FOUNDATIONS OF ALGEBRAIC GEOMETRY PROBLEM SET 5

RAVI VAKIL

This set is due at noon on Friday November 2. You can hand it in to Jarod Alper
(jarod@math.stanford.edu) in the big yellow envelope outside his office, 380-]. It covers
classes 9 and 10.

Please read all of the problems, and ask me about any statements that you are unsure
of, even of the many problems you won’t try. Hand in nine solutions, where each “-”
problem is worth half a solution and each “+” problem is worth one-and-a-half. If you
are ambitious (and have the time), go for more. Try to solve problems on a range of topics.
You are encouraged to talk to each other, and to me, about the problems. Some of these
problems require hints, and I'm happy to give them!

1-. Show that P} is irreducible.

2. An earlier exercise showed that there is a bijection between irreducible closed subsets
and points. Show that this is true of schemes as well.

3. Prove that if X is a scheme that has a finite cover X = U' ; Spec A; where A; is Noether-
ian (i.e. if X is a Noetherian scheme), then X is a Noetherian topological space.

4-. Show that an irreducible topological space is connected.

5-. Give (with proof!) an example of a scheme that is connected but reducible. (Possible
hint: a picture may help. The symbol “x” has two “pieces” yet is connected.)

6-. Show that a scheme X is quasicompact if and only if it can be written as a finite union
of affine schemes (Hence P} is quasicompact.)

7. (quasicompact schemes have closed points) Show that if X is a nonempty quasicompact
scheme, then it has a closed point. (Warning: there exist non-empty schemes with no
closed points, so your argument had better use the quasicompactness hypothesis!)
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FIGURE 1. A picture of the scheme Speck[x, yl/(xy,y?)

8. Show that (k[x, vl/(y?, xy))X has no nilpotents. (Possible hint: show that it is isomor-
phic to another ring, by considering the geometric picture.)
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9. (reducedness is stalk-local) Show that a scheme is reduced if and only if none of the stalks
have nilpotents. Hence show that if f and g are two functions on a reduced scheme that
agree at all points, then f = g. (Two hints: Ox(U) — [, ., Oxx from an earlier Exercise,
and the nilradical is intersection of all prime ideals.)

10-. Suppose X is quasicompact, and f is a function (a global section of Ox) that vanishes
at all points of x. Show that there is some n such that f* = 0. Show that this may fail if
X is not quasicompact. (This exercise is less important, but shows why we like quasicom-
pactness, and gives a standard pathology when quasicompactness doesn’t hold.) Hint:
take an infinite disjoint union of Spec A,, with A,, := kle]/e™.

11+. Show that a scheme X is integral if and only if it is irreducible and reduced.
12. Show that an affine scheme Spec A is integral if and only if A is an integral domain.

13. Suppose X is an integral scheme. Then X (being irreducible) has a generic point 7.
Suppose Spec A is any non-empty affine open subset of X. Show that the stalk atn, Ox,,
is naturally FF(A), the fraction field of A. This is called the function field FF(X) of X. It can
be computed on any non-empty open set of X, as any such open set contains the generic
point.

14. Suppose X is an integral scheme. Show that the restriction maps resyv : Ox(U) —
Ox(V) are inclusions so long as V # @. Suppose Spec A is any non-empty affine open sub-
set of X (so A is an integral domain). Show that the natural map Ox(U) — Ox,, = FF(A)
(where U is any non-empty open set) is an inclusion. Thus irreducible varieties (an im-
portant example of integral schemes defined later) have the convenient that sections over
different open sets can be considered subsets of the same thing. This makes restriction
maps and gluing easy to consider; this is one reason why varieties are usually introduced
before schemes.

15. Show that all open subsets of a Noetherian topological space (e.g. a Noetherian
scheme) are quasicompact.

16. Show that a Noetherian scheme has a finite number of irreducible components.

17. If X is a Noetherian scheme, show that every point p has a closed point in its closure.
(In particular, every non-empty Noetherian scheme has closed points; this is not true for
every scheme.)

18. If X is an affine scheme or Noetherian scheme, show that it suffices to check reduced-
ness at closed points.

19. Show that a locally Noetherian scheme X is integral if and only if X is connected and
all stalks Ox,, are integral domains (informally: “the scheme is locally integral”). Thus
in “good situations” (when the scheme is Noetherian), integrality is the union of local
(stalks are domains) and global (connected) conditions.

20. Show that X is reduced if and only if X can be covered by affine opens Spec A where
A is reduced (nilpotent-free).



21. Show that a point of a locally finite type k-scheme is a closed point if and only if
the residue field of the stalk of the structure sheaf at that point is a finite extension of
k. (Recall the following form of Hilbert’s Nullstellensatz, richer than the version stated
before: the maximal ideals of k[xy, ..., X,] are precisely those with residue of the form a
tinite extension of k.) Show that the closed points are dense on such a scheme.

