
FOUNDATIONS OF ALGEBRAIC GEOMETRY PROBLEM SET 3

RAVI VAKIL

This set is due at noon on Friday October 19. You can hand it in to Jarod Alper
(jarod@math.stanford.edu) in the big yellow envelope outside his office, 380-J. It covers
classes 5 and 6.

Please read all of the problems, and ask me about any statements that you are unsure
of, even of the many problems you won’t try. Hand in eight solutions, where each “-”
problem is worth half a solution and each “+” problem is worth one-and-a-half. If you
are ambitious (and have the time), go for more. Try to solve problems on a range of topics.
You are encouraged to talk to each other, and to me, about the problems. Some of these
problems require hints, and I’m happy to give them!

Class 5.

1. If f : X → Y is a continuous map, and G is a sheaf on Y, show that f−1Gpre(U) :=
lim−→V⊃f(U)

G(V) defines a presheaf on X. (Possible hint: Recall the explicit description of
direct limit: sections are sections on open sets containing f(U), with an equivalence rela-
tion.)

2. Show that the stalks of f−1G are the same as the stalks of G. More precisely, if f(x) = y,
describe a natural isomorphism Gy

∼= (f−1G)x. (Possible hint: use the concrete description
of the stalk, as a direct limit. Recall that stalks are preserved by sheafification.)

3-. (easy but useful) If U is an open subset of Y, i : U → Y is the inclusion, and G is a sheaf
on Y, show that i−1G is naturally isomorphic to G|U.

4-. (easy but useful) If y ∈ Y, i : {y} → Y is the inclusion, and G is a sheaf on Y, show that
i−1(G) is naturally isomorphic to the stalk Gy.

5. Show that f−1 is an exact functor from sheaves of abelian groups on Y to sheaves of
abelian groups on X. (Hint: exactness can be checked on stalks.) The identical argument
will show that f−1 is an exact functor from OY-modules (on Y) to f−1OY-modules (on X),
but don’t bother writing that down. (Remark for experts: f−1 is a left-adjoint, hence right-
exact by abstract nonsense. The left-exactness is true for “less categorical” reasons.)

6+. (The construction of f−1 satisfies the adjoint property If f : X → Y is a continuous map,
and F is a sheaf on X and G is a sheaf on Y, describe a bijection

MorX(f−1G,F) ↔ MorY(G, f∗F).

Observe that your bijection is “natural” in the sense of the definition of adjoints.

Date: Sunday, October 13, 2007.
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7. (a) Suppose Z ⊂ Y is a closed subset, and i : Z ↪→ Y is the inclusion. If F is a sheaf on
Z, then show that the stalk (i∗F)y is 0 if y ∈ Z, and Fy if y ∈ Z.
(b) Important definition: Define the support of a sheaf F of sets, denoted SuppF , as the
locus where the stalks are non-empty:

SuppF := {x ∈ X : Fx 6= ∅}.

(More generally, if the sheaf has value in some category, the support consists of points
where the stalk is not the initial object. For sheaves of abelian groups, the support consists
of points with non-zero stalks.) Suppose SuppF ⊂ Z where Z is closed. Show that the
natural map F → f∗f

−1F is an isomorphism. Thus a sheaf supported in a closed subset
can be considered a sheaf on that closed subset.

8. Suppose F is a sheaf. Show that you can recover F from just knowing its behavior on
a base.

9+. In class, we mostly prove the following theorem: Suppose {Bi} is a base on X, and F is a
sheaf of sets on this base. Then there is a unique sheaf F extending F (with isomorphisms F(Bi) ∼=
F(Bi) agreeing with the restriction maps). In the proof, I did not describe a certain inverse
map F(B) → F(B). Do so, and verify that it is inverse to the obvious map F(B) → F(B).

10+. (morphisms of sheaves correspond to morphisms of sheaf on a base) Suppose {Bi} is a base
for the topology of X.
(a) Verify that a morphism of sheaves is determined by the induced morphism of sheaves
on the base.
(b) Show that a morphism of sheaves on the base (i.e. such that the diagram

F(Bi) //

��

G(Bi)

��

F(Bj) // G(Bj)

commutes for all Bj ↪→ Bi) gives a morphism of the induced sheaves.

11+. Suppose X = ∪Ui is an open cover of X, and we have sheaves Fi on Ui along with
isomorphisms φij : Fi|Ui∩Uj

→ Fj|Ui∩Uj
that agree on triple overlaps (i.e. φij ◦φjk = φij on

Ui ∩ Uj ∩ Uk). Show that these sheaves can be glued together into a unique sheaf F on X,
such that Fi = F |Ui

, and the isomorphisms over Ui ∩ Uj are the obvious ones. (Thus we
can “glue sheaves together”, using limited patching information.) (You can use the ideas
of this section to solve this problem, but you don’t necessarily need to. Hint: As the base,
take those open sets contained in some Ui.)

12. (for those with a little experience with manifolds) Prove that a continuous function of
differentiable manifolds f : X → Y is differentiable if differentiable functions pull back
to differentiable functions. (Hint: check this on small patches. Once you figure out what
you are trying to show, you’ll realize that the result is immediate.)

