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1. HYPERELLIPTIC CURVES

A curve C of genus at least 2 is hyperelliptic if it admits a degree 2 cover of P1. This
map is often called the hyperelliptic map.

1.A. EXERCISE. Verify that a curve C of genus at least 1 admits a degree 2 cover of P1

if and only if it admits a degree 2 invertible sheaf L with h0(C,L) = 2. Possibly in the
course of doing this, verify that if C is a curve, and L has a degree 2 invertible sheaf with
at least 2 (linearly independent) sections, then L has precisely two sections, and that this
L is base-point free and gives a hyperelliptic map.

The degree 2 map C → P1 gives a degree 2 extension of function fields FF(C) over
FF(P1) ∼= k(t). If the characteristic is not 2, this extension is necessarily Galois, and the
involution on C induces (via the equivalence of various categories of curves, Class 42
Theorem 1.1) an involution on C is called the hyperelliptic involution.

1.1. Proposition. — If L corresponds to a hyperelliptic cover C → P1, then L⊗(g−1) ∼= KC.

Proof. Compose the hyperelliptic map with the (g − 1)th Veronese map:

C
L

// P1
O

P1(g−1)
// Pg−1.

The composition corresponds to L⊗(g−1). This invertible sheaf has degree 2g − 2, and the
image is nondegenerate in Pg−1, and hence has at least g sections. But by Exercise 1.C of
Class 44, the only invertible sheaf of degree 2g−2 with (at least) g sections is the canonical
sheaf. �
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1.2. Proposition. — Any curve C of genus at least 2 admits at most one double cover of P1. In
other words, a curve can be in “only one way”.

Proof. If C is hyperelliptic, then we can recover the hyperelliptic map by considering the
canonical linear system given by K (the canonical map, which we’ll use again soon): it is a
double cover of a degree g − 1 rational normal curve (by the previous Proposition), and
this double cover is the hyperelliptic cover (also by the proof of the previous Proposition).

�

Next, we invoke the Riemann-Hurwitz formula. In order to do so, we need to assume
char k = 0, and k = k. However, when we actually discuss differentials, and prove the
Riemann-Hurwitz formula, we will see that we can just require char k 6= 2 (and k = k).

The Riemann-Hurwitz formula implies that hyperelliptic covers have precisely 2g + 2

(distinct) branch points. These branch points determine the cover:

1.3. Claim. — Assume char k 6= 2 and k = k. Given n distinct points r1, . . . , rn ∈ P1, there is
precisely one cover branched at precisely these points if n is even, and none if n is odd.

Proof. The result when n is odd is immediate from the Riemann-Hurwitz formula, so
assume n is even.

Pick a point of P1 distinct from the n branch points, so all n branch points are in the
“complementary” A1. Suppose we have a double cover of A1, C → A1, where x is the
coordinate on A1. This induces a quadratic field extension K over k(x). As char k 6= 2, this
extension is Galois. Let σ be the hyperelliptic involution. Let y be an element of K such
that σ(y) = −y, so 1 and y form a basis for K over the field k(x), and are eigenvectors of
σ. Now σ(y2) = y2, so y2 ∈ k(x). We can replace y by an appropriate k(x)-multiple so
that y2 is a polynomial, with no repeated factors, and monic. (This is where we use the
hypothesis that k is algebraically closed, to get leading coefficient 1.)

Thus y2 = xN+aN−1x
N−1+· · ·+a0, where the polynomial on the right (call it f(x)) has no

repeated roots. The Jacobian criterion implies that this curve C ′ in A2 (with co-ordinates x

and y) is nonsingular. then C ′ is normal and has the same function field as C — but so is
C. Thus C ′ and C are both normalizations of A1 in the finite field extension generated by
y, and hence are isomorphic. Thus we have identified C in terms of an explicit equation!

The branch points correspond to those values of x for which there is exactly one value
of y, i.e. the roots of f(x). In particular, N = n, and f(x) = (x − r1) · · · (x − rn) (where the
ri are interpreted as elements of k).

Having mastered the situation over A1, we return to the situation over P1. We have
identified the function field extension K of FF(P1) = k(x) corresponding to any C double-
covering P1 over the n points — there is only one up to isomorphism, given by adjoining
y with y2 = (x − r1) · · · (x − rn). There is a unique curve branched over r1, . . . , rn: the
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normalization of P1 in the field extension K/k(x). (You might fear that we haven’t acci-
dentally acquired a branch point at the missing point ∞ = P1 − A1. But the total number
of branch points is even, and we already have an even number of points, so there is no
branching at ∞.) �

We can now extract a lot of useful information.

1.4. Curves of every genus. For the first time, we see that there are curves of every genus
g ≥ 0 over an algebraically closed field of characteristic 0: to get a curve of genus g, con-
sider the branched cover branched over 2g+2 distinct points. The unique genus 0 curve is
of this form, and we have seen above that every genus 2 curve is of this form. We’ll soon
see that every genus 1 curve is too. But it is too much to hope that all curves are of this
form, and in Exercise 2.A we’ll see that there are genus 3 curves that are not hyperelliptic,
and we’ll get heuristic evidence that “most” genus 3 curves are not hyperelliptic. We’ll
later get heuristic evidence that “most” genus g curves are not hyperelliptic if g > 2.

We can also classify hyperelliptic curves. Hyperelliptic curves of genus g correspond
to precisely 2g + 2 points on P1 modulo S2g+2, and modulo automorphisms of P1. Thus
“the space of hyperelliptic curves” has dimension

2g + 2 − dim Aut P1 = 2g − 1.

