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1. WELCOME

Welcome! This is Math 216A, Foundations of Algebraic Geometry, the first of a three-
quarter sequence on the topic. I’d like to tell you a little about what I intend with this
course.

Algebraic geometry is a subject that somehow connects and unifies several parts of
mathematics, including obviously algebra and geometry, but also number theory, and
depending on your point of view many other things, including topology, string theory,
etc. As a result, it can be a handy thing to know if you are in a variety of subjects, no-
tably number theory, symplectic geometry, and certain kinds of topology. The power of
the field arises from a point of view that was developed in the 1960’s in Paris, by the
group led by Alexandre Grothendieck. The power comes from rather heavy formal and
technical machinery, in which it is easy to lose sight of the intuitive nature of the objects
under consideration. This is one reason why it used to strike fear into the hearts of the
uninitiated.

The rough edges have been softened over the ensuing decades, but there is an in-
escapable need to understand the subject on its own terms.

This class is the second version of an experiment. I hope to try several things, which are
mutually incompatible. Over the year, I want to cover the foundations of the subject quite
completely: the varieties and schemes, the morphisms between them, their properties,
cohomology theories, and more. I would like to do this rigorously, while trying hard to
keep track of the geometric intuition behind it. I’m going to try to do this without working
from a text, so I’ll occasionally talk myself into a corner, and then realize I’ll have to go
backwards and fix something earlier.
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Beginning algebraic geometry traditionally requires a lot of background. I’m going to
try to assume as little as possible, ideally just commutative ring theory, and some comfort
with things like prime ideals and localization. The more you know, the better, of course.
But if I say things that you don’t understand, please slow me down in class, and also talk
to me after class. Given the amount of material that there is in the foundations of the
subject, I’m afraid I’m going to move faster than I would like, which means that for you
it will be like drinking from a firehose. If it helps, I’m very happy to do my part to make
it easier for you, and I’m happy to talk about things outside of class. I also intend to post
notes for as many classes as I can. They will usually appear before the next class, but not
always.

In particular, this will not be the type of class where you can sit back and hope to pick
up things casually. The only way to avoid losing yourself in a sea of definitions is to
become comfortable with the ideas by playing with examples.

To this end, I intend to give problem sets, to be handed in. They aren’t intended to
be onerous, and if they become so, please tell me. But they are intended to force you to
become familiar with the ideas we’ll be using.

Okay, I think I’ve said enough to scare most of you away from coming back, so I want to
emphasize that I’d like to do everything in my power to make it better, short of covering
less material. The best way to get comfortable with the material is to talk to me on a
regular basis about it.

Office hours: I haven’t decided if it will be useful to have formal office hours rather
than being available to talk after class, and also on many days by appointment.

Grader/TA: Jarod Alper, jarod@math.

Texts: Here are some books to have handy. Hartshorne’s Algebraic Geometry has most
of the material that I’ll be discussing. It isn’t a book that you should sit down and read,
but you might find it handy to flip through for certain results. It may be at the bookstore,
and is on 2-day reserve at the library. Mumford’s Red Book of Varieties and Schemes has a
good deal of the material I’ll be discussing, and with a lot of motivation too. That is also
on 2-day reserve in the library. The second edition is strictly worse than the 1st, because
someone at Springer retyped it without understanding the math, introducing an irritating
number of errors. If you would like something gentler, I would suggest Shafarevich’s
books on algebraic geometry. Another excellent foundational reference is Eisenbud and
Harris’ book The Geometry of Schemes, and Harris’ earlier book Algebraic Geometry is a
beautiful tour of the subject.

For background, it will be handy to have your favorite commutative algebra book
around. Good examples are Eisenbud’s Commutative Algebra with a View to Algebraic Ge-
ometry, or Atiyah and Macdonald’s Commutative Algebra. If you’d like something with
homological algebra, category theory, and abstract nonsense, I’d suggest Weibel’s book
Introduction to Homological Algebra.
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Assumptions. All my rings are commutative, and with unit. I currently don’t require
0 6= 1, so the 0-ring, with one ring, counts as a ring for me. I may regret this later. I believe
in the axiom of choice, and in particular that every proper ideal in a ring is contained in a
maximal ideal.

2. WHY ALGEBRAIC GEOMETRY?

It is hard to define algebraic geometry in its vast generality in a couple of sentences. So
I’ll talk around it a bit.

As a motivation, consider the study of manifolds. Real manifolds are things that locally
look like bits of real n-space, and they are glued together to make interesting shapes.
There is already some subtlety here — when you glue things together, you have to specify
what kind of gluing is allowed. For example, if the transition functions are required to be
differentiable, then you get the notion of a differentiable manifold.

A great example of a manifold is a submanifold of Rn (consider a picture of a torus).
In fact, any compact manifold can be described in such a way. You could even make this
your definition, and not worry about gluing. This is a good way to think about manifolds,
but not the best way. There is something arbitrary and inessential about defining mani-
folds in this way. Much cleaner is the notion of an abstract manifold, which is the current
definition used by the mathematical community.

There is an even more sophisticated way of thinking about manifolds. A differentiable
manifold is obviously a topological space, but it is a little bit more. There is a very clever
way of summarizing what additional information is there, basically by declaring what
functions on this topological space are differentiable. The right notion is that of a sheaf,
which is a simple idea, that I’ll soon define for you. It is true, but non-obvious, that this
ring of functions that we are declaring to be differentiable determines the differentiable
manifold structure.

Very roughly, algebraic geometry, at least in its geometric guise, is the kind of geometry
you can describe with polynomials. So you are allowed to talk about things like y2 = x3 +

x, but not y = sin x. So some of the fundamental geometric objects under consideration
are things in n-space cut out by polynomials. Depending on how you define them, they
are called affine varieties or affine schemes. They are the analogues of the patches on a
manifold. Then you can glue these things together, using things that you can describe
with polynomials, to obtain more general varieties and schemes. So then we’ll have these
algebraic objects, that we call varieties or schemes, and we can talk about maps between
them, and things like that.

In comparison with manifold theory, we’ve really restricted ourselves by only letting
ourselves use polynomials. But on the other hand, we have gained a huge amount too.
First of all, we can now talk about things that aren’t smooth (that are singular), and we
can work with these things. Algebraic geometry provides particularly powerful tools for
dealing with singular objects. (One thing we’ll have to do is to define what we mean by
smooth and singular!) Also, we needn’t work over the real or complex numbers, so we
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can talk about arithmetic questions, such as: what are the rational points on y2 = x3 + x2?
(Here, we work over the field Q.) More generally, the recipe by which we make geometric
objects out of things to do with polynomials can generalize drastically, and we can make
a geometric object out of rings. This ends up being surprisingly useful — all sorts of
old facts in algebra can be interpreted geometrically, and indeed progress in the field of
commutative algebra these days usually requires a strong geometric background.

Let me give you some examples that will show you some surprising links between
geometry and number theory. To the ring of integers Z, we will associate a smooth curve
Spec Z. In fact, to the ring of integers in a number field, there is always a smooth curve,
and to its orders (subrings), we have singular = non-smooth curves.

An old flavor of Diophantine question is something like this. Given an equation in two
variables, y2 = x3 + x2, how many rational solutions are there? So we’re looking to solve
this equation over the field Q. Instead, let’s look at the equation over the field C. It turns
out that we get a complex surface, perhaps singular, and certainly non-compact. So let
me separate all the singular points, and compactify, by adding in points. The resulting
thing turns out to be a compact oriented surface, so (assuming it is connected) it has a
genus g, which is the number of holes it has. For example, y2 = x3 + x2 turns out to have
genus 0. Then Mordell conjectured that if the genus is at least 2, then there are at most
a finite number of rational solutions. The set of complex solutions somehow tells you
about the number of rational solutions! Mordell’s conjecture was proved by Faltings, and
earned him a Fields Medal in 1986. As an application, consider Fermat’s Last Theorem.
We’re looking for integer solutions to xn + yn = zn. If you think about it, we are basically
looking for rational solutions to Xn + Yn = 1. Well, it turns out that this has genus

(

n−1

2

)

— we’ll verify something close to this at some point in the future. Thus if n is at least 4,
there are only a finite number of solutions. Thus Falting’s Theorem implies that for each
n ≥ 4, there are only a finite number of counterexamples to Fermat’s last theorem. Of
course, we now know that Fermat is true — but Falting’s theorem applies much more
widely — for example, in more variables. The equations x3 + y2 + z14 + xy + 17 = 0 and
3x14 + x34y + · · · = 0, assuming their complex solutions form a surface of genus at least 2,
which they probably do, have only a finite number of solutions.

So here is where we are going. Algebraic geometry involves a new kind of “space”,
which will allow both singularities, and arithmetic interpretations. We are going to define
these spaces, and define maps between them, and other geometric constructions such as
vector bundles and sheaves, and before long, cohomology groups.

Motivating example: Varieties. This course will deal with the geometric notion of a
scheme, which generalizes the earlier notion of a variety. Ideally I’d like to give you a
semester’s worth of a pre-course, dealing with varieties.

3. A LITTLE BIT OF CATEGORY THEORY

That which does not kill me, makes me stronger. — Nietzsche
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Before we get to any interesting geometry, we need to develop the language to discuss
things cleanly and effectively. This is best done in the language of categories. If algebraic
geometry tends to strike fear into peoples’ hearts, category theory tends to induce sleep
and boredom, as abstract meaningless concepts are introduced and symbols are pushed
around. If I use the word topoi, you can shoot me. Here’s how you should think about
category theory for our purposes. There is not much to know about categories to get
started; it is just a very useful language. Like all mathematical languages, category theory
comes with an embedded logic, which allows us to abstract intuitions in settings we know
well to far more general situations.

Our motivation is as follows. We will be creating some new mathematical objects (such
as schemes, and families of sheaves), and we expect them to act like objects we have
seen before. We could try to nail down precisely what we mean by “act like”, and what
minimal set of things we have to check in order to verify that they act the way we expect.
Fortunately, we don’t have to — other people have done this before us, by defining key
notions, such as abelian categories, which behave like modules over a ring.

For example, we will define the notion of product of the geometric spaces (schemes).
We could just give a definition of product, but then you should want to know why this
precise definition deserves the name of “product”. As a motivation, we revisit the notion
of product in a situation we know well: (the category of) sets. One way to define the
product of sets U and V is as the set of ordered pairs {(u, v) : u ∈ U, v ∈ V}. But someone
from a different mathematical culture might reasonably define it as the set of symbols
{[v, u] : u ∈ U, v ∈ V}. These notions are “obviously the same”. Better: there is “an
obvious bijection between the two”.

This can be made precise by giving a better definition of product, in terms of a universal
property. Given two sets M and N, a product is a set P, along with maps µ : P → M and
ν : P → N, such that for any other set P ′ with maps µ ′ : P ′

→ M and ν ′ : P ′
→ N, these maps

must factor uniquely through P:

(1) P ′

∃!

  

ν ′

((P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

µ ′

��
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

P ν
//

µ

��

N

M

Thus a product is a diagram

P
ν

//

µ

��

N

M

and not just a set P, although the maps µ and ν are often left implicit.

This definition agrees with the usual definition, with one twist: there isn’t just a single
product; but any two products come with a canonical isomorphism between them. In
other words, the product is unique up to unique isomorphism. Here is why: if you have
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a product

P1

ν1
//

µ1

��

N

M

and I have a product

P2

ν2
//

µ2

��

N

M

then by the universal property of my product (letting (P2, µ2, ν2) play the role of (P, µ, ν),
and (P1, µ1, ν1) play the role of (P ′, µ ′, ν ′) in (1)), there is a unique map f : P1 → P2

making the appropriate diagram commute (i.e. µ1 = µ2 ◦ f and ν1 = ν2 ◦ f). Similarly
by the universal property of your product, there is a unique map g : P2 → P1 making
the appropriate diagram commute. Now consider the universal property of my product,
this time letting (P2, µ2, ν2) play the role of both (P, µ, ν) and (P ′, µ ′, ν ′) in (1). There is a
unique map h : P2 → P2 such that

P2

h

  
A

A

A

A

A

A

A

ν2

''P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

µ2

��
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

P2 ν2

//

µ2

��

N

M

commutes. However, I can name two such maps: the identity map idP2
, and g ◦ f. Thus

g ◦ f = idP2
. Similarly, f ◦ g = idP1

. Thus the maps f and g arising from the universal
property are bijections. In short, there is a unique bijection between P1 and P2 preserving
the “product structure” (the maps to M and N). This gives us the right to name any such
product M × N, since any two such products are canonically identified.

This definition has the advantage that it works in many circumstances, and once we de-
fine category, we will soon see that the above argument applies verbatim in any category
to show that products, if they exist, are unique up to unique isomorphism. Even if you
haven’t seen the definition of category before, you can verify that this agrees with your
notion of product in some category that you have seen before (such as the category of vec-
tor spaces, where the maps are taken to be linear maps; or the category of real manifolds,
where the maps are taken to be submersions).

This is handy even in cases that you understand. For example, one way of defining the
product of two manifolds M and N is to cut them both up into charts, then take products
of charts, then glue them together. But if I cut up the manifolds in one way, and you cut
them up in another, how do we know our resulting manifolds are the “same”? We could
wave our hands, or make an annoying argument about refining covers, but instead, we
should just show that they are indeed products, and hence the “same” (i.e. isomorphic).
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This argument is essentialy Yoneda’s lemma, which we will formalize shortly in Sec-
tion 5.

4. CATEGORIES AND FUNCTORS

Let’s now get our hands dirty. We begin with an informal definition of categories and
functors.

4.1. Categories.

A category C consists of a collection of objects, and for each pair of objects, a set of maps,
or morphisms (or arrows), between them. The collection of objects of a category C are often
denoted obj(C), but we will usually denote the collection C also by C. If A, B ∈ C, then the
morphisms from A to B are denoted Mor(A, B). A morphism is often written f : A → B,
and A is said to be the source of f, and B the target of f. Morphisms compose as expected:
there is a composition Mor(A, B) × Mor(B, C) → Mor(A, C), and if f ∈ Mor(A, B) and
g ∈ Mor(B, C), then their composition is denoted g ◦ f. Composition is associative: if
f ∈ Mor(A, B), g ∈ Mor(B, C), and h ∈ Mor(C, D), then h ◦ (g ◦ f) = (h ◦ g) ◦ f. For
each object A ∈ C, there is always an identity morphism idA : A → A, such that when you
(left- or right-)compose a morphism with the identity, you get the same morphism. More
precisely, if f : A → B is a morphism, then f ◦ idA = f = idB ◦f.

If we have a category, then we have a notion of isomorphism between two objects (if we
have two morphisms f : A → B and g : B → A, both of whose compositions are the iden-
tity on the appropriate object), and a notion of automorphism of an object (an isomorphism
of the object with itself).

4.2. Example. The prototypical example to keep in mind is the category of sets, denoted
Sets. The objects are sets, and the morphisms are maps of sets.

4.3. Example. Another good example is the category Veck of vector spaces over a given
field k. The objects are k-vector spaces, and the morphisms are linear transformations.

4.A. UNIMPORTANT EXERCISE. A category in which each morphism is an isomorphism
is called a groupoid. (This notion is not important in this class. The point of this exercise is
to give you some practice with categories, by relating them to an object you know well.)
(a) A perverse definition of a group is: a groupoid with one element. Make sense of this.
(b) Describe a groupoid that is not a group.
(For readers with a topological background: if X is a topological space, then the funda-
mental groupoid is the category where the objects are points of x, and the morphisms
from x → y are paths from x to y, up to homotopy. Then the automorphism group of
x0 is the (pointed) fundamental group π1(X, x0). In the case where X is connected, and
the π1(X) is not abelian, this illustrates the fact that for a connected groupoid — whose
definition you can guess — the automorphism groups of the objects are all isomorphic,
but not canonically isomorphic.)
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4.B. EXERCISE. If A is an object in a category C, show that the isomorphisms of A with
itself Isom(A, A) form a group (called the automorphism group of A, denoted Aut(A)). What
are the automorphism groups of the objects in Examples 4.2 and 4.3? Show that two
isomorphic objects have isomorphic automorphism groups.

4.4. Example: abelian groups. The abelian groups, along with group homomorphisms,
form a category Ab.

4.5. Example: modules over a ring. If A is a ring, then the A-modules form a category
ModA. (This category has additional structure; it will be the prototypical example of an
abelian category, which we’ll define next day.) Taking A = k, we obtain Example 4.3; taking
A = Z, we obtain Example 4.4.

4.6. Example: rings. There is a category Rings, where the objects are rings, and the
morphisms are morphisms of rings (which I’ll assume send 1 to 1).

4.7. Example: topological spaces. The topological spaces, along with continuous maps,
form a category Top. The isomorphisms are homeomorphisms.

4.8. Example: partially ordered sets. A partially ordered set, or poset, is a set (S,≥) along with
a binary relation ≥ satisfying:

(i) x ≥ x,
(ii) x ≥ y and y ≥ z imply x ≥ z (transitivity), and

(iii) if x ≥ y and y ≥ x then x = y.

A partially ordered set (S,≥) can be interpreted as a category whose objects are the ele-
ments of S, and with a single morphism from x to y if and only if x ≥ y (and no morphism
otherwise).

A trivial example is (S,≥) where x ≥ y if and only if x = y. Another example is

•

��

• // •

Here there are three objects. The identity morphisms are omitted for convenience, and
the three non-identity morphisms are depicted. A third example is

(2) •

��

// •

��

• // •

Here the “obvious” morphisms are again omitted: the identity morphisms, and the mor-
phism from the upper left to the lower right. Similarly,

· · · // • // • // •
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depicts a partially ordered set, where again, only the “generating morphisms” are de-
picted.

4.9. Example: the category of subsets of a set, and the category of open sets in a topological space.
If X is a set, then the subsets form a partially ordered set, where the order is given by
inclusion. Similarly, if X is a topological space, then the open sets form a partially ordered
set, where the order is given by inclusion. (What is the initial object? What is the final
object?)

4.10. Functors.

A covariant functor F from a category A to a category B, denoted F : A → B, is the
following data. It is a map of objects F : obj(A) → obj(B), and for each a1, a2 ∈ A a
morphism m : a1 → a2, F(m) is a morphism from F(A1) → F(A2) in B. F preserves
identity morphisms: for A ∈ A, F(idA) = idF(A). F preserves composition: F(m1 ◦ m2) =

F(m1) ◦ F(m2).

If F : A → B and G : B → C, then we may define a functor G ◦ F : A → C in the obvious
way. Composition of functors is associative.

4.11. Example: a forgetful functor.. Consider the functor from the category of complex
vector spaces Veck to Sets, that associates to each vector space its underlying set. The
functor sends a linear transformation to its underlying map of sets. This is an example
of a forgetful functor, where some additional structure is forgotten. Another example of a
forgetful functor is ModA → Ab from A-modules to abelian groups, remembering only
the abelian group structure of the A-module.

4.12. Topological examples. Examples of covariant functors include the fundamental group
functor π1, which sends a topological space with X choice of a point x0 ∈ X to a group
π1(X, x0), and the ith homology functor Top → Ab, which sends a topological space X to
its ith homology group Hi(X, Z). The covariance corresponds to the fact that a (continu-
ous) morphism of pointed topological spaces f : X → Y with f(x0) = y0 induces a map of
fundamental groups π1(X, x0) → π1(Y, y0), and similarly for homology groups.

4.13. Example. Suppose A is an element of a category C. Then there is a functor hA : C →

Sets sending B ∈ C to Mor(A, B), and sending f : B1 → B2 to Mor(A, B1) → Mor(A, B2)

described by

[g : A → B1] 7→ [f ◦ g : A → B1 → B2].

4.14. Example: partially ordered sets as index categories. Partially ordered sets will often turn
up as index categories. As a first example, if 2 is the category of (2), and A is a category,
then a functor 2 → A is precisely the information of a commuting square in A.
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4.15. Definition. A contravariant functor is defined in the same way as a covariant functor,
except the arrows switch directions: in the above language, F(A1 → A2) is now an arrow
from F(A2) to F(A1).

It is wise to always state whether a functor is covariant or contravariant. If it is not
stated, the functor is often assumed to be covariant.

4.16. Topological example (cf. Example 4.12). The the ith cohomology functor Hi(·, Z) :

Top → Ab is a contravariant functor.

4.17. Example. If Veck is the category of complex k-vector spaces, then taking duals gives
a contravariant functor ∨ : Veck → Veck. Indeed, to each linear transformation f : V → W,
we have a dual transformation f∨ : W∨

→ V∨, and (f ◦ g)∨ = g∨ ◦ f∨.

4.18. Example. There is a contravariant functor Top → Rings taking a topological space X

to the continuous functions on X. A morphism of topological spaces X → Y (a continuous
map) induces the pullback map from functions on Y to maps on X.

4.19. Example (cf. 4.13). Suppose A is an element of a category C. Then there is a con-
travariant functor hA : C → Sets sending B ∈ C to Mor(B, A), and sending f : B1 → B2 to
Mor(B2, A) → Mor(B1, A) described by

[g : B2 → A] 7→ [g ◦ f : B2 → B1 → A].

This example initially looks weird and different, but the previous two examples are just
special cases of this; do you see how? What is A in each case?

5. UNIVERSAL PROPERTIES

Given some category that we come up with, we often will have ways of producing new
objects from old. In good circumstances, such a definition can be made using the notion
of a universal property. Informally, we wish that there is an object with some property. We
first show that if it exists, then it is essentially unique, or more precisely, is unique up
to unique isomorphism. Then we go about constructing an example of such an object to
show existence.

With a little practice, universal properties are useful in proving things quickly slickly.
However, explicit constructions are often intuitively easier to work with, and sometimes
also lead to short proofs.

We have seen one important example of a universal property argument already in our
discussion of products. You should go back and verify that our discussion there gives
a notion of product in category, and shows that products, if they exist, are unique up to
canonical isomorphism.
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5.1. Another good example of a universal property construction is the notion of a tensor
product of A-modules

⊗A : obj(ModA) × obj(ModA) // obj(ModA)

M × N
� // M ⊗A N

The subscript A is often suppressed when it is clear from context. Tensor product is often
defined as follows. Suppose you have two A-modules M and N. Then elements of the
tensor product M ⊗A N are of the form m ⊗ n (m ∈ M, n ∈ N), subject to relations
(m1 + m2) ⊗ n = m1 ⊗ n + m2 ⊗ n, m ⊗ (n1 + n2) = m ⊗ n1 + m ⊗ n2, a(m ⊗ n) =

(am) ⊗ n = m ⊗ (an) (where a ∈ A).

If A is a field k, we get the tensor product of vector spaces.

5.A. EXERCISE (IF YOU HAVEN’T SEEN TENSOR PRODUCTS BEFORE). Calculate Z/10 ⊗Z

Z/12. (This exercise is intended to give some hands-on practice with tensor products.)

5.B. EXERCISE: RIGHT-EXACTNESS OF · ⊗A N. Show that · ⊗A N gives a covariant functor
ModA → ModA. Show that · ⊗A N is a right-exact functor, i.e. if

M ′
→ M → M ′′

→ 0

is an exact sequence of A-modules, then the induced sequence

M ′ ⊗A N → M ⊗A N → M ′′ ⊗A N → 0

is also exact. (For experts: is there a universal property proof?)

This is a weird definition, and really the “wrong” definition. To motivate a better one:
notice that there is a natural A-bilinear map M × N → M ⊗A N. Any A-bilinear map
M×N → C factors through the tensor product uniquely: M×N → M⊗A N → C. (Think
this through!)

We can take this as the definition of the tensor product as follows. It is an A-module T

along with an A-bilinear map t : M × N → T , such any other such map factors through t

that given any other t ′ : M×N → T ′, there is a unique map f : T → T ′ such that t ′ = f ◦ t.

M × N
t

//

t ′

##H
H

H

H

H

H

H

H

H

T

∃!f
��

T ′

5.C. EXERCISE. Show that (T, t : M × N → T) is unique up to unique isomorphism.
Hint: first figure out what “unique up to unique isomorphism” means for such pairs.
Then follow the analogous argument for the product. (This exercise will prime you for
Yoneda’s Lemma.)
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In short: there is an A-bilinear map t : M × N → M ⊗A N, unique up to unique
isomorphism, defined by the following universal property: for any A-bilinear map t ′ :

M × N → T ′ there is a unique f : M ⊗A N → T ′ such that t ′ = f ◦ t.

Note that this argument shows uniqueness assuming existence. We need to still show the
existence of such a tensor product. This forces us to do something constructive.

5.D. EXERCISE. Show that the construction of §5.1 satisfies the universal property of
tensor product.

The uniqueness of tensor product is our second example of the proof of uniqueness
(up to unique isomorphism) by a universal property. If you have never seen this sort of
argument before, then you might think you get it, but you don’t, so you should think
over it some more. We will be using such arguments repeatedly in the future. We’ll soon
formalize this way of thinking in Yoneda’s Lemma.

Before getting to it, we’ll give another exercise that involves universal properties.

5.2. Definition. An object of a category C is an initial object if it has precisely one map to
every other object. It is a final object if it has precisely one map from every other object. It
is a zero-object if it is both an initial object and a final object.

5.E. EXERCISE. Show that any two initial objects are canonically isomorphic. Show that
any two final objects are canonically isomorphic.

This (partially) justifies the phrase “the initial object” rather than “an initial object”, and
similarly for “the final object” and “the zero object”.

5.F. EXERCISE. State what the initial and final objects are in Sets, Rings, and Top (if they
exist).

Next day: Yoneda’s lemma. Limits. Maybe even some sheaves.
E-mail address: vakil@math.stanford.edu
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FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 2

RAVI VAKIL

CONTENTS

1. Where we were 1
2. Yoneda’s lemma 2
3. Limits and colimits 6
4. Adjoints 8

First, some bureaucratic details.

• We will move to 380-F for Monday’s class.
• Please sign up on this sign-up sheet. I’m going to use it to announce important

things like room changes and problem sets.
• Problem sets will be due on Fridays, and I’ll try to give them out at least a week in

advance. The first set will be out by tomorrow, on the class website. I’ll announce
it by e-mail. The problems will all be from the notes, and almost all from the class.

• Jarod will be hosting problem sessions on Wednesdays from 5-6 pm, starting next
week, at a location to be announced later. This is a great chance to ask him lots of
questions, and to hear interesting questions from other people.

If you weren’t here last day, you can see the notes on-line. The main warning is that
this is going to be a hard class, and you should take it only if you really want to, and also
that you should ask me lots of questions, both during class and out of class. And you
should do lots of problems.

1. WHERE WE WERE

Last day, we begin by discussing some category theory. Keep in mind that our mo-
tivation in learning this is to formalize what we already know, so we can use it in new
contexts. Today we should finish with category theory, and we may even begin to discuss
sheaves.

The most important notion from last day was the fact that universal properties essen-
tially determine things up to unique isomorphism.

Date: Wednesday, September 26, 2007. Revised Oct. 13.
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For example, in any category, the product of two objects M and N is an object P, along
with maps µ : P →M and ν : P → N, such that for any other object P ′ with maps µ ′ : P ′ →M

and ν ′ : P ′ → N, these maps must factor uniquely through P:

(1) P ′

∃!

  

ν ′

((P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

µ ′

��0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

P ν
//

µ

��

N

M

Thus a product is a diagram
P

ν //

µ

��

N

M

and not just a set P, although the maps µ and ν are often left implicit.

Another good example of a universal property construction is the notion of a tensor
product of A-modules. It is an A-module T along with an A-bilinear map t : M × N→ T ,
such that any other such map factors through t: given any other t ′ : M× N→ T ′, there is
a unique map f : T → T ′ such that t ′ = f ◦ t.

M × N
t //

t ′

##H
H

H

H

H

H

H

H

H

T

∃!f��
T ′

I gave you the exercise of showing that (T, t : M × N → T) (should it exist) is unique
up to unique isomorphism. You should really do this, because I’m going to use universal
property arguments a whole lot. If you know how to do one of these arguments, you’ll
know how to do them all.

I then briefly gave other examples: initial objects, final objects, and zero-objects (=ini-
tial+final).

2. YONEDA’S LEMMA

2.1. Yoneda’s Lemma.

Suppose A is an object of category C. For any object C ∈ C, we have a set of morphisms
Mor(C, A). If we have a morphism f : B→ C, we get a map of sets

(2) Mor(C, A)→ Mor(B, A),

by composition: given a map from C to A, we get a map from B to A by precomposing
with f. Hence this gives a contravariant functor hA : C → Sets. Yoneda’s Lemma states
that the functor hA determines A up to unique isomorphism. More precisely:
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2.2. Yoneda’s lemma. — Given two objects A and A ′, and bijections

(3) iC : Mor(C, A)→ Mor(C, A ′)

that commute with the maps (2), then the iC must be induced from a unique isomorphism
A→ A ′.

2.A. IMPORTANT EXERCISE (THAT EVERYONE SHOULD DO ONCE IN THEIR LIFE). Prove
this. (Hint: This sounds hard, but it really is not. This statement is so general that there are
really only a couple of things that you could possibly try. For example, if you’re hoping to
find an isomorphism A→ A ′, where will you find it? Well, you’re looking for an element
Mor(A, A ′). So just plug in C = A to (3), and see where the identity goes. You’ll quickly
find the desired morphism; show that it is an isomorphism, then show that it is unique.)

2.3. Remark. There is an analogous statement with the arrows reversed, where instead of
maps into A, you think of maps from A.

2.4. Remark: the full statement of Yoneda’s Lemma. It won’t matter so much for us (so I didn’t
say it in class), but it is useful to know the full statement of Yoneda’s Lemma. A covariant
functor F : A→ B is faithful if for all A, A ′ ∈ A, the map MorA(A, A ′)→ MorB(F(A), F(A ′))

is injective, and full if it is surjective. A functor that is full and faithful is fully faithful. A
subcategory i : A → B is a full subcategory if i is full. If C is a category, consider the
contravariant functor

h : C → SetsC

where the category on the right is the “functor category” where the objects are contravari-
ant functors C → Sets. (What are the morphisms in this category? You will rediscover the
notion of natural transformation of functors.) This functor h sends A to hA. Yoneda’s lemma
states that this is a fully faithful functor, called the Yoneda embedding.

2.5. Example: Fibered products. (This notion of fibered product will be important for us
later.) Suppose we have morphisms X, Y → Z (in any category). Then the fibered product is
an object X×ZY along with morphisms to X and Y, where the two compositions X×ZY → Z

agree, such that given any other object W with maps to X and Y (whose compositions to
Z agree), these maps factor through some unique W → X ×Z Y:

W
∃!

##

��5
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

))S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

X ×Z Y

πX

��

πY // Y

g

��
X

f // Z

By a universal property argument, if it exists, it is unique up to unique isomorphism.
(You should think this through until it is clear to you.) Thus the use of the phrase “the
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fibered product” (rather than “a fibered product”) is reasonable, and we should reason-
ably be allowed to give it the name X ×Z Y. We know what maps to it are: they are
precisely maps to X and maps to Y that agree on maps to Z.

The right way to interpret this is first to think about what it means in the category of
sets.

2.B. EXERCISE. Show that in Sets,

X ×Z Y = {(x ∈ X, y ∈ Y) : f(x) = g(y)}.

More precisely, describe a natural isomorphism between the left and right sides. (This
will help you build intuition for fibered products.)

2.C. EXERCISE. If X is a topological space, show that fibered products always exist in
the category of open sets of X, by describing what a fibered product is. (Hint: it has a
one-word description.)

2.D. EXERCISE. If Z is the final object in a category C, and X, Y ∈ C, then “X ×Z Y =

X × Y”: “the” fibered product over Z is canonically isomorphic to “the” product. (This is
an exercise about unwinding the definition.)

2.E. UNIMPORTANT EXERCISE. Show that in the category Ab of abelian groups, the
kernel K of f : A→ B can be interpreted as a fibered product:

K //

��

A

��
0 // B

We make a definition to set up an exercise.

2.6. Definition. A morphism f : X → Y is a monomorphism if any two morphisms
g1, g2 : Z → X such that f ◦ g1 = f ◦ g2 must satisfy g1 = g2. This a generalization of of
an injection of sets. In other words, there is a unique way of filling in the dotted arrow so
that the following diagram commutes.

Z

≤1

�� ��?
?

?

?

?

?

?

X
f // Y.

Intuitively, it is the categorical version of an injective map, and indeed this notion gener-
alizes the familiar notion of injective maps of sets.

2.7. Remark. The notion of an epimorphism is “dual” to this diagramatic definition,
where all the arrows are reversed. This concept will not be central for us, although it is
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necessary for the definition of an abelian category. Intuitively, it is the categorical version
of a surjective map.

2.F. EXERCISE. Prove a morphism is a monomorphism if and only if the natural mor-
phism X → X ×Y X is an isomorphism. (What is this natural morphism?!) We may then
take this as the definition of monomorphism. (Monomorphisms aren’t very central to
future discussions, although they will come up again. This exercise is just good practice.)

2.G. EXERCISE. Suppose X→ Y is a monomorphism, and W, Z→ X are two morphisms.
Show that W ×X Z and W ×Y Z are canonically isomorphic. We will use this later when
talking about fibered products. (Hint: for any object V , give a natural bijection between
maps from V to the first and maps from V to the second.)

2.H. EXERCISE. Given X → Y → Z, show that there is a natural morphism X ×Y X →
X×ZX, assuming that both fibered products exist. (This is trivial once you figure out what
it is saying. The point of this exercise is to see why it is trivial.)

2.I. UNIMPORTANT EXERCISE. Define coproduct in a category by reversing all the arrows
in the definition of product. Show that coproduct for Sets is disjoint union.

2.J. EXERCISE. Suppose C→ A, B are two ring morphisms, so in particular A and B are C-
modules. Define a ring structure A⊗C B with multiplication given by (a1⊗b1)(a2⊗b2) =

(a1a2)⊗ (b1b2). There is a natural morphism A→ A⊗C B given by a 7→ (a, 1). (Warning:
This is not necessarily an inclusion.) Similarly, there is a natural morphism B → A ⊗C B.
Show that this gives a coproduct on rings, i.e. that

A ⊗C B Boo

A

OO

Coo

OO

satisfies the universal property of coproduct.

2.K. IMPORTANT EXERCISE FOR LATER. We continue the notation of the previous exer-
cise. Let I be an ideal of A. Let Ie be the extension of I to A ⊗C B. (These are the elements∑

j ij ⊗ bj where ij ∈ I, bj ∈ B.) Show that there is a natural isomorphism

(A/I) ⊗C B ∼= (A ⊗C B)/Ie.

(Hint: consider I→ A→ A/I→ 0, and use the right exactness of ⊗CB.)

Hence the natural morphism B→ B⊗C (A/I) is a surjection. As an application, we can
compute tensor products of finitely generated k algebras over k. For example, we have a
canonical isomorphism

k[x1, x2]/(x2
1 − x2) ⊗k k[y1, y2]/(y3

1 + y3
2)

∼= k[x1, x2, y1, y2]/(x2
1 − x2, y

3
1 + y3

2).
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3. LIMITS AND COLIMITS

Limits and colimits provide two important examples defined by universal properties.
They generalize a number of familiar constructions. I’ll give the definition first, and then
show you why it is familiar. (For example, we’ll see that the p-adics are a limit, and
fractions are a colimit.)

3.1. Limits. We say that a category is an index category (a technical condition intended
only for experts) the objects form a set. An example is a partially ordered set (in which
there in particular there is only one morphism between objects), and indeed all of our ex-
amples will be partially ordered sets. Suppose I is any index category (such as a partially
ordered set), and C is any category. Then a functor F : I → C (i.e. with an object Ai ∈ C for
each element i ∈ I, and appropriate commuting morphisms dictated by I) is said to be a
diagram indexed by I. Commuting squares can be interpreted in this way.

Then the limit is an object lim
←−I

Ai of C along with morphisms fi : lim
←−I

Ai such that if
m : i→ j is a morphism in I, then

lim
←−I

Ai

fi

��

fj

""F
F

F

F

F

F

F

F

F

Ai

F(m)
// Aj

commutes, and this object and maps to each Ai is universal (final) respect to this property.
(The limit is sometimes called the inverse limit or projective limit.) By the usual universal
property argument, if the limit exists, it is unique up to unique isomorphism.

3.2. Examples: products. For example, if I is the partially ordered set

•

��
• // •

we obtain the fibered product.

If I is

• •

we obtain the product.

If I is a set (i.e. the only morphisms are the identity maps), then the limit is called the
product of the Ai, and is denoted

∏
i Ai. The special case where I has two elements is the

example of the previous paragraph.

3.3. Example: the p-adics. The p-adic numbers, Zp, are often described informally (and
somewhat unnaturally) as being of the form Zp = ? + ?p + ?p2 + ?p3 + · · · . They are an
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example of a limit in the category of rings:

Zp

!!D
D

D

D

D

D

D

D

))R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

++V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

· · · // Z/p3 // Z/p2 // Z/p

Limits do not always exist. For example, there is no limit of · · · → Z/p3 → Z/p2 →
Z/p→ 0 in the category of finite rings.

However, you can often easily check that limits exist if the elements of your category
can be described as sets with additional structure, and arbitrary products exist (respecting
the set structure).

3.A. EXERCISE. Show that in the category Sets,

{(ai)i∈I ∈
∏

i

Ai : F(m)(ai) = aj for all [m : i→ j] ∈ Mor(I)},

along with the projection maps to each Ai, is the limit lim
←−I

Ai.

This clearly also works in the category ModA of A-modules, and its specializations such
as Veck and Ab.

From this point of view, 2 + 3p + 2p2 + · · · ∈ Zp can be understood as the sequence
(2, 2 + 3p, 2 + 3p + 2p2, . . . ).

3.4. Colimits. More immediately relevant for us will be the dual of the notion of
inverse limit. We just flip all the arrows in that definition, and get the notion of a direct
limit. Again, if it exists, it is unique up to unique isomorphism. (The colimit is sometimes
called the direct limit or injective limit.)

A limit maps to all the objects in the big commutative diagram indexed by I. A colimit
has a map from all the objects.

Even though we have just flipped the arrows, somehow colimits behave quite differ-
ently from limits.

3.5. Example. The ring 5−∞Z of rational numbers whose denominators are powers of 5 is
a colimit lim

−→
5−iZ. More precisely, 5∞Z is the colimit of

Z // 5−1Z // 5−2Z // · · ·

The colimit over an index set I is called the coproduct, denoted
∐

i Ai, and is the dual
notion to the product.
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3.B. EXERCISE. (a) Interpret the statement “Q = lim
−→

1
n
Z”. (b) Interpret the union of some

subsets of a given set as a colimit. (Dually, the intersection can be interpreted as a limit.)

Colimits always exist in the category of sets:

3.C. EXERCISE. Consider the set {(i ∈ I, ai ∈ Ai)} modulo the equivalence generated by:
if m : i→ j is an arrow in I, then (i, ai) ∼ (j, F(m)(ai)). Show that this set, along with the
obvious maps from each Ai, is the colimit.

Thus in Example 3.5, each element of the direct limit is an element of something up-
stairs, but you can’t say in advance what it is an element of. For example, 17/125 is an
element of the 5−3Z (or 5−4Z, or later ones), but not 5−2Z.

3.6. Example: colimits of A-modules. A variant of this construction works in a number of
categories that can be interpreted as sets with additional structure (such as abelian groups,
A-modules, groups, etc.). While in the case of sets, the direct limit is a quotient object of
the direct sum (= disjoint union) of the Ai, in the case of A-modules (for example), the
direct limit is a quotient object of the direct sum of rings. thus the direct limit is ⊕Ai

modulo aj − F(m)(ai) for every m : i→ j in I.

3.D. EXERCISE. Verify that the A-module described above is indeed the colimit.

3.7. Summary. One useful thing to informally keep in mind is the following. In a
category where the objects are “set-like”, an element of a colimit can be thought of (“has a
representative that is”) an element of a single object in the diagram. And an element of a
limit can be thought of as an element in each object in the diagram, that are “compatible”.
Even though the definitions of limit and colimit are the same, just with arrows reversed,
these interpretations are quite different.

4. ADJOINTS

Here is another example of a construction closely related to universal properties. We
now define adjoint functors. Two covariant functors F : A → B and G : B → A are adjoint
if there is a natural bijection for all A ∈ A and B ∈ B

τAB : MorB(F(A), B)→ MorA(A, G(B)).

In this instance, let me make precise what “natural” means. For all f : A → A ′ in A, we
require

(4) MorB(F(A ′), B)
Ff∗ //

τ

��

MorB(F(A), B)

τ

��
MorA(A ′, G(B))

f∗ // MorA(A, G(B))
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to commute, and for all g : B → B ′ in B we want a similar commutative diagram to
commute. (Here f∗ is the map induced by f : A → A ′, and Ff∗ is the map induced by
Ff : L(A)→ L(A ′).)

4.A. EXERCISE. Write down what this diagram should be. (Hint: do it by extending
diagram (4) above.)

You’ve actually seen this before, in linear algebra, when you have seen adjoint matrices.
Here is another example.

4.B. EXERCISE. Suppose M, N, and P are A-modules. Describe a natural bijection
MorA(M ⊗A N, P) = MorA(M, MorA(N, P)). (Hint: try to use the universal property.) If
you wanted, you could check that · ⊗A N and MorA(N, ·) are adjoint functors. (Checking
adjointness is never any fun!)

4.1. Example: groupification. Here is another motivating example: getting an abelian
group from an abelian semigroup. An abelian semigroup is just like a group, except
you don’t require an inverse. One example is the non-negative integers 0, 1, 2, . . . under
addition. Another is the positive integers under multiplication 1, 2, . . . . From an abelian
semigroup, you can create an abelian group, and this could be called groupification. Here
is a formalization of that notion. If S is a semigroup, then its groupification is a map of
semigroups π : S→ G such that G is a group, and any other map of semigroups from S to
a group G ′ factors uniquely through G.

S //

π

  @
@

@

@

@

@

@

@

G

∃!
��

G ′

4.C. EXERCISE. Define groupification H from the category of abelian semigroups to the
category of abelian groups. (One possibility of a construction: given an abelian semigroup
S, the elements of its groupification H(S) are (a, b), which you may think of as a−b, with
the equivalence that (a, b) ∼ (c, d) if a + d = b + c. Describe addition in this group,
and show that it satisfies the properties of an abelian group. Describe the semigroup map
S → H(S).) Let F be the forgetful morphism from the category of abelian groups Ab to
the category of abelian semigroups. Show that H is left-adjoint to F.

(Here is the general idea for experts: We have a full subcategory of a category. We
want to “project” from the category to the subcategory. We have Morcategory(S, H) =

Morsubcategory(G, H) automatically; thus we are describing the left adjoint to the forgetful
functor. How the argument worked: we constructed something which was in the small
category, which automatically satisfies the universal property.)

4.D. EXERCISE. Show that if a semigroup is already a group then groupification is the
identity morphism, by the universal property.
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4.E. EXERCISE. The purpose of this exercise is to give you some practice with “ad-
joints of forgetful functors”, the means by which we get groups from semigroups, and
sheaves from presheaves. Suppose A is a ring, and S is a multiplicative subset. Then
S−1A-modules are a fully faithful subcategory of the category of A-modules (meaning:
the objects of the first category are a subset of the objects of the second; and the mor-
phisms between any two objects of the second that are secretly objects of the first are just
the morphisms from the first). Then M → S−1M satisfies a universal property. Figure
out what the universal property is, and check that it holds. In other words, describe the
universal property enjoyed by M→ S−1M, and prove that it holds.

(Here is the larger story. Let S−1A-Mod be the category of S−1A-modules, and A-Mod
be the category of A-modules. Every S−1A-module is an A-module, and this is an injective
map, so we have a (covariant) forgetful functor F : S−1A-Mod→ A-Mod. In fact this is a
fully faithful functor: it is injective on objects, and the morphisms between any two S−1A-
modules as A-modules are just the same when they are considered as S−1A-modules. Then
there is a functor G : A-Mod→ S−1A-Mod, which might reasonably be called “localization
with respect to S”, which is left-adjoint to the forgetful functor. Translation: If M is an
A-module, and N is an S−1A-module, then Mor(GM, N) (morphisms as S−1A-modules,
which is incidentally the same as morphisms as A-modules) are in natural bijection with
Mor(M, FN) (morphisms as A-modules).)

4.2. Useful comment for experts. Here is one last useful comment intended only for peo-
ple who have seen adjoints before. If (F, G) is an adjoint pair of functors, then F preserves
all colimits, and G preserves all limits.

E-mail address: vakil@math.stanford.edu
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FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 3

RAVI VAKIL

CONTENTS

1. Kernels, cokernels, and exact sequences: A brief introduction to abelian
categories 1

2. Sheaves 7
3. Motivating example: The sheaf of differentiable functions. 7
4. Definition of sheaf and presheaf 9

Last day: category theory in earnest. Universal properties. Limits and colimits. Ad-
joints.

Today: abelian categories: kernels, cokernels, and all that jazz.

Here are some additional comments on last day’s material. The details of Yoneda’s
lemma don’t matter so much; what matters most is that you understand how universal
properties determine objects up to unique isomorphism.

It doesn’t matter much, but limits and colimits needn’t be indexed only by categories
where there is at most one morphism between any two objects. I gave an example involv-
ing a G-action on a set X (where G is a finite group). The G-invariants can be interpreted
as limit.

Tony Licata gave a nice argument that ⊗ is right-exact using a universal property argu-
ment.

1. KERNELS, COKERNELS, AND EXACT SEQUENCES: A BRIEF INTRODUCTION TO
ABELIAN CATEGORIES

Since learning linear algebra, you have been familiar with the notions and behaviors of
kernels, cokernels, etc. Later in your life you saw them in the category of abelian groups,
and later still in the category of A-modules. Each of these notions generalizes the previous
one. The notion of abelian category formalizes kernels etc.

Date: Monday, October 1, 2007. Updated November 4, 2007 to add espace étalé construction.
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We now briefly introduce a few notions about abelian categories. We will soon define
some new categories (certain sheaves) that will have familiar-looking behavior, reminis-
cent of that of modules over a ring. The notions of kernels, cokernels, images, and more
will make sense, and they will behave “the way we expect” from our experience with
modules. This can be made precise through the notion of an abelian category. We will
see enough to motivate the definitions that we will see in general: monomorphism (and
subobject), epimorphism, kernel, cokernel, and image. But we will avoid having to show
that they behave “the way we expect” in a general abelian category because the examples
we will see will be directly interpretable in terms of modules over rings.

Abelian categories are the right general setting in which one can do “homological al-
gebra”, in which notions of kernel, cokernel, and so on are used, and one can work with
complexes and exact sequences.

Two key examples of an abelian category are the category Ab of abelian groups, and
the category ModA of A-modules. As stated earlier, the first is a special case of the second
(just take A = Z). As we give the definitions, you should verify that ModA is an abelian
category, and you should keep these examples in mind always.

We first define the notion of additive category. We will use it only as a stepping stone to
the notion of an abelian category.

1.1. Definition. A category C is said to be additive if it satisfies the following properties.

Ad1. For each A, B ∈ C, Mor(A, B) is an abelian group, such that composition of mor-
phisms distributes over addition. (You should think about what this means — it
translates to two distinct statements).

Ad2. C has a zero-object, denoted 0. (Recall: this is an object that is simultaneously an
initial object and a final object.)

Ad3. It has products of two objects (a product A × B for any pair of objects), and hence
by induction, products of any finite number of objects.

In an additive category, the morphisms are often called homomorphisms, and Mor is
denoted by Hom. In fact, this notation Hom is a good indication that you’re working
in an additive category. A functor between additive categories preserving the additive
structure of Hom, and sending the 0-object to the 0-object, is called an additive functor. (It
is a consequence of the definition that additive functors send 0-objects to 0-objects, and
preserve products.)

1.2. Remarks. It is a consequence of the definition of additive category that finite di-
rect products are also finite direct sums=coproducts (the details don’t matter to us). The
symbol ⊕ is used for this notion.

One motivation for the name 0-object is that the 0-morphism in the abelian group
Hom(A, B) is the composition A→ 0→ B.
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Real (or complex) Banach spaces are an example of an additive category. The category
ModA of A-modules is another example, but it has even more structure, which we now
formalize as an example of an abelian category.

1.3. Definition. Let C be an additive category. A kernel of a morphism f : B → C is a
map i : A → B such that f ◦ i = 0, and that is universal with respect to this property.
Diagramatically:

Z

��?
?

?
?

?
?

?

0

''OOOOOOOOOOOOOOO

∃!
��

A
i

//

0

77B
f

// C

(Note that the kernel is not just an object; it is a morphism of an object to B.) Hence it is
unique up to unique isomorphism by universal property nonsense. A cokernel is defined
dually by reversing the arrows — do this yourself. Notice that the kernel of f : B → C is
the limit

0

��

B
f

// C

and similarly the cokernel is a colimit.

A morphism i : A → B in C is monic if for all i ◦ g = 0, where the tail of g is A, implies
g = 0. Diagramatically,

C

∴g=0

��

0

��?
?

?
?

?
?

?

A
i

// B

(Once we know what an abelian category is — in a few sentences — you may check that a
monic morphism in an abelian category is a monomorphism.) If i : A→ B is monic, then
we say that A is a subobject of B, where the map i is implicit. Dually, there is the notion of
epi — reverse the arrows to find out what that is. The notion of quotient object is defined
dually to subobject.

An abelian category is an additive category satisfying three additional properties.

(1) Every map has a kernel and cokernel.
(2) Every monic morphism is the kernel of its cokernel.
(3) Every epi morphism is the cokernel of its kernel.

It is a non-obvious (and imprecisely stated) fact that every property you want to be true
about kernels, cokernels, etc. follows from these three.

The image of a morphism f : A → B is defined as im(f) = ker(coker f). It is the unique
factorization

A
epi

// im(f)
monic

// B
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It is the cokernel of the kernel, and the kernel of the cokernel. The reader may want to
verify this as an exercise. It is unique up to unique isomorphism.

We will leave the foundations of abelian categories untouched. The key thing to re-
member is that if you understand kernels, cokernels, images and so on in the category of
modules over a ring ModA, you can manipulate objects in any abelian category. This is
made precise by Freyd-Mitchell Embedding Theorem. However, the abelian categories
we’ll come across will obviously be related to modules, and our intuition will clearly
carry over. For example, we’ll show that sheaves of abelian groups on a topological space
X form an abelian category. The interpretation in terms of “compatible germs” will con-
nect notions of kernels, cokernels etc. of sheaves of abelian groups to the corresponding
notions of abelian groups.

1.4. Complexes, exactness, and homology.

If you aren’t familiar with these notions, you should definitely read this section
closely!

We say

(1) A
f

// B
g

// C

is a complex if g ◦ f = 0, and is exact if ker g = im f. If (1) is a complex, then its homology
is ker g/ im f. We say that ker g are the cycles, and im f are the boundaries. Homology (resp.
cohomology) is denoted by H, often with a subscript (resp. superscript), and it should be
clear from the context what the subscript means (see for example the discussion below).

An exact sequence

(2) A• : · · · // Ai−1
fi−1

// Ai
fi

// Ai+1
fi+1

// · · ·

can be “factored” into short exact sequences

0 //
ker fi // Ai //

ker fi+1 // 0

which is helpful in proving facts about long exact sequences by reducing them to facts
about short exact sequences.

More generally, if (2) is assumed only to be a complex, then it can be “factored” into
short exact sequences

0 //
ker fi // Ai //

im fi // 0

0 //
im fi−1 //

ker fi // Hi(A•) // 0

1.A. EXERCISE. Suppose

0
d0

// A1
d1

// · · ·
dn−1

// An dn
// // 0
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is a complex of k-vector spaces (often called A• for short). Show that
∑

(−1)i
dim Ai =∑

(−1)ihi(A•). (Recall that hi(A•) = dim ker(di)/ im(di−1).) In particular, if A• is exact,
then

∑
(−1)i

dim Ai = 0. (If you haven’t dealt much with cohomology, this will give you
some practice.)

