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In these two lectures, we will define Cech cohomology and discuss its most important
properties, although not in that order.

1. INTRODUCTION

As Γ(X, ·) is a left-exact functor, if 0 → F → G → H → 0 is a short exact sequence of
sheaves on X, then

0 → F(X) → G(X) → H(X)

is exact. We dream that this sequence continues off to the right, giving a long exact se-
quence. More explicitly, there should be some covariant functors Hi (i ≥ 0) from qua-
sicoherent sheaves on X to groups such that H0 = Γ , and so that there is a “long exact
sequence in cohomology”.

(1) 0 // H0(X,F) // H0(X,G) // H0(X,H)

// H1(X,F) // H1(X,G) // H1(X,H) // · · ·

(In general, whenever we see a left-exact or right-exact functor, we should hope for this,
and in good cases our dreams will come true. The machinery behind this is sometimes
called derived functor cohomology, which we will discuss shortly.)

Before defining cohomology groups of quasicoherent sheaves explicitly, we first de-
scribe their important properties. Indeed these fundamental properties are in some ways
more important than the formal definition. The boxed properties will be the important
ones.
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Suppose X is a separated and quasicompact A-scheme. (The separated and quasicom-
pact hypotheses will be necessary in our construction.) For each quasicoherent sheaf F
on X, we will define A-modules Hi(X,F). In particular, if A = k, they are k-vector spaces.

(i) H0(X,F) = Γ(X,F) .

(ii) Each Hi is a covariant functor in the sheaf F extending the usual covariance for
H0(X, ·): F → G induces Γ(X,F) → Γ(X,G).

(iii) If 0 → F → G → H → 0 is a short exact sequence of quasicoherent sheaves
on X, then we have a long exact sequence (1). The maps Hi(X,F) → Hi(X,G) come
from covariance, and similarly for Hi(X,G) → Hi(X,G). The connecting homomorphisms
Hi(x,H) → Hi+1(X,F) will have to be defined.

(iv) If f : X → Y is any morphism, and F is a quasicoherent sheaf on X, then there is
a natural morphism Hi(Y, f∗F) → Hi(X,F) extending Γ(Y, f∗F) → Γ(X,F). We will later
see this as part of a larger story, the Leray spectral sequence. If G is a quasicoherent sheaf
on Y, then setting F := f∗G and using the adjunction map G → f∗f

∗G and covariance of
(ii) gives a natural pullback map Hi(Y,G) → Hi(X, f∗G) (via Hi(Y,G) → Hi(Y, f∗f

∗G) →

Hi(X, f∗G)) extending Γ(Y,G) → Γ(X, f∗G). In this way, Hi is a “contravariant functor in
the space”.

(v) If f : X ↪→ Y is an affine morphism, and F is a quasicoherent sheaf on X, the natural
map of (iv) is an isomorphism: Hi(Y, f∗F)

∼
// Hi(X,F) . When f is a closed immer-

sion and Y = P
N
A , this isomorphism will translate calculations on arbitrary projective

A-schemes to calculations on P
n
A.

(vi) If X can be covered by n affines, then Hi(X,F) = 0 for i ≥ n for all F . In partic-
ular, all higher (i > 0) quasicoherent cohomology groups on affine schemes vanish. The
vanishing of H1 in this case, along with the long exact sequence (iii) implies that Γ is an
exact functor for quasicoherent sheaves on affine schemes, something we already knew.
It is also true that if dim X = n, then Hi(X,F) = 0 for all i > n and for all F (dimensional
vanishing). We will prove this for quasiprojective A-schemes, but we won’t use this fact
in general, and hence won’t prove it. (A proof is given in Hartshorne (Thm. III.2.7) for
derived functors, and we show in a week or two that this agrees with Cech cohomology.)

(vii) The functor Hi behaves well under direct sums, and more generally under colimits:
Hi(X, lim

−→
Fj) = lim

−→
Hi(X,Fj) .

(viii) We will also identify the cohomology of all O(m) on P
n
A:

1.1. Theorem. —

• H0(Pn
A,OP

n
A
(m)) is a free A-module of rank

(

n+m

n

)

if i = 0 and m ≥ 0, and 0 otherwise.
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• Hn(Pn
A,OP

n
A
(m)) is a free A-module of rank

(

−m−1

−n−m−1

)

if m ≤ −n − 1, and 0 otherwise.
• Hi(Pn

A,OP
n
A
(m)) = 0 if 0 < i < n.

