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1. DIFFERENTIALS: MOTIVATION AND GAME PLAN

Differentials are an intuitive geometric notion, and we’re going to figure out the right
description of them algebraically. I find the algebraic manifestation a little non-intuitive,
so I always like to tie it to the geometry. So please don’t tune out of the statements. Also,
I want you to notice that although the algebraic statements are odd, none of the proofs
are hard or long. You'll notice that this topic could have been done as soon as we knew
about morphisms and quasicoherent sheaves.

I prefer to introduce new ideas with a number of examples, but in this case I'm going to
spend a fair amount of time discussing theory, and only then get to a number of examples.

Suppose X is a “smooth” k-variety. We intend to define a tangent bundle. We'll see that
the right way to do this will easily apply in much more general circumstances.

e We'll see that cotangent is more “natural” for schemes than tangent bundle. This is
similar to the fact that the Zariski cotangent space is more natural than the tangent space (i.e.
if A is a ring and m is a maximal ideal, then m/m? is “more natural” than (m/m?)V). Both
of these notions are because we are understanding “spaces” via their (sheaf of) functions
on them, which is somehow dual to the geometric pictures you have of spaces in your
mind.

So we’ll define the cotangent sheaf first. An element of the (co)tangent space will be
called a (co)tangent vector.

e Our construction will automatically apply for general X, even if X is not “smooth” (or
even at all nice, e.g. finite type). The cotangent sheaf won't be locally free, but it will still
be a quasicoherent sheaf.

e Better yet, this construction will naturally work “relatively”. For any X — Y, we’ll define
Qx /v, a quasicoherent sheaf on X, the sheaf of relative differentials. The fiber of this sheaf
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at a point will be the cotangent vectors of the fiber of the map. This will specialize to
the earlier case by taking Y = Speck. The idea is that this glues together the cotangent
sheaves of the fibers of the family. Figure 1 is a sketch of the relative tangent space of a
map X — Y at a point p € X — it is the tangent to the fiber. (The tangent space is easier
to draw than the cotangent space!) An element of the relative (co)tangent space is called
a vertical or relative (co)tangent vector.

FIGURE 1. The relative tangent space of a morphism X — Y at a point p

2. THE AFFINE CASE: TWO OF THREE DEFINITIONS

We'll first study the affine case. Suppose A is a B-algebra, so we have a morphism of
rings ¢ : B — A and a morphism of schemes Spec A — Spec B. I will define an A-module
Qg in three ways. This is called the module of relative differentials or the module of
Kiahler differentials. The module of differentials will be defined to be this module, as
well asamap d: A — Qa/p satisfying three properties.

(i) additivity. da + da’=d(a + a’)

(ii) Leibniz. d(aa’) = a da’+ a’da
(iii) triviality on pullbacks. db =0 for b € ¢(B).

2.A. TRIVIAL EXERCISE. Show that d is B-linear. (In general it will not be A-linear.)

2.B. EXERCISE. Prove the quotient rule: if b = as, then da = (s db — b ds)/s.
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2.C. EXERCISE. State and prove the chain rule for d(f(g)) where f is a polynomial with
B-coefficients, and g € A. (As motivation, think of the case B = k. So for example,
da™ = na™ 'da, and more generally, if f is a polynomial in one variable, df(a) = f'(a) da,
where f’ is defined formally: if f = Y cix'then f' = Y c¢iix'™.)

I'll give you three definitions of the module of Kahler differentials, which will soon
“sheafifiy” to the sheaf of relative differentials. The first definition is a concrete hands-on
definition. The second is by universal property. And the third will globalize well, and
will allow us to define Qx/y conveniently in general.

2.1. First definition of differentials: explicit description. We define () 5,5 to be finite
A-linear combinations of symbols “da” for a € A, subject to the three rules (i)—(iii) above.
For example, take A = k[x,y], B = k. Then a sample differential is 3x* dy + 4 dx € Qa 5.
We have identities such as d(3xy?) = 3y? dx + 6xy dy.