1.B. IMPORTANT EXERCISE. Suppose C is an abelian category. Define the category ComC

as follows. The objects are infinite complexes

A• : · · · // Ai−1
fi−1

// Ai
fi

// Ai+1
fi+1

// · · ·

in C, and the morphisms A• → B• are commuting diagrams

A• :

��

· · · // Ai−1

��

fi−1
// Ai

fi
//

��

Ai+1
fi+1

//

��

· · ·

B• : · · · // Bi−1
fi−1

// Bi
fi

// Bi+1
fi+1

// · · ·

Show that ComC is an abelian category. Show that a short exact sequence of complexes
0 :

��

· · · // 0 //

��

0 //

��

0 //

��

· · ·

A• :

��

· · · // Ai−1

��

fi−1
// Ai

fi
//

��

Ai+1
fi+1

//

��

· · ·

B• :

��

· · · // Bi−1

��

gi−1

// Bi
gi

//

��

Bi+1
gi+1

//

��

· · ·

C• :

��

· · · // Ci−1
hi−1

//

��

Ci
hi

//

��

Ci+1
hi+1

//

��

· · ·

0 : · · · // 0 // 0 // 0 // · · ·

induces a long exact sequence in cohomology
. . . // Hi−1(C•) //

Hi(A•) // Hi(B•) // Hi(C•) //

Hi+1(A•) // · · ·

1.5. Exactness of functors. If F : A → B is a covariant additive functor from one abelian
category to another, we say that F is right-exact if the exactness of

A ′ // A // A ′′ // 0,

in A implies that
F(A ′) // F(A) // F(A ′′) // 0
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is also exact. Dually, we say that F is left-exact if the exactness of

0 // A ′ // A // A ′′ implies

0 // F(A ′) // F(A) // F(A ′′) is exact.

A contravariant functor is left-exact if the exactness of

A ′ // A // A ′′ // 0 implies

0 // F(A ′′) // F(A) // F(A ′) is exact.

The reader should be able to deduce what it means for a contravariant functor to be right-
exact.

A covariant or contravariant functor is exact if it is both left-exact and right-exact.

1.6. ? Interactions of adjoints, (co)limits, and (left and right) exactness. There are some
useful properties of adjoints that make certain arguments quite short. This is intended
only for experts, and can be ignored by most people in the class, so this won’t be said
during class. We present them as three facts. Suppose (F : C → D, G : D → C) is a pair of
adjoint functors.

Fact 1. F commutes with colimits, and G commutes with limits.

We prove the second statement here. The first is the same, “with the arrows reversed”.
We begin with a useful fact.

1.C. EXERCISE: Mor(X, ·) COMMUTES WITH LIMITS. Suppose Ai (i ∈ I) is a diagram
in D indexed by I, and lim

←−
Ai → Ai is its limit. Then for any X ∈ D, Mor(X, lim

←−
Ai) →

Mor(X, Ai) is the limit lim
←−

Mor(X, Ai).

We are now ready to prove (one direction of) Fact 1.

1.7. Proposition (right-adjoints commute with limits). — Suppose (F : C → D, G : D → C)

is a pair of adjoint functors. If A = lim
←−

Ai is a limit in D of a diagram indexed by I, then
GA = lim

←−
GAi (with the corresponding maps GA→ GAi) is a limit in C.

Proof. We must show that GA → GAi satisfies the universal property of limits. Suppose
we have maps W → GAi commuting with the maps of I. We wish to show that there
exists a unique W → GA extending the W → GAi. By adjointness of F and G, we can
restate this as: Suppose we have maps FW → Ai commuting with the maps of I. We
wish to show that there exists a unique FW → A extending the FW → Ai. But this is
precisely the universal property of the limit. �
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Suppose now further that C and D are abelian categories, and F and G are additive func-
tors. Kernels are limits and cokernels are colimits (§1.3), so we have Fact 2. F commutes
with cokernels and G commutes with kernels.

Now suppose

M ′
f

// M // M ′′ // 0

is an exact sequence in C, so M ′′ = coker f. Then by Fact 2, FM ′′ = coker Ff. Thus
FM ′ → FM→ FM ′′ → 0

so: Fact 3. Left-adjoint additive functors are right-exact, and right-adjoint additive func-
tors are left-exact. For example, the fact that (· ⊗A N, HomA(N, ·)) are an adjoint pair
(from the A-Mod to itself) imply that · ⊗A N is right-exact (an exercise from last week)
and Hom(N, ·) is left-exact.

2. SHEAVES

It is perhaps suprising that geometric spaces are often best understood in terms of (nice)
functions on them. For example, a differentiable manifold that is a subset of Rn can be
studied in terms of its differentiable functions. Because geometric spaces can have few
functions, a more precise version of this insight is that the structure of the space can be
well understood by undestanding all functions on all open subsets of the space. This
information is encoded in something called a sheaf. We will define sheaves and describe
many useful facts about them. Sheaves were introduced by Leray in the 1940s. The reason
for the name is from an earlier, different perspective on the definition, which we shall not
discuss.

We will begin with a motivating example to convince you that the notion is not so
foreign.

One reason sheaves are often considered slippery to work with is that they keep track
of a huge amount of information, and there are some subtle local-to-global issues. There
are also three different ways of getting a hold of them.

• in terms of open sets (the definition §4) — intuitive but in some way the least
helpful

• in terms of stalks
• in terms of a base of a topology.

Knowing which idea to use requires experience, so it is essential to do a number of exer-
cises on different aspects of sheaves in order to truly understand the concept.

3. MOTIVATING EXAMPLE: THE SHEAF OF DIFFERENTIABLE FUNCTIONS.

We will consider differentiable functions on the topological X = Rn, although you may
consider a more general manifold X. The sheaf of differentiable functions on X is the data
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of all differentiable functions on all open subsets on X; we will see how to manage this
data, and observe some of its properties. To each open set U ⊂ X, we have a ring of
differentiable functions. We denote this ring O(U).

Given a differentiable function on an open set, you can restrict it to a smaller open set,
obtaining a differentiable function there. In other words, if U ⊂ V is an inclusion of open
sets, we have a map resV,U : O(V)→ O(U).

Take a differentiable function on a big open set, and restrict it to a medium open set,
and then restrict that to a small open set. The result is the same as if you restrict the
differentiable function on the big open set directly to the small open set. In other words,
if U ↪→ V ↪→W, then the following diagram commutes:

O(W)
resW,V

//

resW,U
$$II

II
II

III
O(V)

resV,U
{{vv

vv
vv

vv
v

O(U)

Next take two differentiable functions f1 and f2 on a big open set U, and an open cover
of U by some Ui. Suppose that f1 and f2 agree on each of these Ui. Then they must
have been the same function to begin with. In other words, if {Ui}i∈I is a cover of U, and
f1, f2 ∈ O(U), and resU,Ui

f1 = resU,Ui
f2, then f1 = f2. Thus I can identify functions on an

open set by looking at them on a covering by small open sets.

Finally, given the same U and cover Ui, take a differentiable function on each of the Ui

— a function f1 on U1, a function f2 on U2, and so on — and they agree on the pairwise
overlaps. Then they can be “glued together” to make one differentiable function on all of
U. In other words, given fi ∈ O(Ui) for all i, such that resUi,Ui∩Uj

fi = resUj,Ui∩Uj
fj for all

i, j, then there is some f ∈ O(U) such that resU,Ui
f = fi for all i.

The entire example above would have worked just as well with continuous function,
or smooth functions, or just functions. Thus all of these classes of “nice” functions share
some common properties; we will soon formalize these properties in the notion of a sheaf.

3.1. Motivating example continued: the germ of a differentiable function. Before we
do, we first point out another definition, that of the germ of a differentiable function at a
point x ∈ X. Intuitively, it is a shred of a differentiable function at x. Germs are objects of
the form {(f, open U) : x ∈ U, f ∈ O(U)} modulo the relation that (f, U) ∼ (g, V) if there
is some open set W ⊂ U, V containing x where f|W = g|W (or in our earlier language,
resU,W f = resV,W g). In other words, two functions that are the same in a neighborhood
of x but (but may differ elsewhere) have the same germ. We call this set of germs Ox.
Notice that this forms a ring: you can add two germs, and get another germ: if you have
a function f defined on U, and a function g defined on V , then f + g is defined on U ∩ V .
Moreover, f + g is well-defined: if f ′ has the same germ as f, meaning that there is some
open set W containing x on which they agree, and g ′ has the same germ as g, meaning
they agree on some open W ′ containing x, then f ′ + g ′ is the same function as f + g on
U ∩ V ∩ W ∩ W ′.
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Notice also that if x ∈ U, you get a map O(U)→ Ox. Experts may already see that this
is secretly a colimit.

We can see that Ox is a local ring as follows. Consider those germs vanishing at x, which
we denote mx ⊂ Ox. They certainly form an ideal: mx is closed under addition, and when
you multiply something vanishing at x by any other function, the result also vanishes at
x. Anything not in this ideal is invertible: given a germ of a function f not vanishing at x,
then f is non-zero near x by continuity, so 1/f is defined near x. We check that this ideal
is maximal by showing that the quotient map is a field:

0 // m := ideal of germs vanishing at x // Ox

f7→f(x)
// R // 0

3.A. EXERCISE (FOR THOSE FAMILIAR WITH DIFFERENTIABLE FUNCTIONS). Show that
this is the only maximal ideal of Ox.

Note that we can interpret the value of a function at a point, or the value of a germ at
a point, as an element of the local ring modulo the maximal ideal. (We will see that this
doesn’t work for more general sheaves, but does work for things behaving like sheaves of
functions. This will be formalized in the notion of a locally ringed space, which we will see
only briefly later.)

Side fact for those with more geometric experience. Notice that m/m2 is a module over
Ox/m ∼= R, i.e. it is a real vector space. It turns out to be naturally (whatever that means)
the cotangent space to the manifold at x. This insight will prove handy later, when we
define tangent and cotangent spaces of schemes.

4. DEFINITION OF SHEAF AND PRESHEAF

We now formalize these notions, by defining presheaves and sheaves. Presheaves are
simpler to define, and notions such as kernel and cokernel are straightforward — they
are defined “open set by open set”. Sheaves are more complicated to define, and some
notions such as cokernel require more thought (and the notion of sheafification). But we
like sheaves are useful because they are in some sense geometric; you can get information
about a sheaf locally.

4.1. Definition of sheaf and presheaf on a topological space X.

To be concrete, we will define sheaves of sets. However, Sets can be replaced by any
category, and other important examples are abelian groups Ab, k-vector spaces, rings,
modules over a ring, and more. Sheaves (and presheaves) are often written in calligraphic
font, or with an underline. The fact that F is a sheaf on a topological space X is often

9



written as

F

X

4.2. Definition: Presheaf. A presheaf F on a topological space X is the following data.

• To each open set U ⊂ X, we have a set F(U) (e.g. the set of differentiable functions).
(Notational warning: Several notations are in use, for various good reasons: F(U) =

Γ(U,F) = H0(U,F). We will use them all.) The elements of F(U) are called sections of F
over U.

• For each inclusion U ↪→ V of open sets, we have a restriction map resV,U : F(V) →
F(U) (just as we did for differentiable functions).

• The map resU,U is the identity: resU,U = idF(U).

• If U ↪→ V ↪→W are inclusions of open sets, then the restriction maps commute, i.e.

F(W)
resW,V

//

resW,U
$$HH

HHH
HH

HH
F(V)

resV,U
{{vv

vv
vv

vv
v

F(U)

commutes.

4.A. INTERESTING EXERCISE FOR CATEGORY-LOVERS: “A PRESHEAF IS THE SAME AS A
CONTRAVARIANT FUNCTOR”. Given any topological space X, we can get a category,
called the “category of open sets” (discussed last week), where the objects are the open
sets and the morphisms are inclusions. Verify that the data of a presheaf is precisely the
data of a contravariant functor from the category of open sets of X to the category of sets.
(This interpretation is suprisingly useful.)

4.3. Definition: Stalks and germs. We define the stalk of a sheaf at a point in two
different ways. In essense, one will be hands-on, and the other will be categorical using
universal properties (as a colimit).

4.4. We will define the stalk of F at x to be the set of germs of a presheaf F at a point x, Fx,
as in the example of §3.1. Elements are {(f, open U) : x ∈ U, f ∈ O(U)} modulo the relation
that (f, U) ∼ (g, V) if there is some open set W ⊂ U, V where resU,W f = resV,W g. Elements
of the stalk correspond to sections over some open set containing x. Two of these sections
are considered the same if they agree on some smaller open set.
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4.5. A useful (and better) equivalent definition of a stalk is as a colimit of all F(U) over
all open sets U containing x:

Fx = lim
−→

F(U).

(Those having thought about the category of open sets will have a warm feeling in their
stomachs.) The index category is a directed set (given any two such open sets, there is a
third such set contained in both), so these two definitions are the same. It would be good
for you to think this through. Hence by that Remark/Exercise, we can have stalks for
sheaves of sets, groups, rings, and other things for which direct limits exist for directed
sets.

Elements of the stalk Fx are called germs. If x ∈ U, and f ∈ F(U), then the image of f in
Fx is called the germ of f.

I repeat that it is useful to think of stalks in both ways, as colimits, and also explicitly:
a germ at p has as a representative a section over an open set near p.

If F is a sheaf of rings, then Fx is a ring, and ditto for rings replaced by abelian groups
(or indeed any category in which colimits exist).

(Warning: the value at a point of a section doesn’t make sense.)

4.6. Definition: Sheaf. A presheaf is a sheaf if it satisfies two more axioms, which will
use the notion of when some open sets cover another.

Identity axiom. If {Ui}i∈I is an open cover of U, and f1, f2 ∈ F(U), and resU,Ui
f1 =

resU,Ui
f2, then f1 = f2.

(A presheaf satisfying the identity axiom is sometimes called a separated presheaf, but
we will not use that notation in any essential way.)

Gluability axiom. If {Ui}i∈I is a open cover of U, then given fi ∈ F(Ui) for all i,
such that resUi,Ui∩Uj

fi = resUj,Ui∩Uj
fj for all i, j, then there is some f ∈ F(U) such that

resU,Ui
f = fi for all i.

(For experts, and scholars of the empty set only: an additional axiom sometimes in-
cluded is that F(∅) is a one-element set, and in general, for a sheaf with values in a cate-
gory, F(∅) is required to be the final object in the category. As pointed out by Kirsten, this
actually follows from the above definitions, assuming that the empty product is appro-
priately defined as the final object.)

Example. If U and V are disjoint, then F(U ∪ V) = F(U) × F(V). (Here we use the fact
that F(∅) is the final object.)

The stalk of a sheaf at a point is just its stalk as a presheaf; the same definition applies.

Philosophical note. In mathematics, definitions often come paired: “at most one” and “at
least one”. In this case, identity means there is at most one way to glue, and gluability
means that there is at least one way to glue.

11



4.B. UNIMPORTANT EXERCISE FOR CATEGORY-LOVERS. The gluability axiom may be
interpreted as saying that F(∪i∈IUi) is a certain limit. What is that limit?

We now give a number of examples of sheaves.

4.7. Example. (a) Verify that the examples of §3 are indeed sheaves (of differentiable
functions, or continuous functions, or smooth functions, or functions on a manifold or
Rn).
(b) Show that real-valued continuous functions on (open sets of) a topological space X

form a sheaf.

4.8. Important Example: Restriction of a sheaf. Suppose F is a sheaf on X, and U ⊂ is an
open set. Define the restriction of F to U, denoted F |U, to be the collection F |U(V) = F(V)

for all V ⊂ U. Clearly this is a sheaf on U.

4.9. Important Example: skyscraper sheaf. Suppose X is a topological space, with x ∈ X,
and S is a set. Then Sx defined by F(U) = S if x ∈ U and F(U) = {e} if x /∈ U forms a
sheaf. Here {e} is any one-element set. (Check this if it isn’t clear to you.) This is called
a skyscraper sheaf, because the informal picture of it looks like a skyscraper at x. There
is an analogous definition for sheaves of abelian groups, except F(U) = {0} if x ∈ U;
and for sheaves with values in a category more generally, F(U) should be a final object.
(Warning: the notation Sx is not ideal, as the subscript of a point will also used to denote
a stalk.)

4.C. IMPORTANT EXERCISE: CONSTANT PRESHEAF AND LOCALLY CONSTANT SHEAF. (a)
Let X be a topological space, and S a set with more than one element, and define F(U) = S

for all open sets U. Show that this forms a presheaf (with the obvious restriction maps),
and even satisfies the identity axiom. We denote this presheaf Spre. Show that this needn’t
form a sheaf. This is called the constant presheaf with values in S.
(b) Now let F(U) be the maps to S that are locally constant, i.e. for any point x in U, there
is a neighborhood of x where the function is constant. Show that this is a sheaf. (A better
description is this: endow S with the discrete topology, and let F(U) be the continuous
maps U → S. Using this description, this follows immediately from Exercise 4.E below.)
We will call this the locally constant sheaf. This is usually called the constant sheaf. We
denote this sheaf S.

4.D. UNIMPORTANT EXERCISE: MORE EXAMPLES OF PRESHEAVES THAT ARE NOT SHEAVES.
Show that the following are presheaves on C (with the usual topology), but not sheaves:
(a) bounded functions, (b) holomorphic functions admitting a holomorphic square root.

4.E. EXERCISE. Suppose Y is a topological space. Show that “continuous maps to Y”
form a sheaf of sets on X. More precisely, to each open set U of X, we associate the set of
continuous maps to Y. Show that this forms a sheaf. (Example 4.7(b), with Y = R, and
Exercise 4.C(b), with Y = S with the discrete topology, are both special cases.)
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4.F. EXERCISE. This is a fancier example of the previous exercise.
(a) Suppose we are given a continuous map f : Y → X. Show that “sections of f” form a
sheaf. More precisely, to each open set U of X, associate the set of continuous maps s to Y

such that f ◦ s = id|U. Show that this forms a sheaf. (For those who have heard of vector
bundles, these are a good example.)
(b) (This exercise is for those who know what a topological group is. If you don’t know
what a topological group is, you might be able to guess.) Suppose that Y is a topological
group. Show that maps to Y form a sheaf of groups. (Example 4.7(b), with Y = R, is a
special case.)

4.10. ? The espace étalé of a (pre)sheaf. Depending on your background, you may prefer
the following perspective on sheaves, which we will not discuss further. Suppose F is
a presheaf (e.g. a sheaf) on a topological space X. Construct a topological space Y along
with a continuous map to X as follows: as a set, Y is the disjoint union of all the stalks of
X. This also describes a natural set map Y → X. We topologize Y as follows. Each section
s of F over an open set U determines a section of Y → X over U, sending s to each of its
germs for each x ∈ U. The topology on Y is the weakest topology such that these sections
are continuous. This is called the espace étalé of the Then the reader may wish to show
that (a) if F is a sheaf, then the sheaf of sections of Y → X (see the previous exercise 4.F(a)
can be naturally identified with the sheaf F itself. (b) Moreover, if F is a presheaf, the
sheaf of sections of Y → X is the sheafification of F (to be defined later).

4.G. IMPORTANT EXERCISE: THE DIRECT IMAGE SHEAF OR PUSHFORWARD SHEAF. Sup-
pose f : X → Y is a continuous map, and F is a sheaf on X. Then define f∗F by
f∗F(V) = F(f−1(V)), where V is an open subset of Y. Show that f∗F is a sheaf. This
is called a direct image sheaf of pushforward sheaf. More precisely, f∗F is called the pushfor-
ward of F by f.

The skyscraper sheaf (Exercise 4.9) can be interpreted as follows as the pushforward of
the constant sheaf S on a one-point space x, under the morphism f : {x}→ X.

Once we realize that sheaves form a category, we will see that the pushforward is a
functor from sheaves on X to sheaves on Y.

4.H. EXERCISE (PUSHFORWARD INDUCES MAPS OF STALKS). Suppose F is a sheaf of sets
(or rings or A-modules). If f(x) = y, describe the natural morphism of stalks (f∗F)y → Fx.
(You can use the explicit definition of stalk using representatives, §4.4, or the universal
property, §4.5. If you prefer one way, you should try the other.)

4.11. Important Example: Ringed spaces, and OX-modules.. Suppose OX is a sheaf of
rings on a topological space X (i.e. a sheaf on X with values in the category of Rings).
Then (X,OX) is called a ringed space. The sheaf of rings is often denoted by OX; this is
pronounced “oh-of-X”. This sheaf is called the structure sheaf of the ringed space. We
now define the notion of an OX-module. The notion is analagous to one we’ve seen before:
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just as we have modules over a ring, we have OX-modules over the structure sheaf (of
rings) OX.

There is only one possible definition that could go with this name. An OX-module is a
sheaf of abelian groups F with the following additional structure. For each U, F(U) is a
OX(U)-module. Furthermore, this structure should behave well with respect to restriction
maps. This means the following. If U ⊂ V , then

(3) OX(V) × F(V)
action

//

resV,U

��

F(V)

resV,U

��

OX(U) × F(U)
action

// F(U)

commutes. (You should convince yourself that I haven’t forgotten anything.)

Recall that the notion of A-module generalizes the notion of abelian group, because
an abelian group is the same thing as a Z-module. Similarly, the notion of OX-module
generalizes the notion of sheaf of abelian groups, because the latter is the same thing as
a Z-module, where Z is the locally constant sheaf with values in Z. Hence when we are
proving things about OX-modules, we are also proving things about sheaves of abelian
groups.

4.12. For those who know about vector bundles. The motivating example of OX-modules is
the sheaf of sections of a vector bundle. If X is a differentiable manifold, and π : V → X

is a vector bundle over X, then the sheaf of differentiable sections φ : X → V is an OX-
module. Indeed, given a section s of π over an open subset U ⊂ X, and a function f on
U, we can multiply s by f to get a new section fs of π over U. Moreover, if V is a smaller
subset, then we could multiply f by s and then restrict to V , or we could restrict both f

and s to V and then multiply, and we would get the same answer. That is precisely the
commutativity of (3).

Next day: We know about presheaves and sheaves, so we naturally ask about mor-
phisms between presheaves and morphisms of presheaves.

E-mail address: vakil@math.stanford.edu
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Last day: abelian categories: kernels, cokernels, and all that jazz. Definition of
(pre)sheaves.

A quick comment on last day’s material:

When you see a left-exact functor, you should always dream that you are seeing the
end of a long exact sequence. If

0 → M ′ → M → M ′′ → 0

is an exact sequence in abelian category A, and F : A → B is a left-exact functor, then

0 → FM ′ → FM → FM ′′

is exact, and you should always dream that it should continue in some natural way. For
example, the next term should depend only on M ′, call it R1FM ′, and if it is zero, then
FM → FM ′′ is an epimorphism. This remark holds true for left-exact and contravariant
functors too. In good cases, such a continuation exists, and is incredibly useful. We’ll see
this when we come to cohomology.

1. MORPHISMS OF PRESHEAVES AND SHEAVES

Whenever one defines a new mathematical object, category theory has taught us to try to
understand maps between them. We now define morphisms of presheaves, and similarly
for sheaves. In other words, we will descibe the category of presheaves (of abelian groups,
etc.) and the category of sheaves.

A morphism of presheaves of sets (or indeed with values in any category) f : F → G is
the data of maps f(U) : F(U) → G(U) for all U behaving well with respect to restriction:

Date: Wednesday, October 3, 2007. Updated October 26.
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if U ↪→ V then

F(V)

resV,U

��

f(V)
// G(V)

resV,U

��

F(U)
f(U)

// G(U)

commutes. (Notice: the underlying space remains X.)

A morphism of sheaves is defined in the same way: the morphisms from a sheaf F

to a sheaf G are precisely the morphisms from F to G as presheaves. (Translation: The
category of sheaves on X is a full subcategory of the category of presheaves on X.)

An example of a morphism of sheaves is the map from the sheaf of differentiable func-
tions on R to the sheaf of continuous functions. This is a “forgetful map”: we are forget-
ting that these functions are differentiable, and remembering only that they are continu-
ous.

1.1. Side-remarks for category-lovers. If you interpret a presheaf on X as a contravariant
functor (from the category of open sets), a morphism of presheaves on X is a natural
transformation of functors. We haven’t defined natural transformation of functors, but
you might be able to guess the definition from this remark.

1.A. EXERCISE. Suppose f : X → Y is a continuous map of topological spaces (i.e. a
morphism in the category of topological spaces). Show that pushforward gives a functor
from { sheaves of sets on X } to { sheaves of sets on Y }. Here “sets” can be replaced by any
category. (Watch out for some possible confusion: a presheaf is a functor, and presheaves
form a category. It may be best to forget that presheaves form a functor for the time
being.)

1.B. IMPORTANT EXERCISE AND DEFINITION: “SHEAF Hom”. Suppose F and G are two
sheaves of abelian groups on X. (In fact, it will suffice that F is a presheaf.) Let Hom(F ,G)

be the collection of data

Hom(F ,G)(U) := Hom(F |U,G|U).

(Recall the notation F |U, the restriction of the sheaf to the open set U, see last day’s notes.)
Show that this is a sheaf. This is called the “sheaf Hom”. Show that if G is a sheaf of
abelian groups, then Hom(F ,G) is a sheaf of abelian groups. (The same construction
will obviously work for sheaves with values in any category.)

1.2. Presheaves of abelian groups or OX-modules form an abelian category.

We can make module-like constructions using presheaves of abelian groups on a topo-
logical space X. (In this section, all (pre)sheaves are of abelian groups.) For example, we
can clearly add maps of presheaves and get another map of presheaves: if f, g : F → G,
then we define the map f + g by (f + g)(V) = f(V) + g(V). (There is something small
to check here: that the result is indeed a map of presheaves.) In this way, presheaves
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of abelian groups form an additive category (recall: the morphisms between any two
presheaves of abelian groups form an abelian group; there is a 0-morphism; and one can
take finite products.) For exactly the same reasons, sheaves of abelian groups also form
an additive category.

If f : F → G is a morphism of presheaves, define the presheaf kernel kerpre f by
(kerpre f)(U) = ker f(U).

1.C. EXERCISE. Show that kerpre f is a presheaf. (Hint: if U ↪→ V , there is a natural map
resV,U : G(V)/f(V)(F(V)) → G(U)/f(U)(F(U)) by chasing the following diagram:

0 // kerpre f(V)

∃!
��

// F(V)

resV,U

��

// G(V)

resV,U

��

0 // kerpre f(U) // F(U) // G(U)

You should check that the restriction maps compose as desired.)

Define the presheaf cokernel cokerpre f similarly. It is a presheaf by essentially the same
argument.

1.D. EXERCISE: THE COKERNEL DESERVES ITS NAME. Show that the presheaf cokernel
satisfies the universal property of cokernels in the category of presheaves.

Similarly, kerpre f → F satisfies the unversal property for kernels in the category of
presheaves.

It is not too tedious to verify that presheaves of abelian groups form an abelian category,
and the reader is free to do so. (The key idea is that all abelian-categorical notions may be
defined and verified open set by open set.) Hence we can define terms such as subpresheaf,
image presheaf, quotient presheaf, cokernel presheaf, and they behave the way one expect. You
construct kernels, quotients, cokernels, and images open set by open set. Homological
algebra (exact sequences etc.) works, and also “works open set by open set”. In particular:

1.E. EXERCISE. If 0 → F1 → F2 → · · · → Fn → 0 is an exact sequence of presheaves of
abelian groups, then 0 → F1(U) → F2(U) → · · · → Fn(U) → 0 is also an exact sequence
for all U, and vice versa.

The above discussion carries over without any change to presheaves with values in any
abelian category.

However, we are interested in more geometric objects, sheaves, where things are can
be understood in terms of their local behavior, thanks to the identity and gluing axioms.
We will soon see that sheaves of abelian groups also form an abelian category, but a com-
plication will arise that will force the notion of sheafification on us. Sheafification will be
the answer to many of our prayers. We just don’t realize it yet.
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Kernels work just as with presheaves:

1.F. IMPORTANT EXERCISE. Suppose f : F → G is a morphism of sheaves. Show that the
presheaf kernel kerpre f is in fact a sheaf. Show that it satisfies the universal property of
kernels. (Hint: the second question follows immediately from the fact that kerpre f satisfies
the universal property in the category of presheaves.)

Thus if f is a morphism of sheaves, we define

ker f := kerpre f.

The problem arises with the cokernel.

1.G. IMPORTANT EXERCISE. Let X be C with the classical topology, let Z be the locally
constant sheaf on X with group Z, OX the sheaf of holomorphic functions, and F the
presheaf of functions admitting a holomorphic logarithm. (Why is F not a sheaf?) Con-
sider

0 // Z // OX

f7→exp 2πif
// F // 0

where Z → OX is the natural inclusion. Show that this is an exact sequence of presheaves.
Show that F is not a sheaf. (Hint: F does not satisfy the gluability axiom. The problem
is that there are functions that don’t have a logarithm that locally have a logarithm.) This
will come up again in Example 2.8.

We will have to put our hopes for understanding cokernels of sheaves on hold for a
while. We will first take a look at how to understand sheaves using stalks.

2. PROPERTIES DETERMINED AT THE LEVEL OF STALKS

In this section, we’ll see that lots of facts about sheaves can be checked “at the level of
stalks”. This isn’t true for presheaves, and reflects the local nature of sheaves. We will
flag each case of a property determined by stalks.

2.A. IMPORTANT EXERCISE (sections are determined by stalks). Prove that a section of
a sheaf is determined by its germs, i.e. the natural map

(1) F(U) →
∏

x∈U

Fx

is injective. (Hint # 1: you won’t use the gluability axiom, so this is true for separated
presheaves. Hint # 2: it is false for presheaves in general, see Exercise 2.F, so you will use
the identity axiom.)

This exercise suggests an important question: which elements of the right side of (1)
are in the image of the left side?
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2.1. Important definition. We say that an element
∏

x∈U sx of the right side
∏

x∈U Fx of (1)
consists of compatible germs if for all x ∈ U, there is some representative (Ux, s

′
x ∈ Γ(Ux,F))

for sx (where x ∈ Ux ⊂ U) such that the germ of s ′
x at all y ∈ Ux is sy. You’ll have to think

about this a little. Clearly any section s of F over U gives a choice of compatible germs
for U — take (Ux, s

′
x) = (U, s).

2.B. IMPORTANT EXERCISE. Prove that any choice of compatible germs for F over U is
the image of a section of F over U. (Hint: you will use gluability.)

We have thus completely described the image of (1), in a way that we will find useful.

2.2. Remark. This perspective is part of the motivation for the agricultural terminology
“sheaf”: it is the data of a bunch of stalks, bundled together appropriately.

Now we throw morphisms into the mix.

2.C. EXERCISE. Show a morphism of (pre)sheaves (of sets, or rings, or abelian groups, or
OX-modules) induces a morphism of stalks. More precisely, if φ : F → G is a morphism
of (pre)sheaves on X, and x ∈ X, describe a natural map φx : Fx → Gx.

2.D. EXERCISE (morphisms are determined by stalks). Show that morphisms of sheaves
are determined by morphisms of stalks. Hint: consider the following diagram.

(2) F(U) //

_�

��

G(U)
_�

��∏
x∈U Fx

//
∏

x∈U Gx

2.E. TRICKY EXERCISE (isomorphisms are determined by stalks). Show that a morphism
of sheaves is an isomorphism if and only if it induces an isomorphism of all stalks. (Hint:
Use (2). Injectivity uses the previous exercise 2.D. Surjectivity will use gluability, and is
more subtle.)

2.F. EXERCISE. (a) Show that Exercise 2.A is false for general presheaves.
(b) Show that Exercise 2.D is false for general presheaves.
(c) Show that Exercise 2.E is false for general presheaves.
(General hint for finding counterexamples of this sort: consider a 2-point space with the
discrete topology, i.e. every subset is open.)

2.3. Sheafification.
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Every sheaf is a presheaf (and indeed by definition sheaves on X form a full subcategory
of the category of presheaves on X). Just as groupification gives a group that best approx-
imates a semigroup, sheafification gives the sheaf that best approximates a presheaf, with
an analogous universal property.

2.4. Definition. If F is a presheaf on X, then a morphism of presheaves sh : F → F sh

on X is a sheafification of F if F sh is a sheaf, and for any other sheaf G, and any presheaf
morphism g : F → G, there exists a unique morphism of sheaves f : F sh → G making the
diagram

F
sh

//

g
!!C

C

C

C

C

C

C

C

F sh

f

��

G

commute.

2.G. EXERCISE. Show that sheafification is unique up to unique isomorphism. Show

that if F is a sheaf, then the sheafification is F
id

// F . (This should be second nature by
now.)

2.5. Construction. We next show that any presheaf has a sheafification. Suppose F is a
presheaf. Define F sh by defining F sh(U) as the set of compatible germs of the presheaf F
over U. Explicitly:

F sh(U) := {(fx ∈ Fx)x∈U : ∀x ∈ U, ∃x ∈ V ⊂ U, s ∈ F(V) : sy = fy∀y ∈ V}.

(Those who want to worry about the empty set are welcome to.)

2.H. EASY EXERCISE. Show that F sh (using the tautological restriction maps) forms a
sheaf.

2.I. EASY EXERCISE. Describe a natural map sh : F → F sh.

2.J. EXERCISE. Show that the map sh satisfies the universal property 2.4 of sheafification.

2.K. EXERCISE. Use the universal property to show that for any morphism of presheaves
φ : F → G, we get a natural induced morphism of sheaves φsh : F sh → Gsh. Show that
sheafification is a functor from presheaves to sheaves.

2.L. USEFUL EXERCISE FOR CATEGORY-LOVERS. Show that the sheafification functor is
left-adjoint to the forgetful functor from sheaves on X to presheaves on X.

2.M. EXERCISE. Show F → F sh induces an isomorphism of stalks. (Possible hint: Use
the concrete description of the stalks. Another possibility: judicious use of adjoints.)
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2.6. Unimportant remark. Sheafification can be defined in a topological way, via the
“espace étalé” construction, see Hartshorne II.1.13, and likely Serre’s totemic FAC. This is
essentially the same construction as the one given here. Another construction is described
in Eisenbud-Harris.

2.7. Subsheaves and quotient sheaves.

2.N. EXERCISE. Suppose φ : F → G is a morphism of sheaves (of sets) on at topological
space X. Show that the following are equivalent.

(a) φ is a monomorphism in the category of sheaves.
(b) φ is injective on the level of stalks: φx : Fx → Gx injective for all x ∈ X.
(c) φ is injective on the level of open sets: φ(U) : F(U) → G(U) is injective for all open

U ⊂ X.

(Possible hints: for (b) implies (a), recall that morphisms are determined by stalks, Ex-
ercise 2.D. For (a) implies (b), judiciously choose a skyscraper sheaf. For (a) implies (c),
judiciously the “indicator sheaf” with one section over every open set contained in U, and
no section over any other open set.)

If these conditions hold, we say that F is a subsheaf of G (where the “inclusion” φ is
sometimes left implicit).

2.O. EXERCISE. Continuing the notation of the previous exercise, show that the following
are equivalent.

(a) φ is a epimorphism in the category of sheaves.
(b) φ is surjective on the level of stalks: φx : Fx → Gx surjective for all x ∈ X.

If these conditions hold, we say that G is a quotient sheaf of F .

Thus monomorphisms and epimorphisms — subsheafiness and quotient sheafiness
— can be checked at the level of stalks.

Both exercises generalize immediately to sheaves with values in any category, where
“injective” is replaced by “monomorphism” and “surjective” is replaced by “epimor-
phism”.

Notice that there was no part (c) to the previous exercise, and here is an example show-
ing why.

2.8. Example. Let X = C with the usual (analytic) topology, and define OX to be the sheaf
of holomorphic functions, and O∗

X to be the sheaf of invertible (nowhere zero) holomor-
phic functions. This is a sheaf of abelian groups under multiplication. We have maps of
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sheaves

(3) 0 // Z
×2πi

// OX

exp
// O∗

X
// 1

where Z is the locally constant sheaf associated to Z. (You can figure out what the sheaves
0 and 1 mean; they are isomorphic, and are written in this way for reasons that may be
clear). We will soon interpret this as an exact sequence of sheaves of abelian groups (the
exponential exact sequence), although we don’t yet have the language to do so.

2.P. EXERCISE. Show that OX

exp
// O∗

X describes O∗
X as a quotient sheaf of OX. Show

that it is not surjective on all open sets.

This is a great example to get a sense of what “surjectivity” means for sheaves. Nonzero
holomorphic functions locally have logarithms, but they need not globally.

3. SHEAVES OF ABELIAN GROUPS, AND OX-MODULES, FORM ABELIAN CATEGORIES

We are now ready to see that sheaves of abelian groups, and their cousins, OX-modules,
form abelian categories. In other words, we may treat them in the same way we treat
vector spaces, and modules over a ring. In the process of doing this, we will see that this
is much stronger than an analogy; kernels, cokernels, exactness, etc. can be understood at
the level of germs (which are just abelian groups), and the compatibility of the germs will
come for free.

The category of sheaves of abelian groups is clearly an additive category. In order to
show that it is an abelian category, we must show that any morphism φ : F → G has
a kernel and a cokernel. We have already seen that φ has a kernel (Exercise 1.F): the
presheaf kernel is a sheaf, and is a kernel.

3.A. EXERCISE. Show that the stalk of the kernel is the kernel of the stalks: there is a
natural isomorphism

(ker(F → G))x
∼= ker(Fx → Gx).

So we next address the issue of the cokernel. Now φ : F → G has a cokernel in the
category of presheaves; call it Hpre (where the superscript is meant to remind us that this

is a presheaf). Let Hpre sh
// H be its sheafification. Recall that the cokernel is defined

using a universal property: it is the colimit of the diagram

F

��

φ
// G

0
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in the category of presheaves. We claim that H is the cokernel of φ in the category of
sheaves, and show this by proving the universal property. Given any sheaf E and a com-
mutative diagram

F

��

φ
// G

��

0 // E

We construct

F

��

φ
// G

��

��

0

**V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

// Hpre sh
// H

E

We show that there is a unique morphism H → E making the diagram commute. As Hpre

is the cokernel in the category of presheaves, there is a unique morphism of presheaves
Hpre → E making the diagram commute. But then by the universal property of sheafi-
fication (Defn. 2.4), there is a unique morphism of sheaves H → E making the diagram
commute.

3.B. EXERCISE. Show that the stalk of the cokernel is naturally isomorphic to the cokernel
of the stalk.

We have now defined the notions of kernel and cokernel, and verified that they may
be checked at the level of stalks. We have also verified that the qualities of a morphism
being monic or epi are also determined at the level of stalks (Exercises 2.N and 2.O).
Hence sheaves of abelian groups on X form an abelian category.

We see more: all structures coming from the abelian nature of this category may be
checked at the level of stalks. For example, exactness of a sequence of sheaves may be
checked at the level of stalks. A fancy-sounding consequence: taking stalks is an exact
functor from sheaves of abelian groups on X to abelian groups.

3.C. EXERCISE (LEFT-EXACTNESS OF THE GLOBAL SECTION FUNCTOR). Suppose U ⊂ X

is an open set, and 0 → F → G → H is an exact sequence of sheaves of abelian groups.
Show that

0 → F(U) → G(U) → H(U)

is exact. Give an example to show that the global section functor is not exact. (Hint: the
exponential exact sequence (3).)

3.D. EXERCISE: LEFT-EXACTNESS OF PUSHFORWARD. Suppose 0 → F → G → H is an
exact sequence of sheaves of abelian groups on X. If f : X → Y is a continuous map, show
that

0 → f∗F → f∗G → f∗H
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is exact. (The previous exercise, dealing with the left-exactness of the global section func-
tor can be interpreted as a special case of this, in the case where Y is a point.)

3.E. EXERCISE. Suppose φ : F → G is a morphism of sheaves of abelian groups. Show
that the image sheaf im φ is the sheafification of the image presheaf. (You must use the
definition of image in an abelian category. In fact, this gives the accepted definition of
image sheaf for a morphism of sheaves of sets.)

3.F. EXERCISE. Show that if (X,OX) is a ringed space, then OX-modules form an abelian
category. (There isn’t much more to check!)

We end with a useful construction using some of the ideas in this section.

3.G. IMPORTANT EXERCISE: TENSOR PRODUCTS OF OX-MODULES. (a) Suppose OX is a
sheaf of rings on X. Define (categorically) what we should mean by tensor product of
two OX-modules. Give an explicit construction, and show that it satisfies your categorical
definition. Hint: take the “presheaf tensor product” — which needs to be defined — and
sheafify. Note: ⊗OX

is often written ⊗ when the subscript is clear from the context.
(b) Show that the tensor product of stalks is the stalk of tensor product.

I then said a very little about where we are going. The last two things we’ll dis-
cuss about sheaves in particular are the inverse image sheaf and sheaves on a base of a
topology.

E-mail address: vakil@math.stanford.edu
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Last day: morphisms of (pre)sheaves; properties determined at the level of stalks;
sheaves of abelian groups on X (and OX-modules) form an abelian category.

1. THE INVERSE IMAGE SHEAF

We next describe a notion that is rather fundamental, but is still a bit intricate. We won’t
need it (at least for a long while), so this may be best left for a second reading. Suppose we
have a continuous map f : X → Y. If F is a sheaf on X, we have defined the pushforward
or direct image sheaf f∗F , which is a sheaf on Y. There is also a notion of inverse image
sheaf. (We won’t call it the pullback sheaf, reserving that name for a later construction,
involving quasicoherent sheaves.) This is a covariant functor f−1 from sheaves on Y to
sheaves on X. If the sheaves on Y have some additional structure (e.g. group or ring),
then this structure is respected by f−1.

1.1. Definition by adjoint: elegant but abstract. Here is a categorical definition of the inverse
image: f−1 is left-adjoint to f∗.

This isn’t really a definition; we need a construction to show that the adjoint exists.
(Also, for pedants, this won’t determine f−1F ; it will only determine it up to unique iso-
morphism.) Note that we then get canonical maps f−1f∗F → F (associated to the identity
in MorY(f∗F , f∗F)) and G → f∗f

−1G (associated to the identity in MorX(f−1G, f−1G)).

1.2. Construction: concrete but ugly. Define the temporary notation f−1Gpre(U) = lim
−→V⊃f(U)

G(V).
(Recall the explicit description of direct limit: sections are sections on open sets containing
f(U), with an equivalence relation.)

Date: Monday, October 8, 2007. Updated Oct. 29, 2007. Minor update Nov. 17.
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1.A. EXERCISE. Show that this defines a presheaf on X.

Now define the inverse image of G by f−1G := (f−1Gpre)sh.

You will show that this construction satisfies the universal property in Exercise 1.F. For
the exercises before that, feel free to use either the adjoint description or the construction.

1.B. EXERCISE. Show that the stalks of f−1G are the same as the stalks of G. More
precisely, if f(x) = y, describe a natural isomorphism Gy

∼= (f−1G)x. (Possible hint: use
the concrete description of the stalk, as a direct limit. Recall that stalks are preserved by
sheafification.)

1.C. EXERCISE (EASY BUT USEFUL). If U is an open subset of Y, i : U → Y is the inclusion,
and G is a sheaf on Y, show that i−1G is naturally isomorphic to G|U.

1.D. EXERCISE (EASY BUT USEFUL). If y ∈ Y, i : {y} → Y is the inclusion, and G is a sheaf
on Y, show that i−1(G) is naturally isomorphic to the stalk Gy.

1.E. EXERCISE. Show that f−1 is an exact functor from sheaves of abelian groups on
Y to sheaves of abelian groups on X. (Hint: exactness can be checked on stalks, and by
Exercise 1.B, the stalks are the same.) The identical argument will show that f−1 is an exact
functor from OY-modules (on Y) to f−1OY-modules (on X), but don’t bother writing that
down. (Remark for experts: f−1 is a left-adjoint, hence right-exact by abstract nonsense.
The left-exactness is true for “less categorical” reasons.)

1.F. IMPORTANT EXERCISE: THE CONSTRUCTION SATISFIES THE UNIVERSAL PROPERTY.
If f : X → Y is a continuous map, and F is a sheaf on X and G is a sheaf on Y, describe a
bijection

MorX(f−1G,F) ↔ MorY(G, f∗F).

Observe that your bijection is “natural” in the sense of the definition of adjoints.

1.G. EXERCISE. (a) Suppose Z ⊂ Y is a closed subset, and i : Z ↪→ Y is the inclusion. If
F is a sheaf on Z, then show that the stalk (i∗F)y is a one element set if y /∈ Z, and Fy if
y ∈ Z.
(b) Important definition: Define the support of a sheaf F of sets, denoted SuppF , as the
locus where the stalks are not a one-element set:

SuppF := {x ∈ X : |Fx| 6= 1}.

(More generally, if the sheaf has value in some category, the support consists of points
where the stalk is not the final object. For sheaves of abelian groups, the support consists
of points with non-zero stalks.) Suppose SuppF ⊂ Z where Z is closed. Show that the
natural map F → i∗i

−1F is an isomorphism. Thus a sheaf supported on a closed subset
can be considered a sheaf on that closed subset.
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2. RECOVERING SHEAVES FROM A “SHEAF ON A BASE”

Sheaves are natural things to want to think about, but hard to get one’s hands on. We
like the identity and gluability axioms, but they make proving things trickier than for
presheaves. We have discussed how we can understand sheaves using stalks. We now
introduce a second way of getting a hold of sheaves, by introducing the notion of a sheaf
on a base.

First, let me define the notion of a base of a topology. Suppose we have a topological
space X, i.e. we know which subsets of X are open {Ui}. Then a base of a topology is a
subcollection of the open sets {Bj} ⊂ {Ui}, such that each Ui is a union of the Bj. There is
one example that you have seen early in your mathematical life. Suppose X = Rn. Then
the way the usual topology is often first defined is by defining open balls Br(x) = {y ∈ Rn :
|y − x| < r}, and declaring that any union of open balls is open. So the balls form a base
of the usual topology. Equivalently, we often say that they generate the usual topology.
As an application of how we use them, to check continuity of some map f : X → Rn, you
need only think about the pullback of balls on R

n.

Now suppose we have a sheaf F on X, and a base {Bi} on X. Then consider the informa-
tion ({F(Bi)}, {resBi,Bj

: F(Bi) → F(Bj)}), which is a subset of the information contained
in the sheaf — we are only paying attention to the information involving elements of the
base, not all open sets.

We can recover the entire sheaf from this information. Reason: we can determine the
stalks from this information, and we can determine when germs are compatible.

2.A. EXERCISE. Make this precise.

This suggests a notion, that of a sheaf on a base. A sheaf of sets (rings etc.) on a base
{Bi} is the following. For each Bi in the base, we have a set F(Bi). If Bi ⊂ Bj, we have
maps resji : F(Bj) → F(Bi). (Things called B are always assumed to be in the base.) If
Bi ⊂ Bj ⊂ Bk, then resBk,Bi

= resBj,Bi
◦ resBk,Bj

. So far we have defined a presheaf on a base.

We also require base identity: If B = ∪Bi, then if f, g ∈ F(B) such that resB,Bi
f = resB,Bi

g

for all i, then f = g.

We require base gluability too: If B = ∪Bi, and we have fi ∈ F(Bi) such that fi agrees
with fj on any basic open set in Bi ∩Bj (i.e. resBi,Bk

fi = resBj,Bk
fj for all Bk ⊂ Bi ∩Bj) then

there exist f ∈ F(B) such that resB,Bi
= fi for all i.

2.1. Theorem. — Suppose {Bi} is a base on X, and F is a sheaf of sets on this base. Then there
is a unique sheaf F extending F (with isomorphisms F(Bi) ∼= F(Bi) agreeing with the restriction
maps).

Proof. We will define F as the sheaf of compatible germs of F.
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Define the stalk of F at x ∈ X by
Fx = lim

−→
F(Bi)

where the colimit is over all Bi (in the base) containing x.

We’ll say a family of germs in an open set U is compatible near x if there is a section s

of F over some Bi containing x such that the germs over Bi are precisely the germs of s.
More formally, define

F(U) := {(fx ∈ Fx)x∈U : ∀x ∈ U, ∃B with x ⊂ B ⊂ U, s ∈ F(B) : sy = fy∀y ∈ B}

where each B is in our base.

This is a sheaf (for the same reasons as the sheaf of compatible germs was earlier).

I next claim that if U is in our base, the natural map F(B) → F(B) is an isomorphism.

2.B. TRICKY EXERCISE. Describe the inverse map F(B) → F(B), and verify that it is
indeed inverse. �

Thus sheaves on X can be recovered from their “restriction to a base”. This is a state-
ment about objects in a category, so we should hope for a similar statement about mor-
phisms.

2.C. IMPORTANT EXERCISE: MORPHISMS OF SHEAVES CORRESPOND TO MORPHISMS OF
SHEAF ON A BASE. Suppose {Bi} is a base for the topology of X.
(a) Verify that a morphism of sheaves is determined by the induced morphism of sheaves
on the base.
(b) Show that a morphism of sheaves on the base (i.e. such that the diagram

F(Bi) //

��

G(Bi)

��

F(Bj) // G(Bj)

commutes for all Bj ↪→ Bi) gives a morphism of the induced sheaves.

2.D. IMPORTANT EXERCISE. Suppose X = ∪Ui is an open cover of X, and we have
sheaves Fi on Ui along with isomorphisms φij : Fi|Ui∩Uj

→ Fj|Ui∩Uj
that agree on triple

overlaps (i.e. φij ◦ φjk = φij on Ui ∩ Uj ∩ Uk). Show that these sheaves can be glued
together into a unique sheaf F on X, such that Fi = F |Ui

, and the isomorphisms over Ui ∩

Uj are the obvious ones. (Thus we can “glue sheaves together”, using limited patching
information.) (You can use the ideas of this section to solve this problem, but you don’t
necessarily need to. Hint: As the base, take those open sets contained in some Ui.)

2.2. Remark for experts. This almost says that the “set” of sheaves forms a sheaf itself, but
not quite. Making this precise leads one to the notion of a stack.
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3. TOWARD SCHEMES

We are now ready to consider the notion of a scheme, which is the type of geometric
space considered by algebraic geometry. We should first think through what we mean by
“geometric space”. You have likely seen the notion of a manifold, and we wish to abstract
this notion so that it can be generalized to other settings, notably so that we can deal with
non-smooth and arithmetic objects.

The key insight behind this generalization is the following: we can understand a geo-
metric space (such as a manifold) well by understanding the functions on this space. More
precisely, we will understand it through the sheaf of functions on the space. If we are in-
terested in differentiable manifolds, we will consider differentiable functions; if we are
interested in smooth manifolds, we will consider smooth functions and so on.

Thus we will define a scheme to be the following data

• The set: the points of the scheme
• The topology: the open sets of the scheme
• The structure sheaf: the sheaf of “algebraic functions” (a sheaf of rings) on the

scheme.

Recall that a topological space with a sheaf of rings is called a ringed space.

We will try to draw pictures throughout, so our geometric intuition can guide the al-
gebra development (and, eventually, vice versa). Pictures can help develop geometric
intuition. Some readers will find the pictures very helpful, while others will find the
opposite.

3.1. Example: Differentiable manifolds. As motivation, we return to our example of
differentible manifolds, reinterpreting them in this light. We will be quite informal in this
section. Suppose X is a manifold. It is a topological space, and has a sheaf of differentiable
functions OX (as described earlier). This gives X the structure of a ringed space. We have
observed that evaluation at p gives a surjective map from the stalk to R

OX,p
// // R,

so the kernel, the (germs of) functions vanishing at p, is a maximal ideal mX.

We could define a differentiable real manifold as a topological space X with a sheaf of
rings such that there is a cover of X by open sets such that on each open set the ringed
space is isomorphic to a ball around the origin in Rn with the sheaf of differentiable func-
tions on that ball. With this definition, the ball is the basic patch, and a general manifold
is obtained by gluing these patches together. (Admittedly, a great deal of geometry comes
from how one chooses to patch the balls together!) In the algebraic setting, the basic patch
is the notion of an affine scheme, which we will discuss soon.

Functions are determined by their values at points. This is an obvious statement, but won’t
be true for schemes in general. We will see an example in Exercise 4.A(a).
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Morphisms of manifolds. How can we describe differentiable maps of manifolds X → Y?
They are certainly continuous maps — but which ones? We can pull back functions along
continuous maps. Differentiable functions pull back to differentiable functions. More
formally, we have a map f−1OY → OX. (The inverse image sheaf f−1 was defined in §1)
Inverse image is left-adjoint to pushforward, so we get a map f# : OY → f∗OX.

