. Hence X, is the scheme-theoretic intersection of
X,+1 with a hypersurface. Thus inductively X is the scheme-theoretic intersection of n —r
hypersurfaces. (By Bezout’s theorem, Exercise 1.0, deg X, is the product of the degree of
the defining hypersurfaces.)

1.R. EXERCISE (COMPLETE INTERSECTIONS ARE CONNECTED). Show that complete in-
tersections of positive dimension are connected. (Hint: show h%(X, Ox) = 1.)

1.S. EXERCISE. Find the genus of the intersection of 2 quadrics in P3. (We get curves of
more genera by generalizing this! At this point we need to worry about whether there
are any nonsingular curves of this form. We can check this by hand, but later Bertini’s
Theorem will save us this trouble.)

1.T. EXERCISE. Show that the rational normal curve of degree d in P4 is not a complete
intersection if d > 2. (Hint: If it were the complete intersection of d — 1 hypersurfaces,
what would the degree of the hypersurfaces be? Why could none of the degrees be 1?)

1.U. EXERCISE. Show that the union of 2 distinct planes in P? is not a complete intersec-
tion. Hint: it is connected, but you can slice with another plane and get something not
connected (see Exercise 1.R).

This is another important scheme in algebraic geometry that is an example of many
sorts of behavior. We will see more of it later!

E-mail address: vakil@math.stanford.edu
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1. A USEFUL VERY GENERAL FACT FROM HOMOLOGICAL ALGEBRA
Here is a fact that is very useful, because it applies in so many situations.

1.A. IMPORTANT EXERCISE IN ABSTRACT NONSENSE. Suppose F : A — B is a covariant
additive functor from one abelian category to another. Suppose C* is a complex in A.

(a) Describe a natural morphism FH®* — H*F.
(b) If Fis exact, show that the morphism of (a) is an isomorphism.

If this makes your head spin, you may prefer to think of it in the following specific
case, where both A and B are the category of A-modules, and F is - ® N for some fixed
N-module. Your argument in this case will translate without change to yield a solution to
Exercise 1.A. If ®N is exact, then N is called a flat A-module.

For example, localization is exact, so S™'A is a flat A-algebra for all multiplicative sets
S. Thus taking cohomology of a complex of A-modules commutes with localization —
something you could verify directly.

2. HIGHER DIRECT IMAGE SHEAVES

Cohomology groups were defined for X — Spec A where the structure morphism is
quasicompact and separated; for any quasicoherent F on X, we defined H'(X, F). We'll
now define a “relative” version of this notion, for quasicompact and separated mor-
phisms 7t : X — Y: for any quasicoherent F on X, we’ll define R', F, a quasicoherent
sheafon Y.

Date: Friday, February 29, 2008.



We have many motivations for doing this. In no particular order:

(1) It “globalizes” what we did before.

(2) If0 - F - G — H — 0is a short exact sequence of quasicoherent sheaves on X,
then we know that 0 — m,F — m,G — m,H is exact, and higher pushforwards will
extend this to a long exact sequence.

(3) We'll later see that this will show how cohomology groups vary in families, espe-
cially in “nice” situations. Intuitively, if we have a nice family of varieties, and a
family of sheaves on them, we could hope that the cohomology varies nicely in
families, and in fact in “nice” situations, this is true. (As always, “nice” usually
means “flat”, whatever that means.)

All of the important properties of cohomology described earlier will carry over to this
more general situation. Best of all, there will be no extra work required.

In the notation R'f . F for higher pushforward sheaves, the “R” stands for “right derived
functor”, and corresponds to the fact that we get a long exact sequence in cohomology
extending to the right (from the Oth terms). Later this year, we will see that in good
circumstances, if we have a left-exact functor, there is be a long exact sequence going off
to the right, in terms of right derived functors. Similarly, if we have a right-exact functor
(e.g. if M is an A-module, then ® AM is a right-exact functor from the category of A-
modules to itself), there may be a long exact sequence going off to the left, in terms of left
derived functors.

Suppose 7t: X — Y, and F is a quasicoherent sheaf on X. For each Spec A C Y, we have
A-modules HY(7~'(Spec A), F). We will show that these patch together to form a quasi-
coherent sheaf. We need check only one fact: that this behaves well with respect to taking
distinguished open sets. In other words, we must check that for each f € A, the natu-
ral map H(m'(Spec A), F) — Hi(n'(Spec A), F)¢ (induced by the map of spaces in the
opposite direction — H' is contravariant in the space) is precisely the localization @ AA+.
But this can be verified easily: let {U;} be an affine cover of 1" (Spec A). We can compute
Hi(m~'(Spec A), F) using the Cech complex. But this induces a cover Spec A in a natural
way: If U; = Spec A; is an affine open for Spec A, we define U{ = Spec(A;)s. The resulting
Cech complex for Spec A¢ is the localization of the Cech complex for Spec A. As tak-
ing cohomology of a complex commutes with localization (as discussed in Exercise 1.A),
we have defined a quasicoherent sheaf on Y by one of our definitions of quasicoherent
sheaves by Definition 2" of a quasicoherent sheaf.

Define the ith higher direct image sheaf or the ith (higher) pushforward sheaf to be
this quasicoherent sheaf.

2.1. Theorem. —

(@) RO, Fis canonically isomorphic to . F.
(b) Rim, is a covariant functor from the category of quasicoherent sheaves on X to the category
of quasicoherent sheaves on Y, and a contravariant functor in Y-schemes X.
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(c) (the long exact sequence of higher pushforward sheaves) A short exact sequence
0 —=F —= G — H — 0o0f sheaves on X induces a long exact sequence

0 — RO, F —= R, —= ROy, H ———

R'n,F —R'n,g —R'm,H — -~

of sheaves on Y.