We already have shown the first statement in an Essential Exercise (class 27 end of
section 3).

Theorem 1.1 has a number of features that will be the first appearances of things that
we’ll prove later.

• The cohomology of these bundles vanish above n ((vi) above)
• These cohomology groups are always finitely-generated A-modules. This will be

true for all coherent sheaves on projective A-schemes (Theorem 1.2(i)).
• The top cohomology group vanishes for m > −n − 1. (This is a first appearance of

Kodaira vanishing.)
• The top cohomology group is one-dimensional for m = −n − 1 if A = k. This is

the first appearance of the dualizing sheaf.
• There is a natural duality

Hi(X,O(m)) × Hn−i(X,O(−n − 1 − m)) → Hn(X,O(−n − 1)).

This is the first appearance of Serre duality.

Before proving these facts, let’s first use them to prove interesting things, as motivation.

By an earlier Theorem from last quarter (class 30 Corollary 3.3), for any coherent sheaf
F on P

n
A we can find a surjection O(m)⊕j

→ F , which yields the exact sequence

(2) 0 → G → O(m)⊕j
→ F → 0

for some coherent sheaf G. We can use this to prove the following.

1.2. Theorem. — (i) For any coherent sheaf F on a projective A-scheme where A is Noetherian,
hi(X,F) is a coherent (finitely generated) A-module.
(ii) (Serre vanishing) Furthermore, for m � 0, Hi(X,F(m)) = 0 for all i, even without Noether-
ian hypotheses.

A non-Noetherian generalization of the coherence statement is given in Exercise 1.A.

Proof. Because cohomology of a closed scheme can be computed on the ambient space
(see (v) above), we may immediately reduce to the case X = P

n
A.
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(i) Consider the long exact sequence:

0 // H0(Pn
A,G) // H0(Pn

A,O(m)⊕j) // H0(Pn
A,F) //

H1(Pn
A,G) // H1(Pn

A,O(m)⊕j) // H1(Pn
A,F) // · · ·

· · · // Hn−1(Pn
A,G) // Hn−1(Pn

A,O(m)⊕j) // Hn−1(Pn
A,F) //

Hn(Pn
A,G) // Hn(Pn

A,O(m)⊕j) // Hn(Pn
A,F) // 0

The exact sequence ends here because P
n
A is covered by n + 1 affines ((vi) above). Then

Hn(Pn
A,O(m)⊕j) is finitely generated by Theorem 1.1, hence Hn(Pn

A,F) is finitely gener-
ated for all coherent sheaves F . Hence in particular, Hn(Pn

A,G) is finitely generated. As
Hn−1(Pn

A,O(m)⊕j) is finitely generated, and Hn(Pn
A,G) is too, we have that Hn−1(Pn

A,F) is
finitely generated for all coherent sheaves F . We continue inductively downwards.

(ii) Twist (2) by O(N) for N � 0. Then

Hn(Pn
A,O(m + N)⊕j) = ⊕jH

n(Pn
A,O(m + N)) = 0

(by (vii) above), so Hn(Pn
A,F(N)) = 0. Translation: for any coherent sheaf, its top coho-

mology vanishes once you twist by O(N) for N sufficiently large. Hence this is true for G
as well. Hence from the long exact sequence, Hn−1(Pn

A,F(N)) = 0 for N � 0. As in (i),
we induct downwards, until we get that H1(Pn

A,F(N)) = 0. (The induction proceeds no
further, as it is not true that H0(Pn

A,O(m+N)⊕j) = 0 for large N — quite the opposite.) �

1.A. EXERCISE ONLY FOR THOSE WHO LIKE WORKING WITH NON-NOETHERIAN RINGS.
Prove part (i) in the above result without the Noetherian hypotheses, assuming only that
A is a coherent A-module (A is “coherent over itself”). (Hint: induct downwards as be-
fore. Show the following in order: Hn(Pn

A,F) finitely generated, Hn(Pn
A,G) finitely gener-

ated, Hn(Pn
A,F) coherent, Hn(Pn

A,G) coherent, Hn−1(Pn
A,F) finitely generated, Hn−1(Pn

A,G)

finitely generated, etc.)