Certainly given a differentiable map of manifolds, differentiable functions pullback to
differentiable functions. It is less obvious that this is a sufficient condition for a continuous
function to be differentiable.

3.A. IMPORTANT EXERCISE FOR THOSE WITH A LITTLE EXPERIENCE WITH MANIFOLDS.
Prove that a continuous function of differentiable manifolds f : X → Y is differentiable if
differentiable functions pull back to differentiable functions, i.e. if pullback by f gives a
map OY → f∗OX. (Hint: check this on small patches. Once you figure out what you are
trying to show, you’ll realize that the result is immediate.)

3.B. EXERCISE. Show that a morphism of differentiable manifolds f : X → Y with f(p) = q

induces a morphism of stalks f# : OY,q → OX,p. Show that f#(mY,q) ⊂ mX,p. In other
words, if you pull back a function that vanishes at q, you get a function that vanishes at
p — not a huge surprise.

Here is a little more for experts: Notice that this induces a map on tangent spaces

(mX,p/m2
X,p)∨

→ (mY,q/m2
Y,q)∨.

This is the tangent map you would geometrically expect. Again, it is interesting that the
cotangent map mY,q/m2

Y,q → mX,p/m2
X,p is algebraically more natural than the tangent map.

Experts are now free to try to interpret other differential-geometric information using
only the map of topological spaces and map of sheaves. For example: how can one check
if f is a submersion? How can one check if f is an immersion? (We will see that the
algebro-geometric version of these notions are smooth morphisms and locally closed immer-
sion.)

3.2. Side Remark. Manifolds are covered by disks that are all isomorphic. Schemes
(or even complex algebraic varieties) will not have isomorphic open sets. (We’ll see an
example later.) Informally, this is because in the topology on schemes, all non-empty
open sets are “huge” and have more “structure”.

4. THE UNDERLYING SET OF AFFINE SCHEMES

For any ring A, we are going to define something called Spec A, the spectrum of A. In
this section, we will define it as a set, but we will soon endow it with a topology, and
later we will define a sheaf of rings on it (the structure sheaf). Such an object is called an
affine scheme. In the future, Spec A will denote the set along with the topology. (Indeed,
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it will often implicitly include the data of the structure sheaf.) But for now, as there is no
possibility of confusion, Spec A will just be the set.

The set Spec A is the set of prime ideals of A. The point of Spec A corresponding to the
prime ideal p will be denoted [p].

We now give some examples. Here are some temporary definitions to help us under-
stand these examples. Elements a ∈ A will be called functions on Spec A, and their value
at the point [p] will be a (mod p). “An element a of the ring lying in a prime ideal p”
translates to “a function a that is 0 at the point [p]” or “a function a vanishing at the point
[p]”, and we will use these phrases interchangeably. Notice that if you add or multiply
two functions, you add or multiply their values at all points; this is a translation of the
fact that A → A/p is a homomorphism of rings. These translations are important — make
sure you are very comfortable with them!

Example 1: A1
C := Spec C[x]. This is known as “the affine line” or “the affine line over

C”. Let’s find the prime ideals. As C[x] is an integral domain, 0 is prime. Also, (x − a) is
prime, where a ∈ C: it is even a maximal ideal, as the quotient by this ideal is field:

0 // (x − a) // C[x]
f7→f(a)

// C // 0

(This exact sequence should remind you of 0 → mx → Ox → R → 0 in our motivating
example of manifolds.)

We now show that there are no other prime ideals. We use the fact that C[x] has a
division algorithm, and is a unique factorization domain. Suppose p is a prime ideal. If
p 6= 0, then suppose f(x) ∈ p is a non-zero element of smallest degree. It is not constant, as
prime ideals can’t contain 1. If f(x) is not linear, then factor f(x) = g(x)h(x), where g(x)
and h(x) have positive degree. Then g(x) ∈ p or h(x) ∈ p, contradicting the minimality of
the degree of f. Hence there is a linear element x − a of p. Then I claim that p = (x − a).
Suppose f(x) ∈ p. Then the division algorithm would give f(x) = g(x)(x − a) + m where
m ∈ C. Then m = f(x) − g(x)(x − a) ∈ p. If m 6= 0, then 1 ∈ p, giving a contradiction.

Thus we have a picture of Spec C[x] (see Figure 1). There is one point for each complex
number, plus one extra point. The point [(x − a)] we will reasonably associate to a ∈ C.
Where should we picture the point [(0)]? Where is it? The best way of thinking about it is
somewhat zen. It is somewhere on the complex line, but nowhere in particular. Because
(0) is contained in all of these primes, we will somehow associate it with this line passing
through all the other points. [(0)] is called the “generic point” of the line; it is “generically
on the line” but you can’t pin it down any further than that. We’ll place it far to the right
for lack of anywhere better to put it. You will notice that we sketch A1

C as one-dimensional
in the real sense; this is to later remind ourselves that this will be a one-dimensional space,
where dimensions are defined in an algebraic (or complex-geometric) sense.

To give you some feeling for this space, let me make some statements that are currently
undefined, but suggestive. The functions on A1

C are the polynomials. So f(x) = x2 −3x+1

is a function. What is its value at [(x − 1)], which we think of as the point 1 ∈ C? Answer:
f(1)! Or equivalently, we can evalute f(x) modulo x − 1 — this is the same thing by the
division algorithm. (What is its value at (0)? It is f(x) (mod 0), which is just f(x).)
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(0)(x) (x − 1) (x − a)

FIGURE 1. A picture of A1
C = Spec C[x]

· · ·(2) (3) (5) (0)

FIGURE 2. A “picture” of Spec Z, which looks suspiciously like Figure 1

Here is a more complicated example: g(x) = (x − 3)3/(x − 2) is a “rational function”. It
is defined everywhere but x = 2. (When we know what the structure sheaf is, we will be
able to say that it is an element of the structure sheaf on the open set A1

C − {2}.) g(x) has a
triple zero at 3, and a single pole at 2.

Example 2: A1
k := Spec k[x] where k is an algebraically closed field. This is called the affine

line over k. All of our discussion in the previous example carries over without change.
We will use the same picture, which is after all intended to just be a metaphor.

Example 3: Spec Z. One amazing fact is that from our perspective, this will look a lot like
the affine line. This is another unique factorization domain, with a division algorithm.
The prime ideals are: (0), and (p) where p is prime. Thus everything from Example 1
carries over without change, even the picture. Our picture of Spec Z is shown in Figure 2.

Let’s blithely carry over our discussion of functions on this space. 100 is a function on
Spec Z. It’s value at (3) is “1 (mod 3)”. It’s value at (2) is “0 (mod 2)”, and in fact it has a
double zero. 27/4 is a rational function on Spec Z, defined away from (2). It has a double
pole at (2), a triple zero at (3). Its value at (5) is

27 × 4−1 ≡ 2 × (−1) ≡ 3 (mod 5).

Example 4: stupid examples. Spec k where k is any field is boring: only one point. Spec 0,
where 0 is the zero-ring, is the empty set, as 0 has no prime ideals.

4.A. A SMALL EXERCISE ABOUT SMALL SCHEMES. (a) Describe the set Spec k[ε]/ε2. This
is called the ring of dual numbers, and will turn out to be quite useful. You should think
of ε as a very small number, so small that its square is 0 (although it itself is not 0).
(b) Describe the set Spec k[x](x). (We will see this scheme again later.)

In Example 2, we restricted to the case of algebraically closed fields for a reason: things
are more subtle if the field is not algebraically closed.

Example 5: R[x]. Using the fact that R[x] is a unique factorization domain, we see that
the primes are (0), (x−a) where a ∈ R, and (x2+ax+b) where x2+ax+b is an irreducible

8



quadratic. The latter two are maximal ideals, i.e. their quotients are fields. For example:
R[x]/(x − 3) ∼= R, R[x]/(x2 + 1) ∼= C.

4.B. UNIMPORTANT EXERCISE. Show that for the last type of prime, of the form (x2 +
ax + b), the quotient is always isomorphic to C.

So we have the points that we would normally expect to see on the real line, corre-
sponding to real numbers; the generic point 0; and new points which we may interpret as
conjugate pairs of complex numbers (the roots of the quadratic). This last type of point
should be seen as more akin to the real numbers than to the generic point. You can
picture A

1
R as the complex plane, folded along the real axis. But the key point is that

Galois-conjugate points are considered glued.

Let’s explore functions on this space; consider the function f(x) = x3 − 1. Its value at
the point [(x − 2)] is f(x) = 7, or perhaps better, 7 (mod x − 2). How about at (x2 + 1)? We
get

x3 − 1 ≡ x − 1 (mod x2 + 1),

which may be profitably interpreted as i − 1.

One moral of this example is that we can work over a non-algebraically closed field if
we wish. It is more complicated, but we can recover much of the information we wanted.

4.C. EXERCISE. Describe the set A1
Q. (This is harder to picture in a way analogous to A1

R;
but the rough cartoon of points on a line, as in Figure 1, remains a reasonable sketch.)

Example 6: Fp[x]. As in the previous examples, this has a division algorithm, so the
prime ideals are of the form (0) or (f(x)) where f(x) ∈ Fp[x] is an irreducible polyno-
mials, which can be of any degree. Irreducible polynomials correspond to sets of Galois
conjugates in Fp.

Note that Spec Fp[x] has p points corresponding to the elements of Fp, but also (infin-
itely) many more. This makes this space much richer than simply p points. For example,
a polynomial f(x) is not determined by its values at the p elements of Fp, but it is deter-
mined by its values at the points of Spec Fp. (As we have mentioned before, this is not
true for all schemes.)

You should think about this, even if you are a geometric person — this intuition will
later turn up in geometric situations. Even if you think you are interested only in working
over an algebraically closed field (such as C), you will have non-algebraically closed fields
(such as C(x)) forced upon you.

E-mail address: vakil@math.stanford.edu
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1. MORE EXAMPLES OF THE UNDERLYING SETS OF AFFINE SCHEMES

We are in the midst of discussing the underlying set of an affine scheme. We are looking
at examples and learning how to draw pictures.

Example 7: A
2

C
= Spec C[x, y]. (As with Examples 1 and 2, discussion will apply with C

replaced by any algebraically closed field.) Sadly, C[x, y] is not a Principal Ideal Domain:
(x, y) is not a principal ideal. We can quickly name some prime ideals. One is (0), which
has the same flavor as the (0) ideals in the previous examples. (x − 2, y − 3) is prime,
and indeed maximal, because C[x, y]/(x − 2, y − 3) ∼= C, where this isomorphism is via
f(x, y) 7→ f(2, 3). More generally, (x−a, y−b) is prime for any (a, b) ∈ C2. Also, if f(x, y)
is an irreducible polynomial (e.g. y − x2 or y2 − x3) then (f(x, y)) is prime.

1.A. EXERCISE. (Feel free to skip this exercise, as we will see a different proof of this
later.) Show that we have identified all the prime ideals of C[x, y].

We can now attempt to draw a picture of this space. The maximal primes correspond
to the old-fashioned points in C2: [(x − a, y − b)] corresponds to (a, b) ∈ C2. We now
have to visualize the “bonus points”. [(0)] somehow lives behind all of the old-fashioned
points; it is somewhere on the plane, but nowhere in particular. So for example, it does
not lie on the parabola y = x2. The point [(y − x2)] lies on the parabola y = x2, but
nowhere in particular on it. You can see from this picture that we already want to think
about “dimension”. The primes (x − a, y − b) are somehow of dimension 0, the primes
(f(x, y)) are of dimension 1, and (0) is somehow of dimension 2. (All of our dimensions
here are complex or algebraic dimensions. The complex plane C2 has real dimension 4, but

Date: Wednesday, October 10, 2007. Updated Nov. 1, 2007. Mild corrections Nov. 17.
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complex dimension 2. Complex dimensions are in general half of real dimensions.) We
won’t define dimension precisely until later, but you should feel free to keep it in mind
before then.

Note too that maximal ideals correspond to “smallest” points. Smaller ideals corre-
spond to “bigger” points. “One prime ideal contains another” means that the points
“have the opposite containment.” All of this will be made precise once we have a topol-
ogy. This order-reversal is a little confusing, and will remain so even once we have made
the notions precise.

We now come to the obvious generalization of Example 7, affine n-space.

Example 8: An

C
:= Spec C[x1, . . . , xn]. (More generally, An

A
is defined to be Spec A[x1, . . . , xn],

where A is an arbitrary ring.)

For concreteness, let’s consider n = 3. We now have an interesting question in algebra:
What are the prime ideals of C[x, y, z]? Analogously to before, (x−a, y−b, z−c) is a prime
ideal. This is a maximal ideal, with residue field C; we think of these as “0-dimensional
points”. We will often write (a, b, c) for [(x − a, y − b, z − c)] because of our geometric
interpretation of these ideals.

There are no more maximal ideals, by Hilbert’s Nullstellensatz. (This is sometimes
called the “weak version” of the Nullstellensatz.) You may have already seen this result.
We will prove it later (in a slightly stronger form), so we will content ourselves by stating
it here.

1.1. Hilbert’s Nullstellensatz. — Suppose A = k[x1, . . . , xn], where k is an algebraically closed
field. Then the maximal ideals are precisely those of the form (x1 −a1, . . . , xn −an), where ai ∈ k.

There are other prime ideals too. We have (0), which is corresponds to a “3-dimensional
point”. We have (f(x, y, z)), where f is irreducible. To this we associate the hypersurface
f = 0, so this is “2-dimensional” in nature. But we have not found them all! One clue:
we have prime ideals of “dimension” 0, 2, and 3 — we are missing “dimension 1”. Here
is one such prime ideal: (x, y). We picture this as the locus where x = y = 0, which is
the z-axis. This is a prime ideal, as the corresponding quotient C[x, y, z]/(x, y) ∼= C[z] is
an integral domain (and should be interpreted as the functions on the z-axis). There are
lots of one-dimensional primes, and it is not possible to classify them in a reasonable way.
It will turn out that they correspond to things that we think of as irreducible curves: the
natural answer to this algebraic question is geometric.

1.2. Important fact: Maps of rings induce maps of spectra (as sets). We now make
an observation that will later grow up to be morphisms of schemes. If φ : B → A is a
map of rings, and p is a prime ideal of A, then φ−1(p) is a prime ideal of B (check this!).
Hence a map of rings φ : B → A induces a map of sets Spec A → Spec B “in the opposite
direction”. This gives a contravariant functor from the category of rings to the category of
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sets: the composition of two maps of rings induces the composition of the corresponding
maps of spectra.

We now describe two important cases of this: maps of rings inducing inclusions of sets.
There are two particularly useful ways of producing new rings from a ring A. One is by
taking the quotient by an ideal I. The other is by localizing at a multiplicative set. We’ll
see how Spec behaves with respect to these operations. In both cases, the new ring has a
Spec that is a subset of Spec of the old ring.

First important example (quotients): Spec B/I in terms of Spec B. As a motivating
example, consider Spec B/I where B = C[x, y], I = (xy). We have a picture of Spec B,
which is the complex plane, with some mysterious extra “higher-dimensional points”. It
is an important fact that the primes of B/I are in bijection with the primes of B containing
I. (If you do not know why this is true, you should prove it yourself.) Thus we can picture
Spec B/I as a subset of Spec B. We have the “0-dimensional points” (a, 0) and (0, b). We
also have two “1-dimensional points” (x) and (y).

We get a bit more: the inclusion structure on the primes of B/I corresponds to the
inclusion structure on the primes containing I. More precisely, if J1 ⊂ J2 in B/I, and Ki is
the ideal of B corresopnding to Ji, then K1 ⊂ K2. (Again, prove this yourself if you have
not seen it before.)

So the minimal primes of C[x, y]/(xy) are the “biggest” points we see, and there are
two of them: (x) and (y). Thus we have the intuition that will later be made precise: the
minimal primes of A correspond to the “components” of Spec A.

As an important motivational special case, you now have a picture of “complex affine
varieties”. Suppose A is a finitely generated C-algebra, generated by x1, . . . , xn, with
relations f1(x1, . . . , xn) = · · · = fr(x1, . . . , xn) = 0. Then this description in terms of
generators and relations naturally gives us an interpretation of Spec A as a subset of An

C
,

which we think of as “old-fashioned points” (n-tuples of complex numbers) along with
some “bonus” points. To see which subsets of the old-fashioned points are in Spec A, we
simply solve the equations f1 = · · · = fr = 0. For example, Spec C[x, y, z]/(x2 + y2 − z2)
may be pictured as shown in Figure 1. (Admittedly this is just a “sketch of the R-points”,
but we will still find it helpful later.) This entire picture carries over (along with the
Nullstellensatz) with C replaced by any algebraically closed field. Indeed, the picture of
Figure 1 can be said to represent k[x, y, z]/(x2+y2−z2) for most algebraically closed fields
k (although it is misleading in characteristic 2, because of the coincidence x2 + y2 − z2 =
(x + y + z)2).

1.B. EXERCISE. Ring elements that have a power that is 0 are called nilpotents. If I is an
ideal of nilpotents, show that Spec B/I → Spec B is a bijection. Thus nilpotents don’t affect
the underlying set. (We will soon see in Exercise 2.H that they won’t affect the topology
either — the difference will be in the structure sheaf.)

Second important example (localization): Spec S−1B in terms of Spec B, where S is a
multiplicative subset of B. There are two particularly important flavors of multiplicative
subsets. The first is B \ p, where p is a prime ideal. This localization S−1B is denoted Bp.
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FIGURE 1. A “picture” of Spec C[x, y, z]/(x2 + y2 − z2)

A motivating example is B = C[x, y], S = B − (x, y). The second is {1, f, f2, . . . }, where
f ∈ B. This localization is denoted Bf. (Notational warning: If p is a prime ideal, then Bp

means you’re allowed to divide by elements not in p. However, if f ∈ B, Bf means you’re
allowed to divide by f. This can be confusing. For example, if (f) is a prime ideal, then
Bf 6= B(f).) A motivating example is B = C[x, y], f = x.

1.3. Essential algebra fact (to review and know). The map Spec S−1B → Spec B gives an
order-preserving bijection of the primes of S−1B with the primes of B that don’t meet the
multiplicative set S.

So if S = B − p where p is a prime ideal, the primes of S−1B are just the primes of B

contained in p. If S = {1, f, f2, . . . }, the primes of S−1B are just those primes not containing
f (the points where “f doesn’t vanish” — draw a picture of Spec C[x]x2−x to see how this
works).

1.4. Warning. sometimes localization is first introduced in the special case where B is
an integral domain. In this example, B ↪→ Bf, but this isn’t true when one inverts zero-
divisors. (A zero-divisor of a ring B is an element a such that there is a non-zero element
b with ab = 0. The other elements of B are called non-zero-divisors.) One definition of
localization is as follows. The elements of S−1B are of the form a/s where r ∈ B and s ∈ S,
and (a1/s1)× (a2/s2) = (a1a2/s1s2), and (a1/s1) + (a2/s2) = (a1s2 + s1a2)/(s1s2). We say
that a1/s1 = a2/s2 if for some s ∈ S s(a1s2 − a2s1) = 0. So for example, B[1/0] ∼= 0.

1.5. Important comment: functions are not determined by their values at points. We
are developing machinery that will let us bring our geometric intuition to algebra. There
is one point where your intuition will be false, so you should know now, and adjust
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your intuition appropriately. Suppose we have a function (ring element) vanishing at all
points. Then it is not necessarily the zero function! The translation of this question is: is
the intersection of all prime ideals necessarily just 0? The answer is no, as is shown by the
example of the ring of dual numbers k[ε]/ε2: ε 6= 0, but ε2 = 0. (We saw this scheme in
an exercise in class 5.) Any function whose power is zero certainly lies in the intersection
of all prime ideals. The converse is also true: the intersection of all the prime ideals
consists of functions for which some power is zero, otherwise known as the nilradical N.
(You should check that the nilpotents indeed form an ideal. For example, the sum of two
nilpotents is always nilpotent.)

1.6. Theorem. The nilradical N(A) is the intersection of all the primes of A.

1.C. EXERCISE. If you don’t know this theorem, then look it up, or even better, prove
it yourself. (Hint: one direction is easy. The other will require knowing that any proper
ideal of A is contained in a maximal ideal, which requires the axiom of choice.)

In particular, although it is upsetting that functions are not determined by their values
at points, we have precisely specified what the failure of this intuition is: two functions
have the same values at points if and only if they differ by a nilpotent. And if there are no
non-zero nilpotents — if N = 0 — then functions are determined by their values at points.

2. THE ZARISKI TOPOLOGY: THE UNDERLYING TOPOLOGICAL SPACE OF AN AFFINE
SCHEME

We next introduce the Zariski topology on the spectrum of a ring. At first it seems like an
odd definition, but in retrospect it is reasonable. For example, consider A2

C
= Spec C[x, y],

the complex plane (with a few extra points). In algebraic geometry, we will only be al-
lowed to consider algebraic functions, i.e. polynomials in x and y. The locus where a
polynomial vanishes should reasonably be a closed set, and the Zariski topology is de-
fined by saying that the only sets we should consider closed should be these sets, and
other sets forced to be closed by these. In other words, it is the coarsest topology where
these sets are closed.

In particular, although topologies are often described using open subsets, it will more
convenient for us to define this topology in terms of closed subsets. If S is a subset of a
ring A, define the Vanishing set of S by

V(S) := {[p] ∈ Spec A : S ⊂ p}.

It is the set of points on which all elements of S are zero. (It should now be second nature
to equate “vanishing at a point” with “contained in a prime”.) We declare that these (and
no other) are the closed subsets.

For example, consider V(xy, xz) ⊂ A3 = Spec C[x, y, z]. Which points are contained
in this locus? We think of this as solving xy = yz = 0. Of the “old-fashioned” points
(interpreted as ordered triples of complex numbers, thanks to the Hilbert’s Nullstellen-
satz 1.1), we have the points where y = 0 or x = z = 0: the xz-plane and the y-axis

5



respectively. Of the “new” points, we have the generic point of the xz-plane (also known
as the point [(y)]), and the generic point of the y-axis (also known as the point [(x, z)]).
You might imagine that we also have a number of “one-dimensional” points contained in
the xz-plane.

2.A. EASIER EXERCISE. Check that the x-axis is contained in this set.

Let’s return to the general situation. The following exercise lets us restrict attention to
vanishing sets of ideals.

2.B. EASIER EXERCISE. Show that if (S) is the ideal generated by S, then V(S) = V((S)).

We define the Zariski topology by declaring that V(S) is closed for all S. Let’s check
that this is a topology. We have to check that the empty set and the total space are open;
the union of an arbitrary collection of open sets are open; and the intersection of two open
sets are open.

2.C. EXERCISE. (a) Show that ∅ and Spec A are both open.
(b) Show that V(I1) ∪ V(I2) = V(I1I2). Hence show that the intersection of any finite
number of open sets is open.
(c) (The union of any collection of open sets is open.) If Ii is a collection of ideals (as i runs
over some index set), check that ∩iV(Ii) = V(

∑
i
Ii).

2.1. Properties of “vanishing set” function V(·). The function V(·) is obviously inclusion-
reversing: If S1 ⊂ S2, then V(S2) ⊂ V(S1). Warning: We could have equality in the second
inclusion without equality in the first, as the next exercise shows.

2.D. EXERCISE/DEFINITION. If I ⊂ R is an ideal, then define its radical by
√

I := {r ∈ R : rn ∈ I for some n ∈ Z
≥0}.

For example, the nilradical N (§1.5) is
√

(0). Show that V(
√

I) = V(I). We say an ideal is
radical if it equals its own radical.

Here are two useful consequences. As (I∩ J)2 ⊂ IJ ⊂ I∩ J, we have that V(IJ) = V(I∩ J)
(= V(I) ∪ V(J) by Exercise 2.C(b)). Also, combining this with Exercise 2.B, we see V(S) =

V((S)) = V(
√

(S)).

2.E. EXERCISE (PRACTICE WITH THE CONCEPT). If I1, . . . , In are ideals of a ring A, show
that

√

∩n

i=1
Ii = ∩n

i=1

√
Ii. (We will use this property without referring back to this exercise.)

2.F. EXERCISE FOR FUTURE USE. Show that
√

I is the intersection of all the prime ideals
containing I. (Hint: Use Theorem 1.6 on an appropriate ring.)
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2.2. Examples. Let’s see how this meshes with our examples from the previous section.

Recall that A1

C
, as a set, was just the “old-fashioned” points (corresponding to maxi-

mal ideals, in bijection with a ∈ C), and one “new” point (0). The Zariski topology on
A1

C
is not that exciting: the open sets are the empty set, and A1

C
minus a finite number

of maximal ideals. (It “almost” has the cofinite topology. Notice that the open sets are
determined by their intersections with the “old-fashioned points”. The “new” point (0)
comes along for the ride, which is a good sign that it is harmless. Ignoring the “new”
point, observe that the topology on A1

C
is a coarser topology than the analytic topology.)

The case Spec Z is similar. The topology is “almost” the cofinite topology in the same
way. The open sets are the empty set, and Spec Z minus a finite number of “ordinary”
((p) where p is prime) primes.

2.3. Closed subsets of A2

C
. The case A2

C
is more interesting. You should think through

where the “one-dimensional primes” fit into the picture. In Exercise 1.A, we identified all
the primes of C[x, y] (i.e. the points of A

2

C
) as the maximal ideals (x−a, y−b) (a, b ∈ C), the

“one-dimensional points” (f(x, y)) (f(x, y) irreducible), and the “two-dimensional point”
(0).

Then the closed subsets are of the following form:

(a) the entire space, and
(b) a finite number (possibly zero) of “curves” (each of which is the closure of a “one-

dimensional point”) and a finite number (possibly zero) of closed points.

2.4. Important fact: Maps of rings induce continuous maps of topological spaces. We
saw in §1.2 that a map of rings φ : B → A induces a map of sets π : Spec A → Spec B.

2.G. IMPORTANT EXERCISE. By showing that closed sets pull back to closed sets, show
that π is a continuous map.

Not all continuous maps arise in this way. Consider for example the continuous map
on A1

C
that is the identity except 0 and 1 (i.e. [(x)] and [(x − 1)] are swapped); there is no

polynomial that can manage this.

In §1.2, we saw that Spec B/I and Spec S−1B are naturally subsets of Spec B. It is natural
to ask if the Zariski topology behaves well with respect to these inclusions, and indeed it
does.

2.H. IMPORTANT EXERCISE. Suppose that I, S ⊂ B are an ideal and multiplicative sub-
set respectively. Show that Spec B/I is naturally a closed subset of Spec B. Show that the
Zariski topology on Spec B/I (resp. Spec S−1B) is the subspace topology induced by inclu-
sion in Spec B. (Hint: compare closed subsets.)
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In particular, if I ⊂ N is an ideal of nilpotents, the bijection Spec B/I → Spec B (Exer-
cise 1.B) is a homeomorphism. Thus nilpotents don’t affect the topological space. (The
difference will be in the structure sheaf.)

2.I. USEFUL EXERCISE FOR LATER. Suppose I ⊂ B is an ideal. Show that f vanishes on
V(I) if and only if fn ∈ I for some n.

2.J. EXERCISE. Describe the topological space Spec k[x](x).

3. TOPOLOGICAL DEFINITIONS

We now describe various properties that it will be useful to have names for.

A topological space is said to be irreducible if it is not the union of two proper closed
subsets. In other words, X is irreducible if whenever X = Y ∪ Z with Y and Z closed, we
have Y = X or Z = X.

3.A. EASY EXERCISE. Show that on an irreducible topological space, any nonempty open
set is dense. (The moral of this is: unlike in the classical topology, in the Zariski topology,
non-empty open sets are all “very big”.)

3.B. EXERCISE. Show that Spec A is irreducible if and only if A has only one minimal
prime. (Minimality is with respect to inclusion.) In particular, if A is an integral domain,
then Spec A is irreducible.

A point of a topological space x ∈ X is said to be closed if {x} is a closed subset. In the
old-fashioned topology on Cn, all points are closed.

3.C. EXERCISE. Show that the closed points of Spec A correspond to the maximal ideals.

Thus Hilbert’s Nullstellensatz lets us associate the closed points of An

C
with n-tuples

of complex numbers. Hence from now on we will say “closed point” instead of “old-
fashioned point” and “non-closed point” instead of “bonus” or “new-fangled” point when
discussing subsets of An

C
.

Given two points x, y of a topological space X, we say that x is a specialization of y,
and y is a generization of x, if x ∈ {y}. This now makes precise our hand-waving about
“one point contained another”. It is of course nonsense for a point to contain another.
But it is not nonsense to say that the closure of a point contains another. For example,
in A2

C
= Spec C[x, y], [(y − x2)] is a generization of (2, 4) = [(x − 2, y − 4)], and (2, 4) is a

specialization of [(y − x2)].
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3.D. EXERCISE. If X = Spec A, show that [p] is a specialization of [q] if and only if q ⊂ p.
Verify to your satisfaction that we have made our intuition of “containment of points”
precise: it means that the one point is contained in the closure of another.

We say that a point x ∈ X is a generic point for a closed subset K if {x} = K.

3.E. EXERCISE. Verify that [(y − x2)] ∈ A2 is a generic point for V(y − x2).

We will soon see that there is a natural bijection between points of Spec A and irre-
ducible closed subsets of Spec A. You know enough to show this now, although we’ll
wait until we have developed some convenient terminology.

3.F. LESS IMPORTANT EXERCISE. (a) Suppose I = (wz−xy, wy−x2, xz−y2) ⊂ k[w, x, y, z].
Show that Spec k[w, x, y, z]/I is irreducible, by showing that I is prime. (One possible
approach: Show that the quotient ring is a domain, by showing that it is isomorphic to
the subring of k[a, b] including only monomials of degree divisible by 3. There are other
approaches as well, some of which we will see later. This is an example of a hard question:
how do you tell if an ideal is prime?) We will later see this as the cone over the twisted
cubic curve.
(b) Note that the ideal of part (a) may be rewritten as

rank

(

w x y

x y z

)

= 1,

i.e. that all determinants of 2 × 2 submatrices vanish. Generalize this to the ideal of rank
1 2 × n matrices. This notion will correspond to the cone over the degree n rational normal
curve.

3.1. Noetherian conditions.

In the examples we have considered, the spaces have naturally broken up into some
obvious pieces. Let’s make that a bit more precise.

A topological space X is called Noetherian if it satisfies the descending chain condition
for closed subsets: any sequence Z1 ⊇ Z2 ⊇ · · · ⊇ Zn ⊇ · · · of closed subsets eventually
stabilizes: there is an r such that Zr = Zr+1 = · · · .

The following exercise may be enlightening.

3.G. EXERCISE. Show that any decreasing sequence of closed subsets of A2

C
= Spec C[x, y]

must eventually stabilize. Note that it can take arbitrarily long to stabilize. (The closed
subsets of A2

C
were described in §2.3.)

3.2. It turns out that all of the spectra we have considered have this property, but that
isn’t true of the spectra of all rings. The key characteristic all of our examples have had
in common is that the rings were Noetherian. Recall that a ring is Noetherian if every
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ascending sequence I1 ⊂ I2 ⊂ · · · of ideals eventually stabilizes: there is an r such that
Ir = Ir+1 = · · · . (This is called the ascending chain condition on ideals.)

Here are some quick facts about Noetherian rings. You should be able to prove them
all.

• Fields are Noetherian. Z is Noetherian.
• If A is Noetherian, and I is any ideal, then A/I is Noetherian.
• If A is Noetherian, and S is any multiplicative set, then S−1A is Noetherian.
• In a Noetherian ring, any ideal is finitely generated.
• Any submodule of a finitely generated module over a Noetherian ring is finitely

generated. (Hint: prove it for An, and use the next exercise.)

3.H. EXERCISE. Suppose 0 → M ′ → M → M ′′ → 0, and M ′ and M ′′ satisfy the ascending
chain condition for modules. Show that M does too. (The converse also holds; we won’t
use this, but you can show it if you wish.)

The next fact is non-trivial.

3.3. The Hilbert basis theorem. — If A is Noetherian, then so is A[x].

Using these results, then any polynomial ring over any field, or over the integers, is
Noetherian — and also any quotient or localization thereof. Hence for example any
finitely-generated algebra over k or Z, or any localization thereof is Noetherian. Most
“nice” rings are Noetherian, but not all rings are Noetherian, e.g. k[x1, x2, . . . ] because
m = (x1, x2, . . . , ) is not finitely generated.

3.I. EXERCISE. If A is Noetherian, show that Spec A is a Noetherian topological space.

3.J. LESS IMPORTANT EXERCISE. Show that the converse is not true: if Spec A is a Noe-
therian topological space, A need not be Noetherian. Describe a ring A such that Spec A

is not a Noetherian topological space.

I discussed how the finiteness of the game of Chomp is a consequence of the Hilbert
basis theorem.

If X is a topological space, and Z is an irreducible closed subset not contained in any
larger irreducible closed subset, Z is said to be an irreducible component of X. (I drew a
picture.)

3.K. EXERCISE. If A is any ring, show that the irreducible components of Spec A are in
bijection with the minimal primes of A.
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For example, the only minimal prime of k[x, y] is (0). What are the minimal primes of
k[x, y]/(xy)?

E-mail address: vakil@math.stanford.edu
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1. DECOMPOSITION INTO IRREDUCIBLE COMPONENTS, AND NOETHERIAN INDUCTION

At the end of last day, we defined irreducible component: If X is a topological space, and
Z is an irreducible closed subset not contained in any larger irreducible closed subset, Z

is said to be an irreducible component of X. We think of these as the “pieces of X” (see
Figure 1).

FIGURE 1. This closed subset of A
2 has six irreducible components

We saw the exercise: If A is any ring, show that the irreducible components of Spec A

are in bijection with the minimal primes of A.

Date: Monday, October 15, 2007 and Wednesday, October 17, 2007. New exercise added November 15,
2007.
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For example, the only minimal prime of k[x, y] is (0). What are the minimal primes of
k[x, y]/(xy)?

1.1. Proposition. — Suppose X is a Noetherian topological space. Then every non-empty closed
subset Z can be expressed uniquely as a finite union Z = Z1∪· · ·∪Zn of irreducible closed subsets,
none contained in any other.

Translation: any non-empty closed subset Z has of a finite number of pieces.

As a corollary, this implies that a Noetherian ring A has only finitely many minimal
primes.

Proof. The following technique is often called Noetherian induction, for reasons that will
become clear. Justin prefers the phrase “Noetherian descent”.

Consider the collection of closed subsets of X that cannot be expressed as a finite union
of irreducible closed subsets. We will show that it is empty. Otherwise, let Y1 be one
such. If it properly contains another such, then choose one, and call it Y2. If this one
contains another such, then choose one, and call it Y3, and so on. By the descending chain
condition, this must eventually stop, and we must have some Yr that cannot be written as
a finite union of irreducible closed subsets, but every closed subset contained in it can be
so written. But then Yr is not itself irreducible, so we can write Yr = Y ′∪Y ′′ where Y ′ and Y ′′

are both proper closed subsets. Both of these by hypothesis can be written as the union of
a finite number of irreducible subsets, and hence so can Yr, yielding a contradiction. Thus
each closed subset can be written as a finite union of irreducible closed subsets. We can
assume that none of these irreducible closed subsets contain any others, by discarding
some of them.

We now show uniqueness. Suppose
Z = Z1 ∪ Z2 ∪ · · · ∪ Zr = Z ′

1 ∪ Z ′
2 ∪ · · · ∪ Z ′

s

are two such representations. Then Z ′
1 ⊂ Z1∪Z2∪· · ·∪Zr, so Z ′

1 = (Z1∩Z ′
1)∪· · ·∪(Zr∩Z ′

1).
Now Z ′

1 is irreducible, so one of these is Z ′
1 itself, say (without loss of generality) Z1 ∩ Z ′

1.
Thus Z ′

1 ⊂ Z1. Similarly, Z1 ⊂ Z ′
a for some a; but because Z ′

1 ⊂ Z1 ⊂ Z ′
a, and Z ′

1 is
contained in no other Z ′

i, we must have a = 1, and Z ′
1 = Z1. Thus each element of the list

of Z’s is in the list of Z ′’s, and vice versa, so they must be the same list. �

2. THE FUNCTION I(·), TAKING SUBSETS OF Spec A TO IDEALS OF A

We now introduce a notion that is in some sense “inverse” to the vanishing set function
V(·). Given a subset S ⊂ Spec A, I(S) is the set of functions vanishing on S.

We make three quick observations:

• I(S) is clearly an ideal.
• I(S) = I(S).
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[(x − 1, y)]

[(x)]

FIGURE 2. The set S of Exercise/example 2.A, pictured as a subset of A2

• I(·) is inclusion-reversing: if S1 ⊂ S2, then I(S2) ⊂ I(S1).

2.A. EXERCISE/EXAMPLE. Let A = k[x, y]. If S = {[(x)], [(x − 1, y)]} (see Figure 2), then
I(S) consists of those polynomials vanishing on the y axis, and at the point (1, 0). Give
generators for this ideal.

2.B. TRICKY EXERCISE. Suppose X ⊂ A3 is the union of the three axes. (The x-axis is
defined by y = z = 0, and the y-axis and z-axis are deined analogously.) Give generators
for the ideal I(X). Be sure to prove it! Hint: We will see later that this ideal is not generated
by less than three elements.

2.C. EXERCISE. Show that V(I(S)) = S. Hence V(I(S)) = S for a closed set S. (Compare
this to Exercise 2.D below.)

Note that I(S) is always a radical ideal — if f ∈
√

I(S), then fn vanishes on S for some
n > 0, so then f vanishes on S, so f ∈ I(S).

2.D. EXERCISE. Prove that if I ⊂ A is an ideal, then I(V(I)) =
√

I.

This exercise and Exercise 2.C suggest that V and I are “almost” inverse. More pre-
cisely:

2.1. Theorem. — V(·) and I(·) give a bijection between closed subsets of Spec A and radical ideals
of A (where a closed subset gives a radical ideal by I(·), and a radical ideal gives a closed subset by
V(·)).

2.E. IMPORTANT EXERCISE. Show that V(·) and I(·) give a bijection between irreducible
closed subsets of Spec A and prime ideals of A. From this conclude that in Spec A there
is a bijection between points of Spec A and irreducible closed subsets of Spec A (where a
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point determines an irreducible closed subset by taking the closure). Hence each irreducible
closed subset of Spec A has precisely one generic point — any irreducible closed subset Z can
be written uniquely as {z}.

3. DISTINGUISHED OPEN SETS

If f ∈ A, define the distinguished open set D(f) = {[p] ∈ Spec A : f /∈ p}. It is the
locus where f doesn’t vanish. (I often privately write this as D(f 6= 0) to remind myself
of this. I also privately call this a “Doesn’t-vanish set” in analogy with V(f) being the
Vanishing set.) We have already seen this set when discussing Spec Af as a subset of
Spec A. For example, we have observed that the Zariski-topology on the distinguished
open set D(f) ⊂ Spec A coincides with the Zariski topology on Spec Af.

Here are some important but not difficult exercises to give you a feel for these important
open sets.

3.A. EXERCISE. Show that the distinguished open sets form a base for the Zariski topol-
ogy. (Hint: Given an ideal I, show that the complement of V(I) is ∪f∈ID(f).)

3.B. EXERCISE. Suppose fi ∈ A as i runs over some index set J. Show that ∪i∈JD(fi) =
Spec A if and only if (fi) = A. (One of the directions will use the fact that any proper ideal
of A is contained in some maximal ideal.)

3.C. EXERCISE. Show that if Spec A is an infinite union ∪i∈JD(fi), then in fact it is a union
of a finite number of these. (Hint: use the previous exercise 3.B.) Show that Spec A is
quasicompact.

3.D. EXERCISE. Show that D(f) ∩ D(g) = D(fg).

3.E. EXERCISE. Show that if D(f) ⊂ D(g), if and only if fn ∈ (g) for some n if and only if
g is a unit in Af. (Hint for the first equivalence: f ∈ I(V((g))). We will use this shortly.

3.F. EXERCISE. Show that D(f) = ∅ if and only if f ∈ N.

4. THE STRUCTURE SHEAF

The final ingredient in the definition of an affine scheme is the structure sheaf OSpec A,
which we think of as the “sheaf of algebraic functions”. As motivation, in A2, we expect
that on the open set D(xy) (away from the two axes), (3x4 + y + 4)/x7 should be an
algebraic function.
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These functions will have values at points, but won’t be determined by their values
at points. But like all sheaves, they will indeed be determined by their germs. This is
discussed in Section 4.4.

It suffices to describe the structure sheaf as a sheaf (of rings) on the base of distin-
guished open sets. Our strategy is as follows. We will define the sections on the base
by
(1) OSpec A(D(f)) = Af

We need to make sure that this is well-defined, i.e. that we have a natural isomorphism
Af → Ag if D(f) = D(g). We will define the restriction maps resD(g),D(f) as follows. If
D(f) ⊂ D(g), then we have shown that D(fg) = D(f). There is a natural map Ag → Afg

given by r/gm 7→ (rfm)/(fg)m, and we will define
resD(g),D(fg)=D(f) : OSpec A(D(g)) → OSpec A(D(fg))

to be this map. But it will be cleaner to state things a little differently.

If D(f) ⊂ D(g), then by Exercise 3.E, g is a unit in Af Thus by the universal property
of localization, there is a natural map Ag → Af which we temporarily denote resg,f, but
which we secretly think of as resD(g),D(f). If D(f) ⊂ D(g) ⊂ D(h), then these restriction
maps commute:

(2) Ah

resh,g
//

resh,f
  A

AA
AA

AA
A

Ag

resg,f
~~}}

}}
}}

}}

Af

commutes. (The map Ah → Af is defined by universal property, and the composition
resg,f ◦ resh,g satisfies this universal property.)

In particular, if D(f) = D(g), then resg,f ◦ resf,g is the identity on Af, (take h = f in the
above diagram (2)), and similarly resf,g ◦ resg,f = idAg

. Thus we can define OSpec A(D(f)) =
Af, and this is well-defined (independent of the choice of f).

By (2), we have defined a presheaf on the distinguished base.

We now come to a key theorem.

4.1. Theorem. — The data just described gives a sheaf on the distinguished base, and hence
determines a sheaf on the topological space Spec A.

This sheaf is called the structure sheaf, and will be denoted OSpec A, or sometimes O
if the scheme in question is clear from the context. Such a topological space, with sheaf,
will be called an affine scheme. The notation Spec A will hereafter denote the data of a
topological space with a structure sheaf.

Proof. We first check identity on the base. We deal with the case of a cover of the entire
space A, and let you verify that essentially the same argument holds for a cover of some
Af. Suppose that Spec A = ∪i∈ID(fi) where i runs over some index set I. Then there
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is some finite subset of I, which we name {1, . . . , n}, such that Spec A = ∪n
i=1D(fi), i.e.

(f1, . . . , fn) = A (quasicompactness of Spec A, Exercise 3.C). Suppose we are given s ∈ A

such that resSpec A,D(fi) s = 0 in Afi
for all i. (We wish to show that s = 0.) Hence there

is some m such that for each i ∈ {1, . . . , n}, fm
i s = 0. Now (fm

1 , . . . , fm
n ) = A (Spec A =

∪D(fi) = ∪D(fm
i )), so there are ri ∈ A with

∑n

i=1 rif
m
i = 1 in A, from which

s =
(∑

rif
m
i

)

s =
∑

ri(f
m
i s) = 0.

Thus we have checked the “base identity” axiom for Spec A. (Serre has described this as
a “partition of unity” argument, and if you look at it in the right way, his insight is very
enlightening.)

4.A. EXERCISE. Make the tiny changes to the above argument to show base identity for
any distinguished open D(f). (Possible strategy: show that the argument is the same as
the previous argument for Spec Af.)

We next show base gluability. As with base identity, we deal with the case where we
wish to glue sections to produce a section over Spec A. As before, we leave the general
case where we wish to glue sections to produce a section over D(f) to the reader (Exer-
cise 4.B).

Suppose ∪i∈ID(fi) = Spec A, where I is a index set (possibly horribly uncountably
infinite). Suppose we are given elements in each Afi

that agree on the overlaps Afifj
.

(Note that intersections of distinguished opens are also distinguished opens.)

Aside: experts might realize that we are trying to show exactness of

0 → A →
∏

i

Afi
→

∏

i6=j

Afifj
.

(What is the right-hand map?) Base identity corresponds to injectivity at A. The compo-
sition of the right two morphisms is trivially zero, and gluability is verifying exactness at∏

i Afi
.

Choose a finite subset {1, . . . , n} ⊂ I with (f1, . . . , fn) = A (i.e. use quasicompactness
of Spec A to choose a finite subcover by D(fi)). We have elements ai/fli

i ∈ Afi
agreeing

on overlaps Afifj
. Letting gi = fli

i , using D(fi) = D(gi), we can simplify notation by
considering our elements as of the form ai/gi ∈ Agi

.

The fact that ai/gi and aj/gj “agree on the overlap” (i.e. in Agigj
) means that for some

mij,
(gigj)

mij(gjai − giaj) = 0

in A. By taking m = max mij (here we use the finiteness of I), we can simplify notation:
(gigj)

m(gjai − giaj) = 0

for all i, j. Let bi = aig
m
i for all i, and hi = gm+1

i (so D(hi) = D(gi)). Then we can simplify
notation even more: on each D(hi), we have a function bi/hi, and the overlap condition
is hjbi − hibj = 0
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Now ∪iD(hi) = A, implying that 1 =
∑n

i=1 rihi for some ri ∈ A. Define r =
∑

ribi.
This will be the element of A that restricts to each bj/hj. Indeed,

rhj − bj =
∑

i

ribihj −
∑

i

bjrihi =
∑

i

ri(bihj − bjhi) = 0.

We are not quite done! We are supposed to have something that restricts to ai/fli
i for

all i ∈ I, not just i = 1, . . . , n. But a short trick takes care of this. We now show that for
any α ∈ I − {1, . . . , n}, r restricts to the desired element aα Afα

. Repeat the entire process
above with {1, . . . , n, α} in place of {1, . . . , n}, to obtain r ′ ∈ A which restricts to αα for
i ∈ {1, . . . , n, α}. Then by base identity, r ′ = r. (Note that we use base identity to prove
base gluability. This is an example of how base identity is “prior” to base gluability.)
Hence r restricts to aα/flα

α as desired.

4.B. EXERCISE. Alter this argument appropriately to show base gluability for any distin-
guished open D(f).

We have now completed the proof of Theorem 4.1.

�

The proof of Theorem 4.1 immediately generalizes, as the following exercise shows.
This exercise will be essential for the definition of a quasicoherent sheaf later on [say
where].

4.C. IMPORTANT EXERCISE/DEFINITION. Suppose M is an A-module. Show that the fol-
lowing construction describes a sheaf M̃ on the distinguished base. To D(f) we associate
Mf = M⊗A Af; the restriction map is the “obvious” one. This is an OSpec A-module! This
sort of sheaf M̃ will be very important soon; it is an example of a quasicoherent sheaf.

Here is a useful fact for later: As a consequence, note that if (f1, . . . , fr) = A, we have
identified M with a specific submodule of Mf1

× · · · × Mfr
. Even though M → Mfi

may
not be an inclusion for any fi, M → Mf1

× · · · × Mfr
is an inclusion. We don’t care yet,

but we’ll care about this later, and I’ll invoke this fact. (Reason: we’ll want to show that if
M has some nice property, then Mf does too, which will be easy. We’ll also want to show
that if (f1, . . . , fn) = R, then if Mfi

have this property, then M does too.)

4.2. Definition. We can now define scheme in general. First, define an isomorphism
of ringed spaces (X,OX) and (Y,OY) as (i) a homeomorphism f : X → Y, and (ii) an
isomorphism of sheaves OX and OY , considered to be on the same space via f. (Condition
(ii), more precisely: an isomorphism OX → f−1OY of sheaves on X, or f∗OX → OY of
sheaves on Y.) In other words, we have a correspondence of sets, topologies, and structure
sheaves. An affine scheme is a ringed space that is isomorphic to (Spec A,OSpec A). A
scheme (X,OX) is a ringed space such that any point x ∈ X has a neighborhood U such
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that (U,OX|U) is an affine scheme. The scheme can be denoted (X,OX), although it is often
denoted X, with the structure sheaf implicit.

An isomorphism of two schemes (X,OX) and (Y,OY) is an isomorphism as ringed
spaces.

4.3. Remark. From this definition of the structure sheaf on an affine scheme, several
things are clear. First of all, if we are told that (X,OX) is an affine scheme, we may recover
its ring (i.e. find the ring A such that Spec A = X) by taking the ring of global sections, as
X = D(1), so:

Γ(X,OX) = Γ(D(1),OSpecA) as D(1) = Spec A

= A1 (i.e. allow 1’s in the denominator) by definition
= A.

(You can verify that we get more, and can “recognize X as the scheme Spec A”: we get
a natural isomorphism f : (Spec Γ(X,OX),OSpec Γ(X,OX)) → (X,OX). For example, if m is a
maximal ideal of Γ(X,OX), f([m]) = V(m).) More generally, given f ∈ A, Γ(D(f),OSpecA) ∼=
Af. Thus under the natural inclusion of sets Spec Af ↪→ Spec A, the Zariski topology
on Spec A restricts to give the Zariski topology on Spec Af (as we’ve seen in an earlier
Exercise), and the structure sheaf of Spec A restricts to the structure sheaf of Spec Af, as
the next exercise shows.

4.D. IMPORTANT BUT EASY EXERCISE. Suppose f ∈ A. Show that under the identification
of D(f) in Spec A with Spec Af, there is a natural isomorphism of sheaves (D(f),OSpecA|D(f)) ∼=
(Spec Af,OSpec Af

).

4.E. EXERCISE. Show that if X is a scheme, then the affine open sets form a base for the
Zariski topology.

4.F. EXERCISE. If X is a scheme, and U is any open subset, prove that (U,OX|U) is also a
scheme.

(U,OX|U) is called an open subscheme of U. If U is also an affine scheme, we often say U

is an affine open subset, or an affine open subscheme, or sometimes informally just an affine
open. For an example, D(f) is an affine open subscheme of Spec A.

4.4. Stalks of the structure sheaf: germs, and values at a point. Like every sheaf, the
structure sheaf has stalks, and we shouldn’t be surprised if they are interesting from an
algebraic point of view. In fact, we have seen them before.

4.G. IMPORTANT EXERCISE. Show that the stalk of OSpec A at the point [p] is the ring Ap.

Essentially the same argument will show that the stalk of the sheaf M̃, defined in Ex-
ercise 4.C at [p] is Mp. Here is an interesting consequence, or if you prefer, a geometric
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interpretation of an algebraic fact. A section is determined by it stalks (an earlier Exer-
cise), meaning that M →

∏
p Mp is an inclusion. So for example an A-module is zero if

and only if all its localizations at primes are zero.

The residue field of a scheme at a point is the local ring modulo its maximal ideal.

So now we can make some of our vague discussion earlier precise. Suppose [p] is a
point in some open set U of Spec A. For example, say A = k[x, y], p = [(x)] [draw picture],
and U = A2 − (0, 0).

Then a function on U, i.e. a section of OSpec A over U, has a germ near [p], which is an
element of Ap. This stalk Ap is a local ring, with maximal ideal pAp. In our example,
consider the function (3x4 + x2 + xy + y2)/(3x2 + xy + y2 + 1), which is defined on the
open set D(3x2 + xy + y2 + 1). Because there are no factors of x in the denominator, it is
indeed in Ap.

A germ has a value at [p], which is an element of Ap/pAp. This is isomorphic to FF(A/p),
the fraction field of the quotient domain. It is useful to note that localization at p and
taking quotient by p “commute”, i.e. the following diagram commutes.

Ap

''PPPPPPPPPPPPPP

A

>>}}}}}}}}

  A
AA

AA
AA

A
Ap/pAp = FF(A/p)

A/p

FF(·)

77nnnnnnnnnnnnn

So the value of a function at a point always takes values in a field. In our example, to see
the value of our germ at x = 0, we simply set x = 0. So we get the value y2/(y2 + 1),
which is certainly in FF(k[y]). (If you think you care only about complex schemes, and
hence only about algebraically closed fields, let this be a first warning: Ap/pAp won’t be
algebraically closed in general, even if A is a finitely generated C-algebra!)