(d) (projective pushforwards of coherent are coherent) If T is a projective morphism and Oy is
coherent on Y (this hypothesis is automatic for Y locally Noetherian), and F is a coherent
sheaf on X, then for all i, R'7t, F is a coherent sheaf on Y.

Proof. Because it suffices to check each of these results on affine open sets, they all follow
from the analogous statements in Cech cohomology. [

The following result is handy, and essentially immediate from our definition.

2.A. EXERCISE. Show that if 7t is affine, then for i > 0, Rirt, F = 0.

Remark. This is in fact a characterization of affineness. Serre’s criterion for affineness
states that if f is quasicompact and separated, then f is affine if and only if f, is an exact
functor from the category of quasicoherent sheaves on X to the category of quasicoherent
sheaves on Y. exact on the category of quasicoherent sheaves (EGA I1.5.2). We won't use
this fact.

2.B. EXERCISE (HIGHER PUSHFORWARDS AND COMMUTATIVE DIAGRAMS). (a) Suppose
f : Z — Y is any morphism, and 7t : X — Y as usual is quasicompact and separated.
Suppose F is a quasicoherent sheaf on X. Let

Wf—/>X

b

L—=Y

is a fiber diagram. Describe a natural morphism f*(R'7t,F) — Ri7rtl(f')*F of sheaves on
Z. (Hint: Exercise 1.A.)

(b) If f : Z — Y is an affine morphism, and for a cover Spec A; of Y, where f~'(Spec A;) =
Spec B, Biis aflat A-algebra, and the diagram in (a) is a fiber square, show that the natural
morphism of (a) is an isomorphism. (You can likely generalize this immediately, but this
will lead us into the concept of flat morphisms, and we’ll hold off discussing this notion
for a while.)

A useful special case of (a) if the following.

2.C. EXERCISE. Show thatify € Y, there is a natural morphism H'(Y, f.F)y, — H' (' (y), Fl¢1(y))-
(Hint: if you take a complex, and tensor it with a module, and take cohomology, there is
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a map from that to what you would get if you take cohomology and tensor it with a
module.)

We'll later see that in good situations this is an isomorphism, and thus the higher direct
image sheaf indeed “patches together” the cohomology on fibers.

2.D. EXERCISE (PROJECTION FORMULA). Suppose 7t: X — Y is quasicompact and sepa-
rated, and &, F are quasicoherent sheaves on X and Y respectively. (a) Describe a natural
morphism

(R'7m,.&) © F = R'm.(€ @ ' F).
(Hint: Exercise 1.A.) (b) If F is locally free, show that this natural morphism is an isomor-
phism.

3. FUN APPLICATIONS OF THE HIGHER PUSHFORWARD

Here are a series of useful geometric facts shown using similar tricks.

3.1. Theorem (relative dimensional vanishing). — If f : X — Y is a projective morphism and Ov
is coherent, then the higher pushforwards vanish in degree higher than the maximum dimension
of the fibers.

This is false without the projective hypothesis, as shown by the following exercise.

3.A. EXERCISE. Consider the open immersion 7t : A™ — 0 — A™ By direct calculation,
show that R, Oxn_o # 0.

Proof of Theorem 3.1. Let m be the maximum dimension of all the fibers.

The question is local on Y, so we'll show that the result holds near a point p of Y. We
may assume that Y is affine, and hence that X — P¥.

Let k be the residue field at p. Then f~'(p) is a projective k-scheme of dimension at
most m. Thus we can find affine open sets D(f1), ..., D(fy,1) that cover f~'(p). In other
words, the intersection of V(f;) does not intersect f~'(p).

If Y = Spec A and p = [p] (so k = A,/pA,), then arbitrarily lift each f; from an element
of k[xy, ..., Xn] to an element f{ of A,[xo, ..., xn]. Let F be the product of the denominators
of the f{; note that F ¢ p, i.e. p = [p] € D(F). Then f] € Aglxo,...,%nl. The intersection
of their zero loci NV(f;) C P}%_is a closed subscheme of P _. Intersect it with X to get
another closed subscheme of P} _. Take its image under f; as projective morphisms are
closed, we get a closed subset of D(F) = Spec Af. But this closed subset does not include
p; hence we can find an affine neighborhood Spec B of p in Y missing the image. But if
f! are the restrictions of f/ to B[xo, ..., xn], then D(f!) cover f!(Spec B); in other words,
over f~'(SpecB) is covered by m + 1 affine open sets, so by the affine-cover vanishing
theorem, its cohomology vanishes in degree at least m + 1. But the higher-direct image
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sheaf is computed using these cohomology groups, hence the higher direct image sheaf
Rif,F vanishes on Spec B too. O

3.B. IMPORTANT EXERCISE. Use a similar argument to prove semicontinuity of fiber di-
mension of projective morphisms: suppose 7t : X — Y is a projective morphism where Oy is
coherent. Show that{y € Y : dim f~'(y) > k} is a Zariski-closed subset. In other words, the
dimension of the fiber “jumps over Zariski-closed subsets”. (You can interpret the case
k = —1 as the fact that projective morphisms are closed.) This exercise is rather important
for having a sense of how projective morphisms behave!

Here is another handy theorem, that is proved by a similar argument. We know that
finite morphisms are projective, and have finite fibers. Here is the converse.

