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Welcome back!

Let’s now use what we have developed to study something explicit — curves. Our
motivating question is a loose one: what are the curves, by which I mean nonsingular
irreducible separated curves, finite type over a field k? In other words, we’ll be dealing
with geometry, although possibly over a non-algebraically closed field.

Here is an explicit question: are all curves (say reduced, even non-singular, finite type
over given k) isomorphic? Obviously not: some are affine, and some (such as P1) are
not. So to simplify things — and we’ll further motivate this simplification in Class 42
— are all projective curves isomorphic? Perhaps all nonsingular projective curves are
isomorphic to P1? Once again the answer is no, but the proof is a bit subtle: we’ve defined
an invariant, the genus, and shown that P1 has genus 0, and that there exist nonsingular
projective curves of non-zero genus. Are all (nonsingular) genus 0 curves isomorphic to
P1? We know there exist nonsingular genus 1 curves (plane cubics) — is there only one?
If not, “how many” are there?

In order to discuss interesting questions like these, we’ll develop some theory. We first
show a useful result that will help us focus our attention on the projective case.

1. NORMALIZATION

I now want to tell you how to normalize a reduced Noetherian scheme, which is roughly
how best to turn a scheme into a normal scheme. More precisely, a normalization of a
scheme X is a morphism ν : X̃ → X from a normal scheme, where ν induces a bijection
of irreducible components of X̃ and X, and ν gives a birational morphism on each of the
components. It will be nicer still, as it will satisfy a universal property. (I drew a picture
of a normalization of a curve.)
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Let’s begin with the case where X is irreducible, and hence integral. (We will then deal
with the more general case, and also discuss normalization in a function field extension.)

In this case of X irreducible, the normalization ν : X̃ → X is an affine and surjective
map, such that given any dominant morphism f from an irreducible normal scheme to X,
this morphism factors uniquely through ν:
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Thus if the normalization exists, then it is unique up to unique isomorphism. We now
have to show that it exists, and we do this in the usual way. We deal first with the case
where X is affine, say X = Spec A, where A is an integral domain. Then let Ã be the
integral closure of A in its fraction field FF(A).

1.A. EXERCISE. Show that ν : Spec Ã → Spec A is surjective. (Hint: use the Going-up
Theorem.)

1.B. EXERCISE. Show that ν : Spec Ã → Spec A satisfies the universal property.

1.C. EXERCISE. Show that normalizations exist in general.

1.D. EXERCISE. Show that dim X̃ = dim X (hint: see the discussion around the notes for
the Going-Up Theorem).

1.E. EXERCISE. Explain how to generalize the notion of normalization to the case where X

is a reduced Noetherian scheme (with possibly more than one component). This basically
requires defining a universal property. I’m not sure what the “perfect” definition, but all
reasonable universal properties should be equivalent.

1.F. EXERCISE. Show that the normalization map is an isomorphism on an open dense
subset of X.

Now might be a good time to see some examples.

1.G. EXERCISE. Show that Spec k[t] → Spec k[x, y]/(y2 − x2(x + 1)) given by (x, y) 7→

(t2 − 1, t(t2 − 1)) (see Figure 1) is a normalization. (Hint: show that k[t] and k[x, y]/(y2 −

x2(x + 1)) have the same fraction field. Show that k[t] is integrally closed. Show that
k[t]/k[x, y]/(y2 − x2(x + 1)) is an integral extension.)
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FIGURE 1. The normalization Spec k[t] → Spec k[x, y]/(y2 −x2(x+1)) given
by (x, y) 7→ (t2 − 1, t(t2 − 1))

You will see that once we guess what the normalization is, it isn’t hard to verify that it is
indeed the normalization. Perhaps a few words are in order as to where the polynomials
t2 − 1 and t(t2 − 1) arose in the previous exercise. The key idea is to guess t = y/x. (Then
t2 = x + 1 and y = xt quickly.) The key idea comes from three possible places. We begin
by sketching the curve, and noticing the node at the origin. (a) The function y/x is well-
defined away from the node, and at the node, the two branches have “values” y/x = 1

and y/x = −1. (b) We can also note that if t = y/x, then t2 is a polynomial, so we’ll need
to adjoin t in order to obtain the normalization. (c) The curve is cubic, so we expect a
general line to meet the cubic in three points, counted with multiplicity. (We’ll make this
precise when we discuss Bezout’s Theorem.) There is a P1 parametrizing lines through
the origin (with co-ordinate equal to the slope of the line, y/x), and most such lines meet
the curve with multiplicity two at the origin, and hence meet the curve at precisely one
other point of the curve. So this “co-ordinatizes” most of the curve, and we try adding in
this co-ordinate.