We say that the germ vanishes at p if the value is zero. In our example, the germ doesn’t
vanish at p.

If anything makes you nervous, you should make up an example to assuage your ner-
vousness. (Example: 27/4 is a regular function on Spec Z−{[(2)], [(7)]}. What is its value at
[(5)]? Answer: 2/(−1) ≡ −2 (mod 5). What is its value at the generic point [(0)]? Answer:
27/4. Where does it vanish? At [(3)].)

We now give three extended examples. Our short term goal is to see that we can re-
ally work with this sheaf, and can compute the ring of sections of interesting open sets
that aren’t just distinguished open sets of affine schemes. Our long-term goal is to see
interesting examples that will come up repeatedly in the future. All three examples are
non-affine schemes, so these examples are genuinely new to us.
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4.5. Example: The plane minus the origin. I now want to work through an example
with you, to show that this distinguished base is indeed something that you can work
with. Let A = k[x, y], so Spec A = A2

k. If you want, you can let k be C, but that won’t be
relevant. Let’s work out the space of functions on the open set U = A2 − (0, 0).

It is a non-obvious fact that you can’t cut out this set with a single equation, so this
isn’t a distinguished open set. We’ll see why fairly soon [where?]. But in any case, even if
we’re not sure that this is a distinguished open set, we can describe it as the union of two
things which are distinguished open sets. If I throw out the x axis, i.e. the set y = 0, I get
the distinguished open set D(y). If I throw out the y axis, i.e. x = 0, I get the distinguished
open set D(x). So U = D(x) ∪ D(y). (Remark: U = A2 − V(x, y) and U = D(x) ∪ D(y).
Coincidence? I think not!) We will find the functions on U by gluing together functions
on D(x) and D(y).

What are the functions on D(x)? They are, by definition, Ax = k[x, y, 1/x]. In other
words, they are things like this: 3x2 + xy+ 3y/x+ 14/x4. What are the functions on D(y)?
They are, by definition, Ay = k[x, y, 1/y]. Note that A ↪→ Ax, Ay. This is because x and
y are not zero-divisors. (A is an integral domain — it has no zero-divisors, besides 0 —
so localization is always an inclusion.) So we are looking for functions on D(x) and D(y)
that agree on D(x)∩D(y) = D(xy), i.e. they are just the same Laurent polynomial. Which
things of this first form are also of the second form? Just old-fashioned polynomials —

(3) Γ(U,OA2) ≡ k[x, y].

In other words, we get no extra functions by throwing out this point. Notice how easy
that was to calculate!

4.6. (Aside: Notice that any function on A
2−(0, 0) extends over all of A

2. This is an analog
of Hartogs’ Lemma in complex geometry: you can extend a holomorphic function defined
on the complement of a set of codimension at least two on a complex manifold over the
missing set. This will work more generally in the algebraic setting: you can extend over
points in codimension at least 2 not only if they are smooth, but also if they are mildly
singular — what we will call normal. We will make this precise later. This fact will be very
useful for us.)

We can now verify an interesting fact: (U,OA2 |U) is a scheme, but it is not an affine
scheme. Here’s why: otherwise, if (U,OA2 |U) = (Spec A,OSpec A), then we can recover A

by taking global sections:

A = Γ(U,OA2 |U),

which we have already identified in (3) as k[x, y]. So if U is affine, then U = A2
k. But we

get more: we can recover the points of Spec A by taking the primes of A. In particular,
the prime ideal (x, y) of A should cut out a point of Spec A. But on U, V(x) ∩ V(y) = ∅.
Conclusion: U is not an affine scheme. (If you are ever looking for a counterexample to
something, and you are expecting one involving a non-affine scheme, keep this example
in mind!)
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You’ve seen two examples of non-affine schemes: an infinite disjoint union of non-
empty schemes (Exercise 4.M), and now A

2 − (0, 0). I want to give you two more impor-
tant examples. They are important because they are the first examples of fundamental
behavior, the first pathological, and the second central.

First, I need to tell you how to glue two schemes together. And before that, you should
review how to glue topological spaces together along isomorphic open sets. Given two
topological spaces X and Y, and open subsets U ⊂ X and V ⊂ Y along with a homeomor-
phism U ∼= V , we can create a new topological space W, that we think of as gluing X and
Y together along U ∼= V . It is the quotient of the disjoint union X

∐
Y by the equivalence

relation U ∼= V , where the quotient is given the quotient topology. Then X and Y are natu-
rally (identified with) open subsets of W, and indeed cover W. Can you restate this with
an arbitrary number of topological spaces glued together?

Now that we have discussed gluing topological spaces, let’s glue schemes together.
Suppose you have two schemes (X,OX) and (Y,OY), and open subsets U ⊂ X and V ⊂ Y,
along with a homeomorphism f : U

∼ // V , and an isomorphism of structure sheaves
OX

∼= f∗OY (i.e. an isomorphism of schemes (U,OX|U) ∼= (V,OY |V)). Then we can glue
these together to get a single scheme. Reason: let W be X and Y glued together using the
isomorphism U ∼= V . Then an earlier exercise on gluing sheaves shows that the structure
sheaves can be glued together to get a sheaf of rings. Note that this is indeed a scheme:
any point has a neighborhood that is an affine scheme. (Do you see why?)

4.H. EXERCISE. For later reference, show that you can glue together an arbitrary number
of schemes together. Suppose we are given:

• schemes Xi (as i runs over some index set I, not necessarily finite),
• open subschemes Xij ⊂ Xi,
• isomorphisms fij : Xij → Xji

• such that the isomorphisms “agree along triple intersections”, i.e. fik|Xij∩Xik
=

fjk|Uji∩Ujk
◦ fij|Xij∩Xik

.

Show that there is a unique scheme X (up to unique isomorphism) along with open subset
isomorphic to Xi respecting this gluing data in the obvious sense.

I’ll now give you two non-affine schemes. In both cases, I will glue together two copies
of the affine line A1

k. Again, if it makes you feel better, let k = C, but it really doesn’t
matter.

Let X = Spec k[t], and Y = Spec k[u]. Let U = D(t) = Spec k[t, 1/t] ⊂ X and V = D(u) =
Spec k[u, 1/u] ⊂ Y. We will get both examples by gluing X and Y together along U and V .
The difference will be in how we glue.

4.7. Extended example: the affine line with the doubled origin. Consider the isomor-
phism U ∼= V via the isomorphism k[t, 1/t] ∼= k[u, 1/u] given by t ↔ u. Let the resulting
scheme be X. This is called the affine line with doubled origin. Figure 3 is a picture of it.
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FIGURE 3. The affine line with doubled origin

FIGURE 4. Gluing two affine lines together to get P1

As the picture suggests, intuitively this is an analogue of a failure of Hausdorffness. A1

itself is not Hausdorff, so we can’t say that it is a failure of Hausdorffness. We see this
as weird and bad, so we’ll want to make up some definition that will prevent this from
happening. This will be the notion of separatedness. This will answer other of our prayers
as well. For example, on a separated scheme, the “affine base of the Zariski topology” is
nice — the intersection of two affine open sets will be affine.

4.I. EXERCISE. Show that X is not affine. Hint: calculate the ring of global sections, and
look back at the argument for A2 − (0, 0).

4.J. EXERCISE. Do the same construction with A
1 replaced by A

2. You’ll have defined the
affine plane with doubled origin. Use this example to show that the affine base of the Zariski
topology isn’t a nice base, by describing two affine open sets whose intersection is not
affine.

4.8. Example 2: the projective line. Consider the isomorphism U ∼= V via the isomor-
phism k[t, 1/t] ∼= k[u, 1/u] given by t ↔ 1/u. Figure 4 is a suggestive picture of this
gluing. Call the resulting scheme the projective line over the field k, P1

k.

Notice how the points glue. Let me assume that k is algebraically closed for conve-
nience. (You can think about how this changes otherwise.) On the first affine line, we
have the closed (= “old-fashioned”) points [(t − a)], which we think of as “a on the t-
line”, and we have the generic point. On the second affine line, we have closed points
that are “b on the u-line”, and the generic point. Then a on the t-line is glued to 1/a on
the u-line (if a 6= 0 of course), and the generic point is glued to the generic point (the
ideal (0) of k[t] becomes the ideal (0) of k[t, 1/t] upon localization, and the ideal (0) of
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k[u] becomes the ideal (0) of k[u, 1/u]. And (0) in k[t, 1/t] is (0) in k[u, 1/u] under the
isomorphism t ↔ 1/u).

We can interpret the closed (“old-fashioned”) points of P1 in the following way, which
may make this sound closer to the way you have seen projective space defined earlier.
The points are of the form [a; b], where a and b are not both zero, and [a; b] is identified
with [ac; bc] where c ∈ k∗. Then if b 6= 0, this is identified with a/b on the t-line, and if
a 6= 0, this is identified with b/a on the u-line.

4.9. Proposition. — P1
k is not affine.

Proof. We do this by calculating the ring of global sections.

The global sections correspond to sections over X and sections over Y that agree on the
overlap. A section on X is a polynomial f(t). A section on Y is a polynomial g(u). If I
restrict f(t) to the overlap, I get something I can still call f(t); and ditto for g(u). Now we
want them to be equal: f(t) = g(1/t). How many polynomials in t are at the same time
polynomials in 1/t? Not very many! Answer: only the constants k. Thus Γ(P1,OP1) = k.
If P1 were affine, then it would be Spec Γ(P1,OP1) = Spec k, i.e. one point. But it isn’t — it
has lots of points. �

Note that we have proved an analog of a theorem: the only holomorphic functions on
CP1 are the constants!

4.K. IMPORTANT EXERCISE. Figure out how to define projective n-space Pn
k . Glue to-

gether n + 1 opens each isomorphic to An
k . Show that the only global sections of the

structure sheaf are the constants, and hence that P
n
k is not affine if n > 0. (Hint: you

might fear that you will need some delicate interplay among all of your affine opens,
but you will only need two of your opens to see this. There is even some geometric in-
tuition behind this: the complement of the union of two opens has codimension 2. But
“Hartogs’ Theorem” (to be stated rigorously later) says that any function defined on this
union extends to be a function on all of projective space. Because we’re expecting to see
only constants as functions on all of projective space, we should already see this for this
union of our two affine open sets.)

4.L. EXERCISE. Show that if k is algebraically closed, the closed points of Pn
k may be

interpreted in the same way as we interpreted the points of P
1
k. (The points are of the form

[a0; . . . ; an], where the ai are not all zero, and [a0; . . . ; an] is identified with [ca0; . . . ; can]
where c ∈ k∗.)

We will later give another definition of projective space . Your definition (from Exer-
cise 4.K) will be handy for computing things. But there is something unnatural about it
— projective space is highly symmetric, and that isn’t clear from your point of view.
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Note that your definition will give a definition of Pn
A for any ring A. This will be useful

later.

4.10. Fun aside: The Chinese Remainder Theorem is a geometric fact. I want to
show you that the Chinese Remainder theorem is embedded in what we’ve done, which
shouldn’t be obvious to you. I’ll show this by example. The Chinese Remainder Theorem
says that knowing an integer modulo 60 is the same as knowing an integer modulo 3, 4,
and 5. Here’s how to see this in the language of schemes. What is Spec Z/(60)? What
are the primes of this ring? Answer: those prime ideals containing (60), i.e. those primes
dividing 60, i.e. (2), (3), and (5). So here is my picture of the scheme [picture of 3 dots].
They are all closed points, as these are all maximal ideals, so the topology is the discrete
topology. What are the stalks? You can check that they are Z/4, Z/3, and Z/5. My picture
is actually like this [draw a bit of one-dimensional fuzz on (2)]: the scheme has nilpotents
here (22 ≡ 0 (mod 4)). I indicate nilpotents with “fuzz”. So what are global sections on
this scheme? They are sections on this open set (2), this other open set (3), and this third
open set (5). In other words, we have a natural isomorphism of rings

Z/60 → Z/4 × Z/3 × Z/5.

On a related note:

4.M. EXERCISE. (a) Show that the disjoint union of a finite number of affine schemes is
also an affine scheme. (Hint: say what the ring is.)
(b) Show that an infinite disjoint union of (non-empty) affine schemes is not an affine
scheme.

4.11. ? Example. Here is an example of a function on an open subset of a scheme that is a
bit surprising. On X = Spec k[w, x, y, z]/(wx−yz), consider the open subset D(y)∪D(w).
Show that the function x/y on D(y) agrees with z/w on D(w) on their overlap D(y) ∩
D(w). Hence they glue together to give a section. You may have seen this before when
thinking about analytic continuation in complex geometry — we have a “holomorphic”
function which has the description x/y on an open set, and this description breaks down
elsewhere, but you can still “analytically continue” it by giving the function a different
definition on different parts of the space.

Follow-up for curious experts: This function has no “single description” as a well-
defined expression in terms of w, x, y, z! There is lots of interesting geometry here. This
example will be a constant source of interesting examples for us. We will later recognize it
as the cone over the quadric surface. Here is a glimpse, in terms of words we have not yet
defined. Spec k[w, x, y, z] is A4, and is, not surprisingly, 4-dimensional. We are looking
at the set X, which is a hypersurface, and is 3-dimensional. It is a cone over a smooth
quadric surface in P3. D(y) is X minus some hypersurface, so we are throwing away a
codimension 1 locus. D(z) involves throwing another codimension 1 locus. You might
think that their intersection is then codimension 2, and that maybe failure of extending
this weird function to a global polynomial comes because of a failure of our Hartogs’-type
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theorem, which will be a failure of normality. But that’s not true — V(y) ∩ V(z) is in fact
codimension 1 — so no Hartogs-type theorem holds. Here is what is actually going on.
V(y) involves throwing away the (cone over the) union of two lines l and m1, one in each
“ruling” of the surface, and V(z) also involves throwing away the (cone over the) union of
two lines l and m2. The intersection is the (cone over the) line l, which is a codimension 1

set. Neat fact: despite being “pure codimension 1”, it is not cut out even set-theoretically
by a single equation. (It is hard to get an example of this behavior. This example is the
simplest example I know.) This means that any expression f(w, x, y, z)/g(w, x, y, z) for
our function cannot correctly describe our function on D(y) ∪ D(z) — at some point of
D(y) ∪ D(z) it must be 0/0. Here’s why. Our function can’t be defined on V(y) ∩ V(z), so
g must vanish here. But g can’t vanish just on the cone over l — it must vanish elsewhere
too. (For the experts among the experts: here is why the cone over l is not cut out set-
theoretically by a single equation. If l = V(f), then D(f) is affine. Let l ′ be another line
in the same ruling as l, and let C(l) (resp. l ′) be the cone over l (resp. l ′). Then C(l ′) can
be given the structure of a closed subscheme of Spec k[w, x, y, z], and can be given the
structure of A2. Then C(l ′) ∩ V(f) is a closed subscheme of D(f). Any closed subscheme
of an affine scheme is affine. But l ∩ l ′ = ∅, so the cone over l intersects the cone over l ′

in a point, so C(l ′) ∩ V(f) is A2 minus a point, which we’ve seen is not affine, so we have
a contradiction.)

We concluded with some initial discussion of properties of schemes, including irre-
ducible, closed point, specialization, generization, generic point, connected component,
and irreducible component.

E-mail address: vakil@math.stanford.edu
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This week, we will define some useful properties of schemes.

1. TOPOLOGICAL PROPERTIES: IRREDUCIBILITY, CONNECTEDNESS,
QUASICOMPACTNESS

We will start with some topological properties. The definitions of irreducible, closed point,
specialization, generalization, generic point, connected component, and irreducible component
were given earlier. You should have pictures in your mind of each of these notions.

An earlier exercise showed that An is irreducible (it was easy). This argument “behaves
well under gluing”, yielding:

1.A. EXERCISE. Show that Pn
k is irreducible.

1.B. EXERCISE. An earlier exercise showed that there is a bijection between irreducible
closed subsets and points. Show that this is true of schemes as well.

1.C. EXERCISE. Prove that if X is a scheme that has a finite cover X = ∪n
i=1 Spec Ai where

Ai is Noetherian, then X is a Noetherian topological space. (We will soon call such a
scheme a Noetherian scheme, §3.5.)

Thus Pn
k and Pn

Z
are Noetherian topological spaces: we built them by gluing together a

finite number of Spec’s of Noetherian rings.

Date: Monday, October 22, 2007 and Wednesday, October 24, 2007. Updated Nov. 17, 2007.
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1.1. Definition. A topological space X is connected if it cannot be written as the disjoint
union of two non-empty open sets.

1.D. EXERCISE. Show that an irreducible topological space is connected.

1.E. EXERCISE. Give (with proof!) an example of a scheme that is connected but re-
ducible. (Possible hint: a picture may help. The symbol “×” has two “pieces” yet is
connected.)

1.F. EXERCISE. If A =
∏

A1 × A2 × · · · × An, describe an isomorphism Spec A =
Spec A1

∐
Spec A2

∐
· · ·

∐
Spec An. Show that each Spec Ai is a distinguished open sub-

set D(fi) of Spec A. (Hint: let fi = (0, · · · , 0, 1, 0, · · ·0) where the 1 is in the ith component.)
In other words,

∐n

i=1 Spec Ai = Spec
∏n

i=1 Ai.

1.2. Fun but irrelevant remark. As affine schemes are quasicompact,
∐∞

i=1 Spec Ai cannot be
isomorphic to Spec

∏∞
i=1 Ai. This lack of isomorphism has an entertaining consequence.

Suppose the Ai are isomorphic to the field k. Then we certainly have an inclusion as sets

∞∐

i=1

Spec Ai ↪→ Spec

∞∏

i=1

Ai

— there is a maximal ideal of Spec
∏

Ai corresponding to each i (precisely those elements
0 in the ith component.) But there are other maximal ideals of

∏
Ai. Hint: describe a

proper ideal not contained in any of these maximal ideal. (One idea: consider elements∏
ai that are “eventually zero”, i.e. ai = 0 for i � 0.) This leads to the notion of ultrafilters,

which are very useful, but irrelevant to our current discussion.

As long as we are on the topic of quasicompactness...

1.3. Definition. A scheme is quasicompact if its underlying topological space is quasi-
compact. This seems like a strong condition, but because Zariski-open sets are so large,
almost any scheme naturally coming up in nature will be quasicompact.

1.G. EASY EXERCISE. Show that a scheme X is quasicompact if and only if it can be
written as a finite union of affine schemes (Hence Pn

k is quasicompact.)

1.H. EXERCISE: QUASICOMPACT SCHEMES HAVE CLOSED POINTS. Show that if X is a
nonempty quasicompact scheme, then it has a closed point. (Warning: there exist non-
empty schemes with no closed points, so your argument had better use the quasicom-
pactness hypothesis! We will see that in good situations, the closed points are dense,
Exercise 3.H.)

1.4. Quasiseparatedness.
2



FIGURE 1. A picture of the scheme Spec k[x, y]/(xy, y2)

Quasiseparatedness is a weird notion that comes in handy for certain kinds of people.
Most people, however, can ignore this notion. A scheme is quasiseparated if the intersec-
tion of any two quasicompact sets is quasicompact, or equivalently, if the intersection of
any two affine open subsets is a finite union of affine open subsets.

1.I. SHORT EXERCISE. Prove this equivalence.

We will see later that this will be a useful hypothesis in theorems (in conjunction with
quasicompactness), and that various interesting kinds of schemes (affine, locally Noe-
therian, separated, see Exercise 1.J, Exercise 3.B, and an exercise next quarter resp.) are
quasiseparated, and this will allow us to state theorems more succinctly (e.g. “if X is qua-
sicompact and quasiseparated” rather than “if X is quasicompact, and either this or that
or the other thing hold”).

1.J. EXERCISE. Show that affine schemes are quasiseparated.

“Quasicompact and quasiseparated” means something rather down to earth:

1.K. EXERCISE. Show that a scheme X is quasicompact and quasiseparated if and only
if X can be covered by a finite number of affine open subsets, any two of which have
intersection also covered by a finite number of affine open subsets.

2. REDUCEDNESS AND INTEGRALITY

Recall that one of the alarming things about schemes is that functions are not deter-
mined by their values at points, and that was because of the presence of nilpotents.

2.1. Definition. Recall that a ring is reduced if it has no nonzero nilpotents. A scheme X

is reduced if OX(U) has no nonzero nilpotents for any open set U of X.

An example of a nonreduced affine scheme is Spec k[x, y]/(y2, xy). A useful represen-
tation of this scheme is given in Figure 1, although we will only explain in §5 why this
is a good picture. The fuzz indicates that there is some nonreducedness going on at the
origin. Here are two different functions: x and x + y. Their values agree at all points (all
closed points [(x − a, y)] = (a, 0) and at the generic point [(y)]). They are actually the
same function on the open set D(x), which is not surprising, as D(x) is reduced, as the
next exercise shows. (This explains why the fuzz is only at the origin, where y = 0.)
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2.A. EXERCISE. Show that
(

k[x, y]/(y2, xy)
)

x
has no nilpotents. (Possible hint: show that

it is isomorphic to another ring, by considering the geometric picture.)

2.B. EXERCISE (REDUCEDNESS IS STALK-LOCAL). Show that a scheme is reduced if and
only if none of the stalks have nilpotents. Hence show that if f and g are two functions
on a reduced scheme that agree at all points, then f = g. (Two hints: OX(U) ↪→

∏
x∈U OX,x

from an earlier Exercise, and the nilradical is intersection of all prime ideals.)

Warning: if a scheme X is reduced, then it is immediate from the definition that its ring
of global sections is reduced. However, the converse is not true; we will meet an example
later.

2.C. EXERCISE. Suppose X is quasicompact, and f is a function (a global section of OX)
that vanishes at all points of x. Show that there is some n such that fn = 0. Show that
this may fail if X is not quasicompact. (This exercise is less important, but shows why we
like quasicompactness, and gives a standard pathology when quasicompactness doesn’t
hold.) Hint: take an infinite disjoint union of Spec An with An := k[ε]/εn.

Definition. A scheme X is integral if OX(U) is an integral domain for every open set U

of X.

2.D. IMPORTANT EXERCISE. Show that a scheme X is integral if and only if it is irreducible
and reduced.

2.E. EXERCISE. Show that an affine scheme Spec A is integral if and only if A is an integral
domain.

2.F. EXERCISE. Suppose X is an integral scheme. Then X (being irreducible) has a generic
point η. Suppose Spec A is any non-empty affine open subset of X. Show that the stalk at
η, OX,η, is naturally FF(A), the fraction field of A. This is called the function field FF(X) of
X. It can be computed on any non-empty open set of X, as any such open set contains the
generic point. The symbol FFis deliberately ambiguous — it may stand for fraction field
or function field.

2.G. EXERCISE. Suppose X is an integral scheme. Show that the restriction maps resU,V :
OX(U) → OX(V) are inclusions so long as V 6= ∅. Suppose Spec A is any non-empty
affine open subset of X (so A is an integral domain). Show that the natural map OX(U) →
OX,η = FF(A) (where U is any non-empty open set) is an inclusion. Thus irreducible
varieties (an important example of integral schemes defined later) have the convenient
that sections over different open sets can be considered subsets of the same thing. This
makes restriction maps and gluing easy to consider; this is one reason why varieties are
usually introduced before schemes.
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[p]

Spec A
Spec BSpec Af

Spec Bg

FIGURE 2. Trick to show that the intersection of two affine open sets may
be covered by open sets that are simultaneously open in both affines

An almost-local criterion for integrality is given in 3.F.

3. PROPERTIES OF SCHEMES THAT CAN BE CHECKED “AFFINE-LOCALLY”

This section is intended to address something tricky and annoying in the definition
of schemes. We’ve defined a scheme as a topological space with a sheaf of rings, that
can be covered by affine schemes. Hence we have all of the affine opens in the cover,
but we don’t know how to communicate between any two of them. Somewhat more
explicitly, if I have an affine cover, and you have an affine cover, and we want to compare
them, and I calculate something on my cover, there should be some way of us getting
together, and figuring out how to translate my calculation over onto your cover. The
Affine Communication Lemma 3.3 will provide a convenient machine for doing this.

Thanks to this lemma, we can define a host of important properties of schemes. All
of these are “affine-local” in that they can be checked on any affine cover, i.e. a covering
by open affine sets. We like such properties because we can check them using any affine
cover we like. If the scheme in question is quasicompact, then we need only check a finite
number of affine open sets.

3.1. Warning. In our limited examples so far, any time we’ve had an affine open subset of
an affine scheme Spec B ⊂ Spec A, in fact Spec B = D(f) for some f. But this is not always
true, and we will eventually have an example, using elliptic curves.

3.2. Proposition. — Suppose Spec A and Spec B are affine open subschemes of a scheme X. Then
Spec A ∩ Spec B is the union of open sets that are simultaneously distinguished open subschemes
of Spec A and Spec B.

Proof. (See Figure 2 for a sketch.) Given any point [p] ∈ Spec A ∩ Spec B, we produce
an open neighborhood of [p] in Spec A ∩ Spec B that is simultaneously distinguished in
both Spec A and Spec B. Let Spec Af be a distinguished open subset of Spec A contained
in Spec A ∩ Spec B. Let Spec Bg be a distinguished open subset of Spec B contained in
Spec Af. Then g ∈ Γ(Spec B,OX) restricts to an element g ′ ∈ Γ(Spec Af,OX) = Af. The
points of Spec Af where g vanishes are precisely the points of Spec Af where g ′ vanishes,
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so
Spec Bg = Spec Af \ {[p] : g ′ ∈ p}

= Spec(Af)g ′.

If g ′ = g ′′/fn (g ′′ ∈ A) then Spec(Af)g ′ = Spec Afg ′′ , and we are done. �

The following easy result will be crucial for us.

3.3. Affine Communication Lemma. — Let P be some property enjoyed by some affine open sets
of a scheme X, such that

(i) if an affine open set Spec A ↪→ X has P then for any f ∈ A, Spec Af ↪→ X does too.
(ii) if (f1, . . . , fn) = A, and Spec Afi

↪→ X has P for all i, then so does Spec A ↪→ X.

Suppose that X = ∪i∈I Spec Ai where Spec Ai is an affine, and Ai has property P. Then every
other open affine subscheme of X has property P too.

We say such a property is affine-local. Note that any property that is stalk-local (a
scheme has property P if and only if all its stalks have property Q) is necessarily affine-
local (a scheme has property P if and only if all of its affines have property R, where an
affine scheme has property R if and only if and only if all its stalks have property Q),
but it is sometimes not so obvious what the right definition of Q is; see for example the
discussion of normality in the next section.

Proof. Let Spec A be an affine subscheme of X. Cover Spec A with a finite number of
distinguished opens Spec Agj

, each of which is distinguished in some Spec Ai. This is
possible by Proposition 3.2 and the quasicompactness of Spec A. By (i), each Spec Agj

has
P. By (ii), Spec A has P. �

By choosing property P appropriately, we define some important properties of schemes.

3.4. Proposition. — Suppose A is a ring, and (f1, . . . , fn) = A.

(a) If A is a Noetherian ring, then so is Afi
. If each Afi

is Noetherian, then so is A.
(b) If A is reduced, then Afi

is also reduced. If each Afi
is reduced, then so is A.

(c) Suppose B is a ring, and A is an B-algebra. (Hence Ag is a B-algebra for all B.) If A is a
finitely generated B-algebra, then so is Afi

. If each Afi
is a finitely-generated B-algebra,

then so is A.

We’ll prove these shortly. But let’s first motivate you to read the proof by giving some
interesting definitions assuming Proposition 3.4 is true.

3.5. Important Definitions. Suppose X is a scheme. If X can be covered by affine opens
Spec A where A is Noetherian, we say that X is a locally Noetherian scheme. If in addition
X is quasicompact, or equivalently can be covered by finitely many such affine opens, we
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say that X is a Noetherian scheme. By Exercise 1.C, the underlying topological space of a
Noetherian scheme is Noetherian. (We will see a number of definitions of the form “if X

has this property, we say that it is locally Q; if further X is compact, we say that it is Q.”)

3.A. EXERCISE. Show that all open subsets of a Noetherian topological space (hence a
Noetherian scheme) are quasicompact.

3.B. EXERCISE. Show that locally Noetherian schemes are quasiseparated.

3.C. EXERCISE. Show that a Noetherian scheme has a finite number of irreducible com-
ponents. Show that a Noetherian scheme has a finite number of connected components,
each a finite union of irreducible components.

3.D. EXERCISE. If X is a Noetherian scheme, show that every point p has a closed point
in its closure. (In particular, every non-empty Noetherian scheme has closed points; this
is not true for every scheme, as remarked in Exercise 1.H.)

3.E. EXERCISE. If X is an affine scheme or Noetherian scheme, show that it suffices to
check reducedness at closed points. (Hint: For the Noetherian case, recall Exercise 3.D.)

Integrality is not stalk-local, but it almost is, as is shown in the following believable
exercise.

3.F. UNIMPORTANT EXERCISE. Show that a locally Noetherian scheme X is integral if and
only if X is connected and all stalks OX,p are integral domains (informally: “the scheme is
locally integral”). Thus in “good situations” (when the scheme is Noetherian), integrality
is the union of local (stalks are domains) and global (connected) conditions.

3.6. Remark. Joe Rabinoff gave a great example showing that “locally Noetherian” is not
a stalk-local condition. Joe’s counterexample: Let k be an algebraically closed field, let
b1, b2, b3, ... ∈ k be a sequence of distinct elements, and let

A = k[s, a1, a2, ...]/((s − bi)ai+1 − ai, a
2
i )i=1,2,...

I claim that A is not noetherian, but that Ap is noetherian for every prime ideal. It suffices
to check for maximal ideals, as Noetherianness is preserved by localization.. The nilradi-
cal N of A is (a1, a2, ...) (as the ai clearly lie in the nilradical, and A/(a1, . . . ) is a domain
so we’ve found it all), and A/N = k[s], so the maximal ideals of A are the ideals of the
form m = (s − b, a1, a2, ...) for b ∈ k Let m be such an ideal.

• Suppose that b = bn for some n. For i 6= n, we have ai+1 = ai/(s − bi) in Am.
Hence Am is the localization of a ring generated by the two variables s and an, so
it’s Noetherian.

• If b is distinct from all the bi, then Am is the localization of a ring generated by s

and a1, as above.
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Hence all stalks are Noetherian, but clearly the nilradical of A is not finitely generated.

3.G. EXERCISE. Show that X is reduced if and only if X can be covered by affine opens
Spec A where A is reduced (nilpotent-free).

Our earlier definition required us to check that the ring of functions over any open set
is nilpotent free. Our new definition lets us check a single affine cover. Hence for example
An

k and Pn
k are reduced.

Suppose X is a scheme, and A is a ring (e.g. A is a field k), and Γ(U,OX) has an A-
algebra for all A, and the restriction maps respect the A-algebra structure. Then we say
that X is an A-scheme, or a scheme over A. Suppose X is an A-scheme. If X can be
covered by affine opens Spec Bi where each Bi is a finitely generated A-algebra, we say that
X is locally of finite type over A, or that it is a locally of finite type A-scheme. (This is
admittedly cumbersome terminology; it will make more sense later, once we know about
morphisms.) If furthermore X is quasicompact, X is finite type over A, or a finite type
A-scheme. Note that a scheme locally of finite type over k or Z (or indeed any Noetherian
ring) is locally Noetherian, and similarly a scheme of finite type over any Noetherian ring
is Noetherian. As our key “geometric” example: if I ⊂ C[x1, . . . , xn] is an ideal, then
Spec C[x1, . . . , xn]/I is a finite-type C-scheme.

3.7. We now make a definition to make a connection to the language of varieties. An
affine scheme that is reduced and finite type k-scheme is said to be an affine variety (over
k), or an affine k-variety. We are not yet ready to define varieties in general; we will need
the notion of separatedness first, to exclude abominations of nature like the line with the
doubled origin. We will define projective k-varieties before defining varieties in general
(as separated finite type k-schemes). (Warning: in the literature, it is sometimes also
required that the scheme be irreducible, or that k be algebraically closed.)

3.H. EXERCISE. Show that a point of a locally finite type k-scheme is a closed point if and
only if the residue field of the stalk of the structure sheaf at that point is a finite extension
of k. (Recall the following form of Hilbert’s Nullstellensatz, richer than the version stated
before: the maximal ideals of k[x1, . . . , xn] are precisely those with residue of the form
a finite extension of k.) Show that the closed points are dense on such a scheme. (For
another exercise on closed points, see 1.H.)

3.8. Proof of Proposition 3.4. (a) (i) If I1 ( I2 ( I3 ( · · · is a strictly increasing chain of
ideals of Af, then we can verify that J1 ( J2 ( J3 ( · · · is a strictly increasing chain of
ideals of A, where

Jj = {r ∈ A : r ∈ Ij}

where r ∈ Ij means “the image in Af lies in Ij”. (We think of this as Ij∩A, except in general
A needn’t inject into Afi

.) Clearly Jj is an ideal of A. If x/fn ∈ Ij+1 \ Ij where x ∈ A, then
x ∈ Jj+1, and x /∈ Jj (or else x(1/f)n ∈ Jj as well). (ii) Suppose I1 ( I2 ( I3 ⊂ · · · is a strictly
increasing chain of ideals of A. Then for each 1 ≤ i ≤ n,

Ii,1 ⊂ Ii,2 ⊂ Ii,3 ⊂ · · ·

8



is an increasing chain of ideals in Afi
, where Ii,j = Ij ⊗A Afi

. It remains to show that for
each j, Ii,j ( Ii,j+1 for some i; the result will then follow.

3.I. EXERCISE. Finish this argument.

3.J. EXERCISE. Prove (b).

(c) (i) is clear: if A is generated over B by r1, . . . , rn, then Af is generated over B by r1,
. . . , rn, 1/f.

(ii) Here is the idea. We have generators of Ai: rij/f
j
i, where rij ∈ A. I claim that

{rij}ij ∪ {fi}i generate A as a B-algebra. Here’s why. Suppose you have any r ∈ A. Then in
Afi

, we can write r as some polynomial in the rij’s and fi, divided by some huge power
of fi. So “in each Afi

, we have described r in the desired way”, except for this annoying
denominator. Now use a partition of unity type argument to combine all of these into a
single expression, killing the denominator. Show that the resulting expression you build
still agrees with r in each of the Afi

. Thus it is indeed r.

3.K. EXERCISE. Make this argument precise.

This concludes the proof of Proposition 3.4 �

4. NORMALITY AND FACTORIALITY

4.1. Normality.

We can now define a property of schemes that says that they are “not too far from
smooth”, called normality, which will come in very handy. We will see later that “locally
Noetherian normal schemes satisfy Hartogs’ theorem”: functions defined away form a
set of codimension 2 extend over that set, (2) Rational functions that have no poles are
defined everywhere. We need definitions of dimension and/or poles to make this precise.

A scheme X is normal if all of its stalks OX,x are normal (i.e. are domains, and integrally
closed in their fraction fields). As reducedness is a stalk-local property (Exercise 2.B),
normal schemes are reduced.

4.A. EXERCISE. Show that integrally closed domains behave well under localization: if
A is an integrally closed domain, and S is a multiplicative subset, show that S−1A is an
integrally closed domain. (The domain portion is easy. Hint for integral closure: assume
that xn + an−1x

n−1 + · · · + a0 = 0 where ai ∈ S−1A has a root in the fraction field. Turn
this into another equation in A[x] that also has a root in the fraction field.)
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It is no fun checking normality at every single point of a scheme. Thanks to this ex-
ercise, we know that if A is an integrally closed domain, then Spec A is normal. Also,
for Noetherian schemes, normality can be checked at closed points, thanks to this exer-
cise, and the fact that for such schemes, any point is a generization of a closed point (see
Exercise 3.D)

It is not true that normal schemes are integral. For example, the disjoint union of two
normal schemes is normal. Thus Spec k

∐
Spec k ∼= Spec(k × k) ∼= Spec k[x]/(x(x − 1)) is

normal, but its ring of global sections is not a domain.

4.B. UNIMPORTANT EXERCISE. Show that a Noetherian scheme is normal if and only if it
is the finite disjoint union of integral Noetherian normal schemes.

We are close to proving a useful result in commutative algebra, so we may as well go
all the way.

4.2. Proposition. — If A is an integral domain, then the following are equivalent.

(1) A integrally closed.
(2) Ap is integrally closed for all prime ideals p ⊂ A.
(3) Am is integrally closed for all maximal ideals m ⊂ A.

Proof. Clearly (2) implies (3). Exercise 4.A shows that integral closure is preserved by
localization, so (1) implies (2).

It remains to show that (3) implies (1). This argument involves a very nice construction
that we will use again. Suppose A is not integrally closed. We show that there is some m
such that Am is also not integrally closed. Suppose

(1) xn + an−1x
n−1 + · · ·+ a0 = 0

(with ai ∈ A) has a solution s in FF(A). Let I be the ideal of denominators of s:

I := {r ∈ A : rs ∈ A}.

(Note that I is clearly an ideal of A.) Now I 6= A, as 1 /∈ I. Thus there is some maximal
ideal m containing I. Then s /∈ Am, so equation (1) in Am[x] shows that Am is not integrally
closed as well, as desired. �

4.C. UNIMPORTANT EXERCISE. If A is an integral domain, show that A = ∩Am, where
the intersection runs over all maximal ideals of A. (We won’t use this exercise, but it gives
good practice with the ideal of denominators.)

4.D. UNIMPORTANT EXERCISE RELATING TO THE IDEAL OF DENOMINATORS. One might
naively hope from experience with unique factorization domains that the ideal of de-
nominators is principal. This is not true. As a counterexample, consider our new friend
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A = k[a, b, c, d]/(ad − bc) (which we will later recognize as the cone over the quadric
surface), and a/c = b/d ∈ FF(A). Show that I = (c, d).

4.3. Factoriality.

We define a notion which implies normality.

4.4. Definition. If all the stalks of a scheme X are unique factorization domains, we say
that X is factorial.

4.E. EXERCISE. Show that any localization of a Unique Factorization Domain is a Unique
Factorization Domain.

Thus if A is a unique factorization domain, then Spec A is factorial. (The converse need
not hold. Hence this property is not affine-local, as we will verify later. Here is a counter-
example without proof: Z[

√
17].) Hence it suffices to check factoriality by finding an

appropriate affine cover.

One of the reasons we like factoriality is that it implies normality.

4.F. IMPORTANT EXERCISE. Show that unique factorization domains are integrally closed.
Hence factorial schemes are are normal, and if A is a unique factorization domain, then
Spec A is normal. (However, rings can be integrally closed without being unique factor-
ization domains, as we’ll see in Exercise 4.I. An example without proof: Z[

√
17] again.)

4.G. EASY EXERCISE. Show that the following schemes are normal: An
k , Pn

k , Spec Z.

4.H. EXERCISE (WHICH WILL GIVE US A NUMBER OF ENLIGHTENING EXAMPLES LATER).
Suppose A is a Unique Factorization Domain with 2 invertible, f ∈ A has no repeated
prime factors, and z2−f is irreducible in A[z]. Show that Spec A[z]/(z2−f) is normal. Show
that if f is not square-free, then Spec A[z]/(z2 − f) is not normal. (Hint: B := A[z]/(z2 − f) is
a domain, as (z2 − f) is prime in A[z]. Suppose we have monic F(T) = 0 with F(T) ∈ B[T ]

which has a solution α in FF(B). Then by replacing F(T) by F(T)F(T), we can assume
F(T) ∈ A[T ]. Also, α = g + hz where g, h ∈ FF(A). Now α is the solution of monic
Q(T) = T 2 − 2gT + (g2 − h2f)T ∈ FF(A)[T ], so we can factor F(T) = P(T)Q(T) in K[T ]. By
Gauss’ lemma, 2g, g2 − h2f ∈ A. Say g = r/2, h = s/t (s and t have no common factors,
r, s, t ∈ A). Then g2 − h2f = (r2t2 − rs2f)/4t2. Then t = 1, and r is even.)

4.I. EXERCISE. Show that the following schemes are normal:

(a) Spec Z[x]/(x2 − n) where n is a square-free integer congruent to 3 (mod 4);
(b) Spec k[x1, . . . , xn]/x2

1 + x2
2 + · · · + x2

m where char k 6= 2, m ≥ 3;
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(c) Spec k[w, x, y, z]/(wz − xy) where char k 6= 2 and k is algebraically closed. (This is
our cone over a quadric surface example from Exercise 4.D.)

4.J. EXERCISE. Suppose A is a k-algebra where char k = 0, and l/k is a finite field exten-
sion. Show that A is normal if and only if A⊗kl is normal. Show that Spec k[w, x, y, z]/(wz−
xy) is normal if k is characteristic 0. (In fact the hypothesis on the characteristic is unnec-
essary.) Possible hint: reduce to the case where l/k is Galois.

5. ASSOCIATED POINTS OF (LOCALLY NOETHERIAN) SCHEMES, AND DRAWING FUZZY
PICTURES

Recall from just after Definition 2.1 (of reduced) our “fuzzy” pictures of the non-reduced
scheme Spec k[x, y]/(y2, xy) (see Figure 1). When this picture was introduced, we men-
tioned that the “fuzz” at the origin indicated that the non-reduced behavior was concen-
trated there; this was verified in Exercise 2.A, and indeed the origin is the only point
where the stalk of the structure sheaf is non-reduced.

You might imagine that in a bigger scheme, we might have different closed subsets
with different amount of “non-reducedness”. This intuition will be made precise in this
section. We will define associated points of a scheme, which will be the most important
points of a scheme, encapsulating much of the interesting behavior of the structure sheaf.
These will be defined for any locally Noetherian scheme. The primes corresponding to
the associated points of an affine scheme Spec A will be called associated primes of A. (In
fact this is backwards; we will define associated primes first, and then define associated
points.)

The four properties about associated points that it will be most important to remember
are as follows. Frankly, it is much more important to remember these four facts than it is
to remember their proofs.

(1) The generic points of the irreducible components are associated points. The other associ-
ated points are called embedded points.

(2) If X is reduced, then X has no embedded points. (This jibes with the intuition of the
picture of associated points described earlier.)

(3) Recall that one nice property of integral schemes X (such as irreducible affine vari-
eties) not shared by all schemes is that for any open U ⊂ X, the natural map Γ(U,OX) →
FF(X) is an inclusion (Exercise 2.G). Thus all sections over any open set (except ∅) and
stalks can be thought of as lying in a single field FF(X), which is the talk at the generic
point.

More generally, if X is a locally Noetherian scheme, then for any U ⊂ X, the natural
map

(2) Γ(U,OX) →
∏

associated p in U

OX,p
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is an injection.

We define a rational function on a locally Noetherian scheme to be an element of the
image of Γ(U,OU) in (2) for some U containing all the associated points. The rational
functions form a ring, called the total fraction ring of X, denoted FF(X). If X = Spec A is
affine, then this ring is called the total fraction ring of A, FF(A). Note that if X is integral,
this is the function field FF(X), so this extends our earlier definition 2.F of FF(·). It can be
more conveniently interpreted as follows, using the injectivity of (2). A rational function
is a function defined on an open set containing all associated points, i.e. and ordered pair
(U, f), where U is an open set containing all associated points, and f ∈ Γ(U,OX). Two such
data (U, f) and (U ′, f ′) define the same open rational function if and only if the restrictions
of f and f ′ to U ∩ U ′ are the same. If X is reduced, this is the same as requiring that they
are defined on an open set of each of the irreducible components. A rational function
has a maximal domain of definition, because any two actual functions on an open set (i.e.
sections of the structure sheaf over that open set) that agree as “rational functions” (i.e. on
small enough open sets containing associated points) must be the same function, by the
injectivity of (2). We say that a rational function f is regular at a point p if p is contained
in this maximal domain of definition (or equivalently, if there is some open set containing
p where f is defined).

The previous facts are intimately related to the following one.

(4) A function on X is a zero divisor if and only if it vanishes at an associated point of X.

Motivated by the above four properties, when sketching (locally Noetherian) schemes,
we will draw the irreducible components (the closed subsets corresponding to maximal
associated points), and then draw “additional fuzz” precisely at the closed subsets corre-
sponding to embedded points. All of our earlier sketches were of this form.

Let’s now get down to business of defining associated points, and showing that they
the desired properties (1) through (4).

We say an ideal I ⊂ A in a ring is primary if I 6= A and if xy ∈ I implies either x ∈ I or
yn ∈ I for some n > 0.

It is useful to interpret maximal ideals as “the quotient is a field”, and prime ideals as
“the quotient is an integral domain”. We can interpret primary ideals similarly as “the
quotient is not 0, and every zero-divisor is nilpotent”.

5.A. EXERCISE. Show that if q is primary, then √
q is prime. If p =

√
q, we say that q is

p-primary. (Caution: √q can be prime without q being primary — consider our example
(y2, xy) in k[x, y].)

5.B. EXERCISE. Show that if q and q ′ are p-primary, then so is q ∩ q ′.

5.C. EXERCISE (REALITY CHECK). Find all the primary ideals in Z. (Answer: (0) and
(pn).)

13



FIGURE 3. V(x, z) ⊂ Spec k[x, y, z]/(xy − z2) is a ruling on a cone; (x, z)2 is
not (x, z)-primary.

5.1. ? Unimportant warning for experts (all others should skip this). A prime power need not
be primary. For example, let A = k[x, y, z]/(xy − z2), and p = (x, z). Then p is prime
but p2 is not primary. (Verify this — the algebra is easy! Why is (x2, xz, z2, xy − z2) not
primary in k[x, y, z]?) We will soon be able to interpret Spec A as a “cone”, and V(x, z) as
the “ruling” of the cone, see Figure 3, and the corresponding picture gives a geometric
hint that there is something going on. We’ll come back to this at a later date.

5.2. Primary decompositions.

A primary decomposition of an ideal I ⊂ A is an expression of the ideal as a finite
intersection of primary ideals.

I = ∩n
i=1qi

If there are “no redundant elements” (the √
qi are all distinct, and for no i is qi ⊃ ∩j6=iqj),

we say that the decomposition is minimal. Clearly any ideal with a primary decomposi-
tion has a minimal primary decomposition (using Exercise 5.B).

5.D. IMPORTANT EXERCISE (EXISTENCE OF PRIMARY DECOMPOSITION FOR NOETHERIAN
RINGS). Suppose A is a Noetherian ring. Show that every proper ideal I ⊂ A has a
primary decomposition. (Hint: mimic the Noetherian induction argument we saw last
week.)

5.E. IMPORTANT EXERCISE. (a) Find a minimal primary decomposition of (y2, xy). (b)
Find another one. (Possible hint: see Figure 1. You might be able to draw sketches of
your different primary decompositions.)
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In order to study these objects, we’ll need a useful fact and a definition.

5.F. ESSENTIAL EXERCISE. (a) If p, p1, . . . , pn are prime ideals, and p = ∩pi, show that
p = pi for some i. (Hint: assume otherwise, choose fi ∈ pi − p, and consider

∏
fi.)

(b) If p ⊃ ∩pi, then p ⊃ pi for some i.
(c) Suppose I ⊆ ∪n

i=1pi. (The right side is not an ideal!) Show that I ⊂ pi for some i.
(Hint: by induction on n. Don’t look in the literature — you might find a much longer
argument!)

Parts (a) and (b) are “geometric facts”; try to draw pictures of what they mean.

If I ⊂ A is an ideal, and x ∈ A, then define the colon ideal (I : x) := {a ∈ A : ax ∈ I}.
(We will use this terminology only for this section.) For example, x is a zero-divisor if
(0 : x) 6= 0.

5.3. Theorem (“uniqueness” of primary decomposition). — Suppose I ⊂ A has a minimal primary
decomposition

I = ∩n
i=1qi.

(For example, this is always true if A is Noetherian.) Then the √qi are precisely the prime ideals
that are of the form

√

(I : x)

for some x ∈ A. Hence this list of primes is independent of the decomposition.

These primes are called the associated primes of the ideal I. The associated primes of
A are the associated primes of 0.

Proof. We make a very useful observation: for any x ∈ A,
(I : x) = (∩qi : x) = ∩(qi : x),

from which
(3)

√

(I : x) = ∩
√

(qi : x) = ∩x/∈qj
pj.

Now we prove the result.

Suppose first that
√

(I : x) is prime, say p. Then p = ∩x/∈qj
pj by (3), and by Exer-

cise 5.F(a), p = pj for some j.

Conversely, given qi, we find an x such that
√

(I : x) =
√

qi (= pi). Take x ∈ ∩j6=iqj −
qi (which is possible by minimality of the primary decomposition). Then by (3), we’re
done. �

E-mail address: vakil@math.stanford.edu
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1. ASSOCIATED POINTS CONTINUED

Recall the four key facts to remember about associated points.

(1) The generic points of the irreducible components are associated points. The other associ-
ated points are called embedded points.

(2) If X is reduced, then X has no embedded points.

(3) If X is a locally Noetherian scheme, then for any U ⊂ X, the natural map

(1) Γ(U,OX) →
∏

associated p in U

OX,p

is an injection.

We define a rational function on a locally Noetherian scheme to be an element of the
image of Γ(U,OU) in (1) for some U containing all the associated points. The rational
functions form a ring, called the total fraction ring of X, denoted FF(X). If X = Spec A is
affine, then this ring is called the total fraction ring of A, FF(A).

(4) A function on X is a zero divisor if and only if it vanishes at an associated point of X.

Recall that an ideal I ⊂ A in a ring is primary if I 6= A and if xy ∈ I implies either x ∈ I

or yn ∈ I for some n > 0. In other words, the quotient is not 0, and every zero-divisor is
nilpotent. Hence the notion of “primary” should be seen as a condition on A/I, not on I.
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We know that if q is primary, then √
q is prime, say p. We then say that q is p-primary.

We know that if q and q ′ are p-primary, then so is q ∩ q ′.

We also know that primary decompositions, and hence minimal primary decomposi-
tions, exist for any ideal of a Noetherian ring.

We proved:

1.1. Theorem (“uniqueness” of primary decomposition). — Suppose I ⊂ A has a minimal primary
decomposition

I = ∩n
i=1qi.

(For example, this is always true if A is Noetherian.) Then the √qi are precisely the prime ideals
that are of the form

√

(I : x)

for some x ∈ A. Hence this list of primes is independent of the decomposition.

These primes are called the associated primes of the ideal I. The associated primes of
A are the associated primes of 0.

The proof involved the handy line

(2)
√

(I : x) = ∩
√

(qi : x) = ∩x/∈qj
pj.

So let’s move forward!

1.A. EXERCISE (ASSOCIATED PRIMES BEHAVE WELL WITH RESPECT TO LOCALIZATION).
Show that if A is a Noetherian ring, and S is a multiplicative subset (so there is an
inclusion-preserving correspondence between the primes of S−1A and those primes of
A not meeting S), then the associated primes of S−1A are just the associated primes of A

not meeting S.

We then define the associated points of a locally Noetherian scheme X to be those
points p ∈ X such that, on any affine open set Spec A containing p, p corresponds to an
associated prime of A. Note that this notion is well-defined: If p has two affine open
neighborhoods Spec A and Spec B (say corresponding to primes p ⊂ A and q ⊂ B respec-
tively), then p corresponds to an associated prime of A if and only if it corresponds to an
associated prime of Ap = OX,p = Bq if and only if it corresponds to an associated prime of
B.

If furthermore X is quasicompact (i.e. X is a Noetherian scheme), then there are a finite
number of associated points.

1.B. EXERCISE. (a) Show that the minimal primes of A are associated primes. We have
now proved important fact (1). (Hint: suppose p ⊃ ∩n

i=1qi. Then p =
√

p ⊃
√

∩n
i=1qi =

∩n
i=1

√
qi = ∩n

i=1pi, so by a previous exercise, p ⊃ pi for some i. If p is minimal, then as
p ⊃ pi ⊂ (0), we must have p = pi.)
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(b) Show that there can be other associated primes that are not minimal. (Hint: we’ve
seen an example...) Your argument will show more generally that the minimal primes of
I are associated primes of I.

1.C. EXERCISE. Show that if A is reduced, then the only associated primes are the mini-
mal primes. (This establishes (2).)