3.2. Theorem (projective + finite fibers = finite). — Suppose 7 : X — Y is such that Oy is
coherent. Then Ttis projective and finite fibers if and only if it is finite. Equivalently, 7 is projective
and quasifinite if and only it is finite.

(Recall that quasifinite = finite fibers + finite type. But projective includes finite type.)
It is true more generally that proper + quasifinite = finite.

Proof. We show it is finite near a point y € Y. Fix an affine open neighborhood Spec A of
y in Y. Pick a hypersurface H in P} missing the preimage of y, so H N X is closed. (You
can take this as a hint for Exercise 3.B!) Let H' = 7t,(H N X), which is closed, and doesn’t
contain y. Let U = SpecR — H’, which is an open set containing y. Then above U,
is projective and affine, so we are done by the Corollary from last day (that projective +
affine = finite). O

Here is one last potentially useful fact.

3.C. EXERCISE. Suppose f : X — Y is a projective morphism, with O(1) the invertible
sheaf on X. Suppose Y is quasicompact and Oy is coherent. Let F be coherent on X. Show
that

(@) f*f.F(n) — F(n) is surjective for n > 0. (First show that there is a natural map
for any n! Hint: by adjointness of f, with f,.) [Should I relate this to fact 1.A?]
Translation: for n >> 0, F(n) is relatively generated by global sections.

(b) Fori > 0and n > 0, R, F(n) = 0.

E-mail address: vakil@math.stanford.edu



FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 39

RAVI VAKIL

CONTENTS
1. The Tor functors 1
2. From Tor to derived functors in general 4

We'll conclude this quarter by discussing derived functor cohomology, which was in-
troduced by Grothendieck in his celebrated Tohoku article. For quasicoherent sheaves on
quasicompact separated schemes, derived functor will agree with Cech cohomology. Fur-
thermore, Cech cohomology will suffice for most of our purposes, and is quite down to
earth and computable. But derived functor cohomology is worth seeing for a number of
reasons. First of all, it generalizes readily to a wide number of situations. Second, it will
easily provide us with some useful notions, such as Ext-groups and the Leray spectral
sequence.

But to be honest, we won't use it much for the rest of the course, so feel free to just skim
these notes, and come back to them later.

1. THE TOR FUNCTORS

We begin with a warm-up: the case of Tor. This is a hands-on example. But if you
understand it well, you will understand derived functors in general. Tor will be useful to
prove facts about flatness, which we’ll discuss later. Tor is short for “torsion”. The reason
for this name is that the Oth and/or 1st Tor-group measures common torsion in abelian
groups (aka Z-modules).

If you have never seen this notion before, you may want to just remember its properties,
which are natural. But I'd like to prove everything anyway — it is surprisingly easy.

The idea behind Tor is as follows. Whenever we see a right-exact functor, we always
hope that it is the end of a long-exact sequence. Informally, given a short exact sequence,
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we are hoping to see a long exact sequence

(1) - — Tor{ (M, N’) — Tor{ (M, N) — Tor{*(M, N") — - - -

— TorfY(M, N’) — Torp'(M, N) — Tor{*(M, N")

M ®a N’

M @A N

M@AN//

0.

More precisely, we are hoping for covariant functors Tor{*(-,N) from A-modules to A-
modules (giving 2/3 of the morphisms in that long exact sequence), with Torg (M, N) =
M ®a N, and natural 6 morphisms Torﬁ] (M,N”) — Tor{*(M,N’) for every short exact
sequence giving the long exact sequence. (In case you care, “natural” means: given a
morphism of short exact sequences, the natural square you would write down involving

the -morphism must commute. I'm not going to state this explicitly.)

It turns out to be not too hard to make this work, and this will also motivate derived
functors. Let’s now define Tor{*(M, N).

Take any resolution R of N by free modules:
—— AP —— AP —— APV —— N —— (.

More precisely, build this resolution from right to left. Start by choosing generators of N
as an A-module, giving us A®™ — N — 0. Then choose generators of the kernel, and so
on. Note that we are not requiring the n; to be finite, although if N is a finitely-generated
module and A is Noetherian (or more generally if N is coherent and A is coherent over
itself), we can choose the n; to be finite. Truncate the resolution, by stripping off the
last term. Then tensor with M (which may lose exactness!). Let ToriA(M, N)x be the
homology of this complex at the ith stage (i > 0). The subscript R reminds us that our
construction depends on the resolution, although we will soon see that it is independent
of the resolution.

We make some quick observations.

° ToroA(M, N)z = M ®a N, and this isomorphism is canonical. Reason: as tensoring
is right exact, and A®™ — A®% — N — 0 is exact, we have that M¥™ — M%m0 —
M ®a N — 0 is exact, and hence that the homology of the truncated complex M*™ —
Mo — 0is M ®a N.

o If M ® - is exact (i.e. M is flat), then Tor{* (M, N)z = 0 for all i.

Now given two modules N and N’ and resolutions R and R’ of N and N’, we can “lift”
any morphism N — N’ to a morphism of the two resolutions:

~-~—>A@Tli—>~-~—>A@Tll A@TLO N 0
~-~—>A®n{—>~-~—>A®n1’ Aean(’) N’ 0
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Here we are using the freeness of A®™: if a;, ..., a,, are generators of A®™, to lift the
map b : A®™ — A®M to ¢t A — A®M, we arbitrarily lift b(a;) from A®™-1 to A®™,
and declare this to be c(a;).