Key fact. Note that if A is generated over B (as an algebra) by x; € A (where 1 lies in
some index set, possibly infinite), subject to some relations r; (where j lies in some index
set, and each is a polynomial in the x;), then the A-module Q 5 5 is generated by the dx;,
subject to the relations (i)—(iii) and dr; = 0. In short, we needn’t take every single element
of A; we can take a generating set. And we needn’t take every single relation among these
generating elements; we can take generators of the relations.

2.D. EXERCISE. Verify the above key fact.

In particular:

2.2. Proposition. — If A is a finitely generated B-algebra, then Q) 5 g is a finite type (=finitely
generated) A-module. If A is a finitely presented B-algebra, then Q) 5 is a finitely presented
A-module.

An algebra A is finitely presented over another algebra B if it can be expressed with
tinite number of generators (=finite type) and finite number of relations:

A =B, xal/(r1(x1, .. xn), o T (x, e X)),

If A is Noetherian, then the two hypotheses are the same, so most of you will not care.)

Let’s now see some examples. Among these examples are three particularly important
kinds of ring maps that we often consider: adding free variables; localizing; and taking
quotients. If we know how to deal with these, we know (at least in theory) how to deal
with any ring map.

2.3. Example: taking a quotient. If A = B/I, then Q5,5 = 0 basically immediately:
da = 0 for all a € A, as each such a is the image of an element of B. This should be
believable; in this case, there are no “vertical tangent vectors”.
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2.4. Example: adding variables. If A = Blxj,...,x,], then Qa5 = Adx; & --- & Adxy,.

(Note that this argument applies even if we add an arbitrarily infinite number of inde-
terminates.) The intuitive geometry behind this makes the answer very reasonable. The
cotangent bundle should indeed be trivial of rank n.

2.5. Example: two variables and one relation. If B = C, and A = C[x, yl/(y? — x3), then
Qam=(Adx® A dy)/(2y dy — 3x* dx).

2.6. Example: localization. If S is a multiplicative set of B, and A = S7'B, then QA s =0.
Reason: the quotient rule holds, Exercise 2.B, soif a = b/s, then da = (s db—b ds)/s? = 0.
If A = B¢ for example, this is intuitively believable; then Spec A is an open subset of
Spec B, so there should be no vertical (co)tangent vectors.

2.E. EXERCISE. Suppose k is a field, and K is a separable algebraic extension of k. Show
that Q. = 0. (Warning: do not assume that K/k is a finite extension!)

2.7. Exercise (Jacobian description of Q). — Suppose A = Blx1,...,xnl/(f1,...,fy). Then
Qap = {®iAdxij/{df; = 0} maybe interpreted as the cokernel of the Jacobian matrix
J: AT — A®M,

I now want to tell you two handy (geometrically motivated) exact sequences. The ar-
guments are a bit tricky. They are useful, but a little less useful than the foundation facts
above.

2.8. Theorem (relative cotangent sequence, affine version). — Suppose C — B — A are ring
homomorphisms. Then there is a natural exact sequence of A-modules

A ®p QB/C — QA/C — QA/B — 0.

The proof will be quite straightforward algebraically, but the statement comes funda-
mentally from geometry, and that is how I remember it. Figure 2 is a sketch of a map

X ——Y . Here X should be interpreted as Spec A, Y as Spec B, and Spec C is a point. (If
you would like a picture with a higher-dimensional Spec C, just take the “product” of Fig-
ure 2 with a curve.) In the Figure, Y is “smooth”, and X is “smooth over Y” — roughly, all
fibers are smooth. p is a point of X. Then the tangent space of the fiber of f at p is certainly
a subspace of the tangent space of the total space of X at p. The cokernel is naturally the
pullback of the tangent space of Y at f(p). This short exact sequence for each p should be
part of a short exact sequence of sheaves

0— Tx/y — TX/Z — f*Ty/Z —0
on X Dualizing this yields

0— f*Qy/Z — QX/Z — Qx/y — 0.
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This is precisely the statement of the Theorem, except we also have left-exactness. This
discrepancy is because the statement of the theorem is more general; we’ll may later see
that in the “smooth” case, we’ll indeed have left-exactness.