The qi corresponding to minimal primes are unique, but the qi corresponding to other
associated primes are not unique. We will not need this fact, and hence won’t prove it.

1.2. Proposition. — The set of zero-divisors is the union of the associated primes.

This establishes (4): a function is a zero-divisor if and only if it vanishes at an associated
point. Thus (for a Noetherian scheme) a function is a zero divisor if and only if its zero
locus contains one of a finite set of points.

You may wish to try this out on the example of the affine line with fuzz at the origin.

Proof. If pi is an associated prime, then pi =
√

(0 : x) from the proof of Theorem 1.1, so
∪pi is certainly contained in the set Z of zero-divisors.

For the converse:

1.D. EXERCISE. Show that

Z = ∪x6=0(0 : x) ⊆ ∪x6=0

√

(0 : x) ⊆ Z.

Hence
Z = ∪x6=0

√

(0 : x) = ∪x

(

∩x/∈qj
pj

)

⊆ ∪pj

using (2). �

1.E. UNIMPORTANT EXERCISE (RABINOFF’S THEOREM). Here is an interesting variation
on (4): show that a ∈ A is nilpotent if and only if it vanishes at the associated points of
Spec A. Algebraically: we know that the nilpotents are the intersection of all prime ideals;
now show that in the Noetherian case, the nilpotents are in fact the intersection of the
(finite number of) associated prime ideals.

1.3. Proposition. — The natural map A →
∏

associated p Ap is an inclusion.

Proof. Suppose r 6= 0 maps to 0 under this map. Then there are si ∈ A − p with sir = 0.
Then I := (s1, . . . , sn) is an ideal consisting only of zero-divisors. Hence I ⊆ ∪pi. Then
I ⊂ pi for some i by an exercise from last week, contradicting si /∈ pi. �
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1.F. EASIER AND LESS IMPORTANT EXERCISE. Prove fact (3). (The previous Proposition
establishes it for affine open sets.)

2. INTRODUCTION TO MORPHISMS OF SCHEMES

Whenever you learn about a new type of object in mathematics, you should naturally
be curious about maps between them, which means understanding how they form a cate-
gory. In order to satisfy this curiosity, we’ll introduce the notion of morphism of schemes
now, and at the same time we may as well define some easy-to-state properties of mor-
phisms. However, we’ll leave more subtle properties of morphisms for next quarter.

Recall that a scheme is (i) a set, (ii) with a topology, (iii) and a (structure) sheaf of rings,
and that it is sometimes helpful to think of the definition as having three steps. In the
same way, the notion of morphism of schemes X → Y may be defined (i) as a map of sets,
(ii) that is continuous, and (iii) with some further information involving the sheaves of
functions. In the case of affine schemes, we have already seen the map as sets, and later
saw that this map is continuous.

Here are two motivations for how morphisms should behave. The first is algebraic, and
the second is geometric.

(a) We’ll want morphisms of affine schemes Spec B → Spec A to be precisely the ring
maps A → B. We have already seen that ring maps A → B induce maps of topologi-
cal spaces in the opposite direction; the main new ingredient will be to see how to add
the structure sheaf of functions into the mix. Then a morphism of schemes should be
something that “on the level of affines, looks like this”.

(b) We are also motivated by the theory of differentiable manifolds. Notice that if π :
X → Y is a map of differentiable manifolds, then a differentiable function on Y pulls
back to a differentiable function on X. More precisely, given an open subset U ⊂ Y,
there is a natural map Γ(U,OY) → Γ(π−1(U),OX). This behaves well with respect to
restriction (restricting a function to a smaller open set and pulling back yields the same
result as pulling back and then restricting), so in fact we have a map of sheaves on Y:
OY → π∗OX. Similarly a morphism of schemes X → Y should induce a map OY →
π∗OX. But in fact in the category of differentiable manifolds a continuous map X → Y is
a map of differentiable manifolds precisely when differentiable functions on Y pull back
to differentiable functions on X (i.e. the pullback map from differentiable functions on
Y to functions on X in fact lies in the subset of differentiable functions, i.e. the continuous
map X → Y induces a pullback of differential functions OY → OX), so this map of sheaves
characterizes morphisms in the differentiable category. So we could use this as the definition
of morphism in the differentiable category.

But how do we apply this to the category of schemes? In the category of differentiable
manifolds, a continuous map X → Y induces a pullback of (the sheaf of) functions, and we
can ask when this induces a pullback of differentiable functions. However, functions are
odder on schemes, and we can’t recover the pullback map just from the map of topological
spaces. A reasonable patch is to hardwire this into the definition of morphism, i.e. to have
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a continuous map f : X → Y, along with a pullback map f# : OY → f∗OX. This leads to the
definition of the category of ringed spaces.

One might hope to define morphisms of schemes as morphisms of ringed spaces. This
isn’t quite right, as then motivation (a) isn’t satisfied: as desired, to each morphism A → B

there is a morphism Spec B → Spec A, but there can be additional morphisms of ringed
spaces Spec B → Spec A not arising in this way (Exercise 3.C). A revised definition as
morphisms of ringed spaces that locally looks of this form will work, but this is awkward
to work with, and we take a different tack. However, we will check that our eventual
definition actually is equivalent to this.

We’ll begin by discussing morphisms of ringed spaces.

Before we do, we take this opportunity to use motivation (a) to motivate the definition
of equivalence of categories. We wish to say that the category of rings and the category of
affine schemes are opposite categories, i.e. that the “opposite category of affine schemes”
(where all the arrows are reversed) is “essentially the same” as the category of rings. We
indeed have a functor from rings to affine schemes (sending A to Spec A), and a functor
from affine schemes to rings (sending X to Γ(X,OX)). But if you think about it, you’ll
realize their composition isn’t exactly the identity. (It all boils down to the meaning of
“is” or “same”, and this can get confusing.) Rather than trying to set things up so the
composition is the identity, we just don’t let this bother us, and make precise the notion
that the composition is “essentially” the identity.

Suppose F and G are two functors from A to B. A natural transformation of functors
F → G is the data of a morphism ma : F(a) → G(a) for each a ∈ A such that for each
f : a → a ′ in A, the diagram

F(a)
F(f)

//

ma

��

F(a ′)

ma ′

��

G(a)
G(f)

// G(a ′)

A natural isomorphism of functors is a natural transformation such that each ma is an
isomorphism. The data of functors F : A → B and F ′ : B → A such that F ◦ F ′ is naturally
isomorphic to the identity IB on B and F ′ ◦ F is naturally isomorphic to IA is said to be an
equivalence of categories. This is the “right” notion of isomorphism of categories.

Two examples might make this strange concept more comprehensible. The double dual
of a finite-dimensional vector space V is not V , but we learn early to say that it is canoni-
cally isomorphic to V . We make can that precise as follows. Let f.d. Veck be the category
of finite-dimensional vector spaces over k. Note that this category contains oodles of
vector spaces of each dimension.

2.A. EXERCISE. Let ∨∨ : f.d. Veck → f.d. Veck be the double dual functor from the
category of vector spaces over k to itself. Show that ∨∨ is naturally isomorphic to the
identity. (Without the finite-dimensional hypothesis, we only get a natural transformation
of functors from id to ∨∨.)
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Let V be the category whose objects are kn for each n (there is one vector space for each
n), and whose morphisms are linear transformations. This latter space can be thought of
as vector spaces with bases, and the morphisms are honest matrices. There is an obvious
functor V → f.d.Veck, as each kn is a finite-dimensional vector space.

2.B. EXERCISE. Show that V → f.d.Veck gives an equivalence of categories, by describing
an “inverse” functor. (You’ll need the axiom of choice, as you’ll simultaneously choose
bases for each vector space in f.d.Veck!)

Once you have come to terms with the notion of equivalence of categories, you will
quickly see that rings and affine schemes are basically the same thing, with the arrows
reversed:

2.C. EXERCISE. Assuming that morphisms of schemes are defined so that Motivation
(a) holds, show that the category of rings and the opposite category of affine schemes are
equivalent.

3. MORPHISMS OF RINGED SPACES

3.1. Definition. A morphism π : X → Y of ringed spaces is a continuous map of
topological spaces (which we unfortunately also call π) along with a “pullback map”
OY → π∗OX. By adjointness, this is the same as a map π−1OY → OX. There is an ob-
vious notion of composition of morphisms; hence there is a category of ringed spaces.
Hence we have notion of automorphisms and isomorphisms. You can easily verify that
an isomorphism f : (X,OX) → (Y,OY) is a homeomorphism f : X → Y along with an
isomorphism OY → f∗OX (or equivalently f−1OY → OX).

If U ⊂ Y is an open subset, then there is a natural morphism of ringed spaces (U,OY |U) →
(Y,OY). (Check this! The f−1 interpretation is cleaner to use here.) This is our model for an
open immersion. More precisely, if U → Y is an isomorphism of U with an open subset V

of Y, and we are given an isomorphism (U,OU) ∼= (V,OV) (via the isomorphism U ∼= V),
then the resulting map of ringed spaces is called an open immersion of ringed spaces.

3.A. EXERCISE (MORPHISMS OF RINGED SPACES GLUE). Suppose (X,OX) and (Y,OY) are
ringed spaces, X = ∪iUi is an open cover of X, and we have morphisms of ringed spaces
fi : Ui → Y that “agree on the overlaps”, i.e. fi|Ui∩Uj

= fj|Ui∩Uj
. Show that there is a unique

morphism of ringed spaces f : X → Y such that f|Ui
= fi. (An earlier exercise essentially

showed this for topological spaces.)

3.B. EASY IMPORTANT EXERCISE. Given a morphism of ringed spaces f : X → Y with
f(p) = q, show that there is a map of stalks (OY)q → (OX)p.
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3.2. Key Exercise. Suppose f# : B → A is a morphism of rings. Define a morphism of
ringed spaces f : Spec A → Spec B as follows. The map of topological spaces was given
earlier. To describe a morphism of sheaves OB → f∗OA on Spec B, it suffices to describe a
morphism of sheaves on the distinguished base of Spec B. On D(g) ⊂ Spec B, we define

OB(D(g)) → OA(f−1D(g)) = OA(D(f#g))

by Bg → Af#g. Verify that this makes sense (e.g. is independent of g), and that this
describes a morphism of sheaves on the distinguished base. (This is the third in a series
of exercises. We showed that a morphism of rings induces a map of sets first, a map of
topological spaces later, and now a map of ringed spaces here.)

This will soon be an example of morphism of schemes! In fact we could make that
definition right now.

3.3. Definition we won’t start with. A morphism of schemes f : (X,OX) → (Y,OY) is a
morphism of ringed spaces that “locally looks like” the maps of affine schemes described
in Key Exercise 3.2. Precisely, for each choice of affine opens Spec A ⊂ X, Spec B ⊂ Y, such
that f(Spec A) ⊂ Spec B, the induced map of ringed spaces should be of the form shown
in Key Exercise 3.2.

We would like this definition to be checkable on an affine cover, and we might hope to
use the affine communication lemma to develop the theory in this way. This works, but
it will be more convenient to use a clever trick: in the next section, we will use the notion
of locally ringed spaces, and then once we have used it, we will discard it like yesterday’s
garbage.

The map of ringed spaces of Key Exercise 3.2 is really not complicated. Here is an
example. Consider the ring map C[x] → C[y] given by x 7→ y2. We are mapping the affine
line with co-ordinate y to the affine line with co-ordinate x. The map is (on closed points)
a 7→ a2. For example, where does [(y− 3)] go to? Answer: [(x− 9)], i.e. 3 7→ 9. What is the
preimage of [(x−4)]? Answer: those prime ideals in C[y] containing [(y2 −4)], i.e. [(y−2)]
and [(y + 2)], so the preimage of 4 is indeed ±2. This is just about the map of sets, which
is old news, so let’s now think about functions pulling back. What is the pullback of the
function 3/(x − 4) on D([(x − 4)]) = A

1 − {4}? Of course it is 3/(y2 − 4) on A
1 − {−2, 2}.

We conclude with an example showing that not every morphism of ringed spaces be-
tween affine schemes is of the form of Key Exercise 3.2.

3.C. UNIMPORTANT EXERCISE. Recall that Spec k[x](x) has two points, corresponding
to (0) and (x), where the second point is closed, and the first is not. Consider the map
of ringed spaces Spec k(x) → Spec k[x](x) sending the point of Spec k(x) to [(x)], and the
pullback map f#OSpec k(x) → OSpec k[x](x)

is induced by k ↪→ k(x). Show that this map of
ringed spaces is not of the form described in Key Exercise 3.2.
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4. FROM LOCALLY RINGED SPACES TO MORPHISMS OF SCHEMES

In order to prove that morphisms behave in a way we hope, we will introduce the
notion of a locally ringed space. It will not be used later, although it is useful elsewhere
in geometry. The notion of locally ringed spaces is inspired by what we know about
manifolds. If π : X → Y is a morphism of manifolds, with π(p) = q, and f is a function
on Y vanishing at q, then the pulled back function π#f on X should vanish on p. Put
differently: germs of functions (at q ∈ Y) vanishing at q should pull back to germs of
functions (at p ∈ X) vanishing at p.

A locally ringed space is a ringed space (X,OX) such that the stalks OX,x are all local
rings. A morphism of locally ringed spaces f : X → Y is a morphism of ringed spaces
such that the induced map of stalks OY,q → OX,p (Exercise 3.B) sends the maximal ideal
of the former into the maximal ideal of the latter (a “local morphism of local rings”). This
means something rather concrete and intuitive: “if p 7→ q, and g is a function vanishing
at q, then it will pull back to a function vanishing at p.” Note that locally ringed spaces
form a category.

4.A. EXERCISE. Show that morphisms of locally ringed spaces glue (cf. Exercise 3.A).
(Hint: Basically, the proof of Exercise 3.A works.)

4.B. EASY IMPORTANT EXERCISE. (a) Show that Spec A is a locally ringed space. (b) The
morphism of ringed spaces f : Spec A → Spec B defined by a ring morphism f# : B → A

is a morphism of locally ringed spaces.

4.1. Key Proposition. — If f : Spec A → Spec B is a morphism of locally ringed spaces then
it is the morphism of locally ringed spaces induced by the map f# : B = Γ(Spec B,OSpec B) →
Γ(Spec A,OSpec A) = A as in Exercise 4.B(b).

Proof. Suppose f : Spec A → Spec B is a morphism of locally ringed spaces. Then we wish
to show that f# : OSpec B → f∗OSpec A is the morphism of sheaves given by Exercise 3.2 (cf.
Exercise 4.B(b)). It suffices to checked this on the distinguished base.

Note that if b ∈ B, f−1(D(b)) = D(f#b); this is where we use the hypothesis that f is a
morphism of locally ringed spaces.

The commutative diagram

Γ(Spec B,OSpec B)
f
#

Spec B
//

��

Γ(Spec A,OSpec A)

⊗BBb

��

Γ(D(b),OSpecB)
f
#

D(b)
// Γ(D(f#b),OSpec A)
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may be written as

B
f
#

Spec B
//

��

A

⊗BBb

��

Bb

f
#

D(b)
// Af#b.

We want that f
#

D(b)
= (f#

Spec B)b. This is clear from the commutativity of that last diagram.
�

We are ready for our definition.

4.2. Definition. If X and Y are schemes, then a morphism of locally ringed spaces is
called a morphism of schemes. We have thus defined a category of schemes. (We then
have notions of isomorphism — just the same as before — and automorphism.)

The definition in terms of locally ringed spaces easily implies tentative definition 3.3:

4.C. IMPORTANT EXERCISE. Show that a morphism of schemes f : X → Y is a morphism
of ringed spaces that looks locally like morphisms of affines. Precisely, if Spec A is an
affine open subset of X and Spec B is an affine open subset of Y, and f(Spec A) ⊂ Spec B,
then the induced morphism of ringed spaces is a morphism of affine schemes. Show that
it suffices to check on a set (Spec Ai, Spec Bi) where the Spec Ai form an open cover X.

In practice, we will use the fact the affine cover interpretation, and forget completely
about locally ringed spaces.

It is also clear (from the corresponding facts about locally ringed spaces) that mor-
phisms glue (Exercise 4.A), and the composition of two morphisms is a morphism. Iso-
morphisms in this category are precise what we defined them to be earlier (homeomor-
phism of topological spaces with isomorphisms of structure sheaves).

4.3. The category of schemes (or k-schemes, or A-schemes, or Z-schemes). It is often
convenient to consider subcategories. For example, the category of k-schemes (where k is
a field) is defined as follows. The objects are morphisms of the form

X

structure morphism
��

Spec k

(This is the same definition as earlier, but in a more satisfactory form.) The morphisms in
the category of k-schemes are commutative diagrams

X

��

// Y

��

Spec k
=

// Spec k

9



which is more conveniently written as a commutative diagram

X //

##GG
GG

GG
GG

G Y

{{xx
xx

xxx
xx

Spec k.

For example, complex geometers may consider the category of C-schemes.

When there is no confusion, simply the top row of the diagram is given. More generally,
if A is a ring, the category of A-schemes is defined in the same way, with A replacing
k. And if Z is a scheme, the category of Z-schemes is defined in the same way, with Z

replacing Spec k.

4.4. Examples.

4.D. IMPORTANT EXERCISE. (This exercise will give you some practice with understand-
ing morphisms of schemes by cutting up into affine open sets.) Make sense of the follow-
ing sentence: “An+1 \ {~0} → Pn given by

(x0, x1, . . . , xn+1) 7→ [x0; x1; . . . ; xn]

is a morphism of schemes.” Caution: you can’t just say where points go; you have to say
where functions go. So you’ll have to divide these up into affines, and describe the maps,
and check that they glue.

4.E. IMPORTANT EXERCISE. Show that morphisms X → Spec A are in natural bijection
with ring morphisms A → Γ(X,OX). (Hint: Show that this is true when X is affine. Use
the fact that morphisms glue.)

In particular, there is a canonical morphism from a scheme to Spec of its space of global
sections. (Warning: Even if X is a finite-type k-scheme, the ring of global sections might
be nasty! In particular, it might not be finitely generated.)

4.5. Side fact for experts: Γ and Spec are adjoints. We have a functor Spec from rings to
locally ringed spaces, and a functor Γ from locally ringed spaces to rings. Exercise 4.E
implies (Γ, Spec) is an adjoint pair! Thus we could have defined Spec by requiring it to be
adjoint to Γ .

4.F. EXERCISE. Show that Spec Z is the final object in the category of schemes. In other
words, if X is any scheme, there exists a unique morphism to Spec Z. (Hence the category
of schemes is isomorphic to the category of Z-schemes.)

4.G. EXERCISE. Show that morphisms X → Spec Z[t] correspond to global sections of the
structure sheaf.
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4.6. ? Representable functors. This is one of our first explicit examples of an important
idea, that of representable functors. This is a very useful idea, whose utility isn’t imme-
diately apparent. We have a contravariant functor from schemes to sets, taking a scheme
to its set of global sections. We have another contravariant functor from schemes to sets,
taking X to Hom(X, Spec Z[t]). This is describing a (natural) isomorphism of the functors.
More precisely, we are describing an isomorphism Γ(X,OX) ∼= Hom(X, Spec Z[t]) that be-
haves well with respect to morphisms of schemes: given any morphism f : X → Y, the
diagram

Γ(Y,OY)
∼

//

f∗

��

Hom(Y, Spec Z[t])

f◦
��

Γ(X,OX)
∼

// Hom(X, Spec Z[t])

commutes. Given a contravariant functor from schemes to sets, by the usual universal property
argument, there is only one possible scheme Y, up to isomorphism, such that there is a natural
isomorphism between this functor and Hom(·, Y). If there is such a Y, we say that the functor
is representable.

Here are a couple of examples of something you’ve seen to put it in context. (i) The
contravariant functor hY = Hom(·, Y) (i.e. X 7→ Hom(X, Y)) is representable by Y. (ii)
Suppose we have morphisms X, Y → Z. The contravariant functor Hom(·, X) ×Hom(·,Z)

Hom(·, Y) is representable if and only if the fibered product X×Z Y exists (and indeed then
the contravariant functor is represented by Hom(·, X×Z Y)). This is purely a translation of
the definition of the fibered product — you should verify this yourself.

Remark for experts: The global sections form something better than a set — they form
a scheme. You can define the notion of ring scheme, and show that if a contravariant
functor from schemes to rings is representable (as a contravariant functor from schemes
to sets) by a scheme Y, then Y is guaranteed to be a ring scheme. The same is true for
group schemes.

4.H. RELATED EXERCISE. Show that global sections of O∗
X correspond naturally to maps

to Spec Z[t, t−1]. (Spec Z[t, t−1] is a group scheme.)

5. SOME TYPES OF MORPHISMS

(This section has been moved forward to class 13.)
E-mail address: vakil@math.stanford.edu
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FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 13
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1. Some types of morphisms: quasicompact and quasiseparated; open immersion;
affine, finite, closed immersion; locally closed immersion 1

2. Constructions related to “smallest closed subschemes”: scheme-theoretic
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(locally) of finite presentation 16

We now define a bunch of types of morphisms. (These notes include some topics dis-
cussed the previous class.)

1. SOME TYPES OF MORPHISMS: QUASICOMPACT AND QUASISEPARATED; OPEN
IMMERSION; AFFINE, FINITE, CLOSED IMMERSION; LOCALLY CLOSED IMMERSION

In this section, we’ll give some analogues of open subsets, closed subsets, and locally
closed subsets. This will also give us an excuse to define affine and finite morphisms
(closed immersions are a special case). It will also give us an excuse to define some im-
portant special closed immersions, in the next section. In section after that, we’ll define
some more types of morphisms.

1.1. Quasicompact and quasiseparated morphisms.

A morphism f : X → Y is quasicompact if for every open affine subset U of Y, f−1(U) is
quasicompact. Equivalently, the preimage of any quasicompact open subset is quasicom-
pact. We will like this notion because (i) we know how to take the maximum of a finite
set of numbers, and (ii) most reasonable schemes will be quasicompact.

1.A. EASY EXERCISE. Show that the composition of two quasicompact morphisms is
quasicompact.

1.B. EXERCISE. Show that any morphism from a Noetherian scheme is quasicompact.

Date: Monday, November 5, 2007. Updated Nov. 13, 2007. Minor update Nov. 15.
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1.C. EXERCISE (QUASICOMPACTNESS IS AFFINE-LOCAL ON THE TARGET). Show that a
morphism f : X → Y is quasicompact if there is cover of Y by open affine sets Ui such that
f−1(Ui) is quasicompact. (Hint: easy application of the affine communication lemma!)

Along with quasicompactness comes the weird notion of quasiseparatedness. A mor-
phism f : X → Y is quasiseparated if for every open affine subset U of Y, f−1(U) is a
quasiseparated scheme. This will be a useful hypothesis in theorems (in conjunction with
quasicompactness), and that various interesting kinds of morphisms (locally Noetherian
source, affine, separated, see Exercise 1.D, Exercise 1.J, and an exercise next quarter resp.)
are quasiseparated, and this will allow us to state theorems more succinctly.

1.D. EXERCISE. Show that any morphism from a locally Noetherian scheme is qua-
siseparated. (Hint: locally Noetherian schemes are quasiseparated.) Thus those readers
working only with Noetherian schemes may take this as a standing hypothesis.

1.E. EASY EXERCISE. Show that the composition of two quasiseparated morphisms is
quasiseparated.

1.F. EXERCISE (QUASISEPARATEDNESS IS AFFINE-LOCAL ON THE TARGET). Show that a
morphism f : X → Y is quasiseparated if there is cover of Y by open affine sets Ui such that
f−1(Ui) is quasiseparated. (Hint: easy application of the affine communication lemma!)

Following Grothendieck’s philosophy of thinking that the important notions are prop-
erties of morphisms, not of objects, we can restate the definition of quasicompact (resp.
quasiseparated) scheme as a scheme that is quasicompact (resp. quasiseparated) over the
final object Spec Z in the category of schemes.

1.2. Open immersions.

An open immersion of schemes is defined to be an open immersion as ringed spaces.
In other words, a morphism f : (X,OX) → (Y,OY) of schemes is an open immersion if f

factors as

(X,OX)
g

∼

// (U,OY |U)
h

// (Y,OY)

where g is an isomorphism, and U ↪→ Y is an inclusion of an open set. It is immediate
that isomorphisms are open immersions. We say that (U,OY |U) is an open subscheme of
(Y,OY), and often sloppily say that (X,OX) is an open subscheme of (Y,OY).

1.G. EXERCISE. Suppose i : U → Z is an open immersion, and f : Y → Z is any morphism.
Show that U ×Z Y exists. (Hint: I’ll even tell you what it is: (f−1(U),OY |f−1(U)).)

1.H. EASY EXERCISE. Show that open immersions are monomorphisms.
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1.I. EASY EXERCISE. Suppose f : X → Y is an open immersion. Show that if Y is locally
Noetherian, then X is too. Show that if Y is Noetherian, then X is too. However, show that
if Y is quasicompact, X need not be. (Hint: let Y be affine but not Noetherian.)

“Open immersions” are scheme-theoretic analogues of open subsets. “Closed immer-
sions” are scheme-theoretic analogues of closed subsets, but they are of a quite different
flavor, as we’ll see soon.

1.3. Affine morphisms.

A morphism f : X → Y is affine if for every affine open set U of Y, f−1(U) is an affine
scheme. We have immediately that affine morphisms are quasicompact.

1.J. FAST EXERCISE. Show that affine morphisms are quasiseparated. (Hint: affine
schemes are quasiseparated, an earlier exercise.)

1.4. Proposition (the property of “affineness” is affine-local on the target). — A morphism f :
X → Y is affine if there is a cover of Y by affine open sets U such that f−1(U) is affine.

For part of the proof, it will be handy to have a lemma.

1.5. Lemma. — If X is a quasicompact quasiseparated scheme and s ∈ Γ(X,OX), then the natural
map Γ(X,OX)s → Γ(Xs,OX) is an isomorphism.

A brief reassuring comment on the “quasicompact quasiseparated” hypothesis: This
just means that X can be covered by a finite number of affine open subsets, any two of
which have intersection also covered by a finite number of affine open subsets. The hy-
pothesis applies in lots of interesting situations, such as if X is affine or Noetherian.

Proof. Cover X with finitely many affine open sets Ui = Spec Ai. Let Uij = Ui ∩ Uj. Then

Γ(X,OX) →
∏

i

Ai ⇒
∏

i,j

Γ(Uij,OX)

is exact. Localizing at s gives

Γ(X,OX)s →

(

∏

i

Ai

)

s

⇒

(

∏

i,j

Γ(Uij,OX)

)

s

As localization commutes with finite products,

Γ(X,OX)s →
∏

i

(Ai)si
⇒

∏

i,j

Γ(Uij,OX)s

is exact, where the global function s induces functions si ∈ Ai. If Γ(Uij,OX)s
∼= Γ((Uij)s,OX),

then it is clear that Γ(X,Ox)s are the sections over Xs. Note that Uij are quasicompact, by
the quasiseparatedness hypothesis, and also quasiseparated, as open subsets of quasisep-
arated schemes are quasiseparated. Therefore we can reduce to the case where X ⊆ Spec A
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is a (quasicompact quasiseparated) open subset of an affine scheme. Then Uij = Spec Afifj

is affine and Γ(Uij,Ox)s = Γ((Uij)s,OX) so the same exact sequence implies the result. �

Proof of Proposition 1.4. As usual, we use the Affine Communication Lemma. We check
our two criteria. First, suppose f : X → Y is affine over Spec B, i.e. f−1(Spec B) = Spec A.
Then f−1(Spec Bs) = Spec Af#s.

Second, suppose we are given f : X → Spec B and (f1, . . . , fn) = B with Xfi
affine

(Spec Ai, say). We wish to show that X is affine too. X is quasi-compact (as it is covered
by n affine open sets). Let ti ∈ Γ(X,OX) be the pullback of the sections si ∈ B. The
morphism f factors as h ◦ g where g : X → Spec Γ(X,OX) and h : Spec Γ(X,OX) → Spec B

are the natural maps. Then Lemma 1.5 implies that g|f−1(Spec Bsi
) : Xti

→ Spec Γ(X,OX)ti

are isomorphisms. Therefore, g is an isomorphism and X is affine. �

1.6. Finite morphisms.

An affine morphism f : X → Y is finite if for every affine open set Spec B of Y, f−1(Spec B)
is the spectrum of an B-algebra that is a finitely-generated B-module. Warning about termi-
nology (finite vs. finitely-generated): Recall that if we have a ring homomorphism A → B

such that B is a finitely-generated A-module then we say that B is a finite A-algebra. This
is stronger than being a finitely-generated A-algebra.

By definition, finite morphisms are affine.

1.K. EXERCISE (THE PROPERTY OF FINITENESS IS AFFINE-LOCAL ON THE TARGET). Show
that a morphism f : X → Y is finite if there is a cover of Y by affine open sets Spec A such
that f−1(Spec A) is the spectrum of a finite A-algebra.

1.L. EASY EXERCISE. Show that the composition of two finite morphisms is also finite.

We now give four examples of finite morphisms, to give you some feeling for how
finite morphisms behave. In each example, you’ll notice two things. In each case, the
maps are always finite-to-one. We’ll verify this in Exercise 3.E. You’ll also notice that the
morphisms are closed, i.e. the image of closed sets are closed. This argument uses the
going-up theorem, and we’ll verify this when we discuss that. Intuitively, you should
think of finite as being closed plus finite fibers, although this isn’t quite true. We’ll make
this precise later.

Example 1: Branched covers. If p(t) ∈ k[t] is a non-zero polynomial, then Spec k[t] →
Spec[u] given by u 7→ p(t) is a finite morphism, see Figure 1.

Example 2: Closed immersions (to be defined soon, in §1.8). The morphism Spec k →
Spec k[t] given by t 7→ 0 is a finite morphism, see Figure 2.
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FIGURE 1. The “branched cover” of A1 given by u 7→ p(t) is finite

0

FIGURE 2. The “closed immersion” Spec k → Spec k[t] is finite

Example 3: Normalization (to be defined later). The morphism Spec k[t] → Spec k[x, y]/(y2−

x2 − x3) given by (x, y) 7→ (t2 − 1, t3 − t) (check that this is a well-defined ring map!) is a
finite morphism, see Figure 3.

1.M. IMPORTANT EXERCISE (EXAMPLE 4, FINITE MORPHISMS TO Spec k). Show that
if X → Spec k is a finite morphism, then X is a discrete finite union of points, each with
residue field a finite extension of k, see Figure 4. (An example is Spec F8×F4[x, y]/(x2, y4)×
F4[t]/t9 × F2 → Spec F2.)

1.7. Example. The natural map A2 − {(0, 0)} → A2 is an open immersion, and has finite
fibers, but is not affine (as A2 − {(0, 0)} isn’t affine) and hence not finite.

1.8. Closed immersions and closed subschemes.

Just as open immersions (the scheme-theoretic version of open set) are locally modeled
on open sets U ⊂ Y, the analogue of closed subsets also has a local model. This was
foreshadowed by our understanding of closed subsets of Spec B as roughly corresponding
to ideals. If I ⊂ B is an ideal, then Spec B/I ↪→ Spec B is a morphism of schemes, and this
is our prototypical example of a closed immersion.

A morphism f : X → Y is a closed immersion if it is an affine morphism, and for each
open subset Spec B ⊂ Y, with f−1(Spec B) ∼= Spec A, B → A is a surjective map (i.e. of the
form B → B/I, our desired local model). We often say that X is a closed subscheme of Y.
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FIGURE 3. The “normalization” Spec k[t] → Spec k[x, y]/(y2 −x2 −x3) given
by (x, y) 7→ (t2 − 1, t3 − t) is finite

FIGURE 4. A picture of a finite morphism to Spec k. Notice that bigger fields
are written as bigger dots. [I’d like to add some fuzz to some of these points
at some point.]

1.N. EASY EXERCISE. Show that closed immersions are finite.
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1.O. EXERCISE. Show that the property of being a closed immersion is affine-local on the
target.

A closed immersion f : X ↪→ Y determines an ideal sheaf on Y, as the kernel IX/Y of the
map of OY-modules

OY → f∗OX

(An ideal sheaf on Y is what it sounds like: it is a sheaf of ideals. It is a sub-OY-module
I ↪→ OY . On each open subset, it gives an ideal I(U) ↪→ OY(U).) We thus have an exact
sequence 0 → IX/Y → OY → f∗OX → 0.

1.P. IMPORTANT EXERCISE: A USEFUL CRITERION FOR WHEN IDEALS IN AFFINE OPEN SETS
DEFINE A CLOSED SUBSCHEME. It will be convenient (for example in §2) to define certain
closed subschemes of Y by defining on any affine open subset Spec B of Y an ideal IB ⊂ B.
Show that these Spec B/IB ↪→ Spec B glue together to form a closed subscheme precisely
if for each affine open subset Spec B ↪→ Y and each f ∈ B, I(Bf) = (IB)f.

Warning: you might hope that closed subschemes correspond to ideal sheaves of OY .
Sadly not every ideal sheaf arises in this way. Here is an example.

1.Q. UNIMPORTANT EXERCISE. Let X = Spec k[x](x), the germ of the affine line at the
origin, which has two points, the closed point and the generic point η. Define I(X) =
{0} ⊂ OX(X) = k[x](x), and I(η) = k(x) = OX(η). Show that this sheaf of ideals does not
correspond to a closed subscheme (see Exercise 1.P).

We will see later that closed subschemes correspond to quasicoherent sheaves of ideals;
the mathematical content of this statement will turn out to be precisely Exercise 1.P.

1.R. IMPORTANT EXERCISE. (a) In analogy with closed subsets, define the notion of a fi-
nite union of closed subschemes of X, and an arbitrary intersection of closed subschemes.
(b) Describe the scheme-theoretic intersection of (y − x2) and y in A2. See Figure 5 for a
picture. (For example, explain informally how this corresponds to two curves meeting
at a single point with multiplicity 2 — notice how the 2 is visible in your answer. Alter-
natively, what is the non-reducedness telling you — both its “size” and its “direction”?)
Describe the scheme-theoretic union.
(c) Describe the scheme-theoretic intersection of (y2 − x2) and y in A2. Draw a pic-
ture. (Are you surprised? Did you expect the intersection to be multiplicity one or
multiplicity two?) Hence show that if X, Y, and Z are closed subschemes of W, then
(X ∩ Z) ∪ (Y ∩ Z) 6= (X ∪ Y) ∩ Z in general.
(d) Show that the underlying set of a finite union of closed subschemes is the finite union
of the underlying sets, and similarly for arbitrary intersections.

1.S. IMPORTANT EXAMPLE THAT SHOULD HAVE BEEN DONE EARLIER. We now make a
preliminary definition of projective n-space Pn

k , by gluing together n + 1 open sets each
isomorphic to An

k . Judicious choice of notation for these open sets will make our life
easier. Our motivation is as follows. In the construction of P1 above, we thought of points
of projective space as [x0; x1], where (x0, x1) are only determined up to scalars, i.e. (x0, x1)
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=intersect

FIGURE 5. The scheme-theoretic intersection of the parabola y = x2 and the
x-axis is a non-reduced scheme (with fuzz in the x-direction)

is considered the same as (λx0, λx1). Then the first patch can be interpreted by taking the
locus where x0 6= 0, and then we consider the points [1; t], and we think of t as x1/x0; even
though x0 and x1 are not well-defined, x1/x0 is. The second corresponds to where x1 6= 0,
and we consider the points [u; 1], and we think of u as x0/x1. It will be useful to instead
use the notation x1/0 for t and x0/1 for u.

For Pn, we glue together n + 1 open sets, one for each of i = 0, . . . , n + 1. The ith open
set Ui will have co-ordinates x0/i, . . . , x(i−1)/i, x(i+1)/i, . . . , xn/i. It will be convenient to
write this as

Spec k[x0/i, x1/i, . . . , xn/i]/(xi/i − 1)

(so we have introduced a “dummy variable” xi/i which we set to 1). We glue the distin-
guished open set D(xj/i) of Ui to the distinguished open set D(xi/j) of Uj, by identifying
these two schemes by describing the identification of rings

Spec k[x0/i, x1/i, . . . , xn/i, 1/xj/i]/(xi/i − 1) ∼=

Spec k[x0/j, x1/j, . . . , xn/j, 1/xi/j]/(xj/j − 1)

via xk/i = xk/j/xi/j and xk/j = xk/i/xj/i (which implies xi/jxj/i = 1). We need to check that
this gluing information agrees over triple overlaps.

1.T. EXERCISE. Check this, as painlessly as possible. (Possible hint: the triple intersection
is affine; describe the corresponding ring.)

Note that our definition doesn’t use the fact that k is a field. Hence we may as well
define Pn

A for any ring A. This will be useful later.

1.9. Example: Closed immersions of projective space Pn
A. Consider the definition of projec-

tive space Pn
A given above. Any homogeneous polynomial f in x0, . . . , xn defines a closed

subscheme. (Thus even though x0, . . . , xn don’t make sense as functions, their vanishing
locus still makes sense.) On open set Ui, the closed subscheme is f(x0/i, . . . , xn/i), which
we think of as f(x0, . . . , xn)/x

deg f
i . On the overlap

Ui ∩ Uj = Spec A[x0/i, . . . , xn/i, x
−1
j/i

]/(xi/i − 1),
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these functions on Ui and Uj don’t exactly agree, but they agree up to a non-vanishing
scalar, and hence cut out the same subscheme of Ui ∩ Uj:

f(x0/i, . . . , fn/i) = x
deg f

j/i
f(x0/j, . . . , xn/j).

Thus by intersecting such closed subschemes, we see that any collection of homogeneous
polynomials in A[x0, . . . , xn] cut out a closed subscheme of Pn

A. We could take this as a
provisional definition of a projective A-scheme (or a projective scheme over A). (We’ll give
a better definition in the next Chapter.)

Notice: piggybacking on the annoying calculation that Pn consists of n+1 pieces glued
together nicely is the fact that any closed subscheme of Pn cut out by a bunch of homoge-
neous polynomials consists of n + 1 pieces glued together nicely.

Notice also that this subscheme is not in general cut out by a single global function
on Pn

A. For example, if A = k, there are no nonconstant global functions. We take this
opportunity to introduce some related terminology. A closed subscheme is locally prin-
cipal if on each open set in a small enough open cover it is cut out by a single equation.
Thus each homogeneous polynomial in n + 1 variables defines a locally principal closed
subscheme. (Warning: one can check this on a fine enough affine open cover, but this
is not an affine-local condition! We will see an example in the next day’s notes — one
P2 minus a conic, consider a line.) A case that will be important later is when the ideal
sheaf is not just locally generated by a function, but is generated by a function that is not
a zero-divisor. In this case (once we have defined our terms) we will call this an invertible
ideal sheaf, and the closed subscheme will be an effective Cartier divisor.

A closed subscheme cut out by a single (homogeneous) equation is called a hypersur-
face in Pn

k . The degree of a hypersurface is the degree of the polynomial. (Implicit in this
is that this notion can be determined from the subscheme itself; we haven’t yet checked
this.) A hypersurface of degree 1 (resp. degree 2, 3, . . . ) is called a hyperplane (resp.
quadric, cubic, quartic, quintic, sextic, septic, octic, . . . hypersurface). If n = 2, a degree
1 hypersurface is called a line, and a degree 2 hypersurface is called a conic curve, or a
conic for short. If n = 3, a hypersurface is called a surface.) (In a couple of weeks, we
will justify the terms curve and surface.)

1.U. EXERCISE. (a) Show that wz = xy, x2 = wy, y2 = xz describes an irreducible curve in
P3

k. This curve is called the twisted cubic. The twisted cubic is a good non-trivial example
of many things, so it you should make friends with it as soon as possible. (b) Show that
the twisted cubic is isomorphic to P1

k.

1.V. UNIMPORTANT EXERCISE. The usual definition of a closed immersion is a morphism
f : X → Y such that f induces a homeomorphism of the underlying topological space of Y

onto a closed subset of the topological space of X, and the induced map f# : OX → f∗OY of
sheaves on X is surjective. Show that this definition agrees with the one given above. (To
show that our definition involving surjectivity on the level of affine open sets implies this
definition, you can use the fact that surjectivity of a morphism of sheaves can be checked
on a base, which you can verify yourself.)

9



1.10. ? A fun example. The affine-locality of affine morphisms (Proposition 1.4) has some
non-obvious consequences, as shown in the next exercise.

1.W. EXERCISE. Suppose X is an affine scheme, and Y is a closed subscheme locally cut
out by one equation (e.g. if Y is an effective Cartier divisor). Show that X − Y is affine.
(This is clear if Y is globally cut out by one equation f; then if X = Spec A then Y = Spec Af.
However, Y is not always of this form.)

1.11. Example. Here is an explicit consequence. We showed earlier that on the cone over
the smooth quadric surface Spec k[w, x, y, z]/(wz − xy), the cone over a ruling w = x = 0

is not cut out scheme-theoretically by a single equation, by considering Zariski-tangent
spaces. We now show that it isn’t even cut out set-theoretically by a single equation.
For if it were, its complement would be affine. But then the closed subscheme of the
complement cut out by y = z = 0 would be affine. But this is the scheme y = z = 0

(also known as the wx-plane) minus the point w = x = 0, which we’ve seen is non-affine.
(For comparison, on the cone Spec k[x, y, z]/(xy − z2), see Figure 6, the ruling x = z = 0 is
not cut out scheme-theoretically by a single equation, but it is cut out set-theoretically by
x = 0.) Verify all this! (Hint: Use Exercise 1.4.)

FIGURE 6. V(x, z) ⊂ Spec k[x, y, z]/(xy − z2) is a ruling on a cone

We have now defined the analog of open subsets and closed subsets in the land of
schemes. Their definition is slightly less “symmetric” than in the usual topological set-
ting: the “complement” of a closed subscheme is a unique open subscheme, but there are
many “complementary” closed subschemes to a given open subscheme in general. (We’ll
soon define one that is “best”, that has a reduced structure, §2.6.)

1.12. Locally closed immersions and locally closed subschemes.
10



Now that we have defined analogs of open and closed subsets, it is natural to define
the analog of locally closed subsets. Recall that locally closed subsets are intersections
of open subsets and closed subsets. Hence they are closed subsets of open subsets, or
equivalently open subsets of closed subsets. That equivalence will be a little subtle in the
land of schemes.

We say a morphism X → Y is a locally closed immersion if it can factored into X
f

// Z
g

// Y
where f is a closed immersion and g is an open immersion. (Warning: The term immer-
sion is often used instead of locally closed immersion, but this is unwise terminology, as the
differential geometric notion of immersion is closer to what algebraic geometers call un-
ramified, which we’ll define next quarter. The algebro-geometric notion of locally closed
immersion is closest to the differential geometric notion of embedding.) It is often said that
X is a locally closed subscheme of Y.

For example, Spec k[t, t−1] → Spec k[x, y] where (x, y) 7→ (t, 0) is a locally closed im-
mersion (see Figure 7).

FIGURE 7. The locally closed immersion Spec k[t, t−1] → k[x, y] (t 7→
(t, 0) = (x, y), i.e. (x, y) → (t, 0))

We can make sense of finite intersections of locally closed immersions.

Clearly a open subscheme U of a closed subscheme V of X can be interpreted as a closed
subscheme of an open subscheme: as the topology on V is induced from the topology on
X, the underlying set of U is the intersection of some open subset U ′ on X with V . We
can take V ′ = V ∩ U, and then V ′ → U ′ is a closed immersion, and U ′ → X is an open
immersion.

It is less clear that a closed subscheme V ′ of an open subscheme U ′ can be expressed
as an open subscheme U of a closed subscheme V . In the category of topological spaces,
we would take V as the closure of V ′, so we are now motivated to define the analogous
construction, which will give us an excuse to introduce several related ideas, in the next
section. We will then resolve this issue in good cases (e.g. if X is Noetherian) in Exer-
cise 2.D.
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2. CONSTRUCTIONS RELATED TO “SMALLEST CLOSED SUBSCHEMES”:
SCHEME-THEORETIC IMAGE, SCHEME-THEORETIC CLOSURE, INDUCED REDUCED

SUBSCHEME, AND THE REDUCTION OF A SCHEME

We now define a series of notions that are all of the form “the smallest closed subscheme
such that something or other is true”. One example will be the notion of scheme-theoretic
closure of a locally closed immersion, which will allow us to interpret locally closed im-
mersions in three equivalent ways (open subscheme intersect closed subscheme; open
subscheme of closed subscheme; and closed subscheme of open subscheme).

2.1. Scheme-theoretic image.

We start with the notion of scheme-theoretic image. If f : X → Y is a morphism of
schemes, the notion of the image of f as sets is clear: we just take the points in Y that are the
image of points in X. But if we would like the image as a scheme, then the notion becomes
more problematic. (For example, what is the image of A2 → A2 given by (x, y) 7→ (x, xy)?)
We will come back to the notion of image later, but for now we will define the “scheme-
theoretic image”. This will incorporate the notion that the image of something with non-
reduced structure (“fuzz”) can also have non-reduced structure.

Definition. Suppose i : Z ↪→ Y is a closed subscheme, giving an exact sequence 0 →
IZ/Y → OY → i∗OZ → 0. We say that the image of f : X → Y lies in Z if the composition
IZ/Y → O)Y → f∗OX is zero. Informally, locally functions vanishing on Z pull back to
the zero function on X. If the image of f lies in two subschemes Z1 and Z2, it clearly
lies in their intersection Z1 ∩ Z2. We then define the scheme-theoretic image of f of f, a
closed subscheme on Y, as the “smallest closed subscheme containing the image”, i.e. the
intersection of all closed subschemes containing the image.

Example 1. Consider Spec k[ε]/ε2 → Spec k[x] = A1
k given by x 7→ ε. Then the scheme-

theoretic image is given by k[x]/x2 (the polynomials pulling back to 0 are precisely multi-
ples of x2). Thus the image of the fuzzy point still has some fuzz.

Example 2. Consider f : Spec k[ε]/ε2 → Spec k[x] = A1
k given by x 7→ 0. Then the

scheme-theoretic image is given by k[x]/x: the image is reduced. In this picture, the fuzz
is “collapsed” by f.

Example 3. Consider f : Spec k[t, t−1] = A1 − {0} → A1 = Spec k[u] given by u 7→ t. Any
function g(u) which pulls back to 0 as a function of t must be the zero-function. Thus
the scheme-theoretic image is everything. The set-theoretic image, on the other hand, is
the distinguished open set A1 − {0}. Thus in not-too-pathological cases, the underlying
set of the scheme-theoretic image is not the set-theoretic image. But the situation isn’t
terrible: the underlying set of the scheme-theoretic image must be closed, and indeed it is
the closure of the set-theoretic image. We might imagine that in reasonable cases this will
be true, and in even nicer cases, the underlying set of the scheme-theoretic image will be
set-theoretic image. We will later see that this is indeed the case.

But we feel obliged to show that pathologies can happen.

12



Example 4. Let X =
∐

k[εn]/(εn
n) and Y = Spec k[x], and define X → Y by x → εn on

the nth component of X. Then if a function g(x) on Y pulls back to 0 on X, then its Taylor
expansion is 0 to order n (by examining the pullback to the nth component of X, so g(x)
must be 0. Thus the scheme-theoretic image is Y, while the set-theoretic image is easily
seen to be just the origin.

This example clearly is weird though, and we can show that in “reasonable circum-
stances” such pathology doesn’t occur. It would be great to compute the scheme-theoretic
image affine-locally. On affine open set Spec B ⊂ Y, define the ideal IB ⊂ B of functions
which pullback to 0 on X. (Formally, IB := ker(B → Γ(f∗(OX), SpecB).) Then if for each
such B, and each g ∈ B, IB ⊗B Bg → IBg is an isomorphism, then we will have defined the
pushforward subscheme (see Exercise 1.P). Clearly each function on Spec B that vanishes
when pulled back to f−1(Spec B) also vanishes when restricted to D(g) and then pulled
back to f−1(D(g)). So the question is: given a function r/gn on D(g) that pulls back to
f−1D(g), is it true that for some m, rgm = 0 when pulled back to f−1(Spec B)? (i) The an-
swer is clearly yes if f−1(Spec B) is reduced: we simply take rg. (ii) The answer is also yes
if f−1(Spec B) is affine, say Spec A: if r ′ = f#r and g ′ = f#g in A, then if r ′ = 0 on D(g ′),
then there is an m such that r ′(g ′)m = 0: r ′ = 0 in D(g ′), which means precisely this fact.
(iii) Furthermore, the answer is yes if f−1(Spec B) is quasicompact: cover f−1(Spec B) with
finitely many affine open sets. For each one there will be some mi so that rgmi = 0 when
pulled back to this open set. Then let m = max(mi). (We now see why quasicompactness
is our friend!)

In conclusion, we have proved the following theorem.

2.2. Theorem. — Suppose f : X → Y is a morphism of schemes. If X is reduced or f is quasicompact
(e.g. if X is Noetherian, Exercise 1.B), then the scheme-theoretic image of f may be computed affine-
locally.

2.3. Corollary. — Under the hypotheses of the previous theorem, the closure of the set-theoretic
image of f is the underlying set of the scheme-theoretic image.

Example 4 above shows that we cannot excise these hypotheses.

Proof. The set-theoretic image is clearly in the underlying set of the scheme-theoretic
image. The underlying set of the scheme-theoretic image is closed, so the closure of the
set-theoretic image is contained in underlying set of the scheme-theoretic image. On the
other hand, if U is the complement of the closure of the set-theoretic image, f−1(U) =
∅. As under these hypotheses, the scheme theoretic image can be computed locally, the
scheme-theoretic image is the empty set on U. �

We conclude with a few stray remarks.

2.A. EASY EXERCISE. If X is reduced, show that the scheme-theoretic image of f : X → Y

is also reduced.
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More generally, you might expect there to be no unnecessary non-reduced structure on
the image not forced by non-reduced structure on the source. We make this precise in the
locally Noetherian case, when we can talk about associated points.

2.B. ? UNIMPORTANT EXERCISE. If f : X → Y is a morphism of locally Noetherian
schemes, show that the associated points of the image subscheme are a subset of the
image of the associated points of X.

2.4. Aside: set-theoretic images can be nice too. I want to say a little more on what the
set-theoretic image of a morphism can look like, although we’ll hold off before proving
these statements. We know that the set-theoretic image can be open (open immersion),
and closed (closed immersions), and locally closed (locally closed immersions). But it can
be weirder still: consider the example A2 → A2 given by (x, y) 7→ (x, xy) mentioned ear-
lier. The image is the plane, minus the y-axis, plus the origin. The image can be stranger
still, and indeed if S is any subset of a scheme Y, it can be the image of a morphism: let X

be the disjoint union of spectra of the residue fields of all the points of S, and let f : X → Y

be the natural map. This is quite pathological, and in fact that if we are in any reasonable
situation, the image is essentially no worse than arose in the previous example.

We define a constructible subset of a Noetherian scheme to be a subset which belongs
to the smallest family of subsets such that (i) every open set is in the family, (ii) a finite in-
tersection of family members is in the family, and (iii) the complement of a family member
is also in the family. So for example the image of (x, y) 7→ (x, xy) is constructible.

Note that if X → Y is a morphism of schemes, then the preimage of a constructible set
is a constructible set.

2.C. EXERCISE. Suppose X is a Noetherian scheme. Show that a subset of X is con-
structible if and only if it is the finite disjoint union of locally closed subsets.

Then if f : X → Y is a finite type morphism of Noetherian schemes, the image of any
constructible set is constructible. This is Chevalley’s Theorem, and we will prove it later.
We will also have reasonable criteria for when the image is closed.

(For hardened experts only: [EGA 0III.9.1] gives a definition of constructible in more
generality. A constructible subset of a topological space X is a member of the Boolean algebra
generated by open subsets U of X such that the inclusion U ↪→ X is quasicompact. If X is
an affine scheme, or more generally quasicompact and quasiseparated, this is equivalent
to U being quasicompact. A subset Z ⊂ X is locally constructible if X admits an open
covering {Vi} such that Z ∩ Vi ⊂ Vi is constructible for each i. If X is quasicompact and
quasiseparated, this is the same as Z ⊂ X being constructible, so if X is a scheme, then it
is equivalent to say that Z ∩ V is constructible for every affine open set V . The general
form of Chevalley’s constructibility theorem [EGA IV1.1.8.4] is that the image of a locally
constructible set under a finitely presented map, is also locally constructibility. Thanks to
Brian Conrad for this!)
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2.5. Scheme-theoretic closure of a locally closed subscheme.

