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1. APPLICATION OF COHOMOLOGY: HILBERT POLYNOMIALS AND FUNCTIONS,
RIEMANN-ROCH, DEGREES, AND ARITHMETIC GENUS

We have now seen some powerful uses of Cech cohomology, to prove things about
spaces of global sections, and to prove Serre vanishing. We will now see some classical
constructions come out very quickly and cheaply.

In this section, we will work over a field k. Define hi(X,F) := dimk Hi(X,F).

Suppose F is a coherent sheaf on a projective k-scheme X. Define the Euler character-
istic

χ(X,F) :=

dim X∑

i=0

(−1)ihi(X,F).

We will see repeatedly here and later that Euler characteristics behave better than indi-
vidual cohomology groups. As one sign, notice that for fixed n, and m ≥ 0,

h0(Pn
k ,O(m)) =

(

n + m

m

)

=
(m + 1)(m + 2) · · · (m + n)

n!
.

Notice that the expression on the right is a polynomial in m of degree n. (For later
reference, notice also that the leading coefficient is mn/n!.) But it is not true that

h0(Pn
k ,O(m)) =

(m + 1)(m + 2) · · · (m + n)

n!

for all m — it breaks down for m ≤ −n − 1. Still, you can check that

χ(Pn
k ,O(m)) =

(m + 1)(m + 2) · · · (m + n)

n!
.

So one lesson is this: if one cohomology group (usual the top or bottom) behaves well in
a certain range, and then messes up, likely it is because (i) it is actually the Euler char-
acteristic which is behaving well always, and (ii) the other cohomology groups vanish in
that range.
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In fact, we will see that it is often hard to calculate cohomology groups (even h0), but
it can be easier calculating Euler characteristics. So one important way of getting a hold
of cohomology groups is by computing the Euler characteristics, and then showing that
all the other cohomology groups vanish. Hence the ubiquity and importance of vanishing
theorems. (A vanishing theorem usually states that a certain cohomology group vanishes
under certain conditions.) We will see this in action when discussing curves.

The following exercise shows another way in which Euler characteristic behaves well:
it is additive in exact sequences.

1.A. EXERCISE. Show that if 0 → F → G → H → 0 is an exact sequence of coherent
sheaves on X, then χ(X,G) = χ(X,F) + χ(X,H). (Hint: consider the long exact sequence
in cohomology.) More generally, if

0 → F1 → · · · → Fn → 0

is an exact sequence of sheaves, show that
n∑

i=1

(−1)iχ(X,Fi) = 0.

1.1. The Riemann-Roch Theorem for line bundles on a nonsingular projective curve.
Suppose L is an invertible sheaf on a projective curve C over k. We tentatively define the
degree of L as follows. Let s be a non-zero rational section on C. Let D be the divisor of
zeros and poles of s:

D :=
∑

p∈C

vp(s)[p]

Then define degL := deg D =
∑

vp(s) deg p. Here deg p is the degree of the residue field
of OC at p, i.e. dim kOp = deg p. It isn’t yet clear degL is well-defined: a priori it depends
on the choice of s. Nonetheless you should prove the following.

1.B. EXERCISE: THE RIEMANN-ROCH THEOREM FOR LINE BUNDLES ON A NONSINGULAR
PROJECTIVE CURVE. Show that

χ(C,L) = degL + χ(C,OC).

Here is a possible hint. Suppose p ∈ C is a closed point of C, of degree d. Then twisting
the closed exact sequence

0 → OC(−p) → OC → Op → 0

by L (as ⊗L is an exact functor) we obtain
0 → L(−p) → L → Op → 0

(where we are using a non-canonical isomorphism L|p ∼= OC|p = Op). Use the additivity
of χ in exact sequences to show that the result is true for L if and only if it is true for
L(−p). The result is also clearly true for L = O. Then argue by “induction” that it is true
for all L.
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In particular, degL is well-defined!

1.C. EXERCISE. If L and M are two line bundles on a nonsingular projective curve C,
show that degL⊗M = degL + degM. (Hint: choose rational sections of L and M.)

In fact we could have defined the degree of a line bundle L on a nonsingular projective
curve C to be χ(C,L)−χ(C,OC). Then Riemann-Roch would be true by definition; but we
would still want to relate this notion of degree to the classical notion of zeros and poles,
which we would do by the argument in the previous paragraph. Otherwise, for example,
Exercise 1.C isn’t obvious from the cohomological definition.

