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1. A SERIES OF CRUCIAL OBSERVATIONS

We are now ready to start understanding curves in a hands on way. We will repeatedly
make use of the following series of crucial remarks, and it will be important to have them
at the tip of your tongue.

In what follows, C will be a projective, nonsingular, geometrically integral, over a field
k. (Often, what matters is integrality rather than geometric integrality, but most readers
aren’t worrying about this distinction, and those that are can weaken hypotheses as they
see fit.) L is an invertible sheaf on C.

1.1. Negative degree line bundles have no section. h°(C,L) = 0 if deg £ < 0. Reason: deg £
is the number of zeros minus the number of poles (suitably counted) of any rational sec-
tion. If there is a regular section (i.e. with no poles), then this is necessarily non-negative.
Refining this argument gives:

1.2. Degree 0 line bundles, and recognizing when they are trivial. h°(C, L) =0or1ifdeg L =0,
and if h°(C, £) = 1 then £ = Oc. Reason: if there is a section s, it has no poles and hence
no zeros. Then s gives a trivialization for the invertible sheaf. (Recall how this works: we
have a natural bijection for any open set I'(U, £) « T'(U, Oy), where the map from left to
rightis s’ — s’/s, and the map from right to left is f — sf.) So if there is a section, £ = O.
But we’ve already checked that for a geometrically integral projective variety, h°(O) = 1.

1.3. Twisting L by a (degree 1) point changes h° by at most 1. Suppose p is any closed point
of degree 1 (i.e. the residue field of p is k). Then h°(C, £) —h®(C, L(—p)) = 0 or 1. Reason:
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consider 0 = Oc¢(—p) = Oc — O,, = 0, tensor with L (this is exact as £ is locally free) to
get

0= L(—p)—= L= L], = 0.

Then h°(C, L],) =1, so as the long exact sequence of cohomology starts off
0— HO(C>£(_D)) - HO(C>£) — HO(C>£‘p))

we are done.

1.4. Numerical criterion for L to be base-point-free. ~ Suppose for this remark that k is
algebraically closed. (In particular, all closed points have degree 1 over k.) Then if
ho(C, £) — h%(C, L(—p)) = 1 for all closed points p, then L is base-point-free, and hence
induces a morphism from C to projective space. Reason: given any p, our equality shows
that there exists a section of £ that does not vanish at p.

1.5. Next, suppose p and g are distinct (closed) points of degree 1. Then h°(C, L)
ho(C, L(—p—q)) =0, 1, or 2 (by repeating the argument of Remark 1.3 twice). If h°(C, £)
ho(C, L(—p — q)) = 2, then necessarily

1) h(C, £) = h(C, L(=p)) + 1 =h°(C,L(—q)) + 1 =h"C,L(~p — q)) + 2.

Then the linear system L separates points p and g, i.e. the corresponding map f to projec-
tive space satisfies f(p) # f(q). Reason: there is a hyperplane of projective space passing
through p but not passing through q, or equivalently, there is a section of £ vanishing at
p but not vanishing at q. This is because of the last equality in (1).

1.6. By the same argument as above, if p is a (closed) point of degree 1, then h°(C, L) —
ho(C, £(—2p)) =0, 1, or 2. I claim that if this is 2, then map corresponds to £ (which is
already seen to be base-point-free from the above) separates the tangent vectors at p. To
show this, I need to show that the cotangent map is surjective. To show surjectivity onto a
one-dimensional vector space, I just need to show that the map is non-zero. So I need to
give a function on the target vanishing at the image of p that pulls back to a function that
vanishes at p to order 1 but not 2. In other words, I want a section of £ vanishing at p to
order 1 but not 2. But that is the content of the statement h®(C, £L(—p)) —h®(C, £L(—-2p)) =
1.