Denote the choice of lifts by R — R’'. Now truncate both complexes (remove column
N — N’) and tensor with M. Maps of complexes induce maps of homology, so we have
described maps (a priori depending on R — R’)

Tor (M, N)z — Tor{ (M, N')z.

We say two maps of complexes f,g : C, — C] are homotopic if there is a sequence of
maps w : C; — C{,, such that f — g = dw +wd. Two homotopic maps give the same map
on homology. (Exercise: verify this if you haven’t seen this before.)

1.A. CRUCIAL EXERCISE. Show that any two lifts R — R’ are homotopic.

We now pull these observations together.

(1) We get a covariant functor from Tor{'(M, N)z — Tor{'(M, N’)z,, independent of
the lift R — R'.

(2) Hence for any two resolutions R and R’ we get a canonical isomorphism Tor (M, N)z
Tori] (M, N)%. Here’s why. Choose lifts R — R’ and R’ — R. The composition
R — R’ — R is homotopic to the identity (as it is a lift of the identity map N — N).
Thus if fz_,z/ : Tor} (M, N)z — Tor! (M, N)%. is the map induced by R — R’, and
similarly fz/_, is the map induced by R — R’, then fg._,z o fr_, %' is the identity,
and similarly fz_,z’ o fr/_,% is the identity.

(3) Hence the covariant functor doesn’t depend on the resolutions!

~

Finally:
(4) For Zny short exact sequence we get a long exact sequence of Tor’s (1). Here’s why:
given a short exact sequence, choose resolutions of N’ and N”. Then use these to get a
resolution for N in the obvious way (see below; the map A®M=m) — N is the composi-
tion A®™ — N’ — N along with any lift of A% — N” to N) so that we have a short exact
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sequence of resolutions

/

AD™

A®™ N’ 0

e s A@(n1’+n{’) - A@(n{)+n{)’) ——— N ——=0

1

A®M

AP N” 0

0 0 0

Then truncate (removing the right column 0 — N’ — N — N” — 0), tensor with M
(obtaining a short exact sequence of complexes) and take cohomology, yielding a long
exact sequence.

We have thus established the foundations of Tor!

Note that if N is a free module, then Tor{*(M,N) = 0 for all M and all i > 0, as N has
the trivial resolution 0 — N — N — 0 (it is “its own resolution”).

1.B. EXERCISE. Show that the following are equivalent conditions on an A-module M.

(i) M s flat
(i) Tor{'(M,N) = 0 for all i > 0 and all A-modules N,
(iii) Torf (M, N) = 0 for all A-modules N.

2. FROM TOR TO DERIVED FUNCTORS IN GENERAL

2.1. Projective resolutions. We used very little about free modules in the above construction
of Tor; in fact we used only that free modules are projective, i.e. those modules M such
that for any surjection M’ — M”, it is possible to lift any morphism M. — M”toM — M.
This is summarized in the following diagram.

M

I
exists | \

Al
M/ > M/

Equivalently, Hom(M, ) is an exact functor (Hom(M, -) is always left-exact for any M).
More generally, the same idea yields the definition of a projective object in any abelian
category. Hence (i) we can compute Tor{'(M, N) by taking any projective resolution of
N, and (ii) Tor{*(M, N) = 0 for any projective A-module N.
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2.A. INTERESTING EXERCISE: DERIVED FUNCTORS CAN BE COMPUTED USING ACYCLIC
RESOLUTIONS. Show that you can also compute derived functor cohomology using flat
resolutions, i.e. by a resolution

o= —=2F—=2F—=>N=0

by flat A-modules. Hint: show that you can construct a double complex

.. —>A@TL2,1 —>A@m,1 —>A€Bﬂo,1 —>A@m —0

e — A@TLZ,O —_— A@m,o —_— AEB“0,0 —_— A@TLO —0

Fa Fi Fo N 0

where the rows and columns are exact. Do this by constructing the A®” inductively from
the bottom left. Tensor the double complex with M, to obtain a new double complex.
Remove the bottom row, and the right-most nonzero column. Use a spectral sequence
argument to show that (i) the double complex has homology equal to Tor, and (ii) the ho-
mology of the double complex agrees with the homology of the free resolution (truncated)
tensored with M.

You will notice in the solution to the above exercise that what mattered was that flat
modules had no higher Tor’s (Exercise 1.B). This will later directly generalize to the state-
ments that derived functors can be computed with acyclic resolutions (“acyclic” means “no
higher (co)homology”).

2.2. Derived functors of right-exact functors.

The above description was low-tech, but immediately generalizes drastically. All we
are using is that M®4 is a right-exact functor. In general, if F is any right-exact covariant
functor from the category of A-modules to any abelian category, this construction will
define a sequence of functors L;F (called left-derived functors of F) such that LoF = Fand
the Li’s give a long-exact sequence. We can make this more general still. We say that an
abelian category has enough projectives if for any object N there is a surjection onto it
from a projective object. Then if F is any right-exact functor from an abelian category with
enough projectives to any abelian category, then F has left-derived functors.

2.B. UNIMPORTANT EXERCISE. Show that an object P is projective if and only if every
short exact sequence 0 - A — B — P — 0 splits.

2.C. EXERCISE. The notion of an injective object in an abelian category is dual to the
notion of a projective object. (a) State precisely the definition of an injective object. (b)
Define derived functors for (i) covariant left-exact functors (these are called right-derived
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functors), (ii) contravariant left-exact functors (also called right-derived functors), and
(iii) contravariant right-exact functors (these are called left-derived functors), making ex-
plicit the necessary assumptions of the category having enough injectives or projectives.