Definition. Suppose C is a reduced projective curve (pure dimension 1, over a field k).
If L is a line bundle on C, define degL = χ(C,L) − χ(C,OC). If C is irreducible, and F is
a coherent sheaf on C, define the rank of F , denoted rankF , to be its rank at the generic
point of C.

1.D. EASY EXERCISE. Show that the rank is additive in exact sequences: if 0 → F → G →
H → 0 is an exact sequence of coherent sheaves, show that rankF − rankG + rankH = 0.

Definition. Define

(1) degF = χ(C,F) − (rankF)χ(C,OC).

If F is a line bundle, we can drop the hypothesis of irreducibility in the definition.

This generalizes the notion of the degree of a line bundle on a nonsingular curve.

1.E. EASY EXERCISE. Show that degree is additive in exact sequences.

The statement (1) is often called Riemann-Roch for coherent sheaves (or vector bundles)
on a projective curve.

If F is a coherent sheaf on X, define the Hilbert function of F :

hF(n) := h0(X,F(n)).

The Hilbert function of X is the Hilbert function of the structure sheaf. The ancients
were aware that the Hilbert function is “eventually polynomial”, i.e. for large enough n,
it agrees with some polynomial, called the Hilbert polynomial (and denoted pF(n) or
pX(n)). This polynomial contains lots of interesting geometric information, as we will
soon see. In modern language, we expect that this “eventual polynomiality” arises be-
cause the Euler characteristic should be a polynomial, and that for n � 0, the higher
cohomology vanishes. This is indeed the case, as we now verify.

1.2. Theorem. — If F is a coherent sheaf on a projective k-scheme X ↪→ Pn
k , χ(X,F(m)) is a

polynomial of degree equal to dim SuppF . Hence by Serre vanishing (Theorem 1.2(ii) in the class
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35/36 notes), for m � 0, h0(X,F(m)) is a polynomial of degree dim SuppF . In particular, for
m � 0, h0(X,OX(m)) is polynomial with degree = dim X.

Here OX(m) is the restriction or pullback of OP
n
k
(1). Both the degree of the 0 polynomial

and the dimension of the empty set is defined to be −1. In particular, the only coherent
sheaf Hilbert polynomial 0 is the zero-sheaf.

Proof. Define pF(m) = χ(X,F(m)). We will show that pF(m) is a polynomial of the
desired degree.

Step 1. Assume first that k is infinite. (This is one of those cases where even if you
are concerned with potentially arithmetic questions over some non-algebraically closed
field like Fp, you are forced to consider the “geometric” situation where the base field is
algebraically closed.)

F has a finite number of associated points. Then there is a hyperplane x = 0 (x ∈

Γ(X,O(1))) missing this finite number of points. (This is where we use the algebraic clo-
sure, or more precisely, the infinitude of k.)

Then the map F(−1)
×x

// F is injective (on any affine open subset, F corresponds to
a module, and x is not a zero-divisor on that module, as it doesn’t vanish at any associated
point of that module). Thus we have a short exact sequence

(2) 0 → F(−1) → F → G → 0

where G is a coherent sheaf.

1.F. EXERCISE. Show that Supp G = SuppF ∩ V(x).

Hence dim Supp G = dim SuppF − 1 by Krull’s Principal Ideal Theorem unless F = 0

(in which case we already know the result, so assume this is not the case).

Twisting (2) by O(m) yields

0 → F(m − 1) → F(m) → G(m) → 0

Euler characteristics are additive in exact sequences, from which pF(m) − pF(m − 1) =

pG(m). Now pG(m) is a polynomial of degree dim SuppF − 1.

The result follows from a basic fact about polynomials.

1.G. EXERCISE. Suppose f and g are functions on the integers, f(m + 1) − f(m) = g(m)

for all m, and g(m) is a polynomial of degree d ≥ 0. Show that f is a polynomial of degree
d + 1.

Step 2: k finite.
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1.H. EXERCISE. Complete the proof using Exercise 2.G from the notes from class 35/36
(on cohomology and change of base field), using K = k.

�

Definition. pF(m) was defined in the above proof. If X ⊂ Pn is a projective k-scheme,
define pX(m) := pOX

(m).

Example 1. pPn(m) =
(

m+n

n

)

, where we interpret this as the polynomial (m + 1) · · · (m +

n)/n!.