We define the scheme-theoretic closure of a locally closed immersion f : X → Y as the
scheme-theoretic image of X.

2.D. EXERCISE. If X → Y is quasicompact (e.g. if X is Noetherian, Exercise 1.B) or if X is re-
duced, show that the following three notions are the same. (Hint: Theorem niceschemethe-
oreticimage.)

(a) V is an open subscheme of X intersect a closed subscheme of X

(b) V is an open subscheme of a closed subscheme of X

(c) V is a closed subscheme of an open subscheme of X.

(Hint: it will be helpful to note that the scheme-theoretic image may be computed on each
open subset of the base.)

2.E. UNIMPORTANT EXERCISE USEFUL FOR INTUITION. If f : X → Y is a locally closed
immersion into a locally Noetherian scheme (so X is also locally Noetherian), then the
associated points of the scheme-theoretic image are (naturally in bijection with) the asso-
ciated points of X. (Hint: Exercise 2.B.) Informally, we get no non-reduced structure on
the scheme-theoretic closure not “forced by” that on X.

2.6. The induced reduced subscheme structure on a closed subset.

Suppose Xset is a closed subset of a scheme Y. Then we can define a canonical scheme
structure X on Xset, that is reduced. We could describe it as being cut out by those func-
tions whose values are zero at all the points of Xset. On affine open subset Spec B of Y,
if the set Xset corresponds to the radical ideal I = I(Xset), the scheme X corresponds to
Spec B/I. We could also consider this construction as an example of a scheme-theoretic
image in the following crazy way: let W be the scheme that is a disjoint union of all the
points of Xset, where the point corresponding to p in Xset is Spec of the residue field of
OY,p. Let f : W → Y be the “canonical” map sending “p to p”, and giving an isomorphism
on residue fields. Then the scheme structure on X is the scheme-theoretic image of f. A
third definition: it is the smallest closed subscheme whose underlying set contains Xset.

This construction is called the induced reduced subscheme structure on the closed sub-
set Xset. (Vague exercise: Make a definition of the induced reduced subscheme structure
precise and rigorous to your satisfaction.)

2.F. EXERCISE. Show that the underlying set of the induced reduced subscheme X → Y

is indeed the closed subset Xset. Show that X is reduced.

2.7. Reduced version of a scheme.
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In the special case where Xset all of Y, we obtain a reduced closed subscheme Yred → Y,
called the reduction of Y. On affine open subset Spec B ↪→ Y, Y red

↪→ Y corresponds to the
nilradical N(B) of B. The reduction of a scheme is the “reduced version” of the scheme,
and informally corresponds to “shearing off the fuzz”.

An alternative equivalent definition: on the affine open subset Spec B ↪→ Y, the reduc-
tion of Y corresponds to the ideal N (B) ⊂ Y. As for any f ∈ B, N (B)f = N (Bf), by
Exercise 1.P this defines a closed subscheme.

2.G. UNIMPORTANT EXERCISE (BUT USEFUL FOR VISUALIZATION). Show that if Y is a
locally Noetherian scheme, the “reduced locus” of Y (where Y red → Y is an isomorphism)
is an open subset of Y. (In fact the non-reduced locus is a closure of certain associated
points.)

3. MORE FINITENESS CONDITIONS ON MORPHISMS: (LOCALLY) OF FINITE TYPE,
QUASIFINITE, (LOCALLY) OF FINITE PRESENTATION

3.1. Morphisms (locally of) finite type.

A morphism f : X → Y is locally of finite type if for every affine open set Spec B of Y,
f−1(Spec B) can be covered with open sets Spec Ai so that the induced morphism B → Ai

expresses Ai as a finitely generated B-algebra. By the affine-locality of finite-typeness
of B-schemes, this is equivalent to: for every affine open set Spec Ai in X, Ai is a finitely
generated B-algebra.

A morphism is of finite type if it is locally of finite type and quasicompact. Translation:
for every affine open set Spec B of Y, f−1(Spec B) can be covered with a finite number of open
sets Spec Ai so that the induced morphism B → Ai expresses Ai as a finitely generated
B-algebra.

3.A. EXERCISE (THE NOTIONS “LOCALLY OF FINITE TYPE” AND “FINITE TYPE” ARE AFFINE-
LOCAL ON THE TARGET). Show that a morphism f : X → Y is locally of finite type if there
is a cover of Y by affine open sets Spec Bi such that f−1(Spec Bi) is locally of finite type
over Bi.

3.B. EXERCISE. Show that a morphism f : X → Y is locally of finite type if for every affine
open subsets Spec A ⊂ X, Spec B ⊂ Y, with f(Spec A) ⊂ Spec B, A is a finitely generated
B-algebra. (Hint: use the affine communication lemma on f−1(Spec B).)

Example: the “structure morphism” Pn
A → Spec A is of finite type, as Pn

A is covered by
n + 1 open sets of the form Spec A[x1, . . . , xn]. More generally, Proj S∗ → Spec A (where
S0 = A) is of finite type.
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More generally still: our earlier definition of schemes of “finite type over k” (or “finite
type k-schemes”) is now a special case of this more general notion: a scheme X is of finite
type over k means that we are given a morphism X → Spec k (the “structure morphism”)
that is of finite type.

Here are some properties enjoyed by morphisms of finite type.

3.C. EASY EXERCISE. Show that finite morphisms are of finite type. Hence closed immer-
sions are of finite type.

3.D. EXERCISES (NOT HARD, BUT IMPORTANT).

(a) Show that an open immersion is locally of finite type. Show that an open immer-
sion into a locally Noetherian scheme is of finite type. More generally, show that a
quasicompact open immersion is of finite type.

(b) Show that the composition of two morphisms of locally finite type is locally of
finite type. (Hence as quasicompact morphisms also compose, the composition of
two morphisms of finite type is also of finite type.)

(c) Suppose we have morphisms X
f

// Y
g

// Z , with f quasicompact, and g ◦ f of
finite type. Show that f is finite type.

(d) Suppose f : X → Y is finite type, and Y is Noetherian. Show that X is also Noether-
ian.

A morphism f is quasifinite if it is of finite type, and for all y ∈ Y, f−1(y) is a finite set.
The main point of this definition is the “finite fiber” part; the “finite type” part is there
so this notion is “preserved by fibered product” (an exercise in the class on fiber products
next week).

3.E. EXERCISE. Show that finite morphisms are quasifinite. (This is a useful exercise,
because you will have to figure out how to figure out how to get at points in a fiber of a
morphism: given f : X → Y, and y ∈ Y, what are the points of f−1(y)? Here is a hint: if
X = Spec A and Y = Spec B are both affine, and y = [p], then we can throw out everything
in A outside y by modding out by p; you can show that the preimage is A/p. Then we
have reduced to the case where Y is the Spec of an integral domain, and [p] = [0] is the
generic point. We can throw out the rest of the points by localizing at 0. You can show that
the preimage is (Ap)/pAp. Then, once you have shown that finiteness behaves well with
respect to the operations you made done, you have reduced the problem to Exercise 1.M.)

There are quasifinite morphisms which are not finite, for example A2 − {(0, 0} → A2

(Example 1.7). The key example of a morphism with finite fibers that is not quasifinite is
Spec Q → Spec Q.
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How to picture quasifinite morphisms, thanks go Brian Conrad. If X → Y is a finite mor-
phism, then quasi-compact open subset U ⊂ X is quasi-finite over Y. In fact every reason-
able quasifinite morphism arises in this way. Thus the right way to visualize quasifinite-
ness is as a finite map with some (closed locus of) points removed.

3.2. ? Morphisms (locally) of finite presentation. There is a variant often of use to non-
Noetherian people. A morphism f : X → Y is locally of finite presentation (or locally
finitely presented) if for each affine open subset Spec B of Y, f−1(Spec B) == ∪i Spec Ai

with B → Ai finitely presented (finitely generated with a finite number of relations). A
morphism is of finite presentation (or finitely presented) if it is locally of finite presenta-
tion and quasicompact.

If X is locally Noetherian, then locally of finite presentation is the same as locally of
finite type, and finite presentation is the same as finite type. So if you are a Noetherian
person, you needn’t worry about this notion.

3.F. EXERCISE. Show that the notion of “locally finite presentation” is affine-local.

3.G. ?? EXERCISE: LOCALLY OF FINITE PRESENTATION IS A PURELY CATEGORICAL NO-
TION. Show that “locally of finite presentation” is equivalent to the following. If
F : (Sch/Y) → (Sets), S 7→ HomY(S, X), we require F to commute with direct limits,
i.e. if {Ai} is a direct system, then F(lim

−→
Ai) = lim

−→
F(Ai).

E-mail address: vakil@math.stanford.edu
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Today: projective schemes.

1. INTRODUCTION

At this point, we know that we can construct schemes by gluing affine schemes to-
gether. If a large number of affine schemes are involved, this can obviously be a laborious
and tedious process. Our example of closed subschemes of projective space showed that
we could piggyback on the construction of projective space to produce complicated and
interesting schemes. In this chapter, we formalize this notion of projective schemes. Projec-
tive schemes over the complex numbers give good examples (in the classical topology)
of compact complex varieties. In fact they are such good examples that it is quite hard to
come up with an example of a compact complex variety that is provably not projective.
(We will see examples later, although we won’t concern ourselves with the relationship
to the classical topology.) Similarly, it is quite hard to come up with an example of a
complex variety that is provably not an open subset of a projective variety. In particular,
most examples of complex varieties that come up in nature are of this form. More gen-
erally, projective schemes will be the key example of the algebro-geometric analogue of
compactness (properness). Thus one advantage of the notion of projective scheme is that it
encapsulates much of the algebraic geometry arising in nature.

In fact our example from last day already gives the notion of projective A-schemes
in full generality. Recall that any collection of homogeneous elements of A[x0, . . . , xn]

describes a closed subscheme of Pn
A. Any closed subscheme of Pn

A cut out by a set of ho-
mogeneous polynomials will be called a projective A-scheme. (You may be initially most
interested in the “classical” case where A is an algebraically closed field.) If I is the ideal
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in A[x0, . . . , xn] generated by these homogeneous polynomials, the scheme we have con-
structed will be called Proj A[x0, . . . , xn]/I. Then x0, . . . , xn are informally said to be pro-
jective coordinates on the scheme. Warning: they are not functions on the scheme. (We will
later interpret them as sections of a line bundle.) This lecture will reinterpret this example
in a more useful language. For example, just as there is a rough dictionary between rings
and affine schemes, we will have an analogous dictionary between graded rings and pro-
jective schemes. Just as one can work with affine schemes by instead working with rings,
one can work with projective schemes by instead working with graded rings.

1.1. A motivating picture from classical geometry.

We motivate a useful way of picturing projective schemes by recalling how one thinks
of projective space “classically” (in the classical topology, over the real numbers). Pn can
be interpreted as the lines through the origin in Rn+1. Thus subsets of Pn correspond to
unions of lines through the origin of R

n+1, and closed subsets correspond to such unions
which are closed. (The same is not true with “closed” replaced by “open”!)

One often pictures Pn as being the “points at infinite distance” in Rn+1, where the points
infinitely far in one direction are associated with the points infinitely far in the opposite
direction. We can make this more precise using the decomposition

(1) P
n+1 = R

n+1
∐

P
n

by which we mean that there is an open subset in P
n+1 identified with R

n+1 (the points
with last projective co-ordinate non-zero), and the complementary closed subset identi-
fied with Pn (the points with last projective co-ordinate zero).

Then for example any equation cutting out some set V of points in Pn will also cut out
some set of points in Rn that will be a closed union of lines. We call this the affine cone of
V . These equations will cut out some union of P1’s in Pn+1, and we call this the projective
cone of V . The projective cone is the disjoint union of the affine cone and V . For example,
the affine cone over x2 + y2 = z2 in P

2 is just the “classical” picture of a cone in R
2, see

Figure 1.

We will make this analogy precise in our algebraic setting in §2.3.

2. THE Proj CONSTRUCTION

Let’s abstract these notions, just as we abstracted the notion of the Spec of a ring with
given generators and relations over k to the Spec of a ring in general.

In the examples we’ve seen, we have a graded ring A[x0, . . . , xn]/I where I is a ho-
mogeneous ideal (i.e. I is generated by homogeneous elements of A[x0, . . . , xn]). Here
we are taking the usual grading on A[x0, . . . , xn], where each xi has weight 1. Then
A[x0, . . . , xn]/I is also a graded ring S•, and we’ll call its graded pieces S0, S1, etc. (The
subscript • in S• is intended to remind us of the indexing. In a graded ring, multiplication
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projective cone in $\projˆ3$

$xˆ2+yˆ2=zˆ2$ in $\projˆ2$

affine cone: $xˆ2+yˆ2=zˆ2$ in $\Rˆ3$

FIGURE 1. The affine and projective cone of x2 + y2 = z2 in classical geometry

sends Sm × Sn to Sm+n. Note that S0 is a subring, and S is a S0-algebra.) In our examples
that S0 = A, and S• is generated over S0 by S1.

2.1. Standing assumptions about graded rings. We make some standing assumptions
on graded rings. Fix a ring A (the base ring). Our motivating example is S• = A[x0, x1, x2],
with the usual grading. Assume that S• is graded by Z≥0, with S0 = A. Hence each Sn is
an A-module. The subset S+ := ⊕i>0Si ⊂ S• is an ideal, called the irrelevant ideal. The
reason for the name “irrelevant” will be clearer soon. Assume that the irrelevant ideal
S+ is a finitely-generated ideal.

2.A. EXERCISE. Show that S• is a finitely-generated graded ring if and only if S• is a
finitely-generated graded A-algebra, i.e. generated over A = S0 by a finite number of
homogeneous elements of positive degree. (Hint for the forward implication: show that
the generators of S+ as an ideal are also generators of S• as an algebra.)

If these assumptions hold, we say that S• is a finitely generated graded ring.

We now define a scheme Proj S•. You won’t be surprised that we will define it as a set,
with a topology, and a structure sheaf.

The set. The points of Proj S• are defined to be those homogeneous prime ideals not
containing the irrelevant ideal S+. The homogeneous primes containing the irrelevant ideal
are irrelevant.
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For example, if S• = k[x, y, z] with the usual grading, then (z2 − x2 − y2) is a homoge-
neous prime ideal. We picture this as a subset of Spec S•; it is a cone (see Figure 1). We
picture P2

k as the “plane at infinity”. Thus we picture this equation as cutting out a conic
“at infinity”. We will make this intuition somewhat more precise in §2.3.

The topology. As with affine schemes, we define the Zariski topology by describing the
closed subsets. They are of the form V(I), where I is a homogeneous ideal. (Here V(I) has
essentially the same definition as before: those homogeneous prime ideals containing I.)
Particularly important open sets will the distinguished open sets D(f) = Proj S• \ V(f),
where f ∈ S+ is homogeneous.

2.B. EASY EXERCISE. Verify that the distinguished open sets form a base of the topology.
(The argument is essentially identical to the affine case.)

As with the affine case, if D(f) ⊂ D(g), then fn ∈ (g) for some n, and vice versa. Clearly
D(f) ∩ D(g) = D(fg), by the same immediate argument as in the affine case.

The structure sheaf. We define OProj S•(D(f)) = ((S•)f)0 where ((S•)f)0 means the 0-
graded piece of the graded ring (S•)f. (The notation ((S•)f)0 is admittedly unfortunate —
the first and third subscripts refer to the grading, and the second refers to localization.)
As in the affine case, we define restriction maps, and verify that this is well-defined (i.e.
if D(f) = D(f ′), then we are defining the same ring, and that the restriction maps are
well-defined).

For example, if S• = k[x0, x1, x2] and f = x0, we get (k[x0, x1, x2]x0
)0 := k[x1/0, x2/0]

(using our earlier language for projective patches).

We now check that this is a sheaf. We could show that this is a sheaf on the base, and the
argument would be as in the affine case (which was not easy). Here instead is a sneakier
argument. We first note that the topological space D(f) and Spec((S•)f)0 are canonically
homeomorphic: they have matching distinguished bases. (To the distinguished open
D(g) ∩ D(f) of D(f), we associate D(gdeg f/fdeg g) in Spec(Sf)0. To D(h) in Spec(Sf)0, we
associate D(fnh) ⊂ D(f), where n is chosen large enough so that fnh ∈ S•.) Second,
we note that the sheaf of rings on the distinguished base of D(f) can be associated (via
this homeomorphism just described) with the sheaf of rings on the distinguished base of
Spec((S•)f)0: the sections match (the ring of sections ((S•)fg)0 over D(g) ∩ D(f) ⊂ D(f),
those homogeneous degree 0 quotients of S• with f’s and g’s in the denominator, is natu-
rally identified with the ring of sections over the corresponding open set of Spec((S•)f)0)
and the restriction maps clearly match (think this through yourself!). Thus we have de-
scribed an isomorphism of schemes

(D(f),OProjS•)
∼= Spec(Sf)0.

2.C. EASY EXERCISE. Describe a natural “structure morphism” Proj S• → Spec A.

2.2. Projective and quasiprojective schemes.
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We call a scheme of the form Proj S• (where S0 = A) a projective scheme over A, or a
projective A-scheme. A quasiprojective A-scheme is an open subscheme of a projective
A-scheme. The “A” is omitted if it is clear from the context; often A is some field.

We now make a connection to classical terminology. A projective variety (over k), or
an projective k-variety is a reduced projective k-scheme. (Warning: in the literature, it is
sometimes also required that the scheme be irreducible, or that k be algebraically closed.)
A quasiprojective k-variety is an open subscheme of a projective k-variety. We defined
affine varieties earlier, and you can check that affine open subsets of projective k-varieties
are affine k-varieties. We will define varieties in general later.

The notion of quasiprojective k-scheme is a good one, covering most interesting cases
which come to mind. We will see before long that the affine line with the doubled origin
is not quasiprojective for somewhat silly reasons (“non-Hausdorffness”), but we’ll call
that kind of bad behavior “non-separated”. Here is a surprisingly subtle question: Are
there quasicompact k-schemes that are not quasiprojective? Translation: if we’re gluing to-
gether a finite number of schemes each sitting in some A

n
k , can we ever get something not

quasiprojective? We will finally answer this question in the negative in the next quarter.

2.D. EASY EXERCISE. Show that all projective A-schemes are quasicompact. (Trans-
lation: show that any projective A-scheme is covered by a finite number of affine open
sets.) Show that Proj S• is finite type over A = S0. If S0 is a Noetherian ring, show that
Proj S• is a Noetherian scheme, and hence that Proj S• has a finite number of irreducible
components. Show that any quasiprojective scheme is locally of finite type over A. If
A is Noetherian, show that any quasiprojective A-scheme is quasicompact, and hence of
finite type over A. Show this need not be true if A is not Noetherian. Better: give an
example of a quasiprojective A-scheme that is not quasicompact (necessarily for some
non-Noetherian A). (Hint: Flip ahead to silly example 3.2.)

2.3. Affine and projective cones.

If S• is a finitely-generated graded ring, then the affine cone of Proj S• is Spec S•. Note
that this construction depends on S•, not just of Proj S•. As motivation, consider the
graded ring S• = C[x, y, z]/(z2 − x2 − y2). Figure 2 is a sketch of Spec S•. (Here we draw
the “real picture” of z2 = x2 +y2 in R3.) It is a cone in the most traditional sense; the origin
(0, 0, 0) is the “cone point”.

This gives a useful way of picturing Proj (even over arbitrary rings than C). Intuitively,
you could imagine that if you discarded the origin, you would get something that would
project onto Proj S•. The following exercise makes that precise.

2.E. EXERCISE. If S• is a projective scheme over a field k, Describe a natural morphism
Spec S• \ {0} → Proj S•.

This has the following generalization to A-schemes, which you might find geometri-
cally reasonable. This again motivates the terminology “irrelevant”.
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FIGURE 2. A sketch of the cone Spec k[x, y, z]/(z2 − x2 − y2).

2.F. EXERCISE. If S• is a projective A-scheme, describe a natural morphism Spec S• \

V(S+) → Proj S•.

In fact, it can be made precise that Proj S• is the affine cone, minus the origin, modded
out by multiplication by scalars.

The projective cone of Proj S• is ProjS•[T ], where T is a new variable of degree 1. For
example, the cone corresponding to the conic Proj k[x, y, z]/(z2−x2−y2) is Proj k[x, y, z, T ]/(z2−

x2 − y2).

2.G. EXERCISE (CF. (1)). Show that the projective cone of Proj S•[T ] has a closed sub-
scheme isomorphic to Proj S• (corresponding to T = 0), whose complement (the distin-
guished open set D(T)) is isomorphic to the affine cone Spec S•.

You can also check that Proj S• is a locally principal closed subscheme, and is also lo-
cally not a zero-divisor (an effective Cartier divisor).

This construction can be usefully pictured as the affine cone union some points “at in-
finity”, and the points at infinity form the Proj. The reader may which to ponder Figure 2,
and try to visualize the conic curve “at infinity”.

We have thus completely discribed the algebraic analog of the classical picture of 1.1.
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3. EXAMPLES

3.1. Example. We (re)define projective space by Pn
A := ProjA[x0, . . . , xn]. This definition

involves no messy gluing, or choice of special patches.

3.A. EXERCISE. Check that this agrees with our earlier version of projective space.

3.2. Silly example. Note that P0
A = Proj A[T ] ∼= Spec A. Thus “Spec A is a projective

A-scheme”.

Here is a useful generalization of this example that I forgot to say in class:

3.B. EXERCISE: FINITE MORPHISMS TO Spec A ARE PROJECTIVE. If B is a finitely generated
A-algebra, define S• by S0 = A, and Sn = B for n > 0 (with the obvious graded ring
structure). Describe an isomorphism

Proj S•
oo

∼
//

%%KKK
KK

KK
KK

K
Spec B

yysssssssss

Spec A

3.C. EXERCISE. Show that X = P2
k \ {x2 + y2 = z2} is an affine scheme. Show that x = 0

cuts out a locally principal closed subscheme that is not principal.

3.3. Example: PV . We can make this definition of projective space even more choice-free
as follows. Let V be an (n + 1)-dimensional vector space over k. (Here k can be replaced
by any ring A as usual.) Let Sym• V∨ = k ⊕ V∨ ⊕ Sym2 V∨ ⊕ · · · . (The reason for the
dual is explained by the next exercise.) If for example V is the dual of the vector space
with basis associated to x0, . . . , xn, we would have Sym• V∨ = k[x0, . . . , xn]. Then we can
define PV := Proj Sym• V∨. In this language, we have an interpretation for x0, . . . , xn:
they are the linear functionals on the underlying vector space V .

3.D. UNIMPORTANT EXERCISE. Suppose k is algebraically closed. Describe a natural
bijection between one-dimensional subspaces of V and the points of PV . Thus this con-
struction canonically (in a basis-free manner) describes the one-dimensional subspaces of
the vector space Spec V .

On a related note: you can also describe a natural bijection between points of V and the
points of Spec Sym• V∨. This construction respects the affine/projective cone picture of
§2.3.
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4. MAPS OF GRADED RINGS AND MAPS OF PROJECTIVE SCHEMES

As maps of rings correspond to maps of affine schemes in the opposite direction, maps
of graded rings sometimes give maps of projective schemes in the opposite direction.
Before we make this precise, let’s see an example to see what can go wrong. There isn’t
quite a map P2

k → P1
k given by [x; y; z] → [x; y], because this alleged map isn’t defined

only at the point [0; 0; 1]. What has gone wrong? The map A3 = Spec k[x, y, z] → A2 =

Spec k[x, y] makes perfect sense. However, the z-axis in A3 maps to the origin in A2, so the
point of P2 corresponding to the z-axis maps to the “cone point” of the affine cone, and
hence not to the projective scheme. The image of this point of A2 contains the irrelevant
ideal. If this problem doesn’t occur, a map of rings gives a map of projective schemes in
the opposite direction.

4.A. IMPORTANT EXERCISE. (a) Suppose that f : S•
// R• is a morphism of finitely-

generated graded rings (i.e. a map of rings preserving the grading) over A. Suppose
further that

(2) f(S+) ⊃ R+.

Show that this induces a morphism of schemes Proj R• → Proj S•. (Warning: not every
morphism arises in this way. )
(b) Suppose further that S•

// // R• is a surjection of finitely-generated graded rings (so
(2) is automatic). Show that the induced morphism ProjR• → Proj S• is a closed immer-
sion. (Warning: not every closed immersion arises in this way! )

Hypothesis (2) can be replaced with the weaker hypothesis
√

f(S+) ⊃ R+, but in prac-
tice this hypothesis (2) suffices.

4.B. EXERCISE. Show that an injective linear map of k-vector spaces V ↪→ W induces a
closed immersion PV ↪→ PW.

This closed subscheme is called a linear space. Once we know about dimension, we
will call this a linear space of dimension dim V − 1 = dim PV . A linear space of dimension
1 (resp. 2, n, dim PW − 1) is called a line (resp. plane, n-plane, hyperplane). (If the linear
map in the previous exercise is not injective, then the hypothesis (2) of Exercise 4.A fails.)

4.1. A particularly nice case: when S• is generated in degree 1. If S• is generated by S1

as an A-algebra, we say that S• is generated in degree 1.

4.C. EXERCISE. Suppose S• is a finitely generated graded ring generated in degree 1.
Show that S1 is a finitely-generated module, and the irrelevant ideal S+ is generated in
degree 1.
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4.D. EXERCISE. Show that if S• is generated by S1 (as an A-algebra) by n + 1 elements
x0, . . . , xn, then Proj S• may be described as a closed subscheme of Pn

A as follows. Consider
An+1 as a free module with generators t0, . . . , tn associated to x0, . . . , xn. The surjection of

Sym• An+1 = A[t0, t1, . . . , tn] // // S•

implies S• = A[t0, t1, . . . tn]/I, where I is a homogeneous ideal.

This is completely analogous to the fact that if R is a finitely-generated A-algebra, then
choosing n generators of R as an algebra is the same as describing Spec R as a closed
subscheme of An

A. In the affine case this is “choosing coordinates”; in the projective case
this is “choosing projective coordinates”.

For example, Projk[x, y, z]/(z2 − x2 − y2) is a closed subscheme of P2
k. (A picture is

shown in Figure 2.)

Recall that we can interpret the closed points of Pn as the lines through the origin in
An+1. The following exercise states this more generally.

4.E. EXERCISE. Suppose S• is a finitely-generated graded ring over an algebraically
closed field k, generated in degree 1 by x0, . . . , xn, inducing closed immersions Proj S• ↪→
Pn and Spec S• ↪→ An. Describe a natural bijection between the closed points of Proj S•

and the “lines through the origin” in Spec S• ⊂ An.

5. IMPORTANT EXERCISES

There are many fundamental properties that are best learned by working through prob-
lems.

5.1. Analogues of results on affine schemes.

5.A. EXERCISE.

(a) Suppose I is any homogeneous ideal, and f is a homogeneous element. Show that
f vanishes on V(I) if and only if fn ∈ I for some n. (Hint: Mimic the affine case;
see an earlier exercise.)

(b) If Z ⊂ Proj S•, define I(·). Show that it is a homogeneous ideal. For any two
subsets, show that I(Z1 ∪ Z2) = I(Z1) ∩ I(Z2).

(c) For any subset Z ⊂ Proj S•, show that V(I(Z)) = Z.

5.B. EXERCISE. Show that the following are equivalent. (This is more motivation for the
S+ being “irrelevant”: any ideal whose radical contains it is “geometrically irrelevant”.)

(a) V(I) = ∅
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(b) for any fi (i in some index set) generating I, ∪D(fi) = Proj S•

(c)
√

I ⊃ S+.

5.2. Scaling the grading, and the Veronese embedding.

Here is a useful construction. Define Sn• = ⊕∞
j=0Snj. (We could rescale our degree, so

“old degree” n is “new degree” 1.)

5.C. EXERCISE. Show that Proj Sn• is isomorphic to ProjS•.

5.D. EXERCISE. Suppose S• is generated over S0 by f1, . . . , fn. Find a d such that Sd• is
generated in “new” degree 1 (= “old” degree d). This is handy, as it means that, using
the previous Exercise 5.C, we can assume that any finitely-generated graded ring is gen-
erated in degree 1. In particular, we can place every Proj in some projective space via the
construction of Exercise 4.D.

Example: Suppose S• = k[x, y], so Proj S• = P1
k. Then S2• = k[x2, xy, y2] ⊂ k[x, y]. We

identify this subring as follows.

5.E. EXERCISE. Let u = x2, v = xy, w = y2. Show that S2• = k[u, v, w]/(uw − v2).

We have a graded ring generated by three elements in degree 1. Thus we think of it as
sitting “in” P2, via the construction of §4.D. This can be interpreted as “P1 as a conic in
P

2”.

Thus if k is algebraically closed of characteristic not 2, using the fact that we can di-
agonalize quadrics, the conics in P2, up to change of co-ordinates, come in only a few
flavors: sums of 3 squares (e.g. our conic of the previous exercise), sums of 2 squares (e.g.
y2 −x2 = 0, the union of 2 lines), a single square (e.g. x2 = 0, which looks set-theoretically
like a line, and is non-reduced), and 0 (not really a conic at all). Thus we have proved: any
plane conic (over an algebraically closed field of characteristic not 2) that can be written
as the sum of three squares is isomorphic to P1.

We now soup up this example.

5.F. EXERCISE. Show that Proj S3• is the twisted cubic “in” P3.

5.G. EXERCISE. Show that Proj Sd• is given by the equations that
(

y0 y1 · · · yd−1

y1 y2 · · · yd

)

is rank 1 (i.e. that all the 2× 2 minors vanish). This is called the degree d rational normal
curve “in” Pd.
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FIGURE 3. The two rulings on the quadric surface V(wz − xy) ⊂ P3. One
ruling contains the line V(w, x) and the other contains the line V(w, y).

More generally, if S• = k[x0, . . . , xn], then Proj Sd• ⊂ PN−1 (where N is the number of
degree d polynomials in x0, . . . , xn) is called the d-uple embedding or d-uple Veronese
embedding. It is enlightening to interpret this closed immersion as a map of graded rings.

5.H. COMBINATORIAL EXERCISE. Show that N =
(

n+d

d

)

.

5.I. UNIMPORTANT EXERCISE. Find five linearly independent quadric equations van-
ishing on the Veronese surface ProjS2• where S• = k[x0, x1, x2], which sits naturally in
P5. (You needn’t show that these equations generate all the equations cutting out the
Veronese surface, although this is in fact true.)

5.3. Entertaining geometric exercises.

5.J. USEFUL GEOMETRIC EXERCISE. Describe all the lines on the quadric surface wz−xy =

0 in P3
k. (Hint: they come in two “families”, called the rulings of the quadric surface.) This

construction arises all over the place in nature.

Hence (by diagonalization of quadrics), if we are working over an algebraically closed
field of characteristic not 2, we have shown that all rank 4 quadric surfaces have two
rulings of lines.

5.K. EXERCISE. Show that P
n
k is normal. More generally, show that P

n
A is normal if A is a

Unique Factorization Domain.

5.4. Example. If we put a non-standard weighting on the variables of k[x1, . . . , xn] —
say we give xi degree di — then Proj k[x1, . . . , xn] is called weighted projective space
P(d1, d2, . . . , dn).
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5.L. EXERCISE. Show that P(m, n) is isomorphic to P1. Show that
P(1, 1, 2) ∼= Proj k[u, v, w, z]/(uw − v2).

Hint: do this by looking at the even-graded parts of k[x0, x1, x2], cf. Exercise 5.C.
E-mail address: vakil@math.stanford.edu
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This week we discussed fibered products and separatedness.

1. FIBERED PRODUCTS OF SCHEMES EXIST

We will now construct the fibered product in the category of schemes. In other words,
given X, Y → Z, we will show that X ×Z Y exists. (Recall that the absolute product in a
category is the fibered product over the final object, so X × Y = X ×Z Y in the category of
schemes, and X × Y = X ×S Y if we are implicitly working in the category of S-schemes,
for example if S is the spectrum of a field.) Notational warning: lazy people wanting to
save chalk and ink will write ×k for ×Spec k, and similarly for ×Z. It already happened in
the paragraph above!

Before we get started, we’ll make a few random remarks.

Remark 1. We’ve made a big deal about schemes being sets, endowed with a topology,
upon which we have a structure sheaf. So you might think that we’ll construct the product
in this order. However, here is a sign that something interesting happens at the level of
sets that will mess up this strategy. you should believe that if we take the product of two
affine lines (over your favorite algebraically closed field k, say), you should get the affine
plane: A1

k ×k A1
k should be A2

k. And we’ll see that this is indeed true. But the underlying
set of the latter is not the underlying set of the former —- we get additional points! Thus
products of schemes do something a little subtle on the level of sets.

Date: Monday, November 12, 2007. Updated Dec. 10.
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1.A. EXERCISE. If k is algebraically closed, describe a natural map of sets A1
k × A1

k → A2
k.

Show that this map is not surjective. On the other hand, show that it is a bijection on
closed points.

Remark 2. Recall that the diagram of a fibered square

W //

��

Y

��
X

f // Z

goes by a number of names, including fibered diagram, Cartesian diagram, fibered square, and
Cartesian square. Because of its geometric interpretation, in algebraic geometry it is often
called a base change diagram or a pullback diagram, and W → X is called the pullback
of Y → Z by f, and W is called the pullback of Y by f.

The reason for the phrase “base change” or “pullback” is the following. If X is a point
of Z (i.e. f is the natural map of Spec of the residue field of a point of Z into Z), then W is
interpreted as the fiber of the family.

1.B. EXERCISE. Show that in the category of topological spaces, this is true, i.e., if Y → Z is
a continuous map, and X is a point p of Z, then the fiber of Y over p is naturally identified
with X ×Z Y.

More generally, for general X → Z, the fiber of W → X over a point p of X is naturally
identified with the fiber of Y → Z over f(p).

Let’s now show that fibered products always exist in the category of schemes.

1.1. Big Theorem (fibered products always exist). — Suppose f : X → Z and g : Y → Z are
morphisms of schemes. Then the fibered product

X ×Z Y
f ′

//

g ′

��

Y

g

��
X

f // Z

exists in the category of schemes.

As always when showing that certain objects defined by universal properties exist, we
have two ways of looking at the objects in practice: by using the universal property, or by
using the details of the construction.

The key idea, roughly, is this: we cut everything up into affine open sets, do fibered
products in that category (where it turns out we have seen the concept before in a different
guise), and show that everything glues nicely. The conceptually difficult part of the proof
comes from the gluing, and realizing that we have to check almost nothing.
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The proof will be a little long, but you will notice that we repeat a kind of argument
several times. A much shorter proof is possible by interpreting this in the language of
representable functors, and we give this proof afterward for experts.

Proof. We have an extended proof by universal property. We divide the proof up into
a number of bite-sized pieces. Between bites, we will often take a break for some side
comments.

Step 1: everything affine. First, if X, Y, Z are affine schemes, say X = Spec A, Y = Spec B,
Z = Spec C, the fibered product exists, and is Spec A⊗C B. Here’s why. Suppose W is any
scheme, along with morphisms f ′′ : W → X and g ′′ : W → Y such that f ◦ f ′′ = g ◦ g ′′ as
morphisms W → Z. We hope that there exists a unique h : W → Spec A ⊗C B such that
f ′′ = g ′ ◦ h and g ′′ = f ′ ◦ h.

W
∃!?

&&LLLLLLLLLLL

g ′′

++VVVVVVVVVVVVVVVVVVVVVVVVV

f ′′

��:
:

:
:

:
:

:
:

:
:

:
:

:
:

:
:

:
:

Spec A ⊗C B

g ′

��

f ′

// Spec B

g

��
Spec A

f // Spec C

But maps to affine schemes correspond precisely to maps of global sections in the other
direction (earlier exercise):

Γ(W,OW)

A ⊗C B

∃!?
ffMMMMMMMMMM

B
f ′

oo

g ′′
jjUUUUUUUUUUUUUUUUUUUU

A

g ′

OOf ′′

^^<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<

C
foo

g

OO

But this is precisely the universal property for tensor product! (The tensor product is
the cofibered product in the category of rings.)

1.2. Side remark (cf. Exercise 1.A). Thus indeed A1 × A1 ∼= A2, and more generally (A1)n ∼=
An.

Step 2: fibered products with open immersions. Second, we note that the fibered product
with open immersions always exists: if Y ↪→ Z an open immersion, then for any f : X → Z,
X ×Z Y is the open subset f−1(Y). (More precisely, this open subset satisfies the universal
property.) This was an earlier exercise (which wasn’t hard).

f−1(Y)
� _

��

// Y� _

��
X

f // Z
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Step 3: fibered products of affine with almost-affine over affine. We can combine steps 1 and 2
as follows. Suppose X and Z are affine, and Y → Z factors as Y

� � i // Y ′
g // Z where i is

an open immersion and Y ′ is affine. Then X×Z Y exists. This is because if the two smaller
squares of

W //

��

Y

��
W ′ //

��

Y ′

��
X // Z

are fibered diagrams, then the “outside rectangle” is also a fibered diagram. (This was an
earlier exercise, although you should be able to see this on the spot.)

Key Step 4: fibered product of affine with arbitrary over affine exists. We now come to the key
part of the argument: if X and Z are affine, and Y is arbitrary. This is confusing when you
first see it, so we’ll first deal with a special case, when Y is the union of two affine open
sets Y1 ∪ Y2. Let Y12 = Y1 ∩ Y2.

Now for i = 1, 2, X ×Z Yi exists by Step 1; call this Wi. Also, X ×Z Y12 exists by Step 3
(call it W12), and comes with natural open immersions into W1 and W2. Thus we can glue
W1 to W2 along W12; call this resulting scheme W.

We’ll check that this is the fibered product by verifying that it satisfies the universal
property. Suppose we have maps f ′′ : V → X, g ′′ : V → Y that compose (with f and g

respectively) to the same map V → Z. We need to construct a unique map h : V → W, so
that f ′ ◦ h = g ′′ and g ′ ◦ h = f ′′.

V
∃!?

  A
A

AA
A

AA
A

g ′′

''PPPPPPPPPPPPPPP

f ′′

��0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

W

g ′

��

f ′

// Y

g

��
X

f // Z

For i = 1, 2, define Vi := (g ′′)−1(Yi). Define V12 := (g ′′)−1(Y12) = V1 ∩ V2. Then there is
a unique map Vi → Wi such that the composed maps Vi → X and Vi → Yi are desired
(by the universal product of the fibered product X ×Z Yi = Wi), hence a unique map
hi : Vi → W. Similarly, there is a unique map h12 : V12 → W such that the composed
maps V12 → X and V12 → Y are as desired. But the restriction of hi to V12 is one such
map, so it must be h12. Thus the maps h1 and h2 agree on V12, and glue together to a
unique map h : V → W. We have shown existence and uniqueness of the desired h. (We
are using the fact that “morphisms glue”, which corresponds to the fact that maps to a
scheme form a sheaf. This leads to a shorter explanation of the proof, which we give at
the end of this long proof.)

We have thus shown that if Y is the union of two affine open sets, and X and Z are
affine, then X ×Z Y exists.
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We now tackle the general case. (The reader may prefer to first think through the case
where “two” is replaced by “three”.) We now cover Y with open sets Yi, as i runs over
some index set (not necessarily finite!). As before, we define Wi and Wij. We can glue
these together to produce a scheme W along with open sets we identify with Wi (Exercise
4.H in the current revised version of the class 7/8 notes).

As in the two-affine case, we show that W is the fibered product by showing that it
satisfies the universal property. Suppose we have maps f ′′ : V → X, g ′′ : V → Y that
compose to the same map V → Z. We construct a unique map h : V → W, so that
f ′ ◦ h = g ′′ and g ′ ◦ h = f ′′. Define Vi = (g ′′)−1(Yi) and Vij := (g ′′)−1(Yij) = Vi ∩ Vj. Then
there is a unique map Vi → Wi such that the composed maps Vi → X and Vi → Yi are
desired, hence a unique map hi : Vi → W. Similarly, there is a unique map hij : Vij → W

such that the composed maps Vij → X and Vij → Y are as desired. But the restriction of hi

to Vij is one such map, so it must be hij. Thus the maps hi and hj agree on Vij. Thus the
hi glue together to a unique map h : V → W. We have shown existence and uniqueness
of the desired h, completing this step.

Side remark. One special case of it is called extending the base field: if X is a k-scheme,
and k ′ is a field extension (often k ′ is the algebraic closure of k), then X ×Spec k Spec k ′

(sometimes informally written X ×k k ′ or Xk ′) is a k ′-scheme. Often properties of X can
be checked by verifying them instead on Xk ′ . This is the subject of descent — certain
properties “descend” from Xk ′ to X. We have already seen that the property of being
normal descends in this way (in an earlier exercise).

Step 5: Z affine, X and Y arbitrary. We next show that if Z is affine, and X and Y are
arbitrary schemes, then X ×Z Y exists. We just follow Step 4, with the roles of X and Y

reversed, using the fact that by the previous step, we can assume that the fibered product
with an affine scheme with an arbitrary scheme over an affine scheme exists.

Step 6: Z admits an open immersion into an affine scheme Z ′, X and Y arbitrary. This is akin
to Step 3: X ×Z Y satisfies the universal property of X ×Z ′ Y.

Step 7: the general case. We again employ the trick from Step 4. Say f : X → Z, g : Y → Z

are two morphisms of schemes. Cover Z with affine open subsets Zi. Let Xi = f−1Xi and
Yi = g−1Yi. Define Zij = Zi∩Zj, and Xij and Yij analogously. Then Wi := Xi×Zi

Yi exists for
all i, and has as open sets Wij := Xij ×Zij

Yij along with gluing information satisfying the
cocycle condition (arising from the gluing information for Z from the Zi and Zij). Once
again, we show that this satisfies the universal property. Suppose V is any scheme, along
with maps to X and Y that agree when they are composed to Z. We need to show that
there is a unique morphism V → W completing the diagram

V
∃!?

  A
A

A
AA

AA
A

g ′′

((PPPPPPPPPPPPPPPP

f ′′

��0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

W

g ′

��

f ′

// Y

g

��
X

f // Z.
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Now break V up into open sets Vi = g ′′ ◦ f
−1(Zi). Then by the universal property for

Wi, there is a unique map Vi → Wi (which we can interpret as Vi → W). Thus we have
already shown uniqueness of V → W. These must agree on Vi ∩ Vj, because there is only
one map Vi∩Vj to W making the diagram commute. Thus all of these morphisms Vi → W

glue together, so we are done. �

1.3. For experts only!: Describing the existence of fibered products using high-falutin’
language.

(Thanks to Jarod for suggesting that I include this, and helping me think through how
best to present it. If you have suggestions to make this clearer — to experts of course —
please let me know!)

The previous proof can be described more cleanly in the language of representable
functors. You’ll find this enlightening only after you have absorbed the argument above
and meditated on it for a long time. For experts, we include the more abstract picture here.
You might find that this is most useful to shed light on representable functors, rather than
on the existence of the fibered product.

Recall that to each scheme X we have a contravariant functor hX from the category of
schemes Sch to the category of Sets, taking a scheme Y to Mor(Y, X). It may be more
convenient to think of it as a covariant functor hX : Schopp → Sets.

But this functor hX is better than a functor. We know that if {Ui} is an open cover of Y, a
morphism Y → X is determined by its restrictions Ui → X, and given morphisms Ui → X

that agree on the overlap Ui ∩Uj → X, we can glue them together to get a morphism Y →
X. (This is roughly our statement that “morphisms glue”.) In the language of equalizer
exact sequences,

· // Hom(Y, X) //
∏

Hom(Ui, X) ////
∏

Hom(Ui ∩ Uj, X) .

Thus morphisms to X (i.e. the functor hX) form a sheaf on every scheme X. If this holds,
we say that the functor is a sheaf. (If you want to impress your friends and frighten your
enemies, you can tell them that this is a sheaf on the big Zariski site.)

We can repeat this discussion for the category SchS of schemes over a given base
scheme S.

Notice that the definition of fibered product also gives a contravariant functor

hX×ZY : Sch → Sets :

to the scheme W we associate the set of commutative diagrams

W

�� ��

Y

��
X // Z
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(What is the image of W → W ′ under this functor?) The existence of fibered product
is precise the statement that there is a natural isomorphism of functors hX×ZY

∼= hW for
some scheme W. In that case, we say that hX×ZY is a representable functor, and that it is
representable by W. The usual universal property argument shows that this determines
W up to unique isomorphism.

We can now interpret Key Step 4 of the proof of Theorem 1.1 as follows. Suppose X

and Z are affine, and Yi is an affine open cover of Y. Suppose the covariant functor FY :
(SchY)opp → Sets is a sheaf on the category of Y-schemes SchY , and FYi

is the “restriction
of the sheaf to Yi” (where we include only those Y-schemes that are in fact Yi-schemes, i.e.
those T → Y whose structure morphisms factor through Yi, T → Yi → Y).

1.C. EXERCISE. Show that if FYi
is representable, then so is FY . (Hint: this is basically just

the proofs of Steps 3 and 4.)

We then apply this in the special case where FY is given by

( T
f // Y ) 7→



















T
f //

��

Y

��
X // Z



















.

[I don’t see how to make that diagram on the right look good...]

1.D. EXERCISE. Check that this FY is a sheaf. (This is not hard once you realize what this
is asking.)

Then Steps 5 through 7 are one-liners; you should think these through. (For Step 5,
you’ll replace Y by X. For Steps 6/7, you’ll replace Y by Z.)

We can make this argument slicker still (and not have to repeat three similar arguments)
as follows. (This is frighteningly abstract.) One of Grothendieck’s insights is that we
should hope to treat contravariant functors Sch → Sets as “geometric spaces”, even if
we don’t know if they are representable. For this reason, I’ll call such a functor (for this
section only!) a functor-space, to emphasize that we are thinking of it as some sort of
spaces. Many notions carry over to this more general setting without change, and some
notions are easier. For example, a morphism of functor-spaces h → h ′ is just a natural
transformation of functors. The following exercise shows that this extends the notion of
morphisms of schemes.

1.E. EXERCISE. Show that if X and Y are schemes, then there is a natural bijection between
morphisms of schemes X → Y and morphisms of functor spaces hX → hY . (Hint: this has
nothing to do with schemes; your argument will work in any category.)
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Also, fibered products of functor-spaces always exist: h ×h ′′ h ′ may be defined by

h ×h ′′ h ′(W) = h(W) ×h ′′(W) h ′(W)

(where the fibered product on the right is a fibered product of sets, and those always
exist). Notice that this didn’t use any properties of schemes; this works with Sch replaced
by any category.

We can make some other definitions that extend notions from schemes to functor-
spaces. We say that h → h ′ express h as an open subfunctor of h ′ if for all representative
morphisms hX and maps hX → h ′, the fibered product hX ×h ′ h is representable, by u say,
and hU → hX is an open immersion. the following fibered square may help.

hY //

open
��

h

��
hX // h ′

Notice that a morphism of representable functor spaces hW → hZ is an open immersion
if and only if W → Z is an open immersion, so this indeed extends the notion of open
immersion to these functors.

A collection hi of open subfunctors of h ′ is said to cover h ′ if for each map hX → h ′

from a representable subfunctor, the corresponding open subsets Ui ↪→ X cover X.

1.F. KEY EXERCISE. If a functor-space h is a sheaf that has an open cover by representable
functor-spaces (“is covered by schemes”), then h is representable.

Given this formalism, we can now give a quick description of the proof of the existence
of fibered products. Exercise 1.D showed that hX×ZY is a sheaf.

1.G. EXERCISE. Suppose (Zi)i is an affine cover of Z, (Xij)j is an affine cover of the
preimage of Zi in X, and (Yik)k is an affine cover of the preimage of Zi in Y. Show that
(hXij×Zi

Yik
)ijk is an open cover of the functor hX×ZY . (Hint: use the definition of open

covers!)

But (hXij×Zi
Yik

)ijk is representable (fibered products of affines over and affine exist, Step
1 of the proof of Theorem 1.1), so we are done.

2. COMPUTING FIBERED PRODUCTS IN PRACTICE

Before giving a bunch of examples, we should first see how to actually compute fibered
products in practice.

There are four types of morphisms that it is particularly easy to take fibered products
with, and all morphisms can be built from these four atomic components.
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(1) Base change by open immersions.

We’ve already done this, and we used it in the proof that fibered products of schemes
exist.

f−1(Y)
� _

��

// Y� _

��
X

f // Z

I’ll describe the remaining three on the level of affine open sets, because we obtain
general fibered products by gluing.

(2) Adding an extra variable.

2.A. EASY ALGEBRA EXERCISE.. Show that B ⊗A A[t] ∼= B[t].

Hence the following is a fibered diagram.

Spec B[t]

��

// Spec A[t]

��
Spec B // Spec A

(3) Base change by closed immersions

2.B. EXERCISE. Suppose φ : A → B is a ring homomorphism, and I ⊂ A is an ideal.
Let Ie := 〈φ(i)〉i∈I ⊂ B be the extension of I to B. Describe a natural isomorphism B/Ie ∼=
B ⊗A (A/I). (Hint: consider I → A → A/I → 0, and use the right-exactness of ⊗AB.)

As an immediate consequence: the fibered product with a subscheme is the subscheme
of the fibered product in the obvious way. We say that “closed immersions are preserved
by base change”.

As an application, we can compute tensor products of finitely generated k algebras
over k. For example, we have a canonical isomorphism

k[x1, x2]/(x2
1 − x2) ⊗k k[y1, y2]/(y3

1 + y3
2)

∼= k[x1, x2, y1, y2]/(x2
1 − x2, y

3
1 + y3

2).

2.1. Example. We can also use now compute C ⊗R C:
C ⊗R C ∼= C ⊗R (R[x]/(x2 + 1))

∼= (C ⊗R R[x])/(x2 + 1) by (3)
∼= C[x]/(x2 + 1) by (2)
∼= C[x]/(x − i)(x + i)
∼= C × C
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Thus Spec C ×R Spec C ∼= Spec C
∐

Spec C. This example is the first example of many dif-
ferent behaviors. Notice for example that two points somehow correspond to the Galois
group of C over R; for one of them, x (the “i” in one of the copies of C) equals i (the “i”
in the other copy of C), and in the other, x = −i.

(4) Base change of affine schemes by localization.

2.C. EXERCISE. Suppose φ : A → B is a ring homomorphism, and S ⊂ A is a multi-
plicative subset of A, which implies that φ(S) is a multiplicative subset of B. Describe a
natural isomorphism φ(S)−1B ∼= B ⊗A (S−1A).

Translation: the fibered product with a localization is the localization of the fibered
product in the obvious way. We say that “localizations are preserved by base change”.
This is handy if the localization is of the form A ↪→ Af (corresponding to taking distin-
guished open sets) or A ↪→ FF(A) (from A to the fraction field of A, corresponding to
taking generic points), and various things in between.

These four facts let you calculate lots of things in practice, as we will see throughout
the rest of this chapter.

2.D. EXERCISE: THE THREE IMPORTANT TYPES OF MONOMORPHISMS OF SCHEMES. Show
that the following are monomorphisms: open immersions, closed immersions, and local-
ization of affine schemes. As monomorphisms are closed under composition, composi-
tions of the above are also monomorphisms (e.g. locally closed immersions, or maps from
Spec of stalks at points of X to X).

3. PULLING BACK FAMILIES AND FIBERS OF MORPHISMS

3.1. Pulling back families.

We can informally interpret fibered product in the following geometric way. Suppose
Y → Z is a morphism. We interpret this as a “family of schemes parametrized by a base
scheme (or just plain base) Z.” Then if we have another morphism X → Z, we interpret
the induced map X ×Z Y → X as the “pulled back family”.

X ×Z Y //

pulled back family
��

Y

family
��

X // Z

We sometimes say that X ×Z Y is the scheme-theoretic pullback of Y, scheme-theoretic
inverse image, or inverse image scheme of Y. For this reason, fibered product is often
called base change or change of base or pullback.