13. Show that a morphism of differentiable manifolds f : X → Y with f(p) = q induces a
morphism of stalks f# : OY,q → OX,p. Show that f#(mY,q) ⊂ mX,p.
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14-. A small exercise about small schemes. (a) Describe the set Spec k[ε]/ε2. This is called the
ring of dual numbers, and will turn out to be quite useful. You should think of ε as a very
small number, so small that its square is 0 (although it itself is not 0).
(b) Describe the set Spec k[x](x). (We will see this scheme again later.)

15-. Show that for primes of the form p = (x2 + ax + b) in R[x], the quotient R[x]/p is
always isomorphic to C.

16-. Describe the set A
1
Q. (This is harder to picture in a way analogous to A

1
R; but the rough

cartoon of points on a line remains a reasonable sketch.)

Class 6.

17. Show that all the prime ideals of C[x, y] are of the form (0), (f(x, y)), or (x − a, y − b).

18. Ring elements that have a power that is 0 are called nilpotents. If I is an ideal of
nilpotents, show that Spec B/I → Spec B is a bijection. Thus nilpotents don’t affect the
underlying set.

19. (only if you haven’t already seen this fact) Prove that the nilradical N(A) is the intersection
of all the primes of A.

20-. Show that if (S) is the ideal generated by S, then V(S) = V((S)).

21. (a) Show that ∅ and Spec A are both open.
(b) Show that V(I1) ∪ V(I2) = V(I1I2). Hence show that the intersection of any finite
number of open sets is open.
(c) (The union of any collection of open sets is open.) If Ii is a collection of ideals (as i runs
over some index set), check that ∩iV(Ii) = V(

∑
i Ii).

22. If I ⊂ R is an ideal, then define its radical by

√
I := {r ∈ R : rn ∈ I for some n ∈ Z

≥0}.

For example, the nilradical N is
√

(0). Show that V(
√

I) = V(I). We say an ideal is radical
if it equals its own radical.

23. (practice with the concept) If I1, . . . , In are ideals of a ring A, show that
√

∩n
i=1Ii =

∩n
i=1

√
Ii. (We will use this property without referring back to this exercise.)

24. (for future use) Show that
√

I is the intersection of all the prime ideals containing I.
(Hint: Use Problem 19 on an appropriate ring.)

25+. Suppose A → B is a ring homomorphism, and π : Spec B → Spec A is the induced
map of sets. By showing that closed sets pull back to closed sets, show that π is a continu-
ous map.

26+. Suppose that I, S ⊂ B are an ideal and multiplicative subset respectively. Show that
Spec B/I is naturally a closed subset of Spec B. Show that the Zariski topology on Spec B/I
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(resp. Spec S−1B) is the subspace topology induced by inclusion in Spec B. (Hint: compare
closed subsets.)

27. (useful for later) Suppose I ⊂ B is an ideal. Show that f vanishes on V(I) if and only if
fn ∈ I for some n.

28-. Describe the topological space Spec k[x](x).

29-. Show that on an irreducible topological space, any nonempty open set is dense. (The
moral of this is: unlike in the classical topology, in the Zariski topology, non-empty open
sets are all “very big”.)

30. Show that Spec A is irreducible if and only if A has only one minimal prime. (Mini-
mality is with respect to inclusion.) In particular, if A is an integral domain, then Spec A

is irreducible.

31-. Show that the closed points of Spec A correspond to the maximal ideals.

32-. If X = Spec A, show that [p] is a specialization of [q] if and only if q ⊂ p. Verify to your
satisfaction that we have made our intuition of “containment of points” precise: it means
that the one point is contained in the closure of another.

33. Verify that [(y − x2)] ∈ A2 is a generic point for V(y − x2).

34. (a) Suppose I = (wz − xy, wy − x2, xz − y2) ⊂ k[w, x, y, z]. Show that Spec k[w, x, y, z]
is irreducible, by showing that I is prime. (One possible approach: Show that quotient
ring is a domain, by showing that it is isomorphic to the subring of k[a, b] including only
monomials of degree divisible by 3. There are other approaches as well, some of which
we will see later. This is an example of a hard question: how do you tell if an ideal is
prime?) We will later see this as the cone over the twisted cubic curve.
(b) Note that the ideal of part (a) may be rewritten as

rank

(

w x y

x y z

)

= 1,

i.e. that all determinants of 2 × 2 submatrices vanish. Generalize this to the ideal of rank
1 2 × n matrices. This will correspond to the cone over the degree n rational normal curve.

35. Show that any decreasing sequence of closed subsets of A
2
C = Spec C[x, y] must even-

tually stabilize. Note that it can take arbitrarily long to stabilize. (The closed subsets of
A2

C were described in class.)

36. Suppose 0 → M ′ → M → M ′′ → 0, and M ′ and M ′′ satisfy the ascending chain
condition for modules. Show that M does too. (The converse also holds; we won’t use
this, but you can show it if you wish.)

37. If A is Noetherian, show that Spec A is a Noetherian topological space. Show that the
converse is not true. Describe a ring A such that Spec A is not a Noetherian topological
space.
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38. If A is any ring, show that the irreducible components of Spec A are in bijection with
the minimal primes of A.

E-mail address: vakil@math.stanford.edu
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