2.3. Notation. If Fis a right-exact functor, its (left-)derived functors are denoted L;F (i > 0,
with LoF = F). If F is a left-exact functor, its (right-) derived functors are denoted R'F.

E-mail address: vakil@math.stanford.edu



SPECTRAL SEQUENCES: FRIEND OR FOE?

RAVI VAKIL

Spectral sequences are a powerful book-keeping tool for proving things involving com-
plicated commutative diagrams. They were introduced by Leray in the 1940’s at the same
time as he introduced sheaves. They have a reputation for being abstruse and difficult.
It has been suggested that the name ‘spectral” was given because, like spectres, spectral
sequences are terrifying, evil, and dangerous. I have heard no one disagree with this
interpretation, which is perhaps not surprising since I just made it up.

Nonetheless, the goal of this note is to tell you enough that you can use spectral se-
quences without hesitation or fear, and why you shouldn’t be frightened when they come
up in a seminar. What is different in this presentation is that we will use spectral sequence
to prove things that you may have already seen, and that you can prove easily in other
ways. This will allow you to get some hands-on experience for how to use them. We
will also see them only in a “special case” of double complexes (which is the version
by far the most often used in algebraic geometry), and not in the general form usually
presented (filtered complexes, exact couples, etc.). See chapter 5 of Weibel’s marvelous
book for more detailed information if you wish. If you want to become comfortable with
spectral sequences, you must try the exercises.

For concreteness, we work in the category vector spaces over a given field. However,
everything we say will apply in any abelian category, such as the category Mod  of A-
modules.

0.1. Double complexes.

A first-quadrant double complex is a collection of vector spaces E”9 (p, q € Z), which
are zero unless p, g > 0, and “rightward” morphisms d29 : EP9 — EP9*! and “upward”
morphisms A : EP9 — EPT14. In the superscript, the first entry denotes the row number,
and the second entry denotes the column number, in keeping with the convention for
matrices, but opposite to how the (x, y)-plane is labeled. The subscript is meant to suggest
the direction of the arrows. We will always write these as d- and dA and ignore the
superscripts. We require that d. and d satisfying (a) d2 = 0, (b) d4 = 0, and one more
condition: (c) either d-ds = dad- (all the squares commute) or d-da + dad- = 0 (they
all anticommute). Both come up in nature, and you can switch from one to the other by
replacing d? with d%(—1)9. So I'll assume that all the squares anticommute, but that
you know how to turn the commuting case into this one. (You will see that there is no
difference in the recipe, basically because the image and kernel of a homomorphism f
equal the image and kernel respectively of —f.)

Date: Tuesday, March 12, 2008. Updated version later Tuesday afternoon.
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P+1,q
d-

Epr+l.a Eprt+la+l
an anticommutes ~ d}¢"’
v
EP.d EP.a+l

There are variations on this definition, where for example the vertical arrows go down-
wards, or some different subset of the E”9 are required to be zero, but I'll leave these
straightforward variations to you.

From the double complex we construct a corresponding (single) complex E® with E* =
®:EV, with d = d- + da. In other words, when there is a single superscript k, we mean
a sum of the kth antidiagonal of the double complex. The single complex is somtimes
called the total complex. Note that d* = (d- + da)? = d2 + (d-da + dado) + d4 =0, s0
E* is indeed a complex.

The cohomology of the single complex is sometimes called the hypercohomology of
the double complex. We will instead use the phrase “cohomology of the double complex”.

Our initial goal will be to find the cohomology of the double complex. You will see
later that we secretly also have other goals.

A spectral sequence is a recipe for computing some information about the cohomology
of the double complex. I won't yet give the full recipe. Surprisingly, this fragmentary bit
of information is sufficent to prove lots of things.

0.2. Approximate Definition. A spectral sequence with rightward orientation is a
sequence of tables or pages -Ef9, EVY, _EDY, ... (p,q € Z), where _EJ'? = EP9, along
with a differential

P,q . P,d p+T7q_T+1
-dP9: BP9 — JE

with dP90 _dP9 =0, along with an isomorphism of the cohomology of -d, at ~EP9 (i.e.
ker .dP9/im - dP~"9t71) with SEDA.

The orientation indicates that our Oth differential is the rightward one: do = d.. The
left subscript “>" is usually omitted.



The order of the morphisms is best understood visually:

1) .

(the morphisms each apply to different pages). Notice that the map always is “degree 1”
in the grading of the single complex E°.

The actual definition describes what E$* and d}* actually are, in terms of E**. We will
describe do, d;, and d, below, and you should for now take on faith that this sequence
continues in some natural way.

Note that E?9 is always a subquotient of the corresponding term on the Oth page Ef*9 =
EP9. In particular, if EP9 = 0, then EP9 = 0 for all v, so EP9 = 0 unless p, q € Z=°. Notice
also that for any fixed p, g, once r is sufficiently large, EY;% is computed from (E?*, d,)
using the complex

0

P,d
ap

and thus we have canonical isomorphisms
P,d ~ EPd ~ EPAd ~ ..
ET ErJr] ET+Z

We denote this module EP;9.