3.2. Fibers of morphisms.
10



Suppose p → Z is the inclusion of a point (not necessarily closed). (If K is the residue
field of a point, we mean the canonical map Spec K → Z.) Then if g : Y → Z is any
morphism, the base change with p → Z is called the fiber of g above p or the preimage
of p, and is denoted g−1(p). If Z is irreducible, the fiber above the generic point is called
the generic fiber. In an affine open subscheme Spec A containing p, p corresponds to
some prime ideal p, and the morphism corresponds to the ring map A → Ap/pAp. this is
the composition if localization and closed immersion, and thus can be computed by the
tricks above.

(Quick remark: p → Z is a monomorphism, by Exercise 2.D.)

3.3. Example. The following example has many enlightening aspects. Consider the
projection of the parabola y2 = x to the x axis over Q, corresponding to the map of rings
Q[x] → Q[y], with x 7→ y2. (If Q alarms you, replace it with your favorite field and see
what happens.)

Then the preimage of 1 is two points:
Spec Q[x, y]/(y2 − x) ⊗Q Spec Q[x]/(x − 1) ∼= Spec Q[x, y]/(y2 − x, x − 1)

∼= Spec Q[y]/(y2 − 1)

∼= Spec Q[y]/(y − 1)
∐

Spec Q[y]/(y + 1).

The preimage of 0 is one nonreduced point:
Spec Q[x, y]/(y2 − x, x) ∼= Spec Q[y]/(y2).

The preimage of −1 is one reduced point, but of “size 2 over the base field”.
Spec Q[x, y]/(y2 − x, x + 1) ∼= Spec Q[y]/(y2 + 1) ∼= Spec Q[i].

The preimage of the generic point is again one reduced point, but of “size 2 over the
residue field”, as we verify now.

Spec Q[x, y]/(y2 − x) ⊗ Q(x) ∼= Spec Q[y] ⊗ Q(y2)

i.e. you take elements polynomials in y, and you are allowed to invert polynomials in y2.
A little thought shows you that you are then allowed to invert polynomials in y, as if f(y)
is any polynomial in y, then

1

f(y)
=

f(−y)

f(y)f(−y)
,

and the latter denominator is a polynomial in y2. Thus
Spec Q[x, y]/(y2 − x) ⊗ Q(x) ∼= Q(y)

which is a degree 2 field extension of Q(x).

Notice the following interesting fact: in each case, the number of preimages can be
interpreted as 2, where you count to two in several ways: you can count points (as in
the case of the preimage of 1); you can get non-reduced behavior (as in the case of the
preimage of 0); or you can have a field extension of degree 2 (as in the case of the preimage
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of −1 or the generic point). In each case, the fiber is an affine scheme whose dimension as
a vector space over the residue field of the point is 2. Number theoretic readers may have
seen this behavior before. This is going to be symptomatic of a very special and important
kind of morphism (a finite flat morphism).

Try to draw a picture of this morphism if you can, so you can develop a pictoral short-
hand for what is going on.

Here are some other examples.

3.A. EXERCISE. Prove that An
R

∼= An
Z ×Spec Z Spec R. Prove that Pn

R
∼= Pn

Z ×Spec Z Spec R.

3.B. EXERCISE. Show that the underlying topological space of the (scheme-theoretic)
fiber X → Y above a point p is naturally identified with the topological fiber of X → Y

above p.

3.C. EXERCISE. Show that for finite-type schemes over C, the closed points (=complex-
valued points by the Nullstellensatz) of the fibered product correspond to the fibered
product of the complex-valued points. (You will just use the fact that C is algebraically
closed.)

3.4. Here is a definition in common use. The terminology is a bit unfortunate, because
it is a second (different) meaning of “points of a scheme”. (Sadly, we’ll even see a third
different meaning soon, §4.2.) If T is a scheme, the T -valued points of a scheme X are
defined to be the morphism T → X. They are sometimes denoted X(T). If A is a ring
(most commonly in this context a field), the A-valued points of a scheme X are defined
to be the morphism Spec A → X. They are sometimes denoted X(A). For example, if k is
an algebraically closed field, then the k-valued points of a finite type scheme are just the
closed points; but in general, things can be weirder. (When we say “points of a scheme”,
and not A-valued points, we will always mean the usual meaning, not this meaning.)

3.D. EXERCISE. Describe a natural bijection (X ×Z Y)(T) ∼= X(T) ×Z(T) Y(T). (The right
side is a fibered product of sets.) In other words, fibered products behaves well with
respect to T -valued points. This is one of the motivations for this notion. (This generalizes
Exercise 3.C.)

3.E. EXERCISE. Consider the morphism of schemes X = Spec k[t] → Y = Spec k[u]
corresponding to k[u] → k[t], t = u2, where char k 6= 2. Show that X×Y X has 2 irreducible
components. (What happens if char k = 2?)

3.F. EXERCISE GENERALIZING C ⊗R C. Suppose L/K is a finite Galois field extension.
What is L ⊗K L?
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3.G. HARD BUT FASCINATING EXERCISE FOR THOSE FAMILIAR WITH THE GALOIS GROUP
OF Q OVER Q. Show that the points of Spec Q⊗QQ are in natural bijection with Gal(Q/Q),
and the Zariski topology on the former agrees with the profinite topology on the latter.

3.H. WEIRD EXERCISE. Show that Spec Q(t)⊗Q C has closed points in natural correspon-
dence with the transcendental complex numbers. (If the description Spec C[t]⊗Q[t] Q(t) is
more striking, you can use that instead.) This scheme doesn’t come up in nature, but it is
certainly neat!

4. PROPERTIES PRESERVED BY BASE CHANGE

We now discuss a number of properties that behave well under base change.

We’ve already shown that the notion of “open immersion” is preserved by base change.
We did this by explicitly describing what the fibered product of an open immersion is: if
Y ↪→ Z is an open immersion, and f : X → Z is any morphism, then we checked that the
open subscheme f−1(Y) of X satisfies the universal property of fibered products.

We have also shown that the notion of “closed immersion” is preserved by base change
(§2 (3)). In other words, given a fiber diagram

W //

��

X

��
Y

� �cl. imm.// Z

where Y ↪→ Z is a closed immersion, W → X is as well.

4.A. EASY EXERCISE. Show that locally principal closed subschemes pull back to locally
principal closed subschemes.

Similarly, other important properties are preserved by base change.

4.B. EXERCISE. Show that the following properties of morphisms are preserved by base
change.

(a) quasicompact
(b) quasiseparated
(c) affine morphism
(d) finite
(e) locally of finite type
(f) finite type
(g) locally of finite presentation
(h) finite presentation
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4.C. EXERCISE. Show that the notion of “quasifinite morphism” (finite type + finite fibers)
is preserved by base change. (Warning: the notion of “finite fibers” is not preserved by
base change. Spec Q → Spec Q has finite fibers, but Spec Q ⊗Q Q → Spec Q has one point
for each element of Gal(Q/Q), see Exercise 3.G.)

4.D. EXERCISE. Show that surjectivity is preserved by base change. (Surjectivity has its
usual meaning: surjective as a map of sets.) (You may end up using the fact that for any
fields k1 and k2 containing k3, k1 ⊗k3

k2 is non-zero, and also the axiom of choice.)

4.E. EXERCISE. If P is a property of morphisms preserved by base change, and X → Y

and X ′×Y ′ are two morphisms of S-schemes with property P, show that X×S X ′ → Y×S Y ′

has property P as well.

4.1. ? Properties not preserved by base change, and how to fix them.

There are some notions that you should reasonably expect to be preserved by pullback
based on your geometric intuition. Given a family in the topological category, fibers pull
back in reasonable ways. So for example, any pullback of a family in which all the fibers
are irreducible will also have this property; ditto for connected. Unfortunately, both of
these fail in algebraic geometry, as the Example 2.1 shows:

Spec C
∐

Spec C //

��

Spec C

��
Spec C // Spec R

The family on the right (the vertical map) has irreducible and connected fibers, and the
one on the left doesn’t. The same example shows that the notion of “integral fibers” also
doesn’t behave well under pullback.

4.F. EXERCISE. Suppose k is a field of characteristic p, so k(up)/k(u) is an inseparable
extension. By considering k(up)⊗k(u)k(up), show that the notion of “reduced fibers” does
not necessarily behave well under pullback. (The fact that I’m giving you this example
should show that this happens only in characteristic p, in the presence of something as
strange as inseparability.)

We rectify this problem as follows.

4.2. A geometric point of a scheme X is defined to be a morphism Spec k → X where
k is an algebraically closed field. Awkwardly, this is now the third kind of “point” of a
scheme! There are just plain points, which are elements of the underlying set; there are
T -valued points, which are maps T → X, §3.4; and there are geometric points. Geometric
points are clearly a flavor of a T -valued point, but they are also an enriched version of a
(plain) point: they are the data of a point with an inclusion of the residue field of the point
in an algebraically closed field.
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A geometric fiber of a morphism X → Y is defined to be the fiber over a geometric
point of Y. A morphism has connected (resp. irreducible, integral, reduced) geometric
fibers if all its geometric fibers are connected (resp. irreducible, integral, reduced).

4.G. EXERCISE. Show that the notion of “connected (resp. irreducible, integral, reduced)”
geometric fibers behaves well under base change.

4.H. EXERCISE FOR THE ARITHMETICALLY-MINDED. Show that for the morphism Spec C →
Spec R, all geometric fibers consist of two reduced points. (Cf. Example 2.1.)

4.I. EXERCISE. Recall Example 3.3, the projection of the parabola y2 = x to the x axis,
corresponding to the map of rings Q[x] → Q[y], with x 7→ y2. Show that the geometric
fibers of this map are always two points, except for those geometric fibers over 0 = [(x)].

Checking whether a k-scheme is geometrically connected etc. seems annoying: you
need to check every single algebraically closed field containing k. However, in each of
these four cases, the failure of nice behavior of geometric fibers can already be detected
after a finite field extension. For example, Spec Q(i) → Spec Q is not geometrically con-
nected, and in fact you only need to base change by Spec Q(i) to see this. We make this
precise as follows.

4.J. EXERCISE. Suppose X is a k-scheme.

(a) Show that X is geometrically irreducible if and only if X ×k ks is irreducible if and
only if X ×k K is irreducible for all field extensions K/k. (Here ks is the separable
closure of k.)

(b) Show that X is geometrically connected if and only if X ×k ks is connected if and
only if X ×k K is connected for all field extensions K/k.

(c) Show that X is geometrically reduced if and only if X ×k kp is reduced if and only
if X ×k K is reduced for all field extensions K/k. (Here kp is the perfect closure of
k.) Thus if char k = 0, then X is geometrically reduced if and only if it is reduced.

(d) Combining (a) and (c), show that X is geometrically integral if and only if X ×k K

is geometrically integral for all field extensions K/k.

5. PRODUCTS OF PROJECTIVE SCHEMES: THE SEGRE EMBEDDING

I will next describe products of projective A-schemes over A. The case of greatest initial
interest is if A = k. In order to do this, I need only describe Pm

A ×A Pn
A, because any

projective scheme has a closed immersion in some Pm
A , and closed immersions behave

well under base change, so if X ↪→ Pm
A and Y ↪→ Pn

A are closed immersions, then X×A Y ↪→
Pm

A ×A Pn
A is also a closed immersion, cut out by the equations of X and Y.

We’ll describe Pm
A ×A Pn

A, and see that it too is a projective A-scheme.
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Before we do this, we’ll get some motivation from classical projective spaces (non-zero
vectors modulo non-zero scalars) in a special case. Our map will send [x0; x1; x2]× [y0; y1]

to a point in P5, whose co-ordinates we think of as being entries in the “multiplication
table”

[ x0y0; x1y0; x2y0;
x0y1; x1y1; x2y1 ]

This is indeed a well-defined map of sets. Notice that the resulting matrix is rank one, and
from the matrix, we can read off [x0; x1; x2] and [y0; y1] up to scalars. For example, to read
off the point [x0; x1; x2] ∈ P2, we just take the first row, unless it is all zero, in which case
we take the second row. (They can’t both be all zero.) In conclusion: in classical projective
geometry, given a point of Pm and Pn, we have produced a point in Pmn+m+n, and from
this point in Pmn+m+n, we can recover the points of Pm and Pn.

Suitably motivated, we return to algebraic geometry. We define a map

Pm
A ×A Pn

A → Pmn+m+n
A

by
([x0; . . . ; xm], [y0; . . . ; yn]) 7→ [z00; z01; · · · ; zij; · · · ; zmn]

= [x0y0; x0y1; · · · ; xiyj; · · ·xmyn].

More explicitly, we consider the map from the affine open set Ui × Vj (where Ui = D(xi)
and Vj = D(yj) to the affine open set Wij = D(zij) by

(x0/i, . . . , xm/i, y0/j, . . . , yn/j) 7→ (x0/iy0/j; . . . ; xi/iyj/j; . . . ; xm/iyn/j)

or, in terms of algebras, zab/ij 7→ xa/iyb/j.

5.A. EXERCISE. Check that these maps glue to give a well-defined morphism Pm
A ×APn

A →
Pmn+m+n

A .

I claim this morphism is a closed immersion. We can check this on an open cover of
the target (the notion of being a closed immersion is affine-local, an earlier exercise). Let’s
check this on the open set where zij 6= 0. The preimage of this open set in Pm

A × Pn
A is the

locus where xi 6= 0 and yj 6= 0, i.e. Ui × Vj. As described above, the map of rings is given
by zab/ij 7→ xa/iyb/j; this is clearly a surjection, as zaj/ij 7→ xa/i and zib/ij 7→ yb/j.

This map is called the Segre morphism or Segre embedding. If A is a field, the image
is called the Segre variety.

Here are some useful comments.

5.B. EXERCISE. Show that the Segre scheme (the image of the Segre morphism) is cut out
by the equations corresponding to

rank





a00 · · · a0n

... . . . ...
am0 · · · amn



 = 1,
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FIGURE 1. The two rulings on the quadric surface V(wz − xy) ⊂ P3. One
ruling contains the line V(w, x) and the other contains the line V(w, y).

i.e. that all 2 × 2 minors vanish. (Hint: suppose you have a polynomial in the aij that
becomes zero upon the substitution aij = xiyj. Give a recipe for subtracting polynomials
of the form monomial times 2 × 2 minor so that the end result is 0.)

5.1. Important Example. Let’s consider the first non-trivial example, when m = n = 1. We
get P1 × P1

↪→ P3. We get a single equation

rank

(

a00 a01

a10 a11

)

= 1,

i.e. a00a11−a01a10 = 0. We get our old friend, the quadric surface! Hence: the nonsingular
quadric surface wz − xy = 0 is isomorphic to P1 × P1 (Figure 1). One family of lines
corresponds to the image of {x} × P1 as x varies, and the other corresponds to the image
P1 × {y} as y varies.

Since (by diagonalizability of quadratics) all nonsingular quadratics over an algebraically
closed field are isomorphic, we have that all nonsingular quadric surfaces over an alge-
braically closed field are isomorphic to P1 × P1.

Note that this is not true over a field that is not algebraically closed. For example, over
R, w2 + x2 + y2 + z2 = 0 is not isomorphic to P1

R ×R P1
R. Reason: the former has no real

points, while the latter has lots of real points.

5.C. EXERCISE: A CO-ORDINATE-FREE DESCRIPTION OF THE SEGRE EMBEDDING. Show
that the Segre embedding can be interpreted as PV × PW → P(V ⊗ W) via the surjective
map of graded rings

Sym•(V∨ ⊗ W∨) // //
∑∞

i=0

(

Symi V∨
)

⊗
(

Symi W∨
)

“in the opposite direction”.
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Can you define the Segre embedding for the product of three projective spaces?

6. SEPARATED MORPHISMS

The notion of a separated morphism is fundamentally important. It looks weird the
first time you see it, but it is highly motivated.

6.1. Motivation. Separation is the analogue of the Hausdorff condition for manifolds
(see Exercise 6.A), so let’s review why we like Hausdorffness. Recall that a topological
space is Hausdorff if for every two points x and y, there are disjoint open neighborhoods
of x and y. The real line is Hausdorff, but the “real line with doubled origin” is not. Many
proofs and results about manifolds use Hausdorffness in an essential way. For example,
the classification of compact one-dimensional real manifolds is very simple, but if the
Hausdorff condition were removed, we would have a very wild set.

So armed with this definition, we can cheerfully exclude the line with doubled origin
from civilized discussion, and we can (finally) define the notion of a variety, in a way that
corresponds to the classical definition.

With our motivation from manifolds, we shouldn’t be surprised that all of our affine
and projective schemes are separated: certainly, in the land of real manifolds, the Haus-
dorff condition comes for free for “subsets” of manifolds. (More precisely, if Y is a man-
ifold, and X is a subset that satisfies all the hypotheses of a manifold except possibly
Hausdorffness, then Hausdorffness comes for free.)

As an unexpected added bonus, a separated morphism to an affine scheme has the
property that the intersection of a two affine open sets in the source is affine (Proposi-
tion 6.8). This will make Cech cohomology work very easily on (quasicompact) schemes.
You should see this as the analogue of the fact that in Rn, the intersection of two con-
vex sets is also convex. In fact affine schemes will be trivial from the point of view of
quasicoherent cohomology, just as convex sets in Rn are, so this metaphor is quite apt.

A lesson arising from the construction is the importance of the diagonal morphism.
More precisely given a morphism X → Y, nice consequences can be leveraged from good
behavior of the diagonal morphism δ : X → X ×Y X, usually through fun diagram chases.
This is a lesson that applies across many fields of mathematics. (Another nice gift the
diagonal morphism: it will soon give us a good algebraic definition of differentials.)

Grothendieck taught us that one should try to define properties of morphisms, not of
objects; then we can say that an object has that property if the morphism to the final
object has that property. We saw this earlier with the notion of quasicompact. In this
spirit, separation will be a property of morphisms, not schemes.

Before we define separation, we make an observation about all diagonal maps.
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X ×Y X

X

X

FIGURE 2. A neighborhood of the diagonal is covered by Uij ×Vj
Uij

6.2. Proposition. — Let X → Y be a morphism of schemes. Then the diagonal morphism δ : X →
X ×Y X is a locally closed immersion.

This locally closed subscheme of X ×Y X (the diagonal) will be denoted ∆.

Proof. We will describe a union of open subsets of X ×Y X covering the image of X, such
that the image of X is a closed immersion in this union.

6.3. Say Y is covered with affine open sets Vi and X is covered with affine open sets Uij,
with π : Uij → Vi. Then the diagonal is covered by Uij ×Vi

Uij. (Any point p ∈ X lies in
some Uij; then δ(p) ∈ Uij ×Vi

Uij. Figure 2 may be helpful.) As a reality check: Uij ×Vi
Uij

is indeed an affine open subscheme of X ×Y X, by considering the factorization

Uij ×Vi
Uij → Uij ×Y Uij → Uij ×Y X → X ×Y X

where the first arrow is an isomorphism as Vi ↪→ Y is a monomorphism (as it is an open
immersion, Exercise 2.D). The second and third arrows are open immersions as open
immersions are preserved by base change.

Finally, we’ll check that Uij → Uij ×Vi
Uij is a closed immersion. Say Vi = Spec S

and Uij = Spec R. Then this corresponds to the natural ring map R ×S R → R, which is
obviously surjective. �

The open subsets we described may not cover X×Y X, so we have not shown that δ is a
closed immersion.
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6.4. Definition. A morphism X → Y is separated if the diagonal morphism δ : X → X×Y X

is a closed immersion. An A-scheme X is said to be separated over A if the structure mor-
phism X → Spec A is separated. When people say that a scheme (rather than a morphism)
X is separated, they mean implicitly that some morphism is separated. For example, if
they are talking about A-schemes, they mean that X is separated over A.

Thanks to Proposition 6.2, a morphism is separated if and only if the diagonal is closed.
This is reminiscent of a definition of Hausdorff, as the next exercise shows.

6.A. EXERCISE (FOR THOSE SEEKING TOPOLOGICAL MOTIVATION). Show that a topolog-
ical space X is Hausdorff if the diagonal is a closed subset of X × X. (The reason separat-
edness of schemes doesn’t give Hausdorffness — i.e. that for any two open points x and y

there aren’t necessarily disjoint open neighborhoods — is that in the category of schemes,
the topological space X × X is not in general the product of the topological space X with
itself. For example, Exercise 1.A showed that A2

k does not have the product topology on
A1

k ×k A1
k.)

6.B. IMPORTANT EASY EXERCISE. Show that open immersions and closed immersions
are separated. (Hint: Just do this by hand. Alternatively, show that monomorphisms are
separated. Open and closed immersions are monomorphisms, by Exercise 2.D.)

6.C. IMPORTANT EASY EXERCISE. Show that every morphism of affine schemes is sepa-
rated. (Hint: this was essentially done in Proposition 6.2.)

I’ll now give you an example of something separated that is not affine. The following
single calculation will imply that all quasiprojective A-schemes are separated (once we
know that the composition of separated morphisms are separated, after Thanksgiving).

6.5. Proposition. — Pn
A → Spec A is separated.

We give two proofs. The first is by direct calculation. The second requires no calcula-
tion, and just requires that you remember some classical constructions described earlier.

Proof 1: direct calculation. We cover Pn
A ×A Pn

A with open sets of the form Ui × Uj, where
U0, . . . , Un form the “usual” affine open cover. The case i = j was taken care of before, in
the proof of Proposition 6.2. If i 6= j then

Ui ×A Uj
∼= Spec A[x0/i, . . . , xn/i, y0/j, . . . , yn/j]/(xi/i − 1, yj/j − 1).

Now the restriction of the diagonal ∆ is contained in Ui (as the diagonal map composed
with projection to the first factor is the identity), and similarly is contained in Uj. Thus
the diagonal map over Ui ×A Uj is Ui ∩Uj → Ui ×A Uj. This is a closed immersion, as the
corresponding map of rings

Spec A[x0/i, . . . , xn/i, y0/j, . . . , yn/j] → Spec A[x0/i, . . . , xn/i, x
−1
j/i

]/(xi/i − 1)
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U ∩ V ∼= (U × V) ∩ ∆

U × X

X × V

∆
U × V

FIGURE 3. Small Proposition 6.6

(given by xk/i 7→ xk/i, yk/j 7→ xk/i/xj/i) is clearly a surjection (as each generator of the ring
on the right is clearly in the image — note that x−1

j/i
is the image of yi/j). �

Proof 2: classical geometry, pointed out by Jarod. Note that the diagonal map δ : Pn
A →

Pn
A ×A Pn

A followed by the Segre embedding S : Pn
A ×A Pn

A → Pn2+n (a closed immersion)
can also be factored as the second Veronese map ν2 : Pn

A → P(n+2
2 )−1 followed by a linear

map L : P(n+2
2 )−1 → Pn2+n (an earlier exercise, from when we discussed morphisms of

projective schemes via morphisms of graded rings), both of which are closed immersions.
You should verify this. This forces δ to send closed sets to closed sets (or else S ◦ δ won’t,
but L ◦ ν2 to).

Pn
A ×A Pn

A

S

&&LLLLLLLLLL

Pn
A

δ
::tttttttttt

ν2

$$I
II

II
II

II
I Pn2+n

P(n+2
2 )−1

L
99rrrrrrrrrr

We note for future reference a minor result proved in the course of Proof 1. Figure 3
may help show why this is natural.

6.6. Small Proposition. — If U and V are open subsets of an A-scheme X, then ∆ ∩ (U ×A V) ∼=
U ∩ V .

6.D. EXERCISE. Show that the line with doubled origin X is not separated, by verifying
that the image of the diagonal morphism is not closed.
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We finally define then notion of variety!

6.7. Definition. A variety over a field k, or k-variety, is a reduced, separated scheme
of finite type over k. For example, a reduced finite type affine k-scheme is a variety. In
other words, to check if Spec k[x1, . . . , xn]/(f1, . . . , fr) is a variety, you need only check
reducedness.

Notational caution: In some sources, the additional condition of irreducibility is im-
posed. We will not do this. Also, it is often assumed that k is algebraically closed. We will
not do this either.

Here is a very handy consequence of separatedness.

6.8. Proposition. — Suppose X → Spec A is a separated morphism to an affine scheme, and U

and V are affine open sets of X. Then U ∩ V is an affine open subset of X.

Before proving this, we state a consequence that is otherwise nonobvious. If X =
Spec A, then the intersection of any two affine open sets is open (just take A = Z in the
above proposition). This is certainly not an obvious fact! We know that the intersection of
any two distinguished affine open sets is affine (from D(f) ∩ D(g) = D(fg)), but we have
very little handle on affine open sets in general.

Warning: this property does not characterize separatedness. For example, if A = Spec k

and X is the line with doubled origin over k, then X also has this property.

Proof. By Proposition 6.6, (U ×A V) ∩ ∆ = U ∩ V , where ∆ is the diagonal. But U ×A V

is affine (the fibered product is two affine schemes over an affine scheme is affine, Step 1
of our construction of fibered products, Theorem 1.1), and ∆ is a closed subscheme of an
affine scheme, and hence affine. �

E-mail address: vakil@math.stanford.edu
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Hi everyone — Welcome back! We had last introduced the algebraic analogue of Haus-
dorffness, called separation or separatedness. This is a bit weird, but frankly, it is because
the notion of Hausdorff involves some mild contortions, and it is easy to forget that.

1. REVIEW OF EARLIER DISCUSSION ON SEPARATION

Let me remind you how it works. Our motivating example of what we are ejecting
from civilized discourse is the line with the doubled origin.

We said that a morphism X → Y is separated if the diagonal morphism δ : X → X ×Y X

is a closed immersion. An A-scheme X is said to be separated over A if the structure
morphism X → Spec A is separated.

A variety over a field k, or k-variety, is a reduced, separated scheme of finite type over
k. For example, a reduced finite type affine k-scheme is a variety. In other words, to check
if Spec k[x1, . . . , xn]/(f1, . . . , fr) is a variety, you need only check reducedness.

As diagonals are always locally closed immersions, a morphism is separated if and
only if the diagonal is closed. This is reminiscent of a definition of Hausdorff., as the next
exercise shows.

We saw that the following types of morphisms are separated:

• open and closed immersions (more generally, monomorphisms)
• morphisms of affine schemes

Date: Monday, November 26, 2007.
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X ×Y X

X

X

FIGURE 1. A neighborhood of the diagonal is covered by Uij ×Vj
Uij

• projective A-schemes (over A)

In the course of proving the projective fact, we showed:

1.1. Small Proposition. — If U and V are open subsets of an A-scheme X, then ∆ ∩ (U ×A V) ∼=
U ∩ V .

We used this to show a handy consequence of separatedness.

1.2. Proposition. — Suppose X → Spec A is a separated morphism to an affine scheme, and U

and V are affine open sets of X. Then U ∩ V is an affine open subset of X.

2. QUASISEPARATED MORPHISMS (AND QUASISEPARATED SCHEMES)

We now define a handy relative of separation, that is also given in terms of a property
of the diagonal morphism, and has similar properties. The reason it is less famous is
because it automatically holds for the sorts of schemes that people usually deal with. We
say a morphism f : X → Y is quasiseparated if the diagonal morphism δ : X → X ×Y X is
quasicompact. I’ll give a more insightful translation shortly, in Exercise 2.A.

Most algebraic geometers will only see quasiseparated morphisms, so this may be con-
sidered a very weak assumption. Here are two large classes of morphisms that are qua-
siseparated. (a) As closed immersions are quasicompact (easy, and an earlier exercise),
separated implies quasiseparated. (b) If X is a Noetherian scheme, then any morphism
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to another scheme is quasicompact (easy, an earlier exercise), so any X → Y is quasisep-
arated. Hence those working in the category of Noetherian schemes need never worry
about this issue.

The following characterization makes quasiseparation a useful hypothesis in proving
theorems.

2.A. EXERCISE. Show that f : X → Y is quasiseparated if and only if for any affine open
Spec A of Y, and two affine open subsets U and V of X mapping to Spec A, U∩V is a finite
union of affine open sets. (Hint: compare this to Proposition 1.2.)

In particular, a morphism f : X → Y is quasicompact and quasiseparated if and only
if the preimage of any affine open subset of Y is a finite union of affine open sets in X,
whose pairwise intersections are all also finite unions of affine open sets. The condition of
quasiseparation is often paired with quasicompactness in hypotheses of theorems.

2.B. EXERCISE (A NONQUASISEPARATED SCHEME). Let X = Spec k[x1, x2, . . . ], and let U

be X − [m] where m is the maximal ideal (x1, x2, . . . ). Take two copies of X, glued along
U. Show that the result is not quasiseparated. (This open immersion U ↪→ X came up
earlier, as an example of a nonquasicompact open subset of an affine scheme.)

3. BACK TO SEPARATION

3.1. Theorem. — Both separatedness and quasiseparatedness are preserved by base change.

Proof. Suppose
W

��

// X

��
Y // Z

is a fiber square. We will show that if Y → Z is separated or quasiseparated, then so is
W → X. The reader should verify that

W
δW//

��

W ×X W

��
Y

δY // Y ×Z Y

is a fiber diagram. (This is a categorical fact, and holds true in any category with fibered
products.) As the property of being a closed immersion is preserved by base change, if δY

is a closed immersion, so is δX.

Quasiseparatedness follows in the identical manner, as quasicompactness is also pre-
served by base change. �
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3.2. Proposition. — The condition of being separated is local on the target. Precisely, a morphism
f : X → Y is separated if and only if for any cover of Y by open subsets Ui, f−1(Ui) → Ui is
separated for each i.

3.3. Hence affine morphisms are separated, as maps from affine schemes to affine schemes
are separated by an exercise from last day. In particular, finite morphisms are separated.

Proof. If X → Y is separated, then for any Ui ↪→ Y, f−1(Ui) → Ui is separated, as separat-
edness is preserved by base change (Theorem 3.1). Conversely, to check if ∆ ↪→ X ×Y X is
a closed subset, it suffices to check this on an open cover. If g : X ×Y X → Y is the natural
morphism, our open cover Ui of Y induces an open cover f−1(Ui) ×Ui

f−1(Ui) of X ×Y X.
Then f−1(Ui) → Ui separated implies f−1(Ui) → f−1(Ui) ×Ui

f(Ui) is a closed immersion
by definition of separatedness. �

3.A. EXERCISE. Prove that the condition of being quasiseparated is local on the target.
(Hint: the condition of being quasicompact is local on the target; use a similar argument.)

3.4. Proposition. — (a) The condition of being separated is closed under composition. In other
words, if f : X → Y is separated and g : Y → Z is separated, then g ◦ f : X → Z is separated.
(b) The condition of being quasiseparated is closed under composition.

Proof. (a) We are given that δf : X ↪→ X ×Y X and δg : Y → Y ×Z Y are closed immersions,
and we wish to show that δh : X → X ×Z X is a closed immersion. Consider the diagram

X
δf // X ×Y X

c //

��

X ×Z X

��
Y

δg // Y ×Z Y.

The square is the magic fibered diagram I’ve discussed before. As δg is a closed immer-
sion, c is too (closed immersions are preserved by base change). Thus c ◦ δf is a closed
immersion (the composition of two closed immersions is also a closed immersion, an ear-
lier exercise).

(b) The identical argument (with “closed immersion” replaced by “quasicompact”)
shows that the condition of being quasiseparated is closed under composition. �

3.5. Proposition. — Any quasiprojective A-scheme is separated over A.

As a corollary, any reduced quasiprojective k-scheme is a k-variety.

Proof. Suppose X → Spec A is a quasiprojective A-scheme. The structure morphism can be
factored into an open immersion composed with a closed immersion followed by Pn

A →

A. Open immersions and closed immersions are separated (an earlier exercise, from last
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day I think), and Pn
A → A is separated (a Proposition from last day). Separated morphisms

are separated (Proposition 3.4), so we are done. �

3.6. Proposition. — Suppose f : X → Y and f ′ : X ′
→ Y ′ are separated (resp. quasiseparated)

morphisms of S-schemes (where S is a scheme). Then the product morphism f × f ′ : X ×S X ′
→

Y ×S Y ′ is separated (resp. quasiseparated).

Proof. An earlier exercise showed that the product of two morphisms having a property
has the same property, so long as that property is preserved by base change, and compo-
sition. �

3.7. Applications.

As a first application, we define the graph morphism.

3.8. Definition. Suppose f : X → Y is a morphism of Z-schemes. The morphism Γf : X →

X×Z Y given by Γf = (id, f) is called the graph morphism. Then f factors as pr2 ◦ Γf, where
pr2 is the second projection (see Figure 2).

f

Γf pr1

pr2

Y

X

X ×Z Y

FIGURE 2. The graph morphism

3.9. Proposition. — The graph morphism Γ is always a locally closed immersion. If Y is a separated
Z-scheme (i.e. the structure morphism Y → Z is separated), then Γ is a closed immersion.

This will be generalized in Exercise 3.B.
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Proof by Cartesian diagram.

X //

��

X ×Z Y

��
Y

δ // Y ×Z Y

The notions of locally closed immersion and closed immersion are preserved by base
change, so if the bottom arrow δ has one of these properties, so does the top. �

We now come to a very useful, but bizarre-looking, result.

3.10. Cancellation Theorem for a Property P of Morphisms. — Let P be a class of morphisms that
is preserved by base change and composition. Suppose

X
f //

h ��?
??

??
??

Y

g����
��

��
�

Z

is a commuting diagram of schemes.

(a) Suppose that the diagonal morphism δg : Y → Y ×Z Y is in P and h : X → Z is in P. The
f : X → Y is in P.

(b) In particular, suppose that closed immersions are in P. Then if h is in P and g is separated,
then f is in P.

When you plug in different P, you get very different-looking (and non-obvious) conse-
quences.

For example, locally closed immersions are separated, so by part (a), if you factor a
locally closed immersion X → Z into X → Y → Z, then X → Y must be a locally closed
immersion.

Possibilities for P in case (b) include: finite morphisms, morphisms of finite type, closed
immersions, affine morphisms.

Proof of (a). By the fibered square

X
Γf //

f

��

X ×Z Y

��
Y

δg // Y ×Z Y
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we see that the graph morphism Γ : X → X ×Z Y is in P (Definition 3.8), as P is closed
under base change. By the fibered square

X ×Z Y
h ′

//

��

Y

g

��
X

h // Z

the projection h ′ : X ×Z Y → Y is in P as well. Thus f = h ′ ◦ Γ is in P �

Here now are some fun and useful exercises.

3.B. EXERCISE. Suppose π : Y → X is a morphism, and s : X → Y is a section of a
morphism, i.e. π ◦ s is the identity on X. Show that s is a locally closed immersion. Show
that if π is separated, then s is a closed immersion. (This generalizes Proposition 3.9.)
Give an example to show that s needn’t be a closed immersion if π isn’t separated.

3.C. EXERCISE. Show that a A-scheme is separated (over A) if and only if it is separated
over Z. (In particular, a complex scheme is separated over C if and only if it is sepa-
rated over Z, so complex geometers and arithmetic geometers can communicate about
separated schemes without confusion.)

3.D. USEFUL EXERCISE: THE LOCUS WHERE TWO MORPHISMS AGREE. Suppose f and g

are two morphisms X → Y, over some scheme Z. We can now give meaning to the phrase
’the locus where f and g agree’, and that in particular there is a smallest locally closed
subscheme where they agree. Suppose h : W → X is some morphism (perhaps a locally
closed immersion). We say that f and g agree on h if f ◦ h = g ◦ h. Show that there is a
locally closed subscheme i : V ↪→ X such that any morphism h : W → X on which f and
g agree factors uniquely through i, i.e. there is a unique j : W → V such that h = i ◦ j.
(You may recognize this as a universal property statement.) Show further that if V → Z

is separated, then i : V ↪→ X is a closed immersion. Hint: define V to be the following
fibered product:

V //

��

Y

δ
��

X
(f,g)

// Y ×Z Y.

As δ is a locally closed immersion, V → X is too. Then if h : W → X is any scheme such
that g ◦ h = f ◦ h, then h factors through V .

Minor Remarks. 1) In the previous exercise, we are describing V ↪→ X by way of a
universal property. Taking this as the definition, it is not a priori clear that V is a locally
closed subscheme of X, or even that it exists.)

2) In the case of reduced finite type k-schemes, the locus where f and g agree can be
interpreted as follows. f and g agree at x if f(x) = g(x), and the two maps of residue fields
are the same.
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3) Notice that Z arises as part of the hypothesis, but is not present in the conclusion!

3.E. EXERCISE. Show that the line with doubled origin X is not separated, by finding
two morphisms f1, f2 : W → X whose domain of agreement is not a closed subscheme.
(Another argument was given in an exercise, I believe last day.)

3.F. LESS IMPORTANT EXERCISE. Suppose P is a class of morphisms such that closed
immersions are in P, and P is closed under fibered product and composition. Show that if
f : X → Y is in P then fred : Xred

→ Yred is in P. (Two examples are the classes of separated
morphisms and quasiseparated morphisms.) Hint:

Xred //

%%KKKKKKKKKKK
X ×Y Yred

��

// Yred

��
X // Y

4. RATIONAL MAPS

This is a historically ancient topic. It has appeared late for us because we have just
learned about separatedness. Informally: a rational map is a “morphism X → Y defined
almost everywhere”. We will see that in good situations that where a rational map is
defined, it is uniquely defined.

When discussing rational maps, unless otherwise stated, we will assume X and Y to be
integral and separated, although the notions we will introduce can be useful in more gen-
eral circumstances. The reader interested in more general notions should consider first
the case where the schemes in question are reduced and separated, but not necessarily
irreducible. Many notions can make sense in more generality (without reducedness hy-
potheses for example), but I’m not sure if there is a widely accepted definition.

A key example will be irreducible varieties, and the language of rational maps is most
often used in this case.

A rational map from X to Y, denoted X 99K Y, is a morphism on a dense open set, with
the equivalence relation: (f : U → Y) ∼ (g : V → Y) if there is a dense open set Z ⊂ U ∩ V

such that f|Z = g|Z. (In a moment, we will improve this to: if f|U∩V = g|U∩V .) People often
use the word “map” for “morphism”, which is quite reasonable. But then a rational map
need not be a map. So to avoid confusion, when one means “rational map”, one should
never just say “map”.

An obvious example of a rational map is a morphism. Another example is the follow-
ing.

4.A. EASY EXERCISE. Interpret rational functions on a separated integral scheme as
rational maps to A1

Z
. (This is analogous to functions corresponding to morphisms to A1

Z
,

an earlier exercise.)
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4.1. Important Theorem. — Two S-morphisms f1, f2 : U → Z from a reduced scheme to a
separated S-scheme agreeing on a dense open subset of U are the same.

4.B. EXERCISE. Give examples to show how this breaks down when we give up reduced-
ness of the base or separatedness of the target. Here are some possibilities. For the first,
consider the two maps Spec k[x, y]/(y2, xy) → Spec k[t], where we take f1 given by t 7→ x

and f2 given by t 7→ x + y; f1 and f2 agree on the distinguished open set D(x). (See Fig-
ure 3.) For the second, consider the two maps from Spec k[t] to the line with the doubled
origin, one of which maps to the “upper half”, and one of which maps to the “lower half”.
these to morphisms agree on the dense open set D(f). (See Figure 4.)

f1 f2

FIGURE 3. Two different maps from a nonreduced scheme agreeing on an
open set

f2f1

FIGURE 4. Two different maps to a nonseparated scheme agreeing on an
open set

Proof. Let V be the locus where f1 and f2 agree. It is a closed subscheme of U by Exer-
cise 3.D, which contains the generic point. But the only closed subscheme of a reduced
scheme U containing the generic point is all of U. �

Consequence 1. Hence (as X is reduced and Y is separated) if we have two morphisms
from open subsets of X to Y, say f : U → Y and g : V → Y, and they agree on a dense open
subset Z ⊂ U ∩ V , then they necessarily agree on U ∩ V .

Consequence 2. Also: a rational map has a largest domain of definition on which f :
U 99K Y is a morphism, which is the union of all the domains of definition.
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In particular, a rational function from a reduced scheme has a largest domain of defini-
tion.

4.2. The graph of a rational map.

Define the graph of a rational map f : X 99K Y as follows. Let (U, f ′) be any represen-
tative of this rational map (so f ′ : U → Y is a morphism). Let Γf be the scheme-theoretic
closure of Γf ′ ↪→ U×Y ↪→ X×Y, where the first map is a closed immersion, and the second
is an open immersion.

4.C. EXERCISE. Show that the graph of a rational map is independent of the choice of
representative of the rational map.

In analogy with graphs of morphisms (e.g. Figure 2), the following diagram of a graph
of a rational map can be handy.

Γ
� � // X × Y

||xx
xx

xx
xx

x

""FF
FF

FF
FF

F

X

OO�
�

�

Y.

5. DOMINANT AND BIRATIONAL MAPS

A rational map f : X 99K Y is dominant if for some (and hence every) representative
U → Y, the image is dense in Y. Equivalently, f is dominant if it sends the generic point
of X to the generic point of Y.

5.A. EXERCISE. Show that you can compose two rational maps f : X 99K Y, g : Y 99K Z if
f is dominant.

In particular, integral separated schemes and dominant rational maps between them
form a category which is geometrically interesting.

5.B. EASY EXERCISE. Show that dominant rational maps give morphisms of function
fields in the opposite direction.

It is not true that morphisms of function fields give dominant rational maps, or even
rational maps. For example, Spec k[x] and Spec k(x) have the same function field (k(x)),
but there is no rational map Spec k[x] 99K Spec k(x). Reason: that would correspond to
a morphism from an open subset U of Spec k[x], say k[x, 1/f(x)], to k(x). But there is no
map of rings k(x) → k[x, 1/f(x)] for any one f(x).

However, maps of function fields indeed give dominant rational maps in the case of
varieties, see Proposition 5.1 below.
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A rational map f : X → Y is said to be birational if it is dominant, and there is another
rational map (a “rational inverse”) that is also dominant, such that f ◦ g is (in the same
equivalence class as) the identity on Y, and g ◦ f is (in the same equivalence class as) the
identity on X. This is the notion of isomorphism in the category of integral separated
schemes and dominant rational maps.

A morphism is birational if it is birational as a rational map. We say X and Y are bira-
tional (to each other) if there exists a birational map X 99K Y. Birational maps induce iso-
morphisms of function fields. Proposition 5.1 will imply that a map between k-varieties
that induces an isomorphism of function fields is birational.

We now prove a Proposition promised earlier.

5.1. Proposition. — Suppose X, Y are irreducible varieties, and we are given f# : FF(Y) ↪→ FF(Y).
Then there exists a dominant rational map f : X 99K Y inducing f#.

Proof. By replacing Y with an affine open set, we may assume Y is affine, say Y =
Spec k[x1, . . . , xn]/(f1, . . . , fr). Then we have x1, . . . , xn ∈ K(X). Let U be an open sub-
set of the domains of definition of these rational functions. Then we get a morphism
U → An

k . But this morphism factors through Y ⊂ An, as x1, . . . , xn satisfy the relations f1,
. . . , fr. �

5.C. EXERCISE. Let K be a finitely generated field extension of k. Show there exists an
irreducible k-variety with function field K. (Hint: let x1, . . . , xn be generators for K over k.
Consider the map k[t1, . . . , tn] → K given by ti 7→ xi, and show that the kernel is a prime
ideal p, and that k[t1, . . . , tn]/p has fraction field K. This can be interpreted geometrically:
consider the map Spec K → Spec k[t1, . . . , tn] given by the ring map ti 7→ xi, and take the
closure of the image.)

5.2. Proposition. — Suppose Y and Z are integral k-varieties. Then Y and Z are birational if and
only if there is a dense (=non-empty) open subscheme U of Y and a dense open subscheme V of Z

such that U ∼= V .

This gives you a good idea of how to think of birational maps.

Proof. I find this proof kind of surprising and unexpected.

Clearly if Y and Z have isomorphic open sets U and V respectively, then they are bira-
tional (with birational maps given by the isomorphisms U → V and V → U respectively).

For the other direction, assume that f : Y 99K Z is a birational map, with inverse bira-
tional map g : Z 99K Y. Choose representatives for these rational maps F : W → Y (where
W is an open subscheme of Y) and G : X → Z (where Z is an open subscheme of Z). We
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will see that F−1(G−1(W) ⊂ Y and G−1(F−1(X)) ⊂ Z are isomorphic open subschemes.

F−1(G−1(W))
� _

��

F

((QQQQQQQQQQQQ
G−1(F−1(X))

� _

��Gvvmmmmmmmmmmmm

F−1(X)
� _

��

F

((QQQQQQQQQQQQQQQQ
G−1(W)

� _

��G
vvmmmmmmmmmmmmmmm

W� _

��

F

))RRRRRRRRRRRRRRRRRR X� _

��G
uullllllllllllllllll

Y Z

The two morphisms G ◦ F and the identity from F−1(G−1(W)) → W represent to the same
rational map, so by Theorem 4.1 they are the same morphism. Thus G◦F gives the identity
map from F−1(G−1(W)) to itself. Similarly F ◦ G gives the identity map on G−1(F−1(X)).
All that remains is to show that F maps F−1(G−1(W)) into G−1(F−1(X)), and that G maps
G−1(F−1(X)) into F−1(G−1(W)), and by symmetry it suffices to show the former. Suppose
q ∈ F−1(G−1(W)). Then F(G(F(q)) = F(q) ∈ X, from which F(q) ∈ G−1(F−1(X)). �

6. EXAMPLES OF RATIONAL MAPS

Here are some examples of rational maps. A recurring theme is that domains of defi-
nition of rational maps to projective schemes extend over nonsingular codimension one
points. We’ll make this precise when we discuss curves next quarter.

slope m

x

y

p

q

C

FIGURE 5. Finding primitive Pythagorean triples using geometry

The first example is how you find a formula for Pythagorean triples. Suppose you are
looking for rational points on the circle C given by x2 + y2 = 1 (Figure 5). One rational
point is p = (1, 0). If q is another rational point, then pq is a line of rational (non-infinite)
slope. This gives a rational map from the conic C to A1. Conversely, given a line of slope
m through p, where m is rational, we can recover q as follows: y = m(x − 1), x2 + y2 = 1.
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We substitute the first equation into the second, to get a quadratic equation in x. We know
that we will have a solution x = 1 (because the line meets the circle at (x, y) = (1, 0)), so
we expect to be able to factor this out, and find the other factor. This indeed works:

x2 + (m(x − 1))2 = 1

⇒ (m2 + 1)x2 + (−2)x + (m2 − 1) = 0

⇒ (x − 1)((m2 + 1)x − (m2 − 1)) = 0

The other solution is x = (m2 − 1)/(m2 + 1), which gives y = 2m/(m2 + 1). Thus we
get a birational map between the conic C and A1 with coordinate m, given by f : (x, y) 7→
y/(x − 1) (which is defined for x 6= 1), and with inverse rational map given by m 7→

((m2 − 1)/(m2 + 1), 2m/(m2 + 1)) (which is defined away from m2 + 1 = 0).

We can extend this to a rational map C 99K P1 via the inclusion A1
→ P1. Then f is

given by (x, y) 7→ [y; x − 1]. We then have an interesting question: what is the domain
of definition of f? It appears to be defined everywhere except for where y = x − 1 = 0,
i.e. everywhere but p. But in fact it can be extended over p! Note that (x, y) 7→ [x +
1; −y] (where (x, y) 6= (−1, y)) agrees with f on their common domains of definition, as
[x + 1; −y] = [y; x − 1]. Hence this rational map can be extended farther than we at first
thought. This will be a special case of a result we’ll see later .

(For the curious: we are working with schemes over Q. But this works for any scheme
over a field of characteristic not 2. What goes wrong in characteristic 2?)

6.A. EXERCISE. Use the above to find a “formula” yielding all Pythagorean triples.

6.B. EXERCISE. Show that the conic x2 + y2 = z2 in P2
k is isomorphic to P1

k for any field k

of characteristic not 2. (We’ve done this earlier in the case where k is algebraically closed,
by diagonalizing quadrics.)

In fact, any conic in P2
k with a k-valued point (i.e. a point with residue field k) is iso-

morphic to P1
k. (This hypothesis is certainly necessary, as P1

k certainly has k-valued points.
x2 + y2 + z2 = 0 over k = R gives an example of a conic that is not isomorphic to P1

k.)

6.C. EXERCISE. Find all rational solutions to y2 = x3 + x2, by finding a birational map to
A1, mimicking what worked with the conic.

You will obtain a rational map to P1 that is not defined over the node x = y = 0, and
can’t be extended over this codimension 1 set. This is an example of the limits of our
future result showing how to extend rational maps to projective space over codimension
1 sets: the codimension 1 sets have to be nonsingular. More on this soon!

6.D. EXERCISE. Use something similar to find a birational map from the quadric Q =
{x2 + y2 = w2 + z2} to P2. Use this to find all rational points on Q. (This illustrates a
good way of solving Diophantine equations. You will find a dense open subset of Q that
is isomorphic to a dense open subset of P2, where you can easily find all the rational
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points. There will be a closed subset of Q where the rational map is not defined, or not an
isomorphism, but you can deal with this subset in an ad hoc fashion.)

6.E. IMPORTANT CONCRETE EXERCISE (A FIRST VIEW OF A BLOW-UP). Let k be an al-
gebraically closed field. (We make this hypothesis in order to not need any fancy facts
on nonsingularity.) Consider the rational map A2

k 99K P1
k given by (x, y) 7→ [x; y]. I think

you have shown earlier that this rational map cannot be extended over the origin. Con-
sider the graph of the birational map, which we denote Bl(0,0) A2

k. It is a subscheme of
A2

k × P1
k. Show that if the coordinates on A2 are x, y, and the coordinates on P1 are u, v,

this subscheme is cut out in A2 × P1 by the single equation xv = yu. Describe the fiber
of the morphism Bl(0,0) A2

k → P1
k over each closed point of P1

k. Describe the fiber of the
morphism Bl(0,0) A2

k → A2
k. Show that the fiber over (0, 0) is an effective Cartier divi-

sor (a closed subscheme that is locally principal and not a zero-divisor). It is called the
exceptional divisor.

6.F. EXERCISE (THE CREMONA TRANSFORMATION, A USEFUL CLASSICAL CONSTRUC-
TION). Consider the rational map P2

99K P2, given by [x; y; z] → [1/x; 1/y; 1/z]. What is
the the domain of definition? (It is bigger than the locus where xyz 6= 0!) You will observe
that you can extend it over codimension 1 sets. This will again foreshadow a result we
will soon prove.

E-mail address: vakil@math.stanford.edu
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1. Proper morphisms 1

1. PROPER MORPHISMS

I’ll now tell you about a new property of morphisms, the notion of properness. You can
think about this in several ways.

Recall that a map of topological spaces (also known as a continuous map!) is said to
be proper if the preimage of compact sets is compact. Properness of morphisms is an
analogous property. For example, proper varieties over C will be the same as compact
in the “usual” topology. Alternatively, we will see that projective A-schemes are proper
over A — this is the hardest thing we will prove — so you can see this as nice property
satisfied by projective schemes, and quite convenient to work with.

A (continuous) map of topological spaces f : X → Y is closed if for each closed subset
S ⊂ X, f(S) is also closed. A morphism of schemes is closed if the underlying continuous
map is closed. We say that a morphism of schemes f : X → Y is universally closed if for
every morphism g : Z → Y, the induced morphism Z ×Y X → Z is closed. In other words,
a morphism is universally closed if it remains closed under any base change. (A note on
terminology: if P is some property of schemes, then a morphism of schemes is said to be
“universally P” if it remains P under any base change.)

A morphism f : X → Y is proper if it is separated, finite type, and universally closed. A
scheme X is often said to be proper if some implicit structure morphism is proper. For
example, a k-scheme X is often described as proper if X → Spec k is proper. (A k-scheme
is often said to be complete if it is proper. We will not use this terminology.)

Let’s try this idea out in practice. We expect that A1
C

→ Spec C is not proper, because
the complex manifold corresponding to A1

C
is not compact. However, note that this map

is separated (it is a map of affine schemes), finite type, and closed. So the “universally” is
what matters here.