In particular, we have proved the following, that we would have cared about even
before we knew about cohomology.

1.3. Corollary. — Any projective k-scheme has a finite-dimensional space of global sections. More
generally, if F is a coherent sheaf on a projective A-scheme, then H0(X,F) is a finitely generated
A-module.

This is true more generally for proper k-schemes, not just projective k-schemes, but this
requires more work.
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Here is three important consequences. They can also be shown directly, without the
use of cohomology, but with much more elbow grease.

1.B. EXERCISE. Suppose X is a projective integral scheme over an algebraically closed
field. Show that h0(X,OX) = 1. Hint: show that H0(X,OX) is a finite-dimensional k-
algebra, and a domain. Hence show it is a field. (For experts: the same argument holds
with the weaker hypotheses where X is proper, geometrically connected, and reduced
over an arbitrary field.)

1.C. CRUCIAL EXERCISE (PUSHFORWARDS OF COHERENTS ARE COHERENT). Suppose
f : X → Y is a projective morphism, and OY is coherent over itself (true in all reasonable
circumstances). Show that the pushforward of a coherent sheaf on X is a coherent sheaf
on Y.

Finite morphisms are affine (from the definition) and projective (shown earlier, class
33/34 Exercise 3.A). We can now show that this is a characterization of finiteness.

1.4. Corollary. — If π : X → Y is projective and affine and OY is coherent, then π is finite.

In fact, more generally, if π is universally closed and affine, then π is finite, by Atiyah-
Macdonald Exercise 5.35 (thanks Joe!). We won’t use this, so I won’t explain why.

Proof. By Exercise 1.C, π∗OX is coherent and hence finitely generated. �

1.D. EXERCISE. Suppose 0 → F → G → H → 0 is an exact sequence of coherent sheaves
on projective X with F coherent. Show that for n � 0,

0 → H0(X,F(n)) → H0(X,G(n)) → H0(X,H(n)) → 0

is also exact. (Hint: for n � 0, H1(X,F(n)) = 0.)

2. DEFINITIONS AND PROOFS OF KEY PROPERTIES

This section could be read much later; the facts we will use are all stated in the previous
section. However, the arguments aren’t that complicated, so you may feel like reading
this right away. As you read this, you should go back and check off all the facts, to assure
yourself that I’ve shown all that I’ve promised.

2.1. Cech cohomology. Cech cohomology in general settings is often defined using a
limit over finer and finer covers of a space. In our algebro-geometric setting, the situation
is much cleaner, and we can use a single cover.

Suppose X is quasicompact and separated, e.g. X is quasiprojective over A. In particu-
lar, X may be covered by a finite number of affine open sets, and the intersection of any
two affine open sets is also an affine open set (by separatedness, Class 17 Proposition
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1.2). We’ll use quasicompactness and separatedness only in order to ensure these two
nice properties.

Suppose F is a quasicoherent sheaf, and U = {Ui}
n
i=1 is a finite set of affine open sets

of X covering U. For I ⊂ {1, . . . , n} define UI = ∩i∈IUi, which is affine by the separated
hypothesis. Consider the Cech complex

(3) 0 →

M

|I| = 1

I ⊂ {1, . . . , n}

F(UI) → · · · →

M

|I| = i

I ⊂ {1, . . . , n}

F(UI) →

M

|I| = i + 1

I ⊂ {1, . . . , n}

F(UI) → · · · .

The maps are defined as follows, in terms of the summands. The map from F(UI) →

F(UJ) is 0 unless I ⊂ J, i.e. J = I ∪ {j}. If j is the kth element of J, then the map is (−1)k−1

times the restriction map resUI,UJ
.

2.A. EASY EXERCISE (FOR THOSE WHO HAVEN’T SEEN ANYTHING LIKE THE CECH COM-
PLEX BEFORE). Show that the Cech complex is indeed a complex, i.e. that the composition
of two consecutive arrows is 0.