2.9. Unimportant aside. As always, whenever you see something right-exact, you should
suspect that there should be some sort of (co)homology theory so that this is the end of
a long exact sequence. This is indeed the case, and this exact sequence involves André-
Quillen homology. You should expect that the next term to the left should be the first
homology corresponding to A/B, and in particular shouldn’t involve C. So if you already
suspect that you have exactness on the left in the case where A /B and B/C are “smooth”
(whatever that means), and the intuition of Figure 2 applies, then you should expect fur-
ther that all that is necessary is that A/B be “smooth”, and that this would imply that the
first André-Quillen homology should be zero. Even though you wouldn’t precisely know
what all the words meant, you would be completely correct!

A\/

Ty/zle(p)

FIGURE 2. A sketch of the geometry behind the relative cotangent sequence

Proof of the relative cotangent sequence (affine version) 2.8.

First, note that surjectivity of Qx,c — Qa/p is clear, as this map is given by da — da
(a € A).

Next, the composition over the middle term is clearly 0, as this composition is given by
db — db — 0.

Finally, we wish to identify Q)5 as the cokernel of A ®g Qp,c = Qa/c. Now Qpp is
exactly the same as Q /¢, except we have extra relations: db = 0 for b € B. These are
precisely the images of 1 ® db on the left. O



2.10. Theorem (conormal exact sequence, affine version). — Suppose B is a C-algebra, 1 is an
ideal of B, and A = B/1. Then there is a natural exact sequence of A-modules

S 1®di a®xdb—a db
B

I/12 A @ Qg,c Qpc—0.

Before getting to the proof, some discussion may be helpful. First, the map & needs to
be rigorously defined. Itisthemap T® d:B/I®g 1 — B/I1® Qp/c.

As with the relative cotangent sequence, the conormal exact sequence is fundamentally
about geometry. To motivate it, consider the sketch of Figure 3. In the sketch, everything
is “smooth”, X is one-dimensional, Y is two-dimensional, j is the inclusion j : X — Y, and
Z (omitted) is a point. Then at a point p € X, the tangent space Tx|, clearly injects into the
tangent space of j(p) in Y, and the cokernel is the normal vector space to X in Y at p. This
should give an exact sequence of bundles on X:

0— TX — )*TY — Nx/y — 0.
dualizing this should give
0= NY,y —=i*Qy/Z — Qx/Z — 0.

This is precisely what appears in the statement of the Theorem, except we see 1/1% rather
than Ng/pec A/spec B aNd the exact sequence in algebraic geometry is not necessary exact on

the left.

FIGURE 3. A sketch of the geometry behind the conormal exact sequence

2.11. We resolve the first issue by declaring I/I? to be the conormal module, and indeed
we’ll soon see the obvious analogue as the conormal sheaf. (Further evidence that 1/1?
deserves to be called the conormal bundle: if Spec A is a closed point of Spec B, we expect
the conormal space to be precisely the cotangent space. And indeed if A = B/m, the
Zariski cotangent space is m/m?.)



And we resolve the second by expecting that the seqeunce of Theorem 2.10 is exact on
the leftif X/Y and Y/Z (and hence X/Z) are “smooth” whatever that means. This is indeed
the case. (If you enjoyed Remark 2.9, you might correctly guess several things. The next
term on the left should be the André-Quillen homology of A/C, so we should only need
that A/C is smooth, and B should be irrelevant. Also, if A = B/I, then we should expect
that I/1? is the first André-Quillen homology of A/B.)