1.H. EXERCISE. Find the normalization of the cusp y2 = x3.

1.I. EXERCISE. Find the normalization of the tacnode y2 = x4.

Notice that in the previous examples, normalization “resolves” the singularities of the
curve. In general, it will do so in dimension one (in reasonable Noetherian circumstances,
as normal Noetherian domains of dimension one are all Discrete Valuation Rings), but
won’t do so in higher dimension (we’ll see that the cone z2 = x2 + y2 is normal).

1.J. EXERCISE. Suppose X = Spec Z[15i]. Describe the normalization X̃ → X. (Hint:
it isn’t hard to find an integral extension of Z[15i] that is integrally closed.) Over what
points of X is the normalization not an isomorphism?
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The following fact is useful.

1.1. Theorem (finiteness of integral closure). — Suppose A is a domain, K = FF(A), L/K is a
finite separable field extension, and B is the integral closure of A in L (“the integral closure of A

in the field extension L/K”, i.e. those elements of L integral over A).
(a) if A is integrally closed, then B is a finitely generated A-module.
(b) if A is a finitely generated k-algebra, then B (the integral closure of A in its fraction field) is a
finitely generated A-module.

I hope to type up a proof of these facts at some point to show you that they are not that
bad. Much of part (a) was proved by Greg Brumfiel in 210B.

Warning: (b) does not hold for Noetherian A in general. I find this very alarming. I
don’t know an example offhand, but one is given in Eisenbud’s book. This is a sign that
this Theorem is not easy.

1.K. EXERCISE. Show that if X is an integral finite-type k-scheme, then its normalization
ν : X̃ → X is a finite morphism.

1.L. EXERCISE. (This is an important generalization!) Suppose X is an integral scheme.
Define the normalization of X, ν : X̃ → X, in a given finite field extension of the function field
of X. Show that X̃ is normal. (This will be hard-wired into your definition.) Show that if
either X is itself normal, or X is finite type over a field k, then the normalization in a finite
field extension is a finite morphism. Again, this is a finite morphism. (Again, for this
we need finiteness of integral closure 1.1.)

Let’s try this in a few cases.

1.M. EXERCISE. Suppose X = Spec Z (with function field Q). Find its integral closure in
the field extension Q(i). (There is no “geometric” way to do this; it is purely an algebraic
problem, although the answer should be understood geometrically.)

A finite extension K of Q is called a number field, and the integral closure of Z in K the
ring of integers of K, denoted OK. (This notation is a little awkward given our other use
of the symbol O.) By the previous exercises, SpecOK is a Noetherian normal domain of
dimension 1 (hence regular). This is called a Dedekind domain. We think of it as a smooth
curve.

1.N. EXERCISE. (a) Suppose X = Spec k[x] (with function field k(x)). Find its integral
closure in the field extension k(y), where y2 = x2 +x. (Again we get a Dedekind domain.)
(b) Suppose X = P1, with distinguished open Spec k[x]. Find its integral closure in the
field extension k(y), where y2 = x2 + x. (Part (a) involves computing the normalization
over one affine open set; now figure out what happens over the “other” affine open set.)
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2. EXTENDING MAPS TO PROJECTIVE SCHEMES OVER SMOOTH CODIMENSION ONE
POINTS: THE “CLEAR DENOMINATORS” THEOREM

2.1. The “curve to projective” extension Theorem. — Suppose C is a pure dimension 1 Noetherian
scheme over a base S, and p ∈ C is a nonsingular closed point of it. Suppose Y is a projective S-
scheme. Then any morphism C − p → Y extends to C → Y.

I often called this the “clear denominators” theorem because it reminds me of the
central simple idea in the proof. Suppose you have a map from A1 − {0} to projec-
tive space, and you wanted to extend it to Pn. Say for example the map was given by
t 7→ [t4 + t−3; t−2 + 4t]. Then of course you would “clear the denominators”, and replace
the map by t 7→ [t7 + 1; t + t4].

In practice, we’ll use this theorem when S = k, and C is a k-variety.