1.7. Criterion for L to be a closed immersion. Combining some of our previous comments:
suppose C is a curve over an algebraically closed field k, and L is an invertible sheaf such
that for all closed points p and q, not necessarily distinct, h°(C, £) — h°(C, L(—p — q)) = 2,
then £ gives a closed immersion into projective space, as it separates points and tangent
vectors, by Theorem 1.11 from last day (Class 43).

1.8. We know h° if the degree is sufficiently high. We now bring in Serre duality. I claim that
deg £ > 2g — 2 implies

h(C,L) =deg L — g+ 1.
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We know hO(C, £) if deg £ > 0. This is important — remember this! Reason: h'(C, L) =
ho(C,K @ LV); but K ® LV has negative degree (as K has degree 2g — 2), and thus this
invertible sheaf has no sections. Thus Riemann-Roch gives us the desired result.

1.A. EXERCISE. Suppose that k is algebraically closed, so the previous remark applies.
Show that C — p is affine. (Hint: Show that if k > 0, then O(kp) is base-point free and
has at least two linearly independent sections, one of which has divisor kp. Use these two
sections to map to P! so that the preimage of oo is (set-theoretically) p. Argue that the
map is finite, and that C — p is the preimage of A'.)

1.B. FOLLOW-UP EXERCISE. Show that any non-projective integral curve over a field k
(not necessarily algebraically closed) is affine.

1.C. USEFUL EXERCISE (RECOGNIZING K AMONG DEGREE 2g — 2 LINE BUNDLES). Sup-
pose L is a degree 2g — 2 invertible sheaf. Show that it has g — 1 or g sections, and it has
g sections if and only if £ = K.

1.9. Conclusion. We can combine much of the above discussion to give the following
useful fact. If k is algebraically closed, then deg £ > 2g implies that £ is basepoint free
(and hence determines a morphism to projective space). Also, deg £ > 2g + 1 implies that
this is in fact a closed immersion. Remember this!

1.D. EXERCISE. Show that the statements in the previous paragraph even without the
hypothesis that k is algebraically closed. (Hint: to show one of the facts about some curve
C and line bundle £, consider instead C ®gpeck Spec k. Then somehow show that if the
pullback of £ here has sections giving you one of the two desired properties, then there
are sections downstairs with the same properties. You may want to use facts that we’ve
used, such as the fact that the h° is preserved by extension of k, or that the property of an
affine morphism being a closed immersion holds if and only if it does after an extension
of k, Exercise 1.E from the previous class, Class 43.)

We’re now ready to take these facts and go to the races.

2. CURVES OF GENUS 0

We are now ready to (in some form) answer the question: what are the curves of genus
0?

We have seen a genus 0 curve (over a field k) that was not isomorphic to P': x*+y?+z% =
0 in P4. We have already observed that this curve is not isomorphic to P}, because it
doesn’t have an R-valued point. On the other hand, we haven’t seen a genus 0 curve over
an algebraically closed field with this property. This isn’t a coincidence: the lack of an
existence of a k-valued point is the only obstruction to a genus 0 curve being P'.
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2.1. Claim. — Suppose C is genus 0, and C has a k-valued (degree 1) point. Then C = P}.

Thus we see that all genus 0 (integral, nonsingular) curves over an algebraically closed
field are isomorphic to P'.

Proof. Let p be the point, and consider £ = O(p). Then deg £ = 1, so we can apply what
we know above: first, h°(C, £) = 2 (Remark 1.8), and second, these two sections give a
closed immersion into P} (Remark 1.9). But the only closed immersion of a curve into P}
is an isomorphism! O

As a fun bonus, we see that the weird real curve x* + y? + z? = 0 in P4 has no divisors
of degree 1 over R (effective divisors); otherwise, we could just apply the above argument
to the corresponding line bundle.

This weird curve shows us that over a non-algebraically closed field, there can be genus
0 curves that are not isomorphic to Pj. The next result lets us get our hands on them as
well.