Date: Wednesday, November 28, 2007.
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1.A. EXERCISE. Show that A1
C

→ Spec C is not proper, by finding a base change that turns
this into a non-closed map. (Hint: Consider A

1
C
× P

1
C

→ P
1
C

.)

1.1. As a first example: closed immersions are proper. They are clearly separated, as
affine morphisms are separated. They are finite type. After base change, they remain
closed immersions, and closed immersions are always closed.

1.2. Proposition. —

(a) The notion of “proper morphism” is stable under base change.
(b) The notion of “proper morphism” is local on the target (i.e. f : X → Y is proper if and only

if for any affine open cover Ui → Y, f−1(Ui) → Ui is proper). Note that the “only if”
direction follows from (a) — consider base change by Ui ↪→ Y.

(c) The notion of “proper morphism” is closed under composition.
(d) The product of two proper morphisms is proper (i.e. if f : X → Y and g : X ′ → Y ′ are

proper, where all morphisms are morphisms of Z-schemes) then f×g : X×Z X ′ → Y×Z Y ′

is proper.
(e) Suppose

(1) X
f

//

g

��
??

??
??

? Y
h

����
��

��
�

Z

is a commutative diagram, and g is proper, and h is separated. Then f is proper.

A sample application of (e): A morphism (over Spec k) from a proper k-scheme to a
separated k-scheme is always proper.

Proof. (a) We have already shown that the notions of separatedness and finite type are
local on the target. The notion of closedness is local on the target, and hence so is the
notion of universal closedness.

(b) The notions of separatedness, finite type, and universal closedness are all preserved
by fibered product. (Notice that this is why universal closedness is better than closedness
— it is automatically preserved by base change!)

(c) The notions of separatedness, finite type, and universal closedness are all preserved
by composition.

(d) By (a) and (c), this follows from an earlier exercise showing that a property of mor-
phisms preserved by composition and base change is also preserved by products.

(e) Closed immersions are proper, so we invoke the Cancellation Theorem for proper-
ties of morphisms. �

We now come to the most important example of proper morphisms.
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1.3. Theorem. — Projective A-schemes are proper over A.

It is not easy to come up with an example of an A-scheme that is proper but not pro-
jective! We will see a simple example of a proper but not projective surface, . Once we
discuss blow-ups, I’ll give Hironaka’s example of a proper but not projective nonsingular
(“smooth”) threefold over C.

Proof. The structure morphism of a projective A-scheme X → Spec A factors as a closed
immersion followed by Pn

A. Closed immersions are proper, and compositions of proper
morphisms are proper, so it suffices to show that Pn

A → Spec A is proper. We have already
seen that this morphism is finite type (an earlier easy exercise) and separated (shown
last week by hand), so it suffices to show that Pn

A → Spec A is universally closed. As
P

n
A = P

n
Z
×Z Spec A, it suffices to show that P

n
X := P

n
Z
×Z X → X is closed for any scheme X.

But the property of being closed is local on the target on X, so by covering X with affine
open subsets, it suffices to show that Pn

A → Spec A is closed. This is important enough to
merit being stated as a Theorem.

1.4. Theorem. — π : Pn
A → Spec A is a closed morphism.

This is sometimes called the fundamental theorem of elimination theory. Here are some
examples to show you that this is a bit subtle.

First, let A = k[a, b, c, . . . , i], and consider the closed subscheme of P
2
A (taken with

coordinates x, y, z) corresponding to ax + by + cz = 0, dx + ey + fz = 0, gx + hy + iz = 0.
Then we are looking for the locus in Spec A where these equations have a non-trivial
solution. This indeed corresponds to a Zariski-closed set — where

det





a b c

d e f

g h i



 = 0.

As a second example, let A = k[a0, a1, . . . , am, b0, b1, . . . , bn]. Now consider the closed
subscheme of P1

A (taken with coordinates x and y) corresponding to a0x
m + a1x

m−1y +

· · ·+ amym = 0 and b0x
n + b1x

m−1y + · · ·+ bnyn = 0. Then we are looking at the locus in
Spec A where these two polynomials have a common root — this is known as the resultant.

More generally, this question boils down to the following question. Given a number of
homogeneous equations in n+1 variables with indeterminate coefficients, Proposition 1.4
implies that one can write down equations in the coefficients that will precisely determine
when the equations have a nontrivial solution.

Proof of Theorem 1.4. Suppose Z ↪→ Pn
A is a closed subset. We wish to show that π(Z) is

closed.

Suppose y /∈ π(Z) is a closed point of Spec A. We’ll check that there is a distinguished
open neighborhood D(f) of y in Spec A such that D(f) doesn’t meet π(Z). (If we could
show this for all points of π(Z), we would be done. But I prefer to concentrate on closed
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points for now.) Suppose y corresponds to the maximal ideal m of A. We seek f ∈ A − m
such that π∗f vanishes on Z.

Spec A

y

D(f)

π

Z π−1y Pn
A

FIGURE 1

Let U0, . . . , Un be the usual affine open cover of P
n
A. The closed subsets π−1y and Z do

not intersect (see Figure 1). On the affine open set Ui, we have two closed subsets Z ∩ Ui

and π−1y∩Ui that do not intersect, which means that the ideals corresponding to the two
closed sets generate the unit ideal, so in the ring of functions A[x0/i, x1/i, . . . , xn/i]. on Ui,
we can write

1 = ai +
∑

mijgij

where mij ∈ m, and ai vanishes on Z. Note that ai, gij ∈ A[x0/i, . . . , xn/i], so by multiply-
ing by a sufficiently high power xn

i of xi, we have an equality

xN
i = a ′

i +
∑

mijg
′

ij

on Ui, where both sides are expressions in S• = A[x0, . . . , xn]. We may take N large
enough so that it works for all i. Thus for N ′ sufficiently large, we can write any monomial
in x1, . . . , xn of degree N ′ as something vanishing on Z plus a linear combination of
elements of m times other polynomials. Hence

SN ′ = I(Z)N ′ + mSN ′

where I(Z)∗ is the graded ideal of functions vanishing on Z. We now need Nakayama’s
lemma. If you haven’t seen this result before, we will prove it next week. We will use the
following form of it: if M is a finitely generated module over A such that M = mM for
some maximal ideal m, then there is some f /∈ m such that fM = 0. Applying this in the
case where M = SN ′/I(Z)N ′ , we see that there exists f ∈ A − m such that

fSN ′ ⊂ I(Z)N ′.

Thus we have found our desired f.

We now tackle Theorem 1.4 in general. Suppose y = [p] not in the image of Z. Applying
the above argument in Spec Ap, we find SN ′ ⊗Ap = I(Z)N ′ ⊗Ap + mSN ′ ⊗Ap, from which
g(SN ′/I(Z)N ′) ⊗ Ap = 0 for some g ∈ Ap − pAp, from which (SN ′/I(Z)N ′) ⊗ Ap = 0. As
SN ′ is a finitely generated A-module, there is some f ∈ A − p with fSN ⊂ I(Z) (if the
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module-generators of SN ′ , and f1, . . . , fa are annihilate the generators respectively, then
take f =

∏
fi), so once again we have found D(f) containing p, with (the pullback of) f

vanishing on Z. �

Notice that projectivity was essential to the proof: we used graded rings in an essential
way.

This also concludes the proof of Theorem 1.3.

1.5. Corollary. — Finite morphisms are proper.

Proof. Suppose f : X → Y is a finite morphism. As properness is local on the base, to check
properness of f, we may assume Y is affine. But finite morphisms to Spec A are projective
, and projective morphisms are proper. �

In particular, as promised in our initial discussion of finiteness:

1.6. Corollary. — Finite morphisms are closed.

1.7. Unproved facts that may help you correctly think about finiteness.

We conclude with some interesting facts that we will prove later. They may shed some
light on the notion of finiteness.

A morphism is finite if and only if it is proper and affine, if and only if it is proper and
quasifinite. We have verify the “only if” parts of this statement; the “if” parts are harder.

As an application: quasifinite morphisms from proper schemes to separated schemes
are finite. Here is why: suppose f : X → Y is a quasifinite morphism over Z, where X is
proper over Z. Then by the Cancellation Theorem for properties of morphisms, X → Y is
proper. Hence as f is quasifinite and proper, f is finite.

E-mail address: vakil@math.stanford.edu
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1. DIMENSION AND CODIMENSION

The notion of dimension is the first of two algebraically “hard” properties of schemes,
the other being smoothness = nonsingularity (coming at the start of next quarter).

1.1. Dimension. One rather basic notion we expect to have of geometric objects is dimen-
sion, and our goal in this chapter is to define the dimension of schemes. This should agree
with, and generalize, our geometric intuition. Keep in mind that although we think of this
as a basic notion in geometry, it is a slippery concept, and has been so for historically. (For
example, how do we know that there isn’t an isomorphism between some 1-dimensional
manifold and some 2-dimensional manifold?)

A caution for those thinking over the complex numbers: our dimensions will be alge-
braic, and hence half that of the “real” picture. For example, A1

C
, which you may picture

as the complex numbers (plus one generic point), has dimension 1.

Surprisingly, the right definition is purely topological — it just depends on the topo-
logical space, and not on the structure sheaf. We define the dimension of a topological
space X as the supremum of lengths of chains of closed irreducible sets, starting the in-
dexing with 0. (This dimension may be infinite.) Scholars of the empty set can take the
dimension of the empty set to be −∞. Define the dimension of a ring as the Krull dimen-
sion of its spectrum — the sup of the lengths of the chains of nested prime ideals (where
indexing starts at zero). These two definitions of dimension are sometimes called Krull
dimension. (You might think a Noetherian ring has finite dimension because all chains
of prime ideals are finite, but this isn’t necessarily true — see Exercise 1.6.)

As we have a natural homeomorphism between Spec A and Spec A/n(A) (the Zariski
topology doesn’t care about nilpotents), we have dim A = dim A/n(A).

Date: Monday, December 4, 2007.
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Examples. We have identified all the prime ideals of k[t] (they are 0, and (f(t)) for
irreducible polynomials f(t)), Z (0 and (p)), k (only 0), and k[x]/(x2) (only 0), so we can
quickly check that dim A1

k = dim Spec Z = 1, dim Spec k = 0, dim Spec k[x]/(x2) = 0.

We must be careful with the notion of dimension for reducible spaces. If Z is the union
of two closed subsets X and Y, then dimZ = max(dim X, dimY). In particular, if Z is the
disjoint union of something of dimension 2 and something of dimension 1, then it has
dimension 2. Thus dimension is not a “local” characteristic of a space. This sometimes
bothers us, so we will often talk about dimensions of irreducible topological spaces. If a
topological space can be expressed as a finite union of irreducible subsets, then say that
it is equidimensional or pure dimensional (resp. equidimensional of dimension n or
pure dimension n) if each of its components has the same dimension (resp. they are all of
dimension n).

An equidimensional dimension 1 (resp. 2, n) topological space is said to be a curve
(resp. surface, n-fold).

1.2. Codimension. Because dimension behaves oddly for disjoint unions, we need some
care when defining codimension, and in using the phrase. For example, if Y is a closed
subset of X, we might define the codimension to be dim X − dim Y, but this behaves badly.
For example, if X is the disjoint union of a point Y and a curve Z, then dim X − dim Y = 1,
but the reason for this has nothing to do with the local behavior of X near Y.

A better definition is as follows. In order to avoid excessive pathology, we define the
codimension of Y in X only when Y is irreducible. We define the codimension of an ir-
reducible closed subset Y ⊂ X of a topological space as the supremum of lengths of
increasing chains of irreducible closed subsets starting at Y (where indexing starts at 0).
The codimension of a point is defined to be the codimension of its closure.

We say that a prime ideal p in a ring has codimension equal to the supremum of lengths
of the chains of decreasing prime ideals starting at p, with indexing starting at 0. Thus in
an integral domain, the ideal (0) has codimension 0; and in Z, the ideal (23) has codimen-
sion 1. Note that the codimension of the prime ideal p in A is dim Ap. (This notion is often
called height.) Thus the codimension of p in A is the codimension of [p] in Spec A.

1.A. EXERCISE. Show that if Y is an irreducible subset of a scheme X with generic point
y, show that the codimension of Y is the dimension of the local ring OX,y.

Note that Y is codimension 0 in X if it is an irreducible component of X. Similarly, Y is
codimension 1 if it is strictly contained in an irreducible component Y ′, and there is no
irreducible subset strictly between Y and Y ′. (See Figure 1 for examples.) An closed subset
all of whose irreducible components are codimension 1 in some ambient space X is said
to be a hypersurface in X.

1.B. EASY EXERCISE. Show that

(1) codimX Y + dim Y ≤ dim X.

2



q

p

C

FIGURE 1. Behavior of codimension

We will see next day that equality always holds if X and Y are varieties, but equality
doesn’t always hold.

Warnings. (1) We have only defined codimension for irreducible Y in X. Exercise extreme
caution in using this word in any other setting. We may use it in the case where the
irreducible components of Y each have the same codimension.

(2) The notion of codimension still can behave slightly oddly. For example, consider
Figure 1. (You should think of this as an intuitive sketch, but once we define dimension
correctly, this will be precise.) Here the total space X has dimension 2, but point p is
dimension 0, and codimension 1. We also have an example of a codimension 2 subset q

contained in a codimension 0 subset C with no codimension 1 subset “in between”.

Worse things can happen; we will soon see an example of a closed point in an irre-
ducible surface that is nonetheless codimension 1, not 2. However, for irreducible vari-
eties (finitely generated domains over a field), this can’t happen, and the inequality (1)
must be an inequality. We’ll show this next day.

1.3. What will happen in this chapter.

In this chapter, we’ll explore the notions of dimension and codimension, and show that
they satisfy properties that we find desirable, and (later) useful. In particular, we’ll learn
some techniques for computing dimension.

We would certainly want affine n-space to have dimension n. We will indeed show
(next day) that dim An

k = n, and show more generally that the dimension of an irreducible
variety over k is its transcendence degree. En route, we will see some useful facts, includ-
ing the Going-Up Theorem, and Noether Normalization. (While proving the Going-Up
Theorem, we will see a trick that will let us prove many forms of Nakayama’s Lemma,
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which will be useful to us in the future.) Related to the Going-Up Theorem is the fact
that certain nice (“integral”) morphisms X → Y will have the property that dim X = dim Y

(Exercise 2.H).

Noether Normalization will let us prove Chevalley’s Theorem, stating that the image
of a finite type morphism of Noetherian schemes is always constructable. We will also
give a short proof of the Nullstellensatz.

We then briefly discuss two useful facts about codimension one. A linear function on
a vector space is either vanishes in codimension 0 (if it is the 0-function) or else in codi-
mension 1. The same is true much more generally for functions on Noetherian schemes.
Informally: a function on a Noetherian scheme also vanishes in pure codimension 0 or 1.
More precisely, the irreducible components of its vanishing locus are all codimension at
most 1. This is Krull’s Principal Ideal Theorem. A second fact, that we’ll call “Algebraic
Hartogs’ Lemma”, informally states that on a normal scheme, any rational function with
no poles is in fact a regular function. These two codimension one facts will come in very
handy in the future.

We end this introductory section with a first property about codimensions (and hyper-
surfaces) that we’ll find useful, and a pathology.

1.4. Warm-up proposition. — In a unique factorization domain A, all codimension 1 prime ideals
are principal.

We will see next day that the converse (in the case where A is Noetherian domain)
holds as well.

Proof. Suppose p is a codimension 1 prime. Choose any f 6= 0 in p, and let g be any
irreducible/prime factor of f that is in p (there is at least one). Then (g) is a prime ideal
contained in p, so (0) ⊂ (g) ⊂ p. As p is codimension 1, we must have p = (g), and thus p
is principal. �

1.5. A fun but unimportant counterexample. As a Noetherian ring has no infinite chain of
prime ideals, you may think that Noetherian rings must have finite dimension. Here is
an example of a Noetherian ring with infinite dimension, due to Nagata, the master of
counterexamples.

1.6. Exercise ?. Choose an increasing sequence of positive integers m1, m2, . . . whose
differences are also increasing (mi+1 − mi > mi − mi−1). Let Pi = (xmi+1, . . . , xmi+1

) and
S = A − ∪iPi. Show that S is a multiplicative set. Show that S−1A is Noetherian. Show
that each S−1P is the smallest prime ideal in a chain of prime ideals of length mi+1 − mi.
Hence conclude that dim S−1A = ∞.
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2. INTEGRAL EXTENSIONS AND THE GOING-UP THEOREM

A ring homomorphism φ : B → A is integral if every element of A is integral over
φ(B). In other words, if a is any element of A, then a satisfies some monic polynomial

an + ?an−1 + · · ·+ ? = 0

where all the coefficients lie in φ(B). We call φ an integral extension if φ is an inclusion
of rings.

2.A. EXERCISE. Show that if f : B → A is a ring homomorphism, and (b1, . . . , bn) = 1 in
B, and Bbi

→ Af(bi) is integral, then f is integral. Thus we can define the notion of integral
morphism of schemes.

2.B. EXERCISE. Show that the notion of integral homomorphism is well behaved with
respect to localization and quotient of B, and quotient of A, but not localization of A.
Show that the notion of integral extension is well behaved with respect to localization
and quotient of B, but not quotient of A. If possible, draw pictures of your examples.

2.C. EXERCISE. Show that if B is an integral extension of A, and C is an integral extension
of B, then C is an integral extension of A.

2.1. Proposition (finite implies integral). — If A is a finite B-algebra, then φ is an integral
homomorphism.

The converse is false: integral does not imply finite, as Q ↪→ Q is an integral homomor-
phism, but Q is not a finite Q-module.

2.D. UNIMPORTANT EXERCISE: FINITE = INTEGRAL + FINITE TYPE. Show that a mor-
phism is finite if and only if it is integral and finite type.

Proof. The proof involves a useful trick.

Choose a finite generating set m1, . . . , mn of A as a B-module. Then ami =
∑

bijmj,
for some bij ∈ B. Thus

(2) (aIn×n − [bij]ij)





m1

...
mn



 =





0
...
0



 .

We can’t quite invert this matrix (aIn×n −[bij]ij), but we almost can. Recall that any n×n

matrix M has an adjoint matrix adj(M) such that adj(M)M = det(M)Idn. (The ijth entry
of adj(M) is the determinant of the matrix obtained from M by deleting the ith column
and jth row, times (−1)i+j .) The coefficients of adj(M) are polynomials in the coefficients
of M. (You’ve likely seen this in the form of a formula for M−1 when there is an inverse.)
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Multiplying both sides of (3) on the left by adj(Idn − A), we obtain

det(Idn − A)





m1

...
mn



 = 0.

Multiplying (2) by the adjoint of (aIn×n − [bij]ij), we get

det(aIn×n − [bij]ij)





m1

...
mn



 =





0
...
0



 .

So det(aI − M) annihilates A, i.e. det(aI − M) = 0. But expanding the determinant yields
an integral equation for a with coefficients in B. �

We now state the Going-up theorem.

2.2. The Cohen-Seidenberg Going up theorem. — Suppose φ : B → A is an integral extension.
Then for any prime ideal q ⊂ B, there is a prime ideal p ⊂ A such that p ∩ B = q.

Although this is a theorem in algebra, the name can be interpreted geometrically: the
theorem asserts that the corresponding morphism of schemes is surjective, and that “above”
every prime q “downstairs”, there is a prime q “upstairs”, see Figure 2. (For this reason,
it is often said that q is “above” p if p ∩ B = q.)

[p]

Spec A

Spec B

[q]

FIGURE 2. A picture of the Going-up theorem

2.E. EXERCISE (REALITY CHECK). The morphism k[t] → k[t](t) is not integral, as 1/t

satisfies no monic polynomial with coefficients in k[t]. Show that the conclusion of the
Going-up theorem 2.2 fails.
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Proof of the Cohen-Seidenberg Going-Up theorem 2.2 ?. This proof is eminently readable, but
could be skipped on first reading. We start with an exercise.

2.F. EXERCISE. Show that the special case where A is a field translates to: if B ⊂ A is a
subring with A integral over B, then B is a field. Prove this. (Hint: all you need to do is
show that all nonzero elements in B have inverses in B. Here is the start: If b ∈ B, then
1/b ∈ A, and this satisfies some integral equation over B.)

Proof of the Going-Up Theorem 2.2. We first make a reduction: by localizing at q, so we can
assume that (B, q) is a local ring.

Then let p be any maximal ideal of A. We will see that p∩B = q. Consider the following
diagram.

A // // A/p field

B
?�

OO

// // B/(B ∩ p)
?�

OO

By the Exercise above, the lower right is a field too, so B ∩ p is a maximal ideal, hence
q. �

2.G. IMPORTANT BUT STRAIGHTFORWARD EXERCISE (SOMETIMES ALSO CALLED THE GOING-
UP THEOREM). Show that if q1 ⊂ q2 ⊂ · · · ⊂ qn is a chain of prime ideals of B, and
p1 ⊂ · · · ⊂ pm is a chain of prime ideals of A such that pi “lies over” qi (and m < n), then
the second chain can be extended to p1 ⊂ · · · ⊂ pn so that this remains true.

This version of the Going-up Theorem has an important consequence.

2.H. IMPORTANT EXERCISE. Show that if f : Spec A → Spec B corresponds to an integral
extension of rings, then dim Spec A = dim Spec B. (Hint: show that a chain of prime ideals
downstairs gives a chain upstairs, by the previous exercise, of the same length. Con-
versely, a chain upstairs gives a chain downstairs. We need to check that no two elements
of the chain upstairs goes to the same element [q] ∈ Spec B of the chain downstairs. As in-
tegral extensions are well-behaved by localization and quotients of Spec B (Exercise 2.B),
we can replace B by Bq/qBq (and A by A ⊗B (Bq/qBq)). Thus we can assume B is a field.
Hence we must show that if φ : k → A is an integral extension, then dim A = 0. Outline
of proof: Suppose p ⊂ m are two prime ideals of p. Mod out by p, so we can assume that
A is a domain. I claim that any non-zero element is invertible: Say x ∈ A, and x 6= 0. Then
the minimal monic polynomial for x has non-zero constant term. But then x is invertible
— recall the coefficients are in a field.)
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3. AS LONG AS WE’RE IN THE NEIGHBORHOOD: NAKAYAMA’S LEMMA

The trick in the proof of Proposition 2.1 is very handy, and can be used to quickly
prove Nakayama’s lemma. This name is used for several different but related results.
Nakayama isn’t especially closely related to dimension, but we may as well prove it while
the trick is fresh in our minds.

3.1. Nakayama’s Lemma version 1. — Suppose A is a ring, I an ideal of A, and M is a finitely-
generated A-module. Suppose M = IM. Then there exists an a ∈ A with a ≡ 1 (mod I) with
aM = 0.

Proof. Say M is generated by m1, . . . , mn. Then as M = IM, we have mi =
∑

j aijmj for
some aij ∈ I. Thus

(3) (Idn − A)





m1

...
mn



 = 0

where Idn is the n × n identity matrix in A, and A = (aij). Multiplying both sides of (3)
on the left by adj(Idn − A), we obtain

det(Idn − A)





m1

...
mn



 = 0.

But when you expand out det(Idn − A), you get something that is 1 (mod I). �

Here is why you care: Suppose I is contained in all maximal ideals of A. (The intersec-
tion of all the maximal ideals is called the Jacobson radical, but we won’t use this phrase.
For comparison, recall that the nilradical was the intersection of the prime ideals of A.)
Then I claim that any a ≡ 1 (mod I) is invertible. For otherwise (a) 6= A, so the ideal (a)
is contained in some maximal ideal m — but a ≡ 1 (mod m), contradiction. Then as a is
invertible, we have the following.

3.2. Nakayama’s Lemma version 2. — Suppose A is a ring, I an ideal of A contained in all
maximal ideals, and M is a finitely-generated A-module. (The most interesting case is when A is
a local ring, and I is the maximal ideal.) Suppose M = IM. Then M = 0.

3.A. EXERCISE (NAKAYAMA’S LEMMA VERSION 3). Suppose A is a ring, and I is an ideal
of A contained in all maximal ideals. Suppose M is a finitely generated A-module, and
N ⊂ M is a submodule. If N/IN → M/IM an isomorphism, then M = N. (This can be
useful, although it won’t come up again for us.)

3.B. IMPORTANT EXERCISE (NAKAYAMA’S LEMMA VERSION 4). Suppose (A, m) is a local
ring. Suppose M is a finitely-generated A-module, and f1, . . . , fn ∈ M, with (the images
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of) f1, . . . , fn generating M/mM. Then f1, . . . , fn generate M. (In particular, taking M = m,
if we have generators of m/m2, they also generate m.)

3.C. UNIMPORTANT EXERCISE (NAKAYAMA’S LEMMA VERSION 5). Prove Nakayama
version 1 (Lemma 3.1) without the hypothesis that M is finitely generated, but with the
hypothesis that In = 0 for some n. (This argument does not use the trick.) This result is
quite useful, although we won’t use it.

3.D. IMPORTANT EXERCISE THAT WE WILL USE SOON. Suppose S is a subring of a ring
A, and r ∈ A. Suppose there is a faithful S[r]-module M that is finitely generated as an
S-module. Show that r is integral over S. (Hint: look carefully at the proof of Nakayama’s
Lemma version 1, and change a few words.)

E-mail address: vakil@math.stanford.edu
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This is the last class of the quarter! We will finish with dimension theory today.

1. DIMENSION AND TRANSCENDENCE DEGREE

We now prove an alternative interpretation for dimension for irreducible varieties.

1.1. Theorem (dimension = transcendence degree). — Suppose A is a finitely-generated domain
over a field k. Then dim Spec A is the transcendence degree of the fraction field FF(A) over k.

By “finitely generated domain over k”, we mean “a finitely generated k-algebra that is
an integral domain”.

In case you haven’t seen the notion of transcendence degree, here is a quick summary
of the relevant facts. Suppose K/k is a finitely generated field extension. Then any two
maximal sets of algebraically independent elements of K over k (i.e. any set with no al-
gebraic relation) have the same size (a non-negative integer or ∞). If this size is finite,
say n, and x1, . . . , xn is such a set, then K/k(x1, . . . , xn) is necessarily a finitely generated
algebraic extension, i.e. a finite extension. (Such a set x1, . . . , xn is called a transcendence
basis, and n is called the transcendence degree.)

In particular, we see that dim An
k = n. However, our proof of Theorem 1.1 will go

through this fact, so it isn’t really a Corollary.

Date: Wednesday, December 6, 2007.
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1.2. Sample consequences. We will prove Theorem 1.1 shortly. But we first show
that it is useful by giving some immediate consequences. We begin with a proof of the
Nullstellensatz, promised earlier.

1.A. EXERCISE: NULLSTELLENSATZ FROM DIMENSION THEORY.
(a) Suppose A = k[x1, . . . , xn]/I, where k is an algebraically closed field and I is some
ideal. Then the maximal ideals are precisely those of the form (x1 − a1, . . . , xn − an),
where ai ∈ k. This version (the “weak Nullstellensatz”) was stated earlier.
(b) Suppose A = k[x1, . . . , xn]/I where k is not necessarily algebraically closed. Show that
every maximal ideal of A has a residue field that is a finite extension of k. This version
was stated in earlier. (Hint for both parts: the maximal ideals correspond to dimension 0

points, which correspond to transcendence degree 0 extensions of k, i.e. finite extensions
of k. If k = k, the maximal ideals correspond to surjections f : k[x1, . . . , xn] → k. Fix
one such surjection. Let ai = f(xi), and show that the corresponding maximal ideal is
(x1 − a1, . . . , xn − an).)

1.3. Points of A2
k. We can now confirm that we have named all the primes of k[x, y] where

k is algebraically closed (as promised earlier when k = C). Recall that we have discovered
the primes (0), f(x, y) where f is irreducible, and (x − a, y − b) where a, b ∈ k. As A2

k is
irreducible, there is only one irreducible subset of codimension 0. By the Proposition
from last day about UFDs, all codimension 1 primes are principal. By the inequality
dim X + codimY X = dim Y, there are no primes of codimension greater than 2, and any
prime of codimension 2 must be maximal. We have identified all the maximal ideals of
k[x, y] by the Nullstellensatz.

1.B. IMPORTANT EXERCISE. Suppose X is an irreducible variety. Show that dim X is the
transcendence degree of the function field (the stalk at the generic point) OX,η over k. Thus
(as the generic point lies in all non-empty open sets) the dimension can be computed in
any open set of X. (This is not true in general, see §3.4.)

Here is an application that you might reasonably have wondered about before thinking
about algebraic geometry.

1.C. EXERCISE. Suppose f(x, y) and g(x, y) are two complex polynomials (f, g ∈ C[x, y]).
Suppose f and g have no common factors. Show that the system of equations f(x, y) =
g(x, y) = 0 has a finite number of solutions. (This isn’t essential for what follows. But it
is a basic fact, and very believable.)

1.D. EXERCISE. Suppose X ⊂ Y is an inclusion of irreducible k-varieties, and η is the
generic point of X. Show that dim X + dimOY,η = dim Y. Hence show that dim X +
codimY X = dim Y. Thus for varieties, the inequality dim X + codimY X ≤ dim Y is always
an equality.
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1.E. EXERCISE. Show that Spec k[w, x, y, z]/(wz − xy, wy − x2, xz − y2) is an integral
surface. You might expect it to be a curve, because it is cut out by three equations in 4-
space. (You may recognize this as the affine cone over the twisted cubic.) It turns out that
you actually need three equations to cut out this surface. The first equation cuts out a
threefold in four-space (by Krull’s theorem 3.2, see later). The second equation cuts out a
surface: our surface, along with another surface. The third equation cuts out our surface,
and removes the “extraneous component”. One last aside: notice once again that the cone
over the quadric surface k[w, x, y, z]/(wz − xy) makes an appearance.)

1.4. Noether Normalization.

Hopefully you are now motivated to understand the proof of Theorem 1.1 on dimen-
sion and transcendence degree. To set up the argument, we introduce another important
and ancient result, Noether’s Normalization Lemma.

1.5. Noether Normalization Lemma. — Suppose A is an integral domain, finitely generated over
a field k. If tr.deg.kA = n, then there are elements x1, . . . , xn ∈ A, algebraically independent
over k, such that A is a finite (hence integral) extension of k[x1, . . . , xn].

The geometric content behind this result is that given any integral affine k-scheme X,
we can find a surjective finite morphism X → An

k , where n is the transcendence degree of
the function field of X (over k). Surjectivity follows from the Going-Up Theorem.

Nagata’s proof of Noether normalization ?. Suppose we can write A = k[y1, . . . , ym]/p, i.e.
that A can be chosen to have m generators. Note that m ≥ n. We show the result by
induction on m. The base case m = n is immediate.

Assume now that m > n, and that we have proved the result for smaller m. We will
find m − 1 elements z1, . . . , zm−1 of A such that A is finite over A ′ := k[z1, . . . , zm−1] (i.e.
the subring of A generated by z1, . . . , zm−1). Then by the inductive hypothesis, A ′ is finite
over some k[x1, . . . , xn], and A is finite over A ′, so A is finite over k[x1, . . . , xn].

A

finite

A ′ = k[z1, . . . , zm−1]/p

finite

k[x1, . . . , xn]

As y1, . . . , ym are algebraically dependent, there is some non-zero algebraic relation
f(y1, . . . , ym) = 0 among them (where f is a polynomial in m variables).

Let z1 = y1 −yr1
m, z2 = y2 −yr2

m , . . . , zm−1 = ym−1 −y
rm−1
m , where r1, . . . , rm−1 are positive

integers to be chosen shortly. Then

f(z1 + yr1
m, z2 + yr2

m, . . . , zm−1 + yrm−1
m , ym) = 0.
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Then upon expanding this out, each monomial in f (as a polynomial in m variables) will
yield a single term in that is a constant times a power of ym (with no zi factors). By
choosing the ri so that 0 � r1 � r2 � · · · � rm−1, we can ensure that the powers of
ym appearing are all distinct, and so that in particular there is a leading term yN

m, and all
other terms (including those with zi-factors) are of smaller degree in ym. Thus we have
described an integral dependence of ym on z1, . . . , zm−1 as desired. �

1.6. Aside: the geometric idea behind Nagata’s proof. There is some geometric intuition
behind this. Suppose we have an m-dimensional variety in A

n
k with m < n, for example

xy = 1 in A2. One approach is to project it to a hyperplane via a finite morphism. In
the case of xy = 1, if we projected to the x-axis, it wouldn’t be finite, roughly speaking
because the asymptote x = 0 prevents the map from being closed. But if we projected to
a line, we might hope that we would get rid of this problem, and indeed we usually can:
this problem arises for only a finite number of directions. But we might have a problem
if the field were finite: perhaps the finite number of directions in which to project each
have a problem. (The reader may show that if k is an infinite field, then the substitution
in the above proof zi = yi − yri

m can be replaced by the linear substitution zi = yi − aiym

where ai ∈ k, and that for a non-empty Zariski-open choice of ai, we indeed obtain a
finite morphism.) Nagata’s trick in general is to “jiggle” the variables in a non-linear way,
and that this is enough to prevent non-finiteness of the map.

Proof of Theorem 1.1 on dimension and transcendence degree. Suppose X is an integral affine
k-scheme. We show that dim X equals the transcendence degree n of its function field, by
induction on n. Fix X, and assume the result is known for all transcendence degrees less
than n.

By Noether normalization, there exists a surjective finite morphism map X → An
k . By

the Going-Up theorem, dim X = dim An
k . If n = 0, we are done, as dim A0

k = 0.

We now show that dim An
k = n for n > 0, by induction. Clearly dim An

k ≥ n, as we can
describe a chain of irreducible subsets of length n + 1: if x1, . . . , xn are coordinates on A

n,
consider the chain of ideals

(0) ⊂ (x1) ⊂ · · · ⊂ (x1, . . . , xn)

in k[x1, . . . , xn]. Suppose we have a chain of prime ideals of length at least n:

(0) = p0 ⊂ · · · ⊂ pm.

where p1 is a codimension 1 prime ideal. Then p1 is principal (as k[x1, . . . , xn] is a unique
factorization domain, a Proposition proved on Monday) say p1 = (f(x1, . . . , xn)), where f

is an irreducible polynomial. Then k[x1, . . . , xn]/(f(x1, . . . , xn)) has transcendence degree
n − 1, so by induction,

dim k[x1, . . . , xn]/(f) = n − 1.

�
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2. IMAGES OF MORPHISMS, AND CHEVALLEY’S THEOREM

We can now prove Chevalley’s Theorem 2.1, discussed earlier.

2.1. Chevalley’s Theorem. — Suppose f : X → Y is a morphism of finite type of Noetherian
schemes. Then the image of any constructable set is constructable.

The proof will use Noether normalization. This is remarkable: Noether normalization
is about finitely generated algebras over a field, but there is no field in the statement of
Chevalley’s theorem. Hence if you prefer to work over arbitrary rings (or schemes), this
shows that you still care about facts about finite type schemes over a field. Conversely,
even if you are interested in finite type schemes over a given field (like C), the field that
comes up in the proof of Chevalley’s theorem is not that field, so even if you prefer to
work over C, this argument shows that you still care about working over arbitrary fields,
not necessarily algebraically closed.

2.A. HARD EXERCISE. Reduce the proof of Chevalley’s theorem 2.1 to the following
statement: suppose f : X = Spec A → Y = Spec B is a dominant morphism, where A and
B are domains, and f corresponds to φ : B → B[x1, . . . , xn]/I ∼= A. Then the image of f

contains a dense open subset of Spec B. (Hint: Make a series of reductions. The notion of
constructable is local, so reduce to the case where Y is affine. Then X can be expressed as a
finite union of affines; reduce to the case where X is affine. X can be expressed as the finite
union of irreducible components; reduce to the case where X is irreducible. Reduce to
the case where X is reduced. By considering the closure of the image of the generic point
of X, reduce to the case where Y also is integral (irreducible and reduced), and X → Y is
dominant. Use Noetherian induction in some way on Y.)

Proof. We prove the statement given in the previous exercise. Let K := FF(B). Now A⊗B K

is a localization of A with respect to B∗ (interpreted as a subset of A), so it is a domain,
and it is finitely generated over K (by x1, . . . , xn), so it has finite transcendence degree r

over K. Thus by Noether normalization, we can find a subring K[y1, . . . , yr] ⊂ A ⊗B K, so
that A⊗B K is integrally dependent on K[y1, . . . , yr]. We can choose the yi to be in A: each
is in (B∗)−1A to begin with, so we can replace each yi by a suitable K-multiple.

Sadly A is not necessarily integrally dependent on A[y1, . . . , yr] (as this would imply
that Spec A → Spec B is surjective by the Going-Up Theorem). However, each xi satisfies
some integral equation

xn
i + f1(y1, . . . , yr)x

n−1
i + · · ·+ fn(y1, . . . , yr) = 0

where fj are polynomials with coefficients in K = FF(B). Let g be the product of the
denominators of all the coefficients of all these polynomials (a finite set). Then Ag is
integral over Bg[y1, . . . , yr], and hence Spec Ag → Spec Bg is surjective; Spec Bg is our
open subset. �
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3. FUN IN CODIMENSION ONE: KRULL’S PRINCIPAL IDEAL THEOREM, ALGEBRAIC
HARTOGS’ LEMMA, AND MORE

In this section, we’ll explore a number of results related to codimension one.

Codimension one primes of Z and k[x, y] correspond to prime numbers and irreducible
polynomials respectively. We will make this link precise for unique factorization do-
mains. Then we introduce two results that apply in more general situations, and link
functions and the codimension one points where they vanish, Krull’s Principal Ideal The-
orem 3.2, and Algebraic Hartogs’ Lemma 3.6. We will find these two theorems very use-
ful. For example, Krull’s Principal Ideal Theorem will help us compute codimensions,
and will show us that codimension can behave oddly, and Algebraic Hartogs’ Lemma
will give us a useful characterization of Unique Factorization Domains (Proposition 3.8).

The results in this section will require (locally) Noetherian hypotheses.

3.1. Krull’s Principal Ideal Theorem. As described earlier in the chapter, in analogy
with linear algebra, we have the following.

3.2. Krull’s Principal Ideal Theorem (geometric version). — Suppose X is a Noetherian scheme,
and f is a function. Then the irreducible components of V(f) are codimension 0 or 1.

This is clearly equivalent to the following algebraic statement.

3.3. Krull’s Principal Ideal Theorem (algebraic version). — Suppose A is a Noetherian ring, and
f ∈ A. Then every minimal prime p containing f has codimension at most 1. If furthermore f is
not a zero-divisor, then every minimal prime p containing f has codimension precisely 1.

The full proof is technical, so I’ll postpone it to §4, and you shouldn’t read it unless you
really want to.

But this immediately useful. For example, consider the scheme Spec k[w, x, y, z]/(wx −
yz). What is its dimension? It is cut out by one non-zero equation wx − yz in A4, so it is a
threefold.

3.A. EXERCISE. What is the dimension of Spec k[w, x, y, z]/(wz−xy, y17+z17)? (Be careful
to check they hypotheses before invoking Krull!)

3.B. EXERCISE. Show that an irreducible homogeneous polynomial in n + 1 variables
over a field k describes an integral scheme of dimension n − 1.

3.C. EXERCISE (IMPORTANT FOR LATER). (a) (Hypersurfaces meet everything of dimension
at least 1 in projective space — unlike in affine space.) Suppose X is a closed subset of Pn

k of
dimension at least 1, and H a nonempty hypersurface in P

n
k . Show that H meets X. (Hint:
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consider the affine cone, and note that the cone over H contains the origin. Use Krull’s
Principal Ideal Theorem 3.3.)
(b) (Definition: Subsets in Pn cut out by linear equations are called linear subspaces.
Dimension 1, 2 linear subspaces are called lines and planes respectively.) Suppose X ↪→
Pn

k is a closed subset of dimension r. Show that any codimension r linear space meets X.
Hint: Refine your argument in (a). (In fact any two things in projective space that you
might expect to meet for dimensional reasons do in fact meet. We won’t prove that here.)
(c) Show further that there is an intersection of r + 1 hypersurfaces missing X. (The key
step: show that there is a hypersurface of sufficiently high degree that doesn’t contain
every generic point of X. Show this by induction on the number of generic points. To get
from n to n + 1: take a hypersurface not vanishing on p1, . . . , pn. If it doesn’t vanish on
pn+1, we’re done. Otherwise, call this hypersurface fn+1. Do something similar with n+1

replaced by i (1 ≤ i ≤ n). Then consider
∑

i f1 · · · f̂i · · · fn+1.)

3.4. Pathologies of the notion of “codimension”. We can use Krull’s Principal Ideal
Theorem to produce the long-promised example of pathology in the notion of codimen-
sion. Let A = k[x](x)[t]. In other words, elements of A are polynomials in t, whose coeffi-
cients are quotients of polynomials in x, where no factors of x appear in the denominator.
(Warning: A is not isomorphic to k[x, t](x).) Clearly, A is a domain, and (xt − 1) is not a
zero divisor. You can verify that A/(xt− 1) ∼= k[x](x)[1/x] ∼= k(x) — “in k[x](x), we may di-
vide by everything but x, and now we are allowed to divide by x as well” — so A/(xt−1)
is a field. Thus (xt − 1) is not just prime but also maximal. By Krull’s theorem, (xt − 1)
is codimension 1. Thus (0) ⊂ (xt − 1) is a maximal chain. However, A has dimension
at least 2: (0) ⊂ (t) ⊂ (x, t) is a chain of primes of length 3. (In fact, A has dimension
precisely 2, although we don’t need this fact in order to observe the pathology.) Thus we
have a codimension 1 prime in a dimension 2 ring that is dimension 0. Here is a picture
of this lattice of ideals.

(x, t)

(t)

DD
DD

DD
DD

(xt − 1)

vvvvvvvvv

(0)

This example comes from geometry; it is enlightening to draw a picture see Figure 1.
Spec k[x](x) corresponds to a germ of A1

k near the origin, and Spec k[x](x)[t] corresponds to
“this × the affine line”. You may be able to see from the picture some motivation for this
pathology — note that V(xt − 1) doesn’t meet V(x), so it can’t have any specialization on
V(x), and there nowhere else for V(xt − 1) to specialize.

It is disturbing that this misbehavior turns up even in a relative benign-looking ring.

3.D. UNIMPORTANT EXERCISE. Show that it is false that if X is an integral scheme, and U

is a non-empty open set, then dim U = dim X.
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V(x)

Spec k[x](x)

Spec k[x](x)[t]

V(xt − 1)

FIGURE 1. Dimension and codimension behave oddly on the surface Spec k[x](x)[t]

3.5. Algebraic Hartogs’ Lemma for Noetherian normal schemes.

Hartogs’ Lemma in several complex variables states (informally) that a holomorphic
function defined away from a codimension two set can be extended over that. We now
describe an algebraic analog, for Noetherian normal schemes.

3.6. Algebraic Hartogs’ Lemma. — Suppose A is a Noetherian normal domain.
A = ∩p codimension 1Ap.

The equality takes place inside FF(A); recall that any localization of a domain A is
naturally a subset of FF(A). Warning: No one else calls this Algebraic Hartogs’ Lemma.
I’ve called it this because I find the that it parallels the statement in complex geometry.
The proof is technical, so we postpone it to §3.9. (One can state Algebraic Hartogs’ Lemma
more generally in the case that Spec A is a Noetherian normal scheme, meaning that A is
a product of Noetherian normal domains; the reader may wish to do so. A more general
statement is that if A is a Noetherian domain, then ∩codim P=1AP is the integral closure of
A (Atiyah-Macdonald, Cor. 5.22). We won’t need this. And this “domain” condition can
also be relaxed.)

One might say that if f ∈ FF(A) does not lie in Ap where p has codimension 1, then f has
a pole at [p], and if f ∈ FF(A) lies in pAp where p has codimension 1, then f has a zero at
[p]. It is worth interpreting Algebraic Hartogs’ Lemma as saying that a rational function
on a normal scheme with no poles is in fact regular (an element of A). More generally, if
X is a Noetherian normal scheme, we can define zeros and poles of rational functions on
X. (We will soon define the order of a zero or a pole.)
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3.E. EXERCISE. Suppose f is an element of a normal domain A, and f is contained in no
codimension 1 primes. Show that f is a unit.

3.F. EXERCISE. Suppose f and g are two global sections of a Noetherian normal scheme,
not vanishing at any associated point, with the same poles and zeros. Show that each is a
unit times the other.

3.7. A useful characterization of unique factorization domains.

We can use Algebraic Hartogs’ Lemma 3.6 to prove one of the four things you need to
know about unique factorization domains.

3.8. Proposition. — Suppose that A is a Noetherian domain. Then A is a Unique Factorization
Domain if and only if all codimension 1 primes are principal.

This contains the Proposition last day showing that in a UFD, all height 1 primes are
principal, and (in some sense) its converse.

Proof. We have already shown in last day (in the Proposition mentioned in the previous
sentence) that if A is a Unique Factorization Domain, then all codimension 1 primes are
principal. Assume conversely that all codimension 1 primes of A are principal. I claim
that the generators of these ideals are irreducible, and that we can uniquely factor any
element of A into these irreducibles, and a unit. First, suppose (f) is a codimension 1

prime ideal p. Then if f = gh, then either g ∈ p or h ∈ p. As codim p > 0, p 6= 0, so by
Nakayama’s Lemma (as p is finitely generated), p 6= p2. Thus both g and h cannot be in
p. Say g /∈ p. Then g is contained in no codimension 1 primes (as f was contained in only
one, namely p), and hence is a unit by Exercise 3.E.

Finally, we show that any non-zero element f of A can be factored into irreducibles.
Now V(f) is contained in a finite number of codimension 1 primes, as (f) as a finite num-
ber of associated primes, and hence a finite number of minimal primes. We show that
any nonzero f can be factored into irreducibles by induction on the number of codimen-
sion 1 primes containing f. In the base case where there are none, then f is a unit by
Exercise 3.E. For the general case where there is at least one, say f ∈ p = (g). Then
f = gnh for some h /∈ (g). (Reason: otherwise, we have an ascending chain of ideals
(f) ⊂ (f/g) ⊂ (f/g2) ⊂ · · · , contradicting Noetherianness.) Thus f/gn ∈ A, and is con-
tained in one fewer codimension 1 primes. �

3.9. Proof of Algebraic Hartogs’ Lemma 3.6 ?. This proof does not shed light on any of
the other discussion in this section, and thus should not be read. However, you should
sleep soundly at night knowing that the proof is this short. Obviously the right side is
contained in the left. Assume we have some x in all AP but not in A. Let I be the “ideal of
denominators”:

I := {r ∈ A : rx ∈ A}.

9



(The ideal of denominators arose in an earlier discussion about normality, when we proved
the stalk-locality of normality.) We know that I 6= A, so choose q a minimal prime con-
taining I.

Observe that this construction behaves well with respect to localization (i.e. if p is any
prime, then the ideal of denominators x in Ap is the Ip, and it again measures the failure
of ‘Algebraic Hartogs’ Lemma for x,’ this time in Ap). But Hartogs’ Theorem is vacuously
true for dimension 1 rings, so hence no codimension 1 prime contains I. Thus q has
codimension at least 2. By localizing at q, we can assume that A is a local ring with
maximal ideal q, and that q is the only prime containing I. Thus

√
I = q, so there is some

n with I ⊂ qn. Take a minimal such n, so I 6⊂ qn−1, and choose any y ∈ qn−1 − qn. Let
z = yx. Then z /∈ A (so qz /∈ q), but qz ⊂ A: qz is an ideal of A.

I claim qz is not contained in q. Otherwise, we would have a finitely-generated A-
module (namely q) with a faithful A[z]-action, forcing z to be integral over A (and hence
in A) by an Exercise in the Nakayama section last day.

Thus qz is an ideal of A not contained in q, so it must be A! Thus qz = A from which
q = A(1/z), from which q is principal. But then codim Q = dim A ≤ dimA/Q Q/Q2 ≤ 1 by
Nakayama’s lemma, contradicting the fact that q has codimension at least 2. �

4. PROOF OF KRULL’S PRINCIPAL IDEAL THEOREM 3.3 ??

The details of this proof won’t matter much to us, so you should probably not read it. It
is included so you can glance at it and believe that the proof is fairly short, and you could
read it if you really wanted to.

4.1. Lemma. — If A is a Noetherian ring with one prime ideal. Then A is Artinian, i.e., it satisfies
the descending chain condition for ideals.

The notion of Artinian rings is very important, but we will get away without discussing
it much.

Proof. If A is a ring, we define more generally an Artinian A-module, which is an A-module
satisfying the descending chain condition for submodules. Thus A is an Artinian ring if
it is Artinian over itself as a module.

If m is a maximal ideal of R, then any finite-dimensional (R/m)-vector space (interpreted
as an R-module) is clearly Artinian, as any descending chain

M1 ⊃ M2 ⊃ · · ·

must eventually stabilize (as dimR/m Mi is a non-increasing sequence of non-negative in-
tegers).
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4.A. EXERCISE. Show that for any n, mn/mn+1 is a finitely-dimensional A/m-vector space.
(Hint: show it for n = 0 and n = 1. Use the dimension for n = 1 to bound the dimension
for general n.) Hence mn/mn+1 is an Artinian A-module.

As
√

0 is prime, it must be m.

4.B. EXERCISE. Prove that mn = 0 = 0 for some n. (Hint: suppose m can be generated by
m elements, each of which has kth power 0, and show that mm(k−1)+1 = 0.)

4.C. EXERCISE. Show that if 0 → M ′ → M → M ′′ → 0 is an exact sequence of mod-
ules. then M is Artinian if and only if M ′ and M ′′ are Artinian. (Hint: think about the
corresponding question about Noetherian modules, which we’ve seen before.)

Thus as we have a finite filtration

A ⊃ m ⊃ · · · ⊃ mn = 0

all of whose quotients are Artinian, so A is Artinian as well. This completes the proof of
the Lemma. �

Proof of Krull’s principal ideal theorem 3.3. Suppose we are given x ∈ A, with p a minimal
prime containing x. By localizing at p, we may assume that A is a local ring, with maximal
ideal p. Suppose q is another prime strictly contained in p.

x � o

��>
>>

>>
>>

p �
�

// A

q
0

�

@@��������

For the first part of the theorem, we must show that Aq has dimension 0. The second part
follows from our earlier work: if any minimal primes are height 0 (minimal primes of A),
f is a zero-divisor, as minimal primes of A are all associated primes of A, and elements of
associated primes of A are zero-divisors.

Now p is the only prime ideal containing (x), so A/(x) has one prime ideal. By Lemma 4.1,
A/(x) is Artinian.

We invoke a useful construction, the nth symbolic power of a prime ideal: if A is a ring,
and q is a prime ideal, then define

q(n) := {r ∈ A : rs ∈ qn for some s ∈ A − q}.

We have a descending chain of ideals in A

q(1) ⊃ q(2) ⊃ · · · ,
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so we have a descending chain of ideals in A/(x)

q(1) + (x) ⊃ q(2) + (x) ⊃ · · ·
which stabilizes, as A/(x) is Artinian. Say q(n) + (x) = q(n+1) + (x), so

q(n) ⊂ q(n+1) + (x).

Hence for any f ∈ q(n), we can write f = ax + g with g ∈ q(n+1). Hence ax ∈ q(n). As p is
minimal over x, x /∈ q, so a ∈ q(n). Thus

q(n) = (x)q(n) + q(n+1).

As x is in the maximal ideal p, the second version of Nakayama’s lemma gives q(n) =

q(n+1).

We now shift attention to the local ring Aq, which we are hoping is dimension 0. We
have q(n)Aq = q(n+1)Aq (the symbolic power construction clearly construction commutes
with respect to localization). For any r ∈ qnAq ⊂ q(n)Aq, there is some s ∈ Aq − qAq such
that rs ∈ qn+1Aq. As s is invertible, r ∈ qn+1Aq as well. Thus qnAq ⊂ qn+1Aq, but as
qn+1Aq ⊂ qnAq, we have qnAq = qn+1Aq. By Nakayama’s Lemma version 4,

qnAq = 0.

Finally, any local ring (R, m) such that mn = 0 has dimension 0, as Spec A consists of only
one point: [m] = V(m) = V(mn) = V(0) = Spec A. �
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