Define Hi
U(U,F) to be the ith cohomology group of the complex (3). Note that if X is

an A-scheme, then Hi
U(X,F) is an A-module. We have almost succeeded in defining the

Cech cohomology group Hi, except our definition seems to depend on a choice of a cover
U .

2.B. EASY EXERCISE. Show that H0
U(X,F) = Γ(X,F). (Hint: use the sheaf axioms for F .)

2.C. EXERCISE. Suppose 0 → F1 → F2 → F3 → 0 is a short exact sequence of sheaves
on a topological space, and U is an open cover such that on any intersection of open
subsets in U , the sections of F2 surject onto F3. Show that we get a long exact sequence of
cohomology. (Note that this applies in our case!)

2.2. Theorem/Definition. — Recall that X is quasicompact and separated. Hi
U(U,F) is indepen-

dent of the choice of (finite) cover {Ui}. More precisely,

(*) for all k, for any two covers {Ui} ⊂ {Vi} of size at most k, the maps Hi
{Vi}

(X,F) →

Hi
{Ui}

(X,F) induced by the natural maps of Cech complexes (3) are isomorphisms.

Define the Cech cohomology group Hi(X,F) to be this group.

The dependence of k in the statement is there because we will prove it by induction on
k.

(For experts: maps of complexes inducing isomorphisms are called quasiisomorphisms.
We are actually getting a finer invariant than cohomology out of this construction; we are
getting an element of the derived category of A-modules.)
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Proof. We prove this by induction on k. The base case k = 1 is trivial. We need only prove
the result for {Ui}

n
i=1 ⊂ {Ui}

n
i=0, where the case k = n is assumed known. Consider the

exact sequence of complexes

0

��

0

��

0

��

· · · //

L

|I| = i − 1

0 ∈ I ⊂ {0, . . . , n}

F(UI) //

��

L

|I| = i

0 ∈ I ⊂ {0, . . . , n}

F(UI) //

��

L

|I| = i + 1

0 ∈ I ⊂ {0, . . . , n}

F(UI) //

��

· · ·

· · · //

L

|I| = i − 1

I ⊂ {0, . . . , n}

F(UI) //

��

L

|I| = i

I ⊂ {0, . . . , n}

F(UI) //

��

L

|I| = i + 1

I ⊂ {0, . . . , n}

F(UI) //

��

· · ·

· · · //

L

|I| = i − 1

I ⊂ {1, . . . , n}

F(UI) //

��

L

|I| = i

I ⊂ {1, . . . , n}

F(UI) //

��

L

|I| = i + 1

I ⊂ {1, . . . , n}

F(UI) //

��

· · ·

0 0 0

The bottom two rows are Cech complexes with respect to two covers. We get a long exact
sequence of cohomology from this short exact sequence of complexes. Thus we wish
to show that the top row is exact. But the ith cohomology of the top row is precisely
Hi

{Ui∩U0}i>0
(Ui,F) except at step 0, where we get 0 (because the complex starts off 0 →

F(U0) → ⊕n
j=1F(U0∩Uj)). So it suffices to show that higher Cech groups of affine schemes

are 0. Hence we are done by the following result. �

2.3. Theorem. — The higher Cech cohomology Hi
U(X,F) of an affine A-scheme X vanishes (for

any affine cover U , i > 0, and quasicoherent F ).

Serre describes this as a partition of unity argument.

Proof. We want to show that the “extended” complex

(4) 0 → F(X) → ⊕|I|=1F(UI) → ⊕|I|=2F(UI) → · · ·

(where the global sections are appended to the front) has no cohomology, i.e. is exact. We
do this with a trick.
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Suppose first that some Ui, say U0, is X. Then the complex is the middle row of the
following short exact sequence of complexes

0 // 0 //

��

⊕|I|=1,0∈IF(UI) //

��

⊕|I|=2,0∈IF(UI) //

��

· · ·

0 // F(X) //

��

⊕|I|=1F(UI) //

��

⊕|I|=2F(UI) //

��

· · ·

0 // F(X) // ⊕|I|=1,0/∈IF(UI) // ⊕|I|=2,0/∈IF(UI) // · · ·

The top row is the same as the bottom row, slid over by 1. The corresponding long exact
sequence of cohomology shows that the central row has vanishing cohomology. (Topo-
logical experts will recognize this as a mapping cone construction.)