We now describe the first few pages of the spectral sequence explicitly. As stated above,
the differential dy on Ey* = E** is defined to be d.. The rows are complexes:

o — 0 — 0
The Oth page Eo: e -0 -0

o —0 —> 0



and so E; is just the table of cohomologies of the rows. You should check that there
are now vertical maps dV9 : EV'@ — EY*"9 of the row cohomology groups, induced by
d, and that these make the columns into complexes. (We have “used up the horizontal
morphisms”, but “the vertical differentials live on”.)

o———— 0 —> 0
o ——0 —> 0

[ ]
The 1st page E4: o
ﬁ

We take cohomology of dy on E4, giving us a new table, EY'9. It turns out that there
are natural morphisms from each entry to the entry two above and one to the left, and
that the composition of these two is 0. (It is a very worthwhile exercise to work out
how this natural morphism d, should be defined. Your argument may be reminiscent of
the connecting homomorphism in the Snake Lemma 0.5 or in the long exact sequence in
cohomology arising from a short exact sequence of complexes, Exercise 0.D. This is no

coincidence.)
[ ] [ ] [
The 2nd page E;: o\o\o
[ ] [ ] [ J

This is the beginning of a pattern.

Then it is a theorem that there is a filtration of H*(E®) by E%9 where p 4+ q = k. (We
can’t yet state it as an official Theorem because we haven’t precisely defined the pages
and differentials in the spectral sequence.) More precisely, there is a filtration

1,k—1 2, k—2
(2) Eg;k &k) ? CEL> CE_kO> Hk(E’)

where the quotients are displayed above each inclusion. (I always forget which way the
quotients are supposed to go, i.e. whether E*° or E®* is the subobject. One way of re-
membering it is by having some idea of how the result is proved.)

We say that the spectral sequence -E;* converges to H*(E®*). We often say that ~E5* (or
any other page) abuts to H*(E*®).

Although the filtration gives only partial information about H*(E®), sometimes one can
find H*(E*) precisely. One example is if all EL* " are zero, or if all but one of them are zero
(e.g. if EX*" has precisely one non-zero row or column, in which case one says that the
spectral sequence collapses at the rth step, although we will not use this term). Another
example is in the category of vector spaces over a field, in which case we can find the
dimension of H*(E®). Also, in lucky circumstances, E; (or some other small page) already
equals E.



0.A. EXERCISE: INFORMATION FROM THE SECOND PAGE. Show that H(E®) = EQ? = E9°
and

1,0
dZ

0 Y H'(E*) E10 E92 —— H2(E®).

0.3. The other orientation.

You may have observed that we could as well have done everything in the opposite di-
rection, i.e. reversing the roles of horizontal and vertical morphisms. Then the sequences
of arrows giving the spectral sequence would look like this (compare to (1)).

|

3)

— o
\

3
This spectral sequence is denoted AE;* (“with the upwards orientation”). Then we would
again get pieces of a filtration of H*(E®) (where we have to be a bit careful with the order

with which AE2;9 corresponds to the subquotients — it in the opposite order to that of (2)
for _EP;9). Warning: in general there is no isomorphism between ~E2:9 and AE;9.

In fact, this observation that we can start with either the horizontal or vertical maps
was our secret goal all along. Both algorithms compute information about the same thing
(H*(E®)), and usually we don’t care about the final answer — we often care about the
answer we get in one way, and we get at it by doing the spectral sequence in the other
way.

0.4. Examples.

We’re now ready to see how this is useful. The moral of these examples is the following.
In the past, you may have proved various facts involving various sorts of diagrams, which
involved chasing elements around. Now, you'll just plug them into a spectral sequence,
and let the spectral sequence machinery do your chasing for you.

0.5. Example: Proving the Snake Lemma. Consider the diagram

0—>D—>E—>F—>0
|
0—>A—>B—>C—>0

Qa1



where the rows are exact and the squares commute. (Normally the Snake Lemma is de-
scribed with the vertical arrows pointing downwards, but I want to fit this into my spec-
tral sequence conventions.) We wish to show that there is an exact sequence

4) 0o kerax — kerp — kery - imax — imf3 — imy — 0.

We plug this into our spectral sequence machinery. We first compute the cohomology
using the rightwards orientation, i.e. using the order (1). Then because the rows are exact,
EV9 =0, so the spectral sequence has already converged: EP;9 = 0.

We next compute this “0” in another way, by computing the spectral sequence using
the upwards orientation. Then AE}* (with its differentials) is:

0 im o im 3 imvy 0

0 ——kerx —ker f kery 0.

Then AE$* is of the form:

We see that after A\E,, all the terms will stabilize except for the double-question-marks —
all maps to and from the single question marks are to and from O-entries. And after AE3,
even these two double-quesion-mark terms will stabilize. But in the end our complex
must be the 0 complex. This means that in AE,, all the entries must be zero, except for
the two double-question-marks, and these two must be the isormorphic. This means that
0 — kerx — ker 3 — kery and im &« — im 3 — imy — 0 are both exact (that comes from
the vanishing of the single-question-marks), and

coker(ker B — kery) = ker(im o« — im 3)

is an isomorphism (that comes from the equality of the double-question-marks). Taken
together, we have proved the exactness of (4), and hence the Snake Lemma!

Spectral sequences make it easy to see how to generalize results further. For example,
if A — B is no longer assumed to be injective, how would the conclusion change?

6



0.6. Example: the Five Lemma. Suppose

(5) F G H I J
S O
A B C D E

where the rows are exact and the squares commute.
Suppose «, 3, §, € are isomorphisms. We’ll show that vy is an isomorphism.

We first compute the cohomology of the total complex using the rightwards orientation
(1). We choose this because we see that we will get lots of zeros. Then - E{* looks like this:

? 0 0 0 ?

I

? 0 0 0 ?