Example 2. Suppose H is a degree d hypersurface in Pn. Then from the closed sub-
scheme exact sequence

0 → OPn(−d) → OPn → OH → 0,

we have
pH(m) = pPn(m) − pPn(m − d) =

(

m + n

n

)

−

(

m + n − d

n

)

.

1.I. EXERCISE. Show that the twisted cubic (in P3) has Hilbert polynomial 3m + 1.

1.J. EXERCISE. Find the Hilbert polynomial for the dth Veronese embedding of Pn (i.e.
the closed immersion of Pn in a bigger projective space by way of the line bundle O(d)).

From the Hilbert polynomial, we can extract many invariants, of which two are par-
ticularly important. The first is the degree. Classically, the degree of a complex projective
variety of dimension n was defined as follows. We slice the variety with n generally cho-
sen hyperplane. Then the intersection will be a finite number of points. The degree is
this number of points. Of course, this requires showing all sorts of things. Instead, we
will define the degree of a projective k-scheme of dimension n to be leading coefficient of the
Hilbert polynomial (the coefficient of mn) times n!.

Using the examples above, we see that the degree of Pn in itself is 1. The degree of the
twisted cubic is 3.

1.K. EXERCISE. Show that the degree is always an integer. Hint: by induction, show that
any polynomial in m of degree k taking on only integral values must have coefficient of
mk an integral multiple of 1/k!. Hint for this: if f(x) takes on only integral values and is
of degree k, then f(x + 1) − f(x) takes on only integral values and is of degree k − 1.

1.L. EXERCISE. Show that the degree of a degree d hypersurface is d (preventing a
notational crisis).

1.M. EXERCISE. Suppose a curve C is embedded in projective space via an invertible
sheaf of degree d. In other words, this line bundle determines a closed immersion. Show
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that the degree of C under this embedding is d (preventing another notational crisis).
(Hint: Riemann-Roch, Exercise 1.B.)

1.N. EXERCISE. Show that the degree of the dth Veronese embedding of Pn is dn.

1.O. EXERCISE (BEZOUT’S THEOREM). Suppose X is a projective scheme of dimension
at least 1, and H is a degree d hypersurface not containing any associated points of X.
(For example, if X is a projective variety, then we are just requiring H not to contain any
irreducible components of X.) Show that deg H ∩ X = d deg X.

This is a very handy theorem! For example: if two projective plane curves of degree m

and degree n share no irreducible components, then they intersect in mn points, counted
with appropriate multiplicity. The notion of multiplicity of intersection is just the degree
of the intersection as a k-scheme.

We trot out a useful example we have used before: let k = Q, and consider the parabola
x = y2. We intersect it with the four lines, x = 1, x = 0, x = −1, and x = 2, and see that
we get 2 each time (counted with the same convention as with the last time we saw this
example).

If we intersect it with y = 2, we only get one point — but that’s of course because this
isn’t a projective curve, and we really should be doing this intersection on P2

k — and in
this case, the conic meets the line in two points, one of which is “at ∞”.

]

1.P. EXERCISE. Show that the degree of the d-fold Veronese embedding of Pn is dn

in a different way (from Exercise 1.N) as follows. Let vd : Pn → PN be the Veronese
embedding. To find the degree of the image, we intersect it with n hyperplanes in PN

(scheme-theoretically), and find the number of intersection points (counted with multi-
plicity). But the pullback of a hyperplane in PN to Pn is a degree d hypersurface. Perform
this intersection in Pn, and use Bezout’s theorem (Exercise 1.O).

There is another nice important of information residing in the Hilbert polynomial. No-
tice that pX(0) = χ(X,OX), which is an intrinsic invariant of the scheme X, which does not
depend on the projective embedding.

Imagine how amazing this must have seemed to the ancients: they defined the Hilbert
function by counting how many “functions of various degrees” there are; then they no-
ticed that when the degree gets large, it agrees with a polynomial; and then when they
plugged 0 into the polynomial — extrapolating backwards, to where the Hilbert function
and Hilbert polynomials didn’t agree — they found a magic invariant!

Now we can finally see a nonsingular curve over an algebraically closed field that is
provably not P1! Note that the Hilbert polynomial of P1 is (m+1)/1 = m+1, so χ(OP1) =
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1. Suppose C is a degree d curve in P2. Then the Hilbert polynomial of C is

pP2(m) − pP2(m − d) = (m + 1)(m + 2)/2 − (m − d + 1)(m − d + 2)/2.