We next prove the general case by sleight of hand. Say X = Spec R. We wish to show
that the complex of A-modules (4) is exact. It is also a complex of R-modules, so we
wish to show that the complex of R-modules (4) is exact. To show that it is exact, it
suffices to show that for a cover of Spec R by distinguished open sets D(fi) (1 ≤ i ≤ r)
(i.e. (f1, . . . , fr) = 1 in R) the complex is exact. (Translation: exactness of a sequence of
sheaves may be checked locally.) We choose a cover so that each D(fi) is contained in
some Uj = Spec Aj. Consider the complex localized at fi. As

Γ(Spec A,F)f = Γ(Spec(Aj)f,F)

(as this is one of the definitions of a quasicoherent sheaf), as Uj ∩ D(fi) = D(fi), we are in
the situation where one of the Ui’s is X, so we are done. �

We have now proved properties (i)–(iii) of the previous section.

2.D. EXERCISE (PROPERTY (v)). Suppose f : X → Y is an affine morphism, and Y is
a quasicompact and separated A-scheme (and hence X is too, as affine morphisms are
both quasicompact and separated). If F is a quasicoherent sheaf on X, describe a natural
isomorphism Hi(Y, f∗F) ∼= Hi(X,F). (Hint: if U is an affine cover of Y, “f−1(U)” is an
affine cover X. Use these covers to compute the cohomology of F .)

2.E. EXERCISE (PROPERTY (iv)). Suppose f : X → Y is any quasicompact separated
morphism, F is a quasicoherent sheaf on X, and Y is a quasicompact quasiseparated A-
scheme. The hypotheses on f ensure that f∗F is a quasicoherent sheaf on Y. Describe a
natural morphism Hi(Y, f∗F) → Hi(X,F) extending Γ(Y, f∗F) → Γ(X,F).

2.F. UNIMPORTANT EXERCISE. Prove Property (vii) of the previous section.

2.4. Useful facts about cohomology for k-schemes.
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2.G. EXERCISE (COHOMOLOGY AND CHANGE OF BASE FIELD). Suppose X is a projective
k-scheme, and F is a coherent sheaf on X. Show that

h0(X,F) = h0(X ×Spec k Spec K,F ⊗k K)

where K/k is any field extension. Here F ⊗k k means the pullback of F to X×Spec k Spec K.
Note: the two sides of this equality are dimensions of vector spaces over different fields!
(This is useful for relating facts about k-schemes to facts about schemes over algebraically
closed fields.)

2.5. Theorem. — Suppose X is a projective k-scheme, and F is a quasicoherent sheaf on X. Then
Hi(X,F) = 0 for i > dim X.

In other words, cohomology vanishes above the dimension of X. We will later show
that this is true when X is a quasiprojective k-scheme.

Proof. Suppose X ↪→ P
N, and let n = dim X. We show that X may be covered by n affine

open sets. A key Exercise from a couple of months ago shows that there are n effective
Cartier divisors on P

N such that their complements U0, . . . , Un cover X. Then Ui is affine,
so Ui ∩ X is affine, and thus we have covered X with n affine open sets. �

Remark. We actually need n affine open sets to cover X, but I don’t see an easy way to
prove it. One way of proving it is by showing that the complement of an affine set is
always pure codimension 1.

3. COHOMOLOGY OF LINE BUNDLES ON PROJECTIVE SPACE

We will finally prove the last promised basic fact about cohomology, property (viii) of
§1, Theorem 1.1.

We saw earlier (Essential Exercise in class 27, end of section 3, and the ensuing discus-
sion) that H0(Pn

A,OP
n
A
(m)) should be interpreted as the homogeneous degree m polyno-

mials in x0, . . . , xn (with A-coefficients). Similarly, Hn(Pn
A,OP

n
A
(m)) should be interpreted

as the homogeneous degree m Laurent polynomials in x0, . . . , xn, where in each mono-
mial, each xi appears with degree at most −1.

Proof of Theorem 1.1. As stated above, we showed the H0 case earlier.

Rather than consider O(m) for various m, we consider them all at once, by considering
F = ⊕mO(m).