2.2. Claim. — All genus 0 curves can be described as conics in P

Proof. Any genus 0 curve has a degree —2 line bundle — the canonical bundle K. Thus
any genus 0 curve has a degree 2 line bundle: £ = K. We apply Remark 1.9: h°(C, £) =
3> 2g+ 1, so this line bundle gives a closed immersion into P2. O

2.A. EXERCISE. Suppose C is a genus 0 curve (projective, geometrically integral and
nonsingular). Show that C has a point of degree at most 2.

We will use the following result later.

2.3. Claim. — Suppose C is not isomorphic to P} (with no restrictions on the genus of C), and L
is an invertible sheaf of degree 1. Then h°(C, £) < 2.

Proof. Otherwise, let s; and s, be two (independent) sections. As the divisor of zeros of
si is the degree of £, each vanishes at a single point p; (to order 1). But p; # p, (or else
s1/s2 has no poles or zeros, i.e. is a constant function, i.e. s; and s, are dependent). Thus
we get a map C — P! which is basepoint free. This is a finite degree 1 map of nonsingular
curves, which induces a degree 1 extension of function fields, i.e. an isomorphism of
function fields, which means that the curves are isomorphic. But we assumed that C is
not isomorphic to P;. O

2.B. EXERCISE. Show that if k is algebraically closed, then C has genus 0 if and only if all
degree 0 line bundles are trivial.



3. CURVES OF GENUS 2

3.1. Why not do curves of genus 1 now?. It might make most sense to jump to genus 1 at
this point, but the theory of elliptic curves is especially rich and beautiful, so we’ll leave
it for later.

In general, curves have quite different behaviors (topologically, arithmetically, geomet-
rically) depending on whether g =0, g = 1, or g > 2. This trichotomy extends to varieties
of higher dimension. I gave a very brief discussion of this trichotomy for curves. For ex-
ample, arithmetically, genus O curves can have lots and lots of points, genus 1 curves can
have lots of points, and by Faltings” Theorem (Mordell’s Conjecture) any curve of genus
at least 2 has at most finitely many points. (Thus we knew before Wiles that x™ +y™ = z"
in P? has at most finitely many solutions for n > 4, as such curves have genus (“;]) >1.)
Geometrically, Riemann surfaces of genus 0 are positively curved, Riemann surfaces of
genus 1 are flat, and Riemann surfaces of genus 1 are negatively curved. We will soon see
that curves of genus at least 2 have finite automorphism groups, while curves of genus 1
have some automorphisms (a one-dimensional family), and the unique curve of genus 0
(over an algebraically closed field) have a three-dimensional automorphism group.

3.2. Back to curves of genus 2.

Over an algebraically closed field, there is only one genus 0 curve. We haven’t yet seen
any curves of genus 2 — how many are there? How can we get a hold of them.

Fix a curve C of genus g = 2. Then K is degree 2g — 2 = 2, and has 2 sections (Ex-
ercise 1.C). I claim that K is base-point-free. We may assume k is algebraically closed,
as base-point-freeness is independent of field extension of k. If K is not base-point-free,
then if p is a base point, then K(—p) is a degree 1 invertible sheaf with 2 sections, and we
just showed (Claim 2.3) that this is impossible. Thus we canonically constructed a double
cover of P! (unique up to automorphisms of P'). Conversely, any double cover C — P!
arises from a degree 2 invertible sheaf with at least 2 sections, so if g(C) = 2, this invert-
ible sheaf must be the canonical bundle (as the only degree 2 invertible sheaf on a genus
2 curve with at least 2 sections is K¢, Exercise 1.C).

Hence we have a natural bijection between genus 2 curves and genus 2 double covers
of P'.

Thus if we could classify genus 2 double covers of P!, we could classify all genus 2
curves. We'll do that next day, at least in the case where k is algebraically closed and
characteristic 0. While we're doing that, we may as well study double covers of P! instead
— the theory of hyperelliptic curves.
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