22. Finish the proof that Noetherianness is an affine-local property: show that if A is a
ring, and (fy,...,fy) = A, and Ay, is Noetherian, then A is Noetherian.

23. Prove that reducedness is an affine-local property.

24. Show that finite-generatedness over k is an affine-local property (see the notes for an
outline).

25. Show that integrally closed domains behave well under localization: if A is an inte-
grally closed domain, and S is a multiplicative subset, show that S™'A is an integrally
closed domain. (The domain portion is easy. Hint for integral closure: assume that
X" 4 angx™ ' 4+ -+ ayp = 0 where a; € S'A has a root in the fraction field. Turn
this into another equation in A[x] that also has a root in the fraction field.)

26. Show that a Noetherian scheme is normal if and only if it is the finite disjoint union of
integral Noetherian normal schemes.

27. If A is an integral domain, show that A = NA,,, where the intersection runs over all
maximal ideals of A. (We won't use this exercise, but it gives good practice with the ideal
of denominators.)

28. One might naively hope from experience with unique factorization domains that the
ideal of denominators is principal. This is not true. As a counterexample, consider our
new friend A = k[a, b, ¢, d]/(ad — bc) (which we will later recognize as the cone over the
quadric surface), and a/c = b/d € FF(A). Show that I = (c, d). (If you can, show that this
is not principal.)

29. Show that any localization of a Unique Factorization Domain is a Unique Factoriza-
tion Domain.

30+. Show that unique factorization domains are integrally closed. Hence factorial schemes
are are normal, and if A is a unique factorization domain, then Spec A is normal. (How-
ever, rings can be integrally closed without being unique factorization domains, as we’ll

see in Exercise . An example without proof: Z1V17] again.)
31-. Show that the following schemes are normal: A}, P}, Spec Z.

32+. (this will give us a number of enlightening examples later) Suppose A is a Unique Fac-
torization Domain with 2 invertible, f € A has no repeated prime factors, and z* — f
is irreducible in A[z]. Show that Spec A[z]/(z? — f) is normal. Show that if f is not
square-free, then Spec A[z]/(z? — f) is not normal. (Hint: B := Alz]/(z* — f) is a do-
main, as (z* — f) is prime in A[z]. Suppose we have monic F(T) = 0 with F(T) € BJ[T]

which has a solution « in FF(B). Then by replacing F(T) by F(T)F(T), we can assume
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F(T) € A[T]. Also, « = g + hz where g,h € FF(A). Now « is the solution of monic
Q(T) =T? — 29T + (g> — h*f)T € FF(A)[T], so we can factor F(T) = P(T)Q(T) in K[T]. By
Gauss’ lemma, 2g, g> — h*f € A. Say g = r/2, h = s/t (s and t have no common factors,
1,5,t € A). Then g2 — h?f = (r?t?> — rs?f)/4t%>. Thent = 1, and r is even.)

33+. Show that the following schemes are normal:

(a) Spec Z[x]/(x* —n) where n is a square-free integer congruent to 3 (mod 4);

(b) Specklxi,...,xnl/x}+ %%+ -+ +xZ where chark # 2, m > 3;

(c) Specklw,x,vy,z]/(wz — xy) where char k # 2 and k is algebraically closed. (This is
our cone over a quadric surface example.)

34+. Suppose A is a k-algebra where char k = 0, and 1/k is a finite field extension. Show
that A is normal if and only if A ®y 1 is normal. Show that Spec k[w, x, y, zl/(wz — xy) is
normal if k is characteristic 0. (In fact the hypothesis on the characteristic is unnecessary.)
Possible hint: reduced to the case where 1/k is Galois.

35-. Show that if q is primary, then ,/q is prime. If p = ,/q, we say that q is p-primary.
(Caution: /q can be prime without q being primary — consider our example (y?,xy) in
klx, yl.)

36-. Show that if q and q’ are p-primary, then sois g N q’.
37-. (reality check) Find all the primary ideals in Z. (Answer: (0) and (p™).)

38+. (existence of primary decomposition for Noetherian rings) Suppose A is a Noetherian
ring. Show that every proper ideal I C A has a primary decomposition. (Hint: mimic the
Noetherian induction argument we saw last week.)

39+. (a) Find a minimal primary decomposition of (y?,xy). (b) Find another one. (Pos-
sible hint: see Figure 1. You might be able to draw sketches of your different primary
decompositions.)

40+. (a) If p, py, ..., pn are prime ideals, and p = Np;, show that p = p; for some i. (Hint:
assume otherwise, choose f; € p; — p, and consider [ [ f;.)

(b) If p D Npy, then p D p; for some 1i.

(c) Suppose I C UI';p;. (The right side is not an ideal!) Show that I C p; for some i.
(Hint: by induction on n. Don’t look in the literature — you might find a much longer
argument!)

(Parts (a) and (b) are “geometric facts”; try to draw pictures of what they mean.)

E-mail address: vakil@math.stanford.edu