This is not a well-defined statement, because we haven’t rigorously defined “the space of
hyperelliptic curves” — and example of a moduli space. For now, take it as a plausibility
statement. It is also plausible that this space is irreducible and reduced — it is the image
of something irreducible and reduced.

1.5. Genus 2 in particular. In particular, if g = 2, we see that we have a “three-dimensional
space of genus 2 curves”. This isn’t rigorous, but we can certainly show that there are an
infinite number of non-isomorphic genus 2 curves.

1.B. EXERCISE. Fix an algebraically closed field k of characteristic 0. Show that there are
an infinite number of (pairwise) non-isomorphic genus 2 curves k.

1.6. If k is not algebraically closed. If k is not algebraically closed (but of characteristic not
2), the above argument shows that if we have a double cover of A1, then it is of the form
y2 = af(x), where f is monic, and a ∈ k∗/(k∗)2. You may be able to use this to show
that (assuming the k∗ 6= (k∗)2) a double cover is not determined by its branch points.
Moreover, see that this failure is classified by k∗/(k∗)2. Thus we have lots of curves that
are not isomorphic over k, but become isomorphic over k. These are often called twists of
each other.

(In particular, even though haven’t talked about elliptic curves yet, we definitely have
two elliptic curves over Q with the same j-invariant, that are not isomorphic.)
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2. CURVES OF GENUS 3

Suppose C is a curve of genus 3. Then K has degree 2g − 2 = 4, and has g = 3 sections.

2.1. Claim. — K is base-point-free, and hence gives a map to P2.

Proof. We check base-point-freeness by working over the algebraic closure k. For any
point p, by Riemann-Roch,

h0(C,K(−p)) − h0(C,O(p)) = deg(K(−p)) − g + 1 = 3 − 3 + 1 = 1.

But h0(C,O(p)) = 1 by Claim 2.3 of Class 44, so

h0(C,K(−p)) = 2 = h0(C,K) − 1.

Thus p is not a base-point of K for any p, so by Criterion 1.4 of Class 44 for base-point-
freeness, K is base-point-free. �

The next natural question is: Is this a closed immersion? Again, we can check over
algebraic closure. We use our “closed immersion test” (again, see our useful facts). If it
isn’t a closed immersion, then we can find two points p and q (possibly identical) such
that

h0(C,K) − h0(C,K(−p − q)) = 2,

i.e. h0(C,K(−p − q)) = 2. But by Serre duality, this means that h0(C,O(p + q)) = 2. We
have found a degree 2 divisor with 2 sections, so C is hyperelliptic. (Indeed, I could have
skipped that sentence, and made this observation about K(−p − q), but I’ve done it this
way in order to generalize to higher genus.) Conversely, if C is hyperelliptic, then we
already know that K gives a double cover of a nonsingular conic in P2 (also known as a
rational normal curve of degree 2), and hence K does not give a closed immersion.

Thus we conclude that if (and only if) C is not hyperelliptic, then the canonical map
describes C as a degree 4 curve in P2.

Conversely, any quartic plane curve is canonically embedded. Reason: the curve has
genus 3 (we can compute this — see our discussion of Hilbert functions), and is mapped
by an invertible sheaf of degree 4 with 3 sections. But by Exercise 1.C of Class 44, the only
invertible sheaf of degree 2g − 2 with g sections is K.

In particular, each non-hyperelliptic genus 3 curve can be described as a quartic plane
curve in only one way (up to automorphisms of P2).

In conclusion, there is a bijection between non-hyperelliptic genus 3 curves, and plane
quartics up to projective linear transformations.

2.A. EXERCISE. Show that there are non-hyperelliptic genus 3 curves.
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2.B. EXERCISE. Give a heuristic (non-rigorous) argument that the nonhyperelliptic curves
of genus 3 form a family of dimension 6. (Hint: Count the dimension of the family of
nonsingular quartics, and quotient by Aut P2 = PGL(3).)

The genus 3 curves thus seem to come in two families: the hyperelliptic curves (a fam-
ily of dimension 5), and the nonhyperelliptic curves (a family of dimension 6). This is
misleading — they actually come in a single family of dimension 6.

In fact, hyperelliptic curves are naturally limits of nonhyperelliptic curves. We can
write down an explicit family. (This explanation necessarily requires some hand-waving,
as it involves topics we haven’t seen yet.) Suppose we have a hyperelliptic curve branched
over 2g + 2 = 8 points of P1. Choose an isomorphism of P1 with a conic in P2. There is a
nonsingular quartic meeting the conic at precisely those 8 points. (This requires Bertini’s
theorem, so I’ll skip that argument.) Then if f is the equation of the conic, and g is the
equation of the quartic, then f2 + t2g is a family of quartics that are nonsingular for most
t (nonsingular is an open condition as we will see). The t = 0 case is a double conic.
Then it is a fact that if you normalize the family, the central fiber (above t = 0) turns
into our hyperelliptic curve. Thus we have expressed our hyperelliptic curve as a limit of
nonhyperelliptic curves.

I then discussed the 28 bitangents to any smooth quartic curve, and their relationship
to other interesting geometry, for example the 6 branch points of a genus 2 hyperelliptic
cover (both are examples of theta characteristics) and the 27 lines on any smooth cubic
surface (and the link to the Weyl groups of E7 and E6). I likely won’t type those up in
these notes.
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