Then -E; looks similar, and the sequence will converge by E,, as we will never get any
arrows between two non-zero entries in a table thereafter. We can’t conclude that the
cohomology of the total complex vanishes, but we can note that it vanishes in all but
four degrees — and most important, it vanishes in the two degrees corresponding to the
entries C and H (the source and target of y).

We next compute this using the upwards orientation (3). Then AE; looks like this:

0 0 ? 0 0

0 0 ? 0 0

and the spectral sequence converges at this step. We wish to show that those two question
marks are zero. But they are precisely the cohomology groups of the total complex that
we just showed were zero — so we're done!

The best way to become comfortable with this sort of argument is to try it out yourself
several times, and realize that it really is easy. So you should do the following exercises!

0.B. EXERCISE: THE SUBTLE FIVE LEMMA. By looking at the spectral sequence proof
of the Five Lemma above, prove a subtler version of the Five Lemma, where one of the
isomorphisms can instead just be required to be an injection, and another can instead just
be required to be a surjection. (I am deliberately not telling you which ones, so you can
see how the spectral sequence is telling you how to improve the result.)

0.C. EXERCISE. If 3 and 6 (in (5)) are injective, and « is surjective, show that y is injective.
State the dual statement (whose proof is of course essentially the same).

0.D. EXERCISE. Use spectral sequences to show that a short exact sequence of complexes
gives a long exact sequence in cohomology.



0.E. EXERCISE (THE MAPPING CONE). Suppose p: A®* — B*® is a morphism of complexes.
Suppose C* is the single complex associated to the double complex A* — B*®. (C* is called
the mapping cone of p.) Show that there is a long exact sequence of complexes:

- = HY(C®") — HYA®) = HYB®) —» HYC®) - H'T(A®) — .- - .

(There is a slight notational ambiguity here; depending on how you index your double
complex, your long exact sequence might look slightly different.) In particular, we will
use the fact that u induces an isomorphism on cohomology if and only if the mapping
cone is exact.

You are now ready to go out into the world and use spectral sequences to your heart’s
content!

0.7. »x Complete definition of the spectral sequence, and proof.

You should most definitely not read this section any time soon after reading the intro-
duction to spectral sequences above. Instead, flip quickly through it to convince yourself
that nothing fancy is involved.

We consider the rightwards orientation. The upwards orientation is of course a trivial
variation of this.

0.8. Goals. We wish to describe the pages and differentials of the spectral sequence
explicitly, and prove that they behave the way we said they did. More precisely, we wish
to:

(a) describe EP9,
(b) verify that H*(E®) is filtered by ER*? asin (2),
(c) describe d, and verify that d2 = 0, and

(d) verify that E}'Y is given by cohomology using d..

Before tacking these goals, you can impress your friends by giving this short descrip-
tion of the pages and differentials of the spectral sequence. We say that an element of E**
is a (p, q)-strip if it is an element of ®5oEPTH97 (see Fig. 1). Its non-zero entries lie on a
semi-infinite antidiagonal starting with position (p, q). We say that the (p, q)-entry (the
projection to EP9) is the leading term of the (p, q)-strip. Let C E** be the submodule
of all the (p, q)-strips. Clearly SP4 C EP*9, and SO* = EX.

Note that the differential d = dA 4 d- sends a (p, q)-strip x to a (p, g + 1)-strip dx. If dx
is furthermore a (p + v, q + v + 1)-strip (r € Z=°), we say that x is an r-closed (p, q)-strip.

We denote the set of such | S?9 | (so for example S§'* = SP9, and S3* = E¥). An element of
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0 PH2a-2 0 0 0
0 0 P rla-] 0 0
0 0 0 *Pd 0
0 0 0 0 op—1,a+1

FIGURE 1. A (p, q)-strip (in SP9 C EP9). Clearly SO = EX.

SP 9 may be depicted as:

o2

|

WPr2a-2 — o

T

*p+] )q71 —_— 0

|

«Pd —

0.9. Preliminary definition of E?*9.  We are now ready to give a first definition of EP9,
which by construction should be a subquotient of EP4 = EJ'Y. We describe it as such by
describing two submodules Y9 C X®9 C E™9, and defining EP9 = X?9/YP9. Let XP9
be those elements of E”9 that are the leading terms of r-closed (p, q)-strips. Note that
by definition, d sends (r — 1)-closed SP~("—1.a+(=D=1_gtrips to (p, q)-strips. Let Y9 be the
leading ((p, q))-terms of the differential d of (r—1)-closed (p—(r—1), g+ (r—1)—1)-strips
(where the differential is considered as a (p, q)-strip).

We next give the definition of the differential d. of such an element x € X?9. We take
any r-closed (p, q)-strip with leading term x. Its differential disa (p 4+ r,q — v + 1)-strip,
and we take its leading term. The choice of the r-closed (p, q)-strip means that this is nota
well-defined element of EP9. But it is well-defined modulo the (r—1)-closed (p+1,r+1)-
strips, and hence gives a map EP9 — EPTa—T+1,

This definition is fairly short, but not much fun to work with, so we will forget it, and
instead dive into a snakes’ nest of subscripts and superscripts.
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We begin with making some quick but important observations about (p, q)-strips.

0.F. EXERCISE. Verify the following.

(a) SpPd — S§p+l,g-1 @ EPA,

(b) (Any closed (p, q)-strip is r-closed for all r.) Any element x of S = S§'? that is a
cycle (i.e. dx = 0) is automatically in S¥9 for all r. For example, this holds when x
is a boundary (i.e. of the form dy).