Plugging in m = 0 gives us −(d2 − 3d)/2. Thus when d > 2, we have a curve that cannot
be isomorphic to P1! (I think I gave you an earlier exercise that there is a nonsingular
degree d curve.)

Now from 0 → OP2(−d) → OP2 → OC → 0, using h1(OP2(d)) = 0, we have that
h0(C,OC) = 1. As h0 − h1 = χ, we have

h1(C,OC) = (d − 1)(d − 2)/2.

Motivated by geometry, we define the arithmetic genus of a scheme X as 1−χ(X,OX). This
is sometimes denoted pa(X). In the case of nonsingular complex curves, this corresponds
to the topological genus. For irreducible reduced curves (or more generally, curves with
h0(X,OX) ∼= k), pa(X) = h1(X,OX). (In higher dimension, this is a less natural notion.)

We thus now have examples of curves of genus 0, 1, 3, 6, 10, . . . (corresponding to degree
1 or 2, 3, 4, 5, . . . ).

This begs some questions, such as: are there curves of other genera? (We’ll see soon
that the answer is yes.) Are there other genus 1 curves? (Not if k is algebraically closed,
but yes otherwise.) Do we have all the curves of genus 3? (Almost all, but not quite.) Do
we have all the curves of genus 6? (We’re missing most of them.)

Caution: The Euler characteristic of the structure sheaf doesn’t distinguish between
isomorphism classes of nonsingular projective schemes over algebraically closed fields
— for example, P1 × P1 and P2 both have Euler characteristic 1, but are not isomorphic —
Pic P2 ∼= Z while Pic P1 × P1 ∼= Z ⊕ Z.

Important Remark. We can restate the Riemann-Roch formula for curves (Exercise 1.B)
as:

h0(C,L) − h1(C,L) = degL − pa + 1.

This is the most common formulation of the Riemann-Roch formula.

If C is a nonsingular irreducible projective complex curve, then the corresponding
complex-analytic object, a compact Riemann surface, has a notion called the genus g, which
is the number of holes. It turns out that g = pa in this case, and for this reason, we will
often write g for pa when discussing nonsingular (projective irreducible) curves, over any
field.

1.3. Complete intersections. We define a complete intersection in Pn as follows. Pn is a
complete intersection in itself. A closed subscheme Xr ↪→ Pn of dimension r (with r < n)
is a complete intersection if there is a complete intersection Xr+1, and Xr is an effective
Cartier divisor in class OXr+1

(d).
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1.Q. EXERCISE. Show that if X is a complete intersection of dimension r in Pn, then
Hi(X,OX(m)) = 0 for all 0 < i < r and all m. Show that if r > 0, then H0(Pn,O(m)) →
H0(X,O(m)) is surjective. (Hint: long exact sequences.)

Now Xr is the divisor of a section of OXr+1
(m) for some m. But this section is the

restriction of a section of O(m) on Pn. Hence Xr is the scheme-theoretic intersection of
Xr+1 with a hypersurface. Thus inductively Xr is the scheme-theoretic intersection of n−r

hypersurfaces. (By Bezout’s theorem, Exercise 1.O, deg Xr is the product of the degree of
the defining hypersurfaces.)

1.R. EXERCISE (COMPLETE INTERSECTIONS ARE CONNECTED). Show that complete in-
tersections of positive dimension are connected. (Hint: show h0(X,OX) = 1.)

1.S. EXERCISE. Find the genus of the intersection of 2 quadrics in P3. (We get curves of
more genera by generalizing this! At this point we need to worry about whether there
are any nonsingular curves of this form. We can check this by hand, but later Bertini’s
Theorem will save us this trouble.)

1.T. EXERCISE. Show that the rational normal curve of degree d in Pd is not a complete
intersection if d > 2. (Hint: If it were the complete intersection of d − 1 hypersurfaces,
what would the degree of the hypersurfaces be? Why could none of the degrees be 1?)

1.U. EXERCISE. Show that the union of 2 distinct planes in P4 is not a complete intersec-
tion. Hint: it is connected, but you can slice with another plane and get something not
connected (see Exercise 1.R).

This is another important scheme in algebraic geometry that is an example of many
sorts of behavior. We will see more of it later!
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