Proof of the conormal exact sequence (affine version) 2.10. We need to identify the cokernel of
5:I/I? - AR Qg sc with Q5 c. Consider A ®g Qg,/c. As an A-module, it is generated by
db (b € B), subject to three relations: dc = 0 for ¢ € $(C) (where ¢ : C — B describes B
as a C-algebra), additivity, and the Leibniz rule. Given any relation in B, d of that relation
is 0.

Now Q4 /¢ is defined similarly, except there are more relations in A; these are precisely
the elements of i € B. Thus we obtain ) 5 ¢ by starting out with A ®p Qp,c, and adding
the additional relations di where i € 1. But this is precisely the image of d! O

2.12. Second definition: universal property. Here is a second definition that is impor-
tant philosophically, by universal property. Technically, it isn’t a definition: by universal
property nonsense, it shows that if the module exists (with the d map), then it is unique
up to unique isomorphism, and then one still has to construct it to make sure that it exists.

Suppose A is a B-algebra, and M is a A-module. An B-linear derivation of A into M is
amap d : A — M of B-modules (not necessarily A-modules) satisfying the Leibniz rule:
d(fg) = f dg + g df. As an example, suppose B = k, and A = k[x], and M = A. Then
an example of a k-linear derivation is d/dx. As a second example, if B = k, A = k[x], and
M = k. Then an example of a k-linear derivation is d/dx|o.

Then d : A — Q4 /g is defined by the following universal property: any other B-linear
derivation d’ : A — M factors uniquely through d:

QOasm

Here f is a map of A-modules. (Note again that d and d’ are not! They are only B-linear.)
By universal property nonsense, if it exists, it is unique up to unique isomorphism. The
candidate I described earlier clearly satisfies this universal property (in particular, it is a
derivation!), hence this is it. [Thus Q is the “unversal derivation”. I should rewrite this
paragraph at some point. Justin points out: the map defined earlier is a derivation, but I
never really say that; thus the original map, together with Q, is a universal derivation.]

The next result will give you more evidence that this deserves to be called the (relative)
cotangent bundle.



2.13. Proposition.  Suppose B is a k-algebra, with residue field k. Then the natural map & :
m/m? — Qg ®p k is an isomorphism.

Proof. By the conormal exact sequence 2.10 with I = mand A = C = k, § is a surjection
(as Qi /x = 0), so we need to show that it is injection, or equivalently that Hom(Qpg 1 ®p
k, k) — Homy(m/m? k) is a surjection. But any element on the right is indeed a derivation
from B to k (an earlier exercise from back in the dark ages on the Zariski tangent space),
which is precisely an element of Homg( Qg y, k) (by the universal property of Qg x), which
is canonically isomorphic to Hom Qg x ®5 k, k) as desired. O

Remark. As a corollary, this (in combination with the Jacobian exercise 2.7 above) gives
a second proof of an exercise from the first quarter, showing the Jacobian criterion for
nonsingular varieties over an algebraically closed field.

Depending on how your brain works, you may prefer using the first (constructive) or
second (universal property) definition to do the next two exercises.

2.F. EXERCISE. (a) (pullback of differentials) If
Al=—A

|

B'~—B
is a commutative diagram, show that there is a natural homomorphism of A’-modules
A’®a Qap — Qaryp. Animportant special caseis B = B'.
(b) (differentials behave well with respect to base extension, affine case) If furthermore the above
diagram is a tensor diagram (i.e. A’ = B’ ®g A) then show that A’ ®x Qa/s — Qarp is
an isomorphism.

2.G. EXERCISE: LOCALIZATION (STRONGER FORM). If S is a multiplicative set of A, show
that there is a natural isomorphism Qg1 = S™'Qa 5. (Again, this should be believable
from the intuitive picture of “vertical cotangent vectors”.) If T is a multiplicative set of
B, show that there is a natural isomorphism Qg 14,715 = S7'Qa /5 where S is the multi-
plicative set of A that is the image of the multiplicative set T C B. [Ziyu used the relative
cotangent sequence. ]
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