(c) Show that for fixed p, q,

SgIOSYY ..o Shd ...

stabilizes for r > 0 (i.e. S?»9 = S)Y = ---). Denote the stabilized module S

Show S2:9 is the set of closed (p, q)-strips (those (p, q)-strips annihilated by d, i.e.
the cycles). In particular, SO* is the set of cycles in EX.

0.10. Defining EP-9.
Define XP9 := SPa/SPT 171 apd y ;= qsP (1 at(==T gpila-t
Then YP9 C XP9 by Exercise 0.F(b). We define

XP:d S

©) Epd=Cre =
p—(r—1),g+(r—1)—1 +1,q—1
Y dsrflr ' + S]:f] a

We have completed Goal 0.8(a).

You are welcome to verify that these definitions of X¥9 and Y?9 and hence E?'9 agree
with the earlier ones of §0.9 (and in particular X249 and Y?'9 are both submodules of EP9),
but we won’t need this fact.

0.G. EXERCISE: ER*P GIVES SUBQUOTIENTS OF Hk(E’). By Exercise 0.F(c), EP9 stabilizes

as T — oo. For 1> 0, interpret $79/dSP~ ("9 45 the cycles in S%9 ¢ EP*9 modulo
those boundary elements of dEP 4~ contamed in SP,9. Finally, show that H*(E®) is indeed
filtered as described in (2).

We have completed Goal 0.8(b).

0.11. Definition of d..

We shall see that the map d, : EP9 — EPT971 jg just induced by our differential d.
Notice that d sends r-closed (p, q)-strips SP9 to (p +1,q — 1 + 1)-strips SPT91 by the
definition “r-closed”. By Exercise 0.F(b), the image lies in SP*™4-7+1,

0.H. EXERCISE. Verify that d sends
dSp (r—1),q+(r—1)— + Sp+1 q—1 _ dS —(r=1),(q—r+1)+(r— + S p+r V+1,(g—r+1)—1
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(The first term on the left goes to 0 from d? = 0, and the second term on the left goes to
the first term on the right.)

Thus we may define

p?q
d,: EP9 = ;
° T

dsf:](rfl),q+(rf1)—1 +Sf_+11’q*]

Sp+r,g—r+l
T _ Eptr,g—r+1

p+1,0-1 p+r+l,q—r T
dST—] + ST—]

and clearly d? = 0 (as we may interpret it as taking an element of S?9 and applying d
twice).

We have accomplished Goal 0.8(c).

0.12. Verifying that the cohomology of d. at EP9is EY:. We are left with the unpleasant job
of verifying that the cohomology of

(7) SE—r,q+r71 d, Sr,q dy SE+qu7r+]
P—2r+1,d-3 ,ap—tFT,q+r—2 — > p—r+1,g+v—2  cp+1,q—1 > p+1,9—1 p+r+1,q—71
dsr— 1 +Sr— 1 d$r71 +Sr—] dST, 1 +ST, 1

is naturally identified with

p?q
Sr+1

dSE_r'q+T_] + SE_H’q_]
and this will conclude our final Goal 0.8(d).

Let’s begin by understanding the kernel of the right map of (7). Suppose a € SP9is
mapped to 0. This means that da = db+c, where b € Sf_ﬂ’qf]. Ifu=a—>b,thenu e SP9,

while du = ¢ € SPHT197" ¢ Sp+HLaT from which u is r-closed, i.e. u € 9. Hence
a = b+ u+x where dx = 0, from which a —x = b+ ¢ € S?"9" + SP9. However,
X € Sp'1q, 50 X € SP9 by Exercise 0.F(b). Thus a € SP]"%" + SP9. Conversely, any
a € ST + SPA satisfies

da € dSP7ITH 4 dsPd € dsPp e gpha
(using dS.9 C Sh* 147" and Exercise 0.F(b)) so any such a is indeed in the kernel of

p+r,q—r+1
S

SPd _y
r p+1,9-1 p+r+l,g—r"
dSr—] + ST—]

Hence the kernel of the right map of (7) is

p+1»q_] P,d
Srf1 + Sr+]

p—r+1,q+r—2 p+1,9-1°
ds r—1 + Srfl

ker =

Next, the image of the left map of (7) is immediately

_ _ —r1,q4r—2 +1,q—1 _ _ +1,q—1
dSE T,q+Tr 1+ de_] q —}—Sf_] q B de T,q+T1 ]+S$—1 q

p—r+1,q+r—2 p+1,9—1 - p—r+1,q+r—2 p+1,9—1
dST—] + ST—] dSr—] + Sr_1

m =
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(as SP"97 ™1 contains SPTHATT),

Thus the cohomology of (7) is

Sp+1,q 1 + S SP »d
ker /im = —171+r—1 rﬂ T T rer] 1 +1 T
dsy " + SPTa SEf] N (dSp—™4 + SP9T)

where the equality on the right uses the fact that dSP "9t C ST and an isomorphism
theorem. We thus must show

Sp+‘1] N (dSP T,q+r—1 + SD-qu 1) _ dsffr,q+rf1 + S};+1,q71
T .

However,
Sr+1 N (dSp T,q+1—1 + Sp+1,q 1) dSp T,q+r—1 + Sr+1 N SIH—],q 1

and S9N Sp+1 971 consists of (p, q)-strips whose differential vanishes up to row p + ,
from wh1ch SP4 N SPH 9! = SPd as desired.

This completes the explanation of how spectral sequences work for a first-quadrant
double complex. The argument applies without significant change to more general situa-
tions, including filtered complexes.

E-mail address: vakil@math.stanford.edu
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