Note that if such an extension exists, then it is unique: The non-reduced locus of C is a
closed subset (we checked this earlier for any Noetherian scheme), not including p, so by
replacing C by an open neighborhood of p that is reduced, we can use the theorem that
maps from reduced schemes to separated schemes are determined by their behavior on a
dense open set.

I will give three proofs, which I find enlightening in different ways.

Proof 1. By restricting to an affine neighborhood of C, we can reduce to the case where C

is affine. We can similarly assume S is affine.

We next reduce to the case where Y = Pn
S . Choose a closed immersion Y → Pn

S . If the
result holds for Pn, and we have a morphism C → Pn with C − p mapping to Y, then C

must map to Y as well. Reason: we can reduce to the case where the source is an affine
open subset, and the target is An

k ⊂ Pn
k (and hence affine). Then the functions vanishing

on Y ∩ An
k pull back to functions that vanish at the generic point of C and hence vanish

everywhere on C, i.e. C maps to Y.

Choose a uniformizer t ∈ m − m2 in the local ring of C at p. By discarding the points of
the vanishing set V(t) aside from p, and taking an affine open subset of p in the remainder
we reduce to the case where t cuts out precisely m (i.e. m = (y)). Choose a dense open
subset U of C − p where the pullback of O(1) is trivial. Take an affine open neighborhood
Spec A of p in U ∪ {p}. Then the map Spec A − p → Pn corresponds to n + 1 functions,
say f0, . . . , fn ∈ Am, not all zero. Let m be the smallest valuation of all the fi. Then
[t−mf0; . . . ; t

−mfn] has all entries in A, and not all in the maximal ideal, and thus is defined
at p as well. �

Proof 2. We first extend the map Spec FF(C) → Y to SpecOC,p → Y. We do this as fol-
lows. Note that OC,p is a discrete valuation ring. We show first that there is a morphism
SpecOC,p → Pn. The rational map can be described as [a0; a1; · · · ; an] where ai ∈ OC,p.
Let m be the minimum valuation of the ai, and let t be a uniformizer of OC,p (an element
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of valuation 1). Then [t−ma0; t
−ma1; . . . t

−man] is another description of the morphism
Spec FF(OC,p) → Pn, and each of the entries lie in OC,p, and not all entries lie in m (as one
of the entries has valuation 0). This same expression gives a morphism SpecOC,p → Pn.

Our intuition now is that we want to glue the maps SpecOC,p → Y (which we picture
as a map from a germ of a curve) and C − p → Y (which we picture as the rest of the
curve). Let Spec R ⊂ Y be an affine open subset of Y containing the image of SpecOC,p.
Let Spec A ⊂ C be an affine open of C containing p, and such that the image of Spec A− p

in Y lies in Spec R, and such that p is cut out scheme-theoretically by a single equation (i.e.
there is an element t ∈ A such that (t) is the maximal ideal corresponding to p. Then R and
A are domains, and we have two maps R → A(t) (corresponding to SpecOC,p → Spec R)
and R → At (corresponding to Spec A − p → Spec R) that agree “at the generic point”, i.e.
that give the same map R → FF(A). But At ∩A(t) = A in FF(A) (e.g. by algebraic Hartogs’
theorem — elements of the fraction field of A that don’t have any poles away from t, nor
at t, must lie in A), so we indeed have a map R → A agreeing with both morphisms. �

Proof 3. As Y → S, by the valuative criterion of properness, the map Spec FF(C) → Y

extends to SpecOC,p → Y. Then proceed as in Proof 2. �

The third proof is quite short, and indeed extends the statement of Theorem 2.1 to the
proper case. The only downside is that the previous proofs are straightforward, while the
proof of the valuative criterion is highly nontrivial.

2.A. EXERCISE (USEFUL PRACTICE!). Suppose X is a Noetherian k-scheme, and Z is an
irreducible codimension 1 subvariety whose generic point is a nonsingular point of X (so
the local ring OX,Z is a discrete valuation ring). Suppose X 99K Y is a rational map to
a projective k-scheme. Show that the domain of definition of the rational map includes
a dense open subset of Z. In other words, rational maps from Noetherian k-schemes
to projective k-schemes can be extended over nonsingular codimension 1 sets. (By the
easy direction of the valuative criterion of separatedness, or the theorem of uniqueness of
extensions of maps from reduced schemes to separated schemes.) this map is unique.)
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