We take the standard cover U0 = D(x0), . . . , Un = D(xn) of P
n
A. Notice that if I ⊂

{1, . . . , n}, then F(UI) corresponds to the Laurent monomials where each xi for i /∈ I

appears with non-negative degree.

We first consider the Hn statement. Hn(Pn
A,F) is the cokernel of the surjection

⊕n
i=0F(U{1,...,n}−{i}) → FU{1,...,n}
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i.e.
⊕n

i=0A[x0, . . . , xn, x−1
0 , . . . , ^x−1

i , . . . x−1
n ] → A[x0, . . . , xn, x−1

0 , . . . , x−1
n ].

This cokernel is precisely as described.

We last consider the Hi statement (0 < i < n). (Strangely, the vanishing of these Hi is
the hardest part of the Theorem.) We prove this by induction on n. The cases n = 0 and 1

are trivial. Consider the exact sequence of quasicoherent sheaves:

0 // F
×xn

// F // F ′ // 0

where F ′ is analogous sheaf on the hyperplane xn = 0 (isomorphic to P
n−1
A ). (This exact

sequence is just the direct sum over all m of the exact sequence

0 // OP
n
A
(m − 1)

×xn
// OP

n
A
(m) // O

P
n−1
A

(m) // 0 ,

which in turn is obtained by twisting the closed subscheme exact sequence

0 // OP
n
A
(−1)

×xn
// OP

n
A

// O
P

n−1
A

// 0

by OP
n
A
(m).)

The long exact sequence in cohomology yields

0 // H0(Pn
A,F)

×xn
// H0(Pn

A,F) // H0(Pn−1
A ,F ′)

// H1(Pn
A,F)

×xn
// H1(Pn

A,F) // H1(Pn−1
A ,F ′)

. . . // Hn−1(Pn
A,F)

×xn
// Hn−1(Pn

A,F) // Hn−1(Pn−1
A ,F ′)

// Hn(Pn
A,F)

×xn
// Hn(Pn

A,F) // 0

.

We will now show that this gives an isomorphism

(5) ×xn : Hi(Pn
A,F)

∼
// Hi(Pn

A,F)

for 0 < i < n. The inductive hypothesis gives us this except for i = 1 and i = n−1, where
we have to be more careful. For the first, note that H0(Pn

A,F) // H0(Pn−1
A ,F ′) is sur-

jective: this map corresponds to taking the set of all polynomials in x0, . . . , xn, and setting
xn = 0. The last is slightly more subtle: Hn−1(Pn−1

A ,F ′) → Hn(Pn
A,F) is injective, and cor-

responds to taking a Laurent polynomial in x0, . . . , xn−1 (where in each monomial, each
xi appears with degree at most −1) and multiplying by x−1

n , which indeed describes the
kernel of Hn(Pn

A,F)
×xn

// Hn(Pn
A,F) . (This is a worthwhile calculation! See Exercise 3.A

below.) We have thus established (5) above.

We will now show that the localization Hi(Pn
A,F)xn

= 0. (Here’s what we mean by
localization. Notice Hi(Pn

A,F) is naturally a module over A[x0, . . . , xn] — we know how
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to multiply by elements of A, and by (5) we know how to multiply by xi. Then we localize
this at xn to get an A[x0, . . . , xn]xn

-module.) This means that each element α ∈ Hi(Pn
A,F)

is killed by some power of xi. But by (5), this means that α = 0, concluding the proof of
the theorem.

Consider the Cech complex computing Hi(Pn
A,F). Localize it at xn. Localization and

cohomology commute (basically because localization commutes with operations of tak-
ing quotients, images, etc.), so the cohomology of the new complex is Hi(Pn

A,F)xn
. But

this complex computes the cohomology of Fxn
on the affine scheme Un, and the higher

cohomology of any quasicoherent sheaf on an affine scheme vanishes (by Theorem 2.3
which we’ve just proved — in fact we used the same trick there), so Hi(Pn

A,F)xn
= 0 as

desired. �

3.A. EXERCISE. Verify that Hn−1(Pn−1
A ,F ′) → Hn(Pn

A,F) is injective (likely by verifying
that it is the map on Laurent monomials we claimed above).

E-mail address: vakil@math.